JP2007192828A - Abnormality diagnostic device, rolling bearing system having this, and method of diagnosing abnormality - Google Patents

Abnormality diagnostic device, rolling bearing system having this, and method of diagnosing abnormality Download PDF

Info

Publication number
JP2007192828A
JP2007192828A JP2007033797A JP2007033797A JP2007192828A JP 2007192828 A JP2007192828 A JP 2007192828A JP 2007033797 A JP2007033797 A JP 2007033797A JP 2007033797 A JP2007033797 A JP 2007033797A JP 2007192828 A JP2007192828 A JP 2007192828A
Authority
JP
Japan
Prior art keywords
frequency
abnormality
sensor
vibration
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007033797A
Other languages
Japanese (ja)
Other versions
JP4117500B2 (en
Inventor
Yasuyuki Muto
泰之 武藤
Takanori Miyasaka
孝範 宮坂
Juntaro Sawara
淳太郎 佐原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007033797A priority Critical patent/JP4117500B2/en
Publication of JP2007192828A publication Critical patent/JP2007192828A/en
Application granted granted Critical
Publication of JP4117500B2 publication Critical patent/JP4117500B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abnormality diagnostic device which can reduce time and cost concerning diagnostics while time and effort concerning resolving and assembling of the device are alleviating. <P>SOLUTION: The abnormality diagnostic device comprises at least one sensor out of a vibration sensor, an ultrasonic sensor, and an AE sensor fixed to a rotatable member or the above-mentioned rest member; a filtering processor 35 which extracts a specific frequency bandpass corresponding to one natural frequency out of the above-mentioned rotatable member, the above-mentioned rest member, and the above-mentioned sensor from the waveform of the detected signal; an envelope processor 37 which detects a waveform absolute value after filter processing; a frequency analyzer 38 which analyzes the waveform frequency transferred from the above-mentioned envelope processor 37; a comparing collation unit 39 which compares the frequency based on survey data frequency resulting from a damage on the above-mentioned rotatable member computed based on a rotation speed signal; and an abnormality determining unit 42 which specifies the existence of abnormalities or a locus of abnormalities based on a comparing result. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば鉄道車両用の車軸やギアボックス或いは発電用風車等に用いられる回転部品の異常を診断する異常診断装置及びこれを有する転がり軸受装置に関する。   The present invention relates to an abnormality diagnosing device for diagnosing an abnormality of a rotating part used in, for example, an axle, a gear box or a power generation windmill for a railway vehicle, and a rolling bearing device having the abnormality diagnosing device.

従来、鉄道車両や発電用風車等の回転部品は、一定期間使用した後に、軸受装置やその他の部品について損傷や磨耗等の欠陥の有無が検査される。この検査は、装置全体を定期的に分解することにより行われ、回転部品にできた損傷や磨耗は、検査担当者が目視により発見するようにしている。そして、検査で発見される主な欠陥としては、軸受装置の場合、異物の噛み込み等によって生ずる圧痕、転がり疲れによる剥離、その他の磨耗等、歯車の場合には歯部の欠損や磨耗等、車輪の場合にはフラット等の磨耗があり、新品にはない凹凸や磨耗等があれば、新品に交換し再度装置に組みつけられる。   Conventionally, after rotating parts such as railway vehicles and wind turbines for power generation are used for a certain period of time, the bearing device and other parts are inspected for defects such as damage and wear. This inspection is performed by periodically disassembling the entire apparatus, and an inspection person can visually detect damage and wear made on the rotating parts. And the main defects discovered in the inspection are indentation caused by foreign object biting, peeling due to rolling fatigue, other wear, etc. in the case of bearing devices, missing teeth or wear in the case of gears, etc. In the case of a wheel, there is wear such as a flat, and if there is unevenness or wear that is not found in a new product, it is replaced with a new product and reassembled in the apparatus.

また、従来の回転部品として、図14に示すセンサモジュールを有する軸受装置100は、転がり軸受101の外輪102の外周面にモジュール穴103が形成され、モジュール穴103に速度センサ、温度センサ、加速度センサを内装したモジュール104が挿入固定されている。そして、モジュール104内の各センサが発生した検出信号は、通信チャネルを通じて、転がり軸受101が設置される貨車や客車を牽引する機関車内の遠隔処理ユニットに送信される。
また、速度については、回転する車輪によって生じたパルスに基づくジャーナルの瞬間的な速度を検出することにより、その速度と、同様の条件で動作する他の軸受の速度との比較を行い、軸受組立体によって経験された全周期履歴の保存記録を行う。
また、温度については、単純なレベル検出により、同様の条件で動作する他の軸受の温度との比較を行う。
更に、振動については、所定の時間間隔に亘るエネルギーレベルの単純なRMS測定を行い、そのエネルギーレベルと、処理ユニットに記憶された過去のエネルギーレベルとを比較し、同様の条件で動作する他の軸受のエネルギーレベルの比較を行う(例えば、特許文献1参照)。
Further, as a conventional rotating component, the bearing device 100 having the sensor module shown in FIG. 14 has a module hole 103 formed on the outer peripheral surface of the outer ring 102 of the rolling bearing 101, and a speed sensor, a temperature sensor, and an acceleration sensor are formed in the module hole 103. Is inserted and fixed. And the detection signal which each sensor in module 104 generated is transmitted to a remote processing unit in a locomotive which pulls a freight car and a passenger car in which rolling bearing 101 is installed through a communication channel.
As for the speed, by detecting the instantaneous speed of the journal based on the pulses generated by the rotating wheels, the speed is compared with the speed of other bearings operating under similar conditions. Save and record the full cycle history experienced by a solid.
Also, the temperature is compared with the temperature of other bearings operating under similar conditions by simple level detection.
In addition, for vibrations, a simple RMS measurement of the energy level over a predetermined time interval is made, the energy level is compared with the past energy level stored in the processing unit, and other operating under similar conditions. The energy levels of the bearings are compared (for example, see Patent Document 1).

また、図15に示す転がり軸受装置の異常検出装置110は、複列円すいころ軸受111の外輪112の下端部に、センサ取付孔113が形成され、センサ取付孔113に、回転速度センサ114と、温度センサ115と、加速度センサ116と、を有するセンサユニット117が挿入されている。(例えば、特許文献2参照。)。   Further, in the abnormality detecting device 110 of the rolling bearing device shown in FIG. 15, a sensor mounting hole 113 is formed at the lower end portion of the outer ring 112 of the double row tapered roller bearing 111, and the rotational speed sensor 114 is formed in the sensor mounting hole 113. A sensor unit 117 having a temperature sensor 115 and an acceleration sensor 116 is inserted. (For example, refer to Patent Document 2).

更に、図16に示すセンサ付回転静止部材120は、複列円すいころ軸受121の外輪122の下端部にセンサ取付孔123が形成され、回転速度センサ124、温度センサ125と、を有するセンサユニット126がセンサ取付孔123に設けられた隔壁状ケース127に挿入されている(例えば、特許文献3参照。)。   Further, the sensor-equipped rotating stationary member 120 shown in FIG. 16 has a sensor mounting hole 123 formed in the lower end portion of the outer ring 122 of the double row tapered roller bearing 121, and a sensor unit 126 having a rotation speed sensor 124 and a temperature sensor 125. Is inserted into a partition case 127 provided in the sensor mounting hole 123 (see, for example, Patent Document 3).

また、図17に示された従来の軸受の異常検知装置130は、軸受131の機械振動を電気的振動に変換して出力するピックアップ132と、ピックアップ132の出力を増幅する自動利得制御増幅器133と、増幅器133の出力から駆動系や他の機械系から生ずるノイズを除去する1〜15kHzのバンドパスフィルタ134と、バントパスフィルタ134の出力の実効値を演算し自動利得制御増幅器133の利得制御端子に供給する実効値演算器135と、バンドパスフィルタ134の出力を入力する包絡線回路136と、包絡線回路136の出力を入力する実効値演算器137と、実効値演算器137の出力を入力しその値が所定値を超えたときにランプや接点出力で警報を出す警報回路138と、を備えた構成を有する(例えば、特許文献4参照。)。   In addition, the conventional bearing abnormality detection device 130 shown in FIG. 17 includes a pickup 132 that converts the mechanical vibration of the bearing 131 into an electrical vibration and outputs it, and an automatic gain control amplifier 133 that amplifies the output of the pickup 132. The gain control terminal of the automatic gain control amplifier 133 calculates the effective value of the output of the bandpass filter 134 and the bandpass filter 134 of 1 to 15 kHz that removes noise generated from the drive system and other mechanical systems from the output of the amplifier 133. The effective value calculator 135 to be supplied to the envelope, the envelope circuit 136 for inputting the output of the bandpass filter 134, the effective value calculator 137 for inputting the output of the envelope circuit 136, and the output of the effective value calculator 137 are input. And an alarm circuit 138 that issues an alarm by a lamp or contact output when the value exceeds a predetermined value (for example, See Patent Document 4.).

また、図18に示された従来の軸受の異常診断装置140は、転がり軸受141の近傍に配されるマイクロホン142と、増幅器143と、電子機器144と、スピーカ145と、モニタ146と、を備えた構成を有する。電子機器144は、演算処理装置であり、変換機としてのトランスジューサ147と、記録部としてのHDD148と、演算処理部としての異常診断部149と、アナログ変換出力部150とを備える(例えば、特許文献5参照。)。   18 has a microphone 142, an amplifier 143, an electronic device 144, a speaker 145, and a monitor 146, which are arranged in the vicinity of the rolling bearing 141. The conventional bearing abnormality diagnosis device 140 shown in FIG. Have a configuration. The electronic device 144 is an arithmetic processing device, and includes a transducer 147 as a converter, an HDD 148 as a recording unit, an abnormality diagnosis unit 149 as an arithmetic processing unit, and an analog conversion output unit 150 (for example, Patent Documents). 5).

また、図19に示された従来の軸受の異常診断装置160では、センサ161が出力した電気的な信号波形が、アナログ・デジタル変換器162によってデジタルファイル化された後、波形処理部163に送られ、波形処理部163で、エンベロープ処理が行われてエンベロープスペクトルが得られる。また、波形処理部163では、抽出工程において、軸受構成部品の特定の周波数成分である、内輪傷成分、外輪傷成分、転動体傷成分が、所定の式を用いてエンベロープスペクトルにより抽出される。演算部164では、演算工程が行われ、判定部165では、比較工程が行われ、判定結果が出力回路166から出力され、スピーカ167やモニターに168より検査員に報知される(例えば特許文献6参照。)。   In the conventional bearing abnormality diagnosis device 160 shown in FIG. 19, the electrical signal waveform output from the sensor 161 is converted into a digital file by the analog / digital converter 162 and then sent to the waveform processing unit 163. Then, the waveform processing unit 163 performs envelope processing to obtain an envelope spectrum. Further, in the extraction process, the waveform processing unit 163 extracts the inner ring wound component, the outer ring wound component, and the rolling element wound component, which are specific frequency components of the bearing component, from the envelope spectrum using a predetermined formula. The calculation unit 164 performs a calculation process, the determination unit 165 performs a comparison process, the determination result is output from the output circuit 166, and is notified to the inspector via the speaker 167 and the monitor 168 (for example, Patent Document 6). reference.).

また、図20に示されるように、転がり軸受の各部材で発生する異常振動周波数は、軸受回転速度と、軸受部品の形状寸法から幾何的に求められ、これを用いた信号処理方法が種々知られている(例えば、非特許文献1参照。)。
特表2001−500597号公報(第10−16頁、第1図) 特開2002−295464号公報(第4−5頁、第1図) 特開2002−242928号広報(第4−5頁、第1図) 特開平2−205727号公報(第2−3頁、第1図) 特開2000−146762号公報(第4−6頁、第1図) 特開2001−021453号公報(第5−6頁、第1図) 転がり軸受の異常の検出および予知について “潤滑”、第23巻、第3号(1978)pp.183〜187
Further, as shown in FIG. 20, the abnormal vibration frequency generated in each member of the rolling bearing is obtained geometrically from the bearing rotational speed and the shape and size of the bearing parts, and various signal processing methods using this are known. (See, for example, Non-Patent Document 1).
JP-T-2001-500597 (pages 10-16, FIG. 1) JP 2002-295464 A (page 4-5, FIG. 1) JP 2002-242928 PR (page 4-5, Fig. 1) JP-A-2-205727 (page 2-3, FIG. 1) JP 2000-146762 A (page 4-6, FIG. 1) JP 2001-021453 (page 5-6, FIG. 1) Detection and prediction of abnormality in rolling bearings “Lubrication”, Vol. 23, No. 3 (1978) pp. 183 to 187

しかしながら、上記機械装置全体を分解して、担当者が目視で検査する方法では、装置全体の分解に多大な時間とコストがかかり、さらに組立て直しにも多くの時間を必要とすることがある。特に、発電用風車の場合、オフショアで使用される場合が多く、台数も多い場合がある。そのため、現在では、保全担当者が現地に出向き、個々の風車の回転部品検査を行っていることが多く、この場合、多大な時間とコストがかかり、メンテナンス性において効率が悪いことがある。   However, in the method in which the entire mechanical device is disassembled and the person in charge inspects it visually, it takes a lot of time and cost to disassemble the entire device, and a lot of time may be required for reassembly. In particular, in the case of a wind turbine for power generation, it is often used offshore, and the number of wind turbines may be large. Therefore, at present, maintenance personnel often go to the site and inspect the rotating parts of individual wind turbines. In this case, it takes a lot of time and cost, and the efficiency of maintenance is sometimes poor.

また、限られた時間内で多数の部品を目視で検査するため、欠陥を見落とす可能性がある。また、欠陥の程度の判断にも個人差があり、実質的に欠陥がなくても部品交換が行われることもあるため、無駄なコストがかかることにも成り得る。さらに、組立て直しを行うときに、検査前には無かった打痕を回転部品につけてしまう等、検査自体が部品の欠陥の新たな原因を生むこともある。   Further, since a large number of parts are visually inspected within a limited time, there is a possibility that a defect is overlooked. Further, there is an individual difference in the determination of the degree of defect, and parts may be replaced even if there is substantially no defect, which may be useless cost. Further, when reassembling, the inspection itself may cause a new cause of the defect of the component, such as making a dent on the rotating component that did not exist before the inspection.

また、機械装置によっては、回転部品に異常が生じても部品の交換に手間を要するため、直ちに装置を停止させることができないことがある。この場合、損傷の程度がどの程度かを確認するために、振動計等を用いて正常時の振動値と比較したり、熟練者による聴感により、その程度を推定し、部品の交換時期を定めている。しかしながら、機械装置の振動は、回転部品以外からの振動源から発生する振動の方が大きいため、損傷の程度の識別までは困難である。このため、効率的な部品交換ができないことがあった。   Further, depending on the mechanical device, even if an abnormality occurs in the rotating component, it may take time to replace the component, and thus the device cannot be stopped immediately. In this case, in order to confirm the extent of damage, use a vibration meter or the like to compare with the normal vibration value, or estimate the degree by hearing from a skilled worker, and determine the time to replace the parts. ing. However, since the vibration of the mechanical device is larger from the vibration source other than the rotating parts, it is difficult to identify the degree of damage. For this reason, efficient parts replacement may not be possible.

また、特許文献1〜6及び非特許文献1においては、温度センサや振動センサを用いて外部から回転部品の異常を診断する手法が知られているが、これらの文献では、例えば、振動センサからの検出信号を分析して異常診断する際の処理負担に対して対策が為されておらず、処理回路等のハードウェアが大きくなったり、ソフトウェアの負荷が大きくなることがあった。   In Patent Documents 1 to 6 and Non-Patent Document 1, there are known methods for diagnosing abnormalities in rotating parts from the outside using a temperature sensor or a vibration sensor. In these documents, for example, a vibration sensor is used. No measures have been taken against the processing burden when analyzing the detected signal to diagnose an abnormality, and the hardware of the processing circuit or the like may increase, or the load of software may increase.

本発明は、上記課題を解決するために為されたものであり、装置の分解や組立てに掛かる手間を軽減しながら、その装置の回転部品の異常の有無、部位の特定及び損傷の程度を診断可能であると共に、診断にかかる時間及びコストを低減できる異常診断装置及びこれを有する転がり軸受装置を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and diagnoses the presence / absence of abnormalities in the rotating parts of the apparatus, the identification of the parts, and the degree of damage while reducing the labor required for disassembling and assembling the apparatus. An object of the present invention is to provide an abnormality diagnosis device capable of reducing the time and cost required for diagnosis and a rolling bearing device having the same.

本発明の目的は、以下の構成によって達成される。
(1) 静止部材に対して相対的に回転する回転部品の異常を診断する異常診断装置であって、
前記回転部品又は前記静止部材に固定される、振動センサ、超音波センサ、AEセンサのうちの少なくとも一つのセンサと、
前記センサにより検出された信号の波形から前記回転部品と前記静止部材と前記センサのいずれかの固有振動数に対応した特定周波数帯域を抽出するフィルタ処理部と、
前記フィルタ処理部から転送されたフィルタ処理後の波形の絶対値を検波するエンベロープ処理部と、
前記エンベロープ処理部から転送された波形の周波数を分析する周波数分析部と、
回転速度信号に基づき算出した前記回転部品の損傷に起因した周波数と実測データに基づく周波数とを比較する比較照合部と、
前記比較照合部での比較結果に基づき、異常の有無や異常の部位を特定する異常判定部と、
を備えていることを特徴とする異常診断装置。
(2) 前記フィルタ処理部は、複数の前記固有振動数に対応した複数の前記周波数帯域を抽出し、前記異常判定部は、各周波数帯域での比較照合部での比較結果に基づいて損傷の程度を診断することを特徴とする(1)に記載の異常診断装置。
(3) 静止部材に対して相対的に回転する回転部品の異常を診断する異常診断装置であって、
前記回転部品又は前記軸受箱に固定される、振動センサ、超音波センサ、AEセンサのうちの少なくとも一つのセンサと、
前記センサにより検出された信号の波形から前記回転部品と前記軸受箱と前記センサのいずれかの複数の固有振動数に対応した複数の特定周波数帯域を抽出するフィルタ処理部と、
前記フィルタ処理部から転送されたフィルタ処理後の波形の実効値又は波高率を算出する演算処理部と、
前記演算処理部で算出された各周波数帯域における演算結果を正常値と比較する比較部と、
前記比較部での比較結果に基づき、異常の有無あるいは損傷の程度を診断する異常判定部と、
を備えることを特徴とする異常診断装置。
(4) 前記異常判定部での判定結果を表示する結果出力部をさらに備えることを特徴とする(1)〜(3)のいずれかに記載の異常診断装置。
(5) 前記回転部品の負荷圏に前記振動センサ、前記超音波センサ、前記AEセンサ、温度センサのうちの少なくとも一つの異常検出用センサを同一の筐体内に収納固定したことを特徴とする(1)〜(4)のいずれかに記載の異常診断装置。
(6) 前記回転部品は転がり軸受で、前記静止部材は前記転がり軸受を支持する軸受箱であり、前記軸受箱の負荷圏側の外周面の一部に平坦部を設け、該平坦部に前記センサが固定されることを特徴とする(1)〜(5)のいずれかに記載の異常診断装置。
(7) 前記振動センサによって検出され、前記フィルタ処理部によりフィルタ処理された振動信号を、音として出力するヘッドホン又はスピーカをさらに備えることを特徴とする(1)〜(6)のいずれかに記載の異常診断装置。
(8) (1)〜(7)のいずれかに記載の異常診断装置を備えた鉄道車両用転がり軸受装置。
(9) (1)〜(7)のいずれかに記載の異常診断装置を備えた減速器用転がり軸受装置。
The object of the present invention is achieved by the following configurations.
(1) An abnormality diagnosis device for diagnosing an abnormality of a rotating component that rotates relative to a stationary member,
At least one of a vibration sensor, an ultrasonic sensor, and an AE sensor fixed to the rotating component or the stationary member;
A filter processing unit that extracts a specific frequency band corresponding to a natural frequency of any one of the rotating component, the stationary member, and the sensor from a waveform of a signal detected by the sensor;
An envelope processing unit for detecting the absolute value of the filtered waveform transferred from the filter processing unit;
A frequency analysis unit for analyzing the frequency of the waveform transferred from the envelope processing unit;
A comparison / collation unit that compares the frequency based on the damage of the rotating part calculated based on the rotation speed signal and the frequency based on the actual measurement data;
Based on the comparison result in the comparison and collation unit, an abnormality determination unit that identifies the presence or absence of abnormality and a site of abnormality,
An abnormality diagnosis apparatus comprising:
(2) The filter processing unit extracts a plurality of the frequency bands corresponding to the plurality of natural frequencies, and the abnormality determination unit determines damage based on a comparison result in the comparison / collation unit in each frequency band. The abnormality diagnosis device according to (1), characterized in that the degree is diagnosed.
(3) An abnormality diagnosis device for diagnosing an abnormality of a rotating component that rotates relative to a stationary member,
At least one of a vibration sensor, an ultrasonic sensor, and an AE sensor fixed to the rotating component or the bearing housing;
A filter processing unit that extracts a plurality of specific frequency bands corresponding to a plurality of natural frequencies of any one of the rotating component, the bearing box, and the sensor from a waveform of a signal detected by the sensor;
An arithmetic processing unit that calculates an effective value or a crest factor of the waveform after filtering transferred from the filter processing unit;
A comparison unit that compares a calculation result in each frequency band calculated by the calculation processing unit with a normal value;
Based on the comparison result in the comparison unit, an abnormality determination unit for diagnosing the presence or absence of abnormality or the degree of damage;
An abnormality diagnosis apparatus comprising:
(4) The abnormality diagnosis apparatus according to any one of (1) to (3), further including a result output unit that displays a determination result in the abnormality determination unit.
(5) At least one abnormality detection sensor among the vibration sensor, the ultrasonic sensor, the AE sensor, and the temperature sensor is housed and fixed in the same casing in the load zone of the rotating component. The abnormality diagnosis device according to any one of 1) to (4).
(6) The rotating component is a rolling bearing, and the stationary member is a bearing box that supports the rolling bearing, and a flat portion is provided on a part of the outer peripheral surface of the bearing box on the load zone side, The abnormality diagnosis device according to any one of (1) to (5), wherein the sensor is fixed.
(7) The apparatus according to any one of (1) to (6), further including a headphone or a speaker that outputs a vibration signal detected by the vibration sensor and filtered by the filter processing unit as sound. Abnormality diagnosis device.
(8) A rolling bearing device for a railway vehicle comprising the abnormality diagnosis device according to any one of (1) to (7).
(9) A rolling bearing device for a speed reducer comprising the abnormality diagnosis device according to any one of (1) to (7).

本発明の異常診断装置によれば、回転部品が組み込まれている装置を分解することなく実稼動状態で複数の部品の欠陥と損傷の程度を同時に検査することができる。また、機械部品の固有振動数に対応した周波数帯域を抽出するため、高感度で高SN比の測定が可能となる。この結果、検査時間ならびにコストの低減が図れると共に、機械装置の回転部品あるいは装置の安全性と信頼性を向上することができる。   According to the abnormality diagnosis apparatus of the present invention, it is possible to simultaneously inspect the degree of defects and damage of a plurality of parts in actual operation without disassembling the apparatus in which the rotating parts are incorporated. Further, since the frequency band corresponding to the natural frequency of the machine part is extracted, it is possible to measure with high sensitivity and high S / N ratio. As a result, the inspection time and cost can be reduced, and the safety and reliability of the rotating parts of the machine or the apparatus can be improved.

以下、図面を参照して本発明の第1実施形態に係る回転部品の異常診断装置について詳細に説明する。
図1は、異常診断装置が適用される鉄道車両用の転がり軸受装置10を示す。鉄道車両用の転がり軸受装置10は、回転部品である鉄道車両車軸用の複列円すいころ軸受11と、鉄道車両用台車の一部を構成する静止部材である軸受箱12とを備える。
Hereinafter, a rotating component abnormality diagnosis apparatus according to a first embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a rolling bearing device 10 for a railway vehicle to which an abnormality diagnosis device is applied. A rolling bearing device 10 for a railway vehicle includes a double-row tapered roller bearing 11 for a railway vehicle axle that is a rotating part, and a bearing box 12 that is a stationary member that constitutes a part of the railway vehicle carriage.

複列円すいころ軸受11は、外周面に円すい外面状に傾斜した内輪軌道面15,15を有する一対の内輪14,14と、内周面に円すい内面状に傾斜した一対の外輪軌道面17,17を有する単一の外輪16と、内輪14,14の内輪軌道面15,15と外輪16の外輪軌道面17,17との間に複列で複数配置された転動体である円すいころ18と、円すいころ18を転動自在に保持する環状の打ち抜き保持器19,19と、一対のシール部材20,20とを備える。
軸受箱12は、ハウジング21と、ハウジング21の先端部側に配置された前蓋22と、その後端部側に配置された後蓋23とを備える。
The double-row tapered roller bearing 11 includes a pair of inner rings 14 and 14 having inner ring raceways 15 and 15 inclined on the outer peripheral surface in a tapered outer surface shape, and a pair of outer ring raceway surfaces 17 inclined on the inner peripheral surface in a tapered inner surface shape. A single outer ring 16 having 17, and tapered rollers 18 that are a plurality of rolling elements arranged in multiple rows between the inner ring raceway surfaces 15, 15 of the inner rings 14, 14 and the outer ring raceway surfaces 17, 17 of the outer ring 16; Further, annular punching cages 19 and 19 for holding the tapered rollers 18 in a rollable manner and a pair of seal members 20 and 20 are provided.
The bearing box 12 includes a housing 21, a front lid 22 disposed on the front end side of the housing 21, and a rear lid 23 disposed on the rear end side.

内輪14,14の間には、内輪間座24が配置されている。内輪14,14、内輪間座24には回転軸である車軸25が圧入されており、外輪16はハウジング21と嵌合する。複列円すいころ軸受11には、種々部材の重量等によるラジアル荷重と任意のアキシアル荷重とが負荷されており、外輪16の上方部が負荷圏になっている。ここで、負荷圏とは、転動体に対して荷重が負荷される領域を指す。   An inner ring spacer 24 is disposed between the inner rings 14 and 14. An axle 25 that is a rotating shaft is press-fitted into the inner rings 14, 14 and the inner ring spacer 24, and the outer ring 16 is fitted into the housing 21. The double row tapered roller bearing 11 is loaded with a radial load due to the weight of various members and an arbitrary axial load, and the upper portion of the outer ring 16 is in a load zone. Here, the load zone refers to a region where a load is applied to the rolling elements.

車軸25の先端部側に配置された一方のシール部材20は、外輪16の外側端部と前蓋22との間に組み付けられ、後端部側に配置された他方のシール部材20は、外輪16の外側端部と後蓋23との間に組み付けられている。   One seal member 20 disposed on the front end side of the axle 25 is assembled between the outer end portion of the outer ring 16 and the front lid 22, and the other seal member 20 disposed on the rear end side is disposed on the outer ring. 16 is assembled between the outer end of 16 and the rear lid 23.

ハウジング21は、鉄道車両用台車の側枠を構成しており、外輪16の外周面を覆うように円環形状に形成されている。ハウジング21の外周部には、複列円すいころ軸受11の軸方向中央部に凹部26が形成されている。凹部26はその底部に平坦部27を設け、平坦部27に異常診断装置の一部を構成する異常検出用センサ31を固定する。   The housing 21 constitutes a side frame of a railcar bogie, and is formed in an annular shape so as to cover the outer peripheral surface of the outer ring 16. A recess 26 is formed in the outer peripheral portion of the housing 21 at the central portion in the axial direction of the double row tapered roller bearing 11. The concave portion 26 is provided with a flat portion 27 at the bottom thereof, and an abnormality detection sensor 31 constituting a part of the abnormality diagnosis device is fixed to the flat portion 27.

異常検出用センサ31は、振動センサや温度センサまたはAE(acoustic emission)センサや超音波センサを一体に筐体内に収納固定した複合型センサである。なお、図1の異常検出用センサ31は、振動センサ32と温度センサ33を備える。振動センサ32は、圧電素子等の振動測定素子であり、複列円すいころ軸受11の内外輪軌道面15,15,17,17の剥離や、歯車の欠損、車輪のフラット磨耗等を検出するのに用いられる。振動センサ32は、加速度、速度或いは変位型等、振動を電気信号化できるものであればよく、ノイズが多いような機械装置に取付ける際には、絶縁型を使用する方がノイズの影響を受けることがないので好ましい。   The abnormality detection sensor 31 is a composite sensor in which a vibration sensor, a temperature sensor, an AE (acoustic emission) sensor, and an ultrasonic sensor are integrally housed and fixed in a housing. 1 includes a vibration sensor 32 and a temperature sensor 33. The abnormality detection sensor 31 shown in FIG. The vibration sensor 32 is a vibration measuring element such as a piezoelectric element, and detects peeling of the inner and outer ring raceway surfaces 15, 15, 17, 17 of the double row tapered roller bearing 11, missing gears, flat wear of wheels, and the like. Used for. The vibration sensor 32 may be an acceleration, speed, displacement type, or the like that can convert vibration into an electrical signal. When the vibration sensor 32 is attached to a mechanical device having a lot of noise, the use of an insulation type is more affected by noise. This is preferable because there is nothing.

温度センサ33は、サーミスタ温度測定素子や白金測温抵抗体や熱電対等の非接触タイプの温度測定素子である。温度センサとしては、雰囲気温度が規定値を超えると、バイメタルの接点が離れたり、接点が溶断したりすることで導通しなくなる温度フューズを用いても良い。その場合、装置の温度が規定値を超えたとき、温度フューズの導通が遮断されることによって温度異常が検出される。   The temperature sensor 33 is a non-contact type temperature measuring element such as a thermistor temperature measuring element, a platinum resistance temperature detector, or a thermocouple. As the temperature sensor, when the ambient temperature exceeds a specified value, a temperature fuse that does not conduct when the bimetal contact is separated or the contact is melted may be used. In that case, when the temperature of the apparatus exceeds a specified value, the temperature abnormality is detected by blocking the conduction of the temperature fuse.

また、異常検出用センサ31は、軸受の非回転側軌道輪に嵌合している軸受箱のラジアル荷重の負荷圏領域に取付けている。このため、例えば、軸受軌道面に損傷が発生した場合、その損傷部を転動体が通過する際に生じる衝突力は無負荷圏よりも負荷圏の方が大きく、軸受負荷圏の方が感度良く異常振動を検出することができる。   Further, the abnormality detection sensor 31 is attached to the load area of the radial load of the bearing housing fitted to the non-rotating side race of the bearing. For this reason, for example, when the bearing raceway surface is damaged, the collision force generated when the rolling element passes through the damaged portion is larger in the load area than in the no-load area, and the bearing load area is more sensitive. Abnormal vibration can be detected.

図2は、異常検出用センサ31の振動センサ32を用いた異常診断装置の信号処理系統図を示す。振動センサ32が発生した振動信号は、信号伝送手段34を介して増幅後にフィルタ部35に転送される。フィルタ部35は、固有振動数記憶部36に記憶された、回転部品である複列円すいころ軸受11、静止部材である軸受箱12、異常検出用センサ31のいずれかの固有振動数に基づいて、振動信号からその固有振動数に対応する所定の周波数帯域のみを抽出する。   FIG. 2 shows a signal processing system diagram of the abnormality diagnosis apparatus using the vibration sensor 32 of the abnormality detection sensor 31. The vibration signal generated by the vibration sensor 32 is transferred to the filter unit 35 after amplification through the signal transmission means 34. The filter unit 35 is based on the natural frequency of any one of the double-row tapered roller bearing 11 that is a rotating part, the bearing box 12 that is a stationary member, and the abnormality detection sensor 31 that is stored in the natural frequency storage unit 36. Then, only a predetermined frequency band corresponding to the natural frequency is extracted from the vibration signal.

この固有振動数は、回転部品である複列円すいころ軸受11や歯車や車輪、静止部材である軸受箱12、異常検出用センサ31のいずれかを被測定物として、打撃法により加振し、被測定物に取付けた振動検出器又は打撃により発生した音響を周波数分析することにより容易に求めることができる。なお、被測定物が複列円すいころ軸受の場合には、内輪、外輪、転動体、保持器等のいずれかに起因する固有振動数が与えられる。一般的に、機械部品の固有振動数は複数存在し、また固有振動数での振幅レベルは高くなるため測定の感度がよい。   This natural frequency is vibrated by a striking method using any one of the double-row tapered roller bearing 11, which is a rotating component, a gear and a wheel, a bearing box 12, which is a stationary member, and an abnormality detection sensor 31, as a measurement object. The vibration detector attached to the object to be measured or the sound generated by the impact can be easily obtained by frequency analysis. When the object to be measured is a double-row tapered roller bearing, a natural frequency due to any of the inner ring, outer ring, rolling element, cage, etc. is given. In general, there are a plurality of natural frequencies of mechanical parts, and the amplitude level at the natural frequencies is high, so the sensitivity of measurement is good.

その後、エンベロープ処理部37では、フィルタ部35にて抽出された所定の周波数帯域に対して、波形の絶対値を検波する絶対値検波処理が行われる。さらに、周波数分析部38で波形の周波数の分析処理が行われ、実測値データが比較照合部39へ転送される。   Thereafter, the envelope processing unit 37 performs absolute value detection processing for detecting the absolute value of the waveform for the predetermined frequency band extracted by the filter unit 35. Further, the frequency analysis unit 38 performs waveform frequency analysis processing, and the actual measurement data is transferred to the comparison and verification unit 39.

一方、理論周波数計算部41において、回転速度情報40に基づき算出された、軸受の剥離、歯車の欠損、車輪のフラット等、回転部品の損傷に起因した周波数成分の計算値データが比較照合部39に転送される。そして、比較照合部39で実測値データと計算値データとが比較照合され、異常判定部42にて振動異常の有無、異常部位の特定が行われ、結果出力部43で振動異常の有無、特定部位の出力が行われ、アラーム出力することもできる。結果出力部43への情報転送は、有線や無線で行われる。   On the other hand, in the theoretical frequency calculation unit 41, the calculated value data of the frequency component resulting from damage to the rotating parts such as bearing separation, gear loss, wheel flatness, etc., calculated based on the rotational speed information 40, is compared and compared 39. Forwarded to Then, the comparison / verification unit 39 compares the measured value data with the calculated value data, the abnormality determination unit 42 identifies the presence / absence of vibration abnormality and the abnormal region, and the result output unit 43 identifies the presence / absence of vibration abnormality. The part is output and an alarm can be output. Information transfer to the result output unit 43 is performed by wire or wireless.

本実施形態は、振動信号から固有振動数に対応する所定の周波数帯域のみを抽出・分析することで、回転部品の異常診断ができることに着目したものである。
具体的に、本出願人は外径208mm、内径130mm、幅152mm、ころ数25の複列円すいころ軸受を用いて、内輪を200min−1で回転させながら、軸受箱を打撃法によって加振して図3に示されるような軸受箱の固有振動数の測定結果を得た。なお、複列円すいころ軸受には30kNのラジアル荷重が作用しており、振動検出器は軸受箱負荷圏位置に固定して測定した。この結果から、図3に示された波形データは、図4に示した正常な複列円すいころ軸受の振動周波数の結果とほぼ一致することが見られ、これにより、固有振動数に対応する所定の周波数帯域のみを抽出・分析することで異常の有無の診断ができることを見出した。
The present embodiment focuses on the fact that an abnormality diagnosis of a rotating component can be performed by extracting and analyzing only a predetermined frequency band corresponding to the natural frequency from the vibration signal.
Specifically, the present applicant uses a double row tapered roller bearing having an outer diameter of 208 mm, an inner diameter of 130 mm, a width of 152 mm, and a number of rollers of 25, and vibrates the bearing box by a striking method while rotating the inner ring at 200 min −1. Thus, the measurement result of the natural frequency of the bearing box as shown in FIG. 3 was obtained. In addition, a radial load of 30 kN is acting on the double row tapered roller bearing, and the vibration detector was measured while being fixed at the bearing box load zone position. From this result, it can be seen that the waveform data shown in FIG. 3 substantially coincides with the result of the vibration frequency of the normal double-row tapered roller bearing shown in FIG. 4, and thereby, the predetermined frequency corresponding to the natural frequency. It was found that the presence or absence of abnormality can be diagnosed by extracting and analyzing only the frequency band.

なお、この方法では、例えば、電動機等から検出した回転速度情報と回転要素部品の設計諸元に基づけば、周波数成分の計算と比較照合を容易に行うことができる。また、固有振動数の記憶又は増幅後の振動信号の処理は、各種データ処理と演算を行うもので、例えば、コンピュータ或いは専用マイクロチップ等によっても構成が可能である。さらに、検出した信号をメモリ等の保存手段に格納後に、演算処理を行うようにしても良い。   In this method, for example, based on the rotational speed information detected from an electric motor or the like and the design specifications of the rotating element parts, it is possible to easily perform frequency component calculation and comparison verification. In addition, the storage of the natural frequency or the processing of the vibration signal after amplification performs various data processing and calculation, and can be configured by, for example, a computer or a dedicated microchip. Further, the arithmetic processing may be performed after the detected signal is stored in a storage means such as a memory.

さらに、比較照合部39が行う振動信号を基にした異常診断の処理方法としては以下に示す方法を用いても良い。   Further, as a processing method for abnormality diagnosis based on the vibration signal performed by the comparison / verification unit 39, the following method may be used.

(1)エンベロープデータの実効値を基準値として用いる方法
本方法では、図20の式を基に、異常時に発生する周波数成分を求める。そして、エンベロープデータの実効値を算出し、この実効値から比較用の基準値を求める。そして、基準値以上の周波数成分を算出し、異常時に発生する周波数成分との比較を行う。以下、図5を参照しながら説明を行う。
(1) Method of Using Effective Value of Envelope Data as Reference Value In this method, a frequency component generated at the time of abnormality is obtained based on the equation of FIG. Then, an effective value of the envelope data is calculated, and a reference value for comparison is obtained from the effective value. Then, the frequency component equal to or higher than the reference value is calculated and compared with the frequency component generated at the time of abnormality. Hereinafter, description will be given with reference to FIG.

まず、異常検出用センサ31に収納された振動センサ32を介して軸受の振動を検出する(ステップS101)。検出された信号は、所定の増幅率で増幅され、A/D変換器によりデジタル信号に変換され(ステップS102)、所定の周波数帯域のみを抽出するフィルタ処理が行なわれる(ステップS103)。フィルタ処理後のデジタル信号にエンベロープ処理を施し(ステップS104)、エンベロープ処理後のデジタル信号の周波数スペクトルを求める(ステップS105)。   First, the vibration of the bearing is detected through the vibration sensor 32 housed in the abnormality detection sensor 31 (step S101). The detected signal is amplified with a predetermined amplification factor, converted into a digital signal by an A / D converter (step S102), and filter processing for extracting only a predetermined frequency band is performed (step S103). Envelope processing is performed on the digital signal after the filter processing (step S104), and the frequency spectrum of the digital signal after the envelope processing is obtained (step S105).

次に、実測値データのデジタル信号の実効値を計算し(ステップS106)、さらに実効値を基にして、異常診断に用いられる基準値を算出する(ステップS107)。ここで、実効値は、エンベロープ処理後の周波数スペクトルの自乗平均の平方根として求められたものである。基準値は、実効値を基に、以下の式(1)または(2)に基づき算出される。
(基準値)=(実効値)+α ・・・(1)
(基準値)=(実効値)×β ・・・(2)
α,β:データの種類によって可変な所定の値
Next, the effective value of the digital signal of the actual measurement data is calculated (step S106), and further, a reference value used for abnormality diagnosis is calculated based on the effective value (step S107). Here, the effective value is obtained as the root mean square of the frequency spectrum after the envelope processing. The reference value is calculated based on the following formula (1) or (2) based on the effective value.
(Reference value) = (effective value) + α (1)
(Reference value) = (effective value) × β (2)
α, β: Predetermined values that vary depending on the type of data

一方、図20に示す表に基づき、軸受の異常時に起因して発生する(理論)周波数を求め(ステップS108)、求めた周波数に対応する各部材の異常周波数成分のレベル、即ち、内輪傷成分Si(Zfi),外輪傷成分So(Zfc)、転動体傷成分Sb(2fb)及び保持器成分Sc(fc)を抽出し(ステップS109)、ステップS107で計算された基準値との比較を行う(ステップS110)。そして、全ての成分の値が、基準値より小さい場合には、軸受に異常は発生していないと判断し(ステップS112)、いずれかの成分が基準値以上である場合には、該当箇所に異常が発生していると判断する(ステップS111)。   On the other hand, based on the table shown in FIG. 20, the (theoretical) frequency generated due to the abnormality of the bearing is obtained (step S108), and the level of the abnormal frequency component of each member corresponding to the obtained frequency, that is, the inner ring scratch component Si (Zfi), outer ring wound component So (Zfc), rolling body wound component Sb (2fb) and cage component Sc (fc) are extracted (step S109) and compared with the reference value calculated in step S107. (Step S110). If all the component values are smaller than the reference value, it is determined that no abnormality has occurred in the bearing (step S112). If any of the components is greater than or equal to the reference value, It is determined that an abnormality has occurred (step S111).

(2)スペクトルのピークを求め、ピーク周波数と異常周波数とを比較する方法
本方法では、図20の式を基に、異常時に発生する周波数成分を求める。そして、周波数分析部38が求めた周波数スペクトルの中で所定数または基準値以上のピークについて、異常が発生する周波数成分に該当するかどうかを照合する。
(2) Method of Finding Peak of Spectrum and Comparing Peak Frequency and Abnormal Frequency In this method, a frequency component generated at the time of abnormality is obtained based on the equation of FIG. Then, it is checked whether or not a predetermined number or a peak equal to or higher than a reference value in the frequency spectrum obtained by the frequency analysis unit 38 corresponds to a frequency component in which an abnormality occurs.

(3)基本周波数と特定の高調波を用いる方法
本方法では、異常周波数成分の基本周波数である1次の値、基本周波数の倍の周波数を持つ2次の値、基本周波数の4倍の周波数を持つ4次の値について、ピークの周波数と異常時に発生する周波数とが一致しているかどうかを比較し、少なくとも2つの周波数において、異常有りと判断された場合には、最終的に異常有りと判断する。
(3) Method of using fundamental frequency and specific harmonics In this method, the primary value that is the fundamental frequency of the abnormal frequency component, the secondary value that has twice the fundamental frequency, and the frequency that is four times the fundamental frequency. Compare the peak frequency with the frequency generated at the time of abnormality for the quaternary value with, and if it is determined that there is an abnormality in at least two frequencies, it is finally determined that there is an abnormality. to decide.

(4)異常診断と共に損傷の大きさを推定する方法
本方法では、エンベロープ処理後の周波数スペクトルを用い、大きなピークの周波数において外輪に損傷が発生していることを確認し、この周波数におけるピークの値と周波数スペクトル全体の平均値である基準レベルとを比較することにより、異常を起こしている外輪における損傷の大きさを推定する。
(4) Method for estimating the magnitude of damage together with abnormality diagnosis In this method, the frequency spectrum after the envelope processing is used to confirm that the outer ring is damaged at a large peak frequency. By comparing the value with a reference level that is an average value of the entire frequency spectrum, the magnitude of damage in the outer ring causing the abnormality is estimated.

(5)基本周波数の自然数倍の高調波成分とのレベル差を基準値とする方法
本方法では、異常周波数成分の基本周波数である1次のレベルに対して、基本周波数の2,3,4,・・・n倍の周波数を持つ2,3,4,・・・n次のレベルが基準値以上となっている個数をカウントし、所定個数以上基準値を超えている場合に、異常が発生していると判断する。具体的には、1次のレベルに対し、n次の値が{(1次のレベル)−(n−1)・a}(dB)以上である場合に、カウントを行う。ここでaは、任意の値である。
(5) A method in which the level difference from a harmonic component that is a natural number multiple of the fundamental frequency is used as a reference value. In this method, the fundamental frequency is 2, 3, 4, ... 2,3,4, ... with n times the frequency Count the number of the n-th level exceeding the reference value, and if the specified number exceeds the reference value, it is abnormal Is determined to have occurred. Specifically, counting is performed when the n-th order value is {(first-order level) − (n−1) · a} (dB) or more with respect to the first-order level. Here, a is an arbitrary value.

(6)周波数帯域毎の実効値を用いる方法
本方法では、異常に起因する周波数のピークレベルそのものの値ではなく、異常に起因する周波数を含む周波数帯の実効値を用いて、異常診断を行う。具体的には、異常に起因する周波数を含む周波数帯の実効値とは、周波数帯のレベルの自乗平均またはパーシャルオーバオールである。ここで、自乗平均及びパーシャルオーバオールは、予め定められた式により得られる。オーバオールは、特定の指定区間の総和を意味する。
(6) Method using effective value for each frequency band In this method, abnormality diagnosis is performed using the effective value of the frequency band including the frequency caused by the abnormality, not the value of the peak level itself of the frequency caused by the abnormality. . Specifically, the effective value of the frequency band including the frequency caused by the abnormality is a root mean square or partial overall of the frequency band level. Here, the root mean square and the partial overall are obtained by a predetermined formula. Overall means the sum total of a specific designated section.

第1実施形態の異常診断装置によれば、回転部品、静止部材、センサのいずれかの固有振動数が正常品の回転部品の振動周波数とほぼ一致することに着目し、フィルタ処理により固有振動数に対応する周波数帯域のみを振動信号から抽出して、エンベロープ処理、周波数分析を行い、異常診断を行っている。これにより、振動信号のうち診断する周波数帯域を特定できるため、ノイズによる影響を回避できると共に、異常検知のための信号処理回路等のハードウェアをコンパクトにでき、ソフトウェアの負荷も軽減することができる。また、振幅レベルの高い帯域での分析が可能となり、高感度で高SN比の測定が可能となる。   According to the abnormality diagnosis apparatus of the first embodiment, paying attention to the fact that the natural frequency of any of the rotating parts, stationary members, and sensors substantially matches the vibration frequency of the normal rotating parts, the natural frequency is obtained by filtering. Only the frequency band corresponding to is extracted from the vibration signal, envelope processing and frequency analysis are performed, and abnormality diagnosis is performed. As a result, the frequency band to be diagnosed among the vibration signals can be specified, so that the influence of noise can be avoided, the hardware such as a signal processing circuit for detecting an abnormality can be made compact, and the software load can be reduced. . Further, analysis in a band with a high amplitude level is possible, and measurement with high sensitivity and high S / N ratio becomes possible.

ここで、正常及び外輪軌道面に傷がある前述した複列円すいころ軸受(外径208mm、内径130mm、幅152mm、ころ数25)を軸受箱に組み込み、内輪回転速度200min−1で回転させ、軸受箱のラジアル方向の振動をエンベロープ分析及び周波数分析することで異常の診断を行った。図6は、正常品及び外輪傷品の振動をフィルタ処理せずにエンベロープ分析及び周波数分析した結果を示し、図7は、正常品及び外輪傷品の振動を1〜3kHzの帯域でフィルタ処理後にエンベロープ分析及び周波数分析した結果を示す。 Here, the above-mentioned double row tapered roller bearing (outer diameter 208 mm, inner diameter 130 mm, width 152 mm, number of rollers 25) having normal and scratches on the outer ring raceway surface is incorporated in a bearing box, and rotated at an inner ring rotational speed of 200 min −1 . Abnormalities were diagnosed by envelope analysis and frequency analysis of radial vibration of the bearing housing. FIG. 6 shows the results of envelope analysis and frequency analysis without filtering the vibrations of normal products and outer ring wound products, and FIG. 7 shows the results of filtering the vibrations of normal products and outer ring wound products in the 1 to 3 kHz band. The results of envelope analysis and frequency analysis are shown.

本実施例では、正常と異常の判別をする基準として、図中にラインを引いた基準値(rms+3dB)を用いることにより、高精度な診断が可能であった。即ち、この基準値を越える周波数成分を抽出後、内輪傷成分Si(Zfi)、外輪傷成分So(Zfc)、転動体傷成分Sb(2fb)及び保持器成分Sc(fc)と比較し、その一致度から異常の有無と部位の特定を行うものであり、図6においては、顕著なピークは出現していないが、図7においては、外輪傷品について、その傷に起因した周波数成分と一致した成分が顕著に出現している。   In this example, a high-accuracy diagnosis was possible by using a reference value (rms + 3 dB) obtained by drawing a line in the figure as a reference for discriminating between normal and abnormal. That is, after extracting the frequency component exceeding this reference value, compared with the inner ring wound component Si (Zfi), the outer ring wound component So (Zfc), the rolling element wound component Sb (2fb) and the cage component Sc (fc), The presence / absence of abnormality and the part are specified from the degree of coincidence. In FIG. 6, no significant peak appears, but in FIG. 7, the outer ring wound product matches the frequency component caused by the wound. The component which appeared is appearing notably.

これにより、図7(b)については、軸受の外輪に傷があると判定することができる。また、本試験で用いた外輪傷品の傷の大きさが小さいため1〜3kHzの周波数帯域のフィルタ処理後にエンベロープ分析及び周波数分析を行わないと傷成分が顕著に出現しないこともわかる。なお、前述した基準値(rms+3dB)は、運転状態やアプリケーションに応じて任意に設定・変更が可能であるが、診断精度を考慮すると、rms+2dB〜rms+6dBが好ましい。
また、ここでは、実効値を取り上げたが、移動平均などの平均値や波高率(=ピークレベル/平均値)を用いてもよい。
Thereby, about FIG.7 (b), it can determine with the outer ring | wheel of a bearing having a damage | wound. In addition, it can be seen that since the size of the wound of the outer ring wound product used in this test is small, the scratch component does not appear remarkably unless the envelope analysis and the frequency analysis are performed after the filter processing in the frequency band of 1 to 3 kHz. The reference value (rms + 3 dB) described above can be arbitrarily set / changed according to the operating state and application, but is preferably rms + 2 dB to rms + 6 dB in consideration of diagnostic accuracy.
Although the effective value is taken up here, an average value such as a moving average or a crest factor (= peak level / average value) may be used.

次に、図8を参照して、第2実施形態に係る異常診断装置について説明する。なお、第2実施形態の異常診断装置では、振動センサから振動信号を基に、異常の有無、異常部位の特定に加えて、損傷の程度を診断するためのもので、信号処理部以外の構成及び作用は第1実施形態のものとほぼ同様である。このため、既に説明した部材と同様な構成及び作用を有する部材については、図中同一符号または相当符号を付すことにより、説明を簡略或いは省略する。   Next, an abnormality diagnosis apparatus according to the second embodiment will be described with reference to FIG. The abnormality diagnosis apparatus of the second embodiment is for diagnosing the degree of damage in addition to the presence / absence of an abnormality and the identification of an abnormal part based on a vibration signal from a vibration sensor. The operation is almost the same as that of the first embodiment. For this reason, about the member which has the structure and effect | action similar to the member already demonstrated, description is simplified or abbreviate | omitted by attaching | subjecting the same code | symbol or an equivalent code | symbol in a figure.

上述のように、機械部品の固有振動数は複数存在しており、軸受箱に嵌め合った軸受軌道面に傷などの損傷が発生すると転動体が傷の上を通過することによる衝撃振動が生じ、軸受箱の固有振動数が励振される。この固有振動数は、傷の大きさや回転速度などで伝達の仕方が異なる。即ち、大きい傷の場合には、加振源が大きいため軸受箱などの構造に基づく複数の固有振動数が励振される。一方、小さい傷の場合には、加振源が小さいため、大きい傷の場合に比べると励振される固有振動数が少ない。   As described above, there are multiple natural frequencies of machine parts. When damage such as scratches occurs on the bearing raceway surface fitted in the bearing housing, impact vibration occurs due to the rolling elements passing over the scratches. The natural frequency of the bearing housing is excited. This natural frequency is transmitted in different ways depending on the size of the scratch and the rotational speed. That is, in the case of a large scratch, since the excitation source is large, a plurality of natural frequencies based on the structure of the bearing box and the like are excited. On the other hand, since the excitation source is small in the case of a small scratch, the natural frequency excited is smaller than in the case of a large scratch.

このため、固有振動数記憶部36は、打撃法によって加振した、回転部品、静止部材、センサのいずれかの固有振動数の測定結果を記憶し、フィルタ部44は、固有振動数記憶部に記憶された測定結果の波形データの山と谷に基づき、振動センサに32よって得られた振動信号を2〜7の特定周波数帯域に分割して抽出している。   For this reason, the natural frequency storage unit 36 stores the measurement result of the natural frequency of any one of the rotating component, stationary member, and sensor that is vibrated by the striking method, and the filter unit 44 is stored in the natural frequency storage unit. Based on the peaks and valleys of the waveform data of the stored measurement results, the vibration signal obtained by the vibration sensor 32 is divided into 2 to 7 specific frequency bands and extracted.

エンベロープ処理部37では、フィルタ部44にて抽出された各周波数帯域に対して、波形の絶対値を検波する絶対値検波処理が行われる。さらに、周波数分析部38で波形の周波数の分析処理が行われ、実測値データが比較照合部39へ転送される。
そして、比較照合部39で実測値データと理論周波数計算部41にて算出された計算値データとが周波数帯域毎に比較照合される。異常判定部45は、複列円すいころ軸受11の異常の有無、異常部位の特定を行うと共に、各構成部品について各周波数帯域で損傷成分が発生しているかどうかを確認する。ここで、全周波数帯域において損傷成分が発生している場合には損傷が大きく、特定の周波数帯域のみに損傷成分が発生している場合には損傷が小さいと判断する。その後、結果出力部43は振動異常の有無、異常部位の特定ならびに損傷の程度の出力を行う。
The envelope processing unit 37 performs absolute value detection processing for detecting the absolute value of the waveform for each frequency band extracted by the filter unit 44. Further, the frequency analysis unit 38 performs waveform frequency analysis processing, and the actual measurement data is transferred to the comparison and verification unit 39.
The comparison / verification unit 39 compares the actual measurement data with the calculated value data calculated by the theoretical frequency calculation unit 41 for each frequency band. The abnormality determination unit 45 identifies whether or not there is an abnormality in the double-row tapered roller bearing 11 and specifies an abnormal part, and confirms whether or not a damage component is generated in each frequency band for each component. Here, it is determined that the damage is large when the damage component occurs in the entire frequency band, and the damage is small when the damage component occurs only in the specific frequency band. Thereafter, the result output unit 43 outputs the presence / absence of vibration abnormality, the identification of the abnormal part, and the degree of damage.

ここで、図3の固有振動数を得た複列円すいころ軸受において、軸受箱に外輪軌道面の傷が大きい軸受と小さい軸受を組込み回転させ、第2実施形態の損傷の程度の診断を行った。図9は、外輪軌道面の損傷が大きい軸受(以下、外輪大きず品とする。)の振動周波数分析の結果を示し、図10は、外輪軌道面の損傷が小さい軸受(以下、外輪小きず品とする。)の振動周波数分析結果を示す。損傷の大きさの寸法比は約8である。   Here, in the double row tapered roller bearing having the natural frequency shown in FIG. 3, a bearing with a large scratch on the outer ring raceway surface and a small bearing are assembled and rotated in the bearing box, and the degree of damage in the second embodiment is diagnosed. It was. FIG. 9 shows the result of vibration frequency analysis of a bearing (hereinafter referred to as “outer ring small product”) whose outer ring raceway surface is greatly damaged, and FIG. 10 is a bearing whose outer ring raceway surface damage is small (hereinafter referred to as “outer ring small scratch”). The result of vibration frequency analysis is shown below. The size ratio of the damage magnitude is about 8.

図3に示されるように10kHzの周波数の範囲では軸受箱の固有振動数が複数存在しており、これを図9及び図10における振動周波数分析結果と比較すると、軸受箱の固有振動数に対応する周波数帯域において振動レベルが高いことがわかる。また、図9と図10を比較すると、傷の大きさによって軸受箱の固有振動数のレベルが異なることも確認される。   As shown in FIG. 3, there are a plurality of natural frequencies of the bearing housing in the frequency range of 10 kHz. Compared with the vibration frequency analysis results in FIGS. 9 and 10, this corresponds to the natural frequency of the bearing housing. It can be seen that the vibration level is high in the frequency band. Further, comparing FIG. 9 with FIG. 10, it is confirmed that the level of the natural frequency of the bearing box varies depending on the size of the scratch.

そこで、固有振動数記憶部36に記憶された図3に示す軸受箱の固有振動数の測定結果に基づき、図9及び図10の振動信号から0〜3kHz、3〜4.2kHz、4.2〜6kHz、6〜8kHz、8〜10kHzの周波数帯域毎にフィルタ部44で抽出し、各周波数帯域でエンベロープ処理、周波数分析を行った。図11及び図12は、それぞれ0〜3kHz及び4.2〜6kHzの帯域での各周波数分析の結果の例である。外輪大きず品では、両方の帯域で外輪損傷成分が発生している一方、外輪小きず品では、0〜3kHzの周波数帯域において外輪損傷成分が発生しており、4.2〜6kHzの周波数帯域では外輪損傷成分が見られない。   Therefore, based on the measurement result of the natural frequency of the bearing box shown in FIG. 3 stored in the natural frequency storage unit 36, 0 to 3 kHz, 3 to 4.2 kHz, 4.2 from the vibration signal of FIGS. 9 and 10. The filter unit 44 extracted each frequency band of ˜6 kHz, 6-8 kHz, and 8-10 kHz, and envelope processing and frequency analysis were performed in each frequency band. FIGS. 11 and 12 are examples of the results of frequency analysis in the 0 to 3 kHz and 4.2 to 6 kHz bands, respectively. In the outer ring small product, the outer ring damage component is generated in both bands, while in the outer ring small chip product, the outer ring damage component is generated in the frequency band of 0 to 3 kHz, and the frequency band of 4.2 to 6 kHz. Then, the outer ring damage component is not seen.

また、表1に各周波数帯域での周波数分析結果において、外輪損傷成分の発生の有無をまとめた。この結果より、軸受箱の各固有振動数を含む周波数帯域において、外輪大きず品では、全ての周波数帯域で外輪損傷成分が発生しており、外輪小きず品では、0〜3kHzの周波数帯域でのみ外輪損傷成分が発生している。このため、全周波数帯域において外輪損傷成分が発生している場合には損傷が大きく、特定の周波数帯域のみに損傷成分が発生している場合には損傷が小さいことが確認される。   Table 1 summarizes whether or not the outer ring damage component is generated in the frequency analysis results in each frequency band. From this result, in the frequency band including each natural frequency of the bearing box, the outer ring damage component is generated in all frequency bands in the outer ring small product, and in the outer ring small scratch product in the frequency band of 0 to 3 kHz. Only the outer ring damage component has occurred. For this reason, it is confirmed that the damage is large when the outer ring damage component is generated in the entire frequency band, and the damage is small when the damage component is generated only in the specific frequency band.

Figure 2007192828
Figure 2007192828

従って、第2実施形態によれば、軸受箱の固有振動数に対応した特定の周波数帯域のみを抽出し、各周波数帯域での周波数分析を行い、周波数帯域毎に損傷に起因した周波数成分の有無やレベルを確認することにより、実稼動状態で各構成部品の欠陥と損傷の程度を診断することができる。これにより、最適な部品の交換時期がわかり、効率的なメンテナンスが可能となる。   Therefore, according to the second embodiment, only a specific frequency band corresponding to the natural frequency of the bearing box is extracted, frequency analysis is performed in each frequency band, and presence / absence of frequency components due to damage for each frequency band By checking the level and the level, it is possible to diagnose the degree of defect and damage of each component in the actual operation state. As a result, it is possible to know the optimal replacement period of the parts and to perform efficient maintenance.

次に、本発明の第3実施形態に係る異常診断装置について説明する。なお、第3実施形態は、図1に示された鉄道車両用転がり軸受装置に対して、図13に示された異常診断装置の信号処理系統が適用されるものである。
図13は、異常検出用センサ31の振動センサ32、温度センサ33を用いた信号処理系統図である。振動センサ32が発生した振動信号及び温度センサ33が発生した温度信号は、信号搬送手段34を介して演算部50に送られる。演算部50は、回転部品、静止部材、センサのいずれかの複数の固有振動数に対応する特定周波数帯域毎に、振動信号を割振っており、図8に示されたフィルタ部44の機能を含む。周波数帯域毎に割振られた振動信号及び温度信号は、コンパレータ51に入力される。
Next, an abnormality diagnosis apparatus according to the third embodiment of the present invention will be described. In the third embodiment, the signal processing system of the abnormality diagnosis device shown in FIG. 13 is applied to the rolling bearing device for a railway vehicle shown in FIG.
FIG. 13 is a signal processing system diagram using the vibration sensor 32 and the temperature sensor 33 of the abnormality detection sensor 31. The vibration signal generated by the vibration sensor 32 and the temperature signal generated by the temperature sensor 33 are sent to the calculation unit 50 via the signal carrying means 34. The calculation unit 50 allocates a vibration signal for each specific frequency band corresponding to a plurality of natural frequencies of any one of a rotating component, a stationary member, and a sensor, and the function of the filter unit 44 shown in FIG. Including. The vibration signal and the temperature signal allocated for each frequency band are input to the comparator 51.

コンパレータ51では、演算部50にて与えられた温度データと閾値設定部52に保存されている予め設定された温度閾値とが比較される。同時に、演算部50にて算出された振動データと閾値設定部52に保存されている振動閾値とが周波数帯域毎に比較される。異常判定部53は、コンパレータ51の比較結果を受け取り、温度データ信号値が温度閾値を超えた場合には、温度異常判定信号を結果出力部54へ出力する。結果出力部54は、温度異常のアラームを出力する。アラームは有線や無線で転送されて作動する。   The comparator 51 compares the temperature data given by the calculation unit 50 with a preset temperature threshold value stored in the threshold value setting unit 52. At the same time, the vibration data calculated by the calculation unit 50 and the vibration threshold stored in the threshold setting unit 52 are compared for each frequency band. The abnormality determination unit 53 receives the comparison result of the comparator 51, and outputs a temperature abnormality determination signal to the result output unit 54 when the temperature data signal value exceeds the temperature threshold value. The result output unit 54 outputs a temperature abnormality alarm. Alarms are forwarded by wire or wireless and activated.

また、振動信号値が振動閾値を超えた場合、異常判定部53は振動異常判定信号を結果出力部54へ出力する。結果出力部54は、振動異常のアラームを出力する。アラームは有線や無線で転送されて作動する。このとき、閾値設定部52に保存される温度閾値及び振動閾値、異常判定部53において出力される温度・振動異常判定信号は、任意の時間内における実効値やピーク値を用いてもよい。   When the vibration signal value exceeds the vibration threshold value, the abnormality determination unit 53 outputs a vibration abnormality determination signal to the result output unit 54. The result output unit 54 outputs a vibration abnormality alarm. Alarms are forwarded by wire or wireless and activated. At this time, the temperature threshold value and the vibration threshold value stored in the threshold value setting unit 52 and the temperature / vibration abnormality determination signal output from the abnormality determination unit 53 may use an effective value or a peak value within an arbitrary time.

本実施形態では、演算部50は前述した軸受箱12の各固有振動数を含む周波数帯域毎の振動実効値又は波高率を算出する。コンパレータ51は、正常な軸受(以下、正常品と称す。)の振動実効値又は波高率の正常値を閾値として、算出された各周波数帯域における演算結果と比較する。異常判定部53は比較結果に基づき、異常の有無あるいは損傷の程度を判定する。具体的に、全周波数帯域において算出された実効値又は波高率の正常値に対する比が大きい場合には損傷が大きいと判断し、特定の周波数帯域のみで算出された実効値又は波高率が大きい場合には損傷が小さいと判断する。   In this embodiment, the calculating part 50 calculates the vibration effective value or crest factor for every frequency band containing each natural frequency of the bearing box 12 mentioned above. The comparator 51 compares the calculated effective value in each frequency band with a vibration effective value of a normal bearing (hereinafter referred to as a normal product) or a normal value of the crest factor as a threshold value. The abnormality determination unit 53 determines the presence or absence of an abnormality or the degree of damage based on the comparison result. Specifically, when the ratio of the effective value or crest factor calculated in all frequency bands to the normal value is large, it is judged that the damage is large, and the effective value or crest factor calculated only in a specific frequency band is large. It is judged that the damage is small.

ここで、第1及び第2実施形態で用いた複列円すいころ軸受11及び測定条件を用いて、軸受箱12の固有振動数に対応する各周波数帯域における正常品の振動実効値(正常値)に対する外輪大きず品と外輪小きず品の振動実効値の比を表2に示した。   Here, the vibration effective value (normal value) of a normal product in each frequency band corresponding to the natural frequency of the bearing housing 12 using the double row tapered roller bearing 11 and measurement conditions used in the first and second embodiments. Table 2 shows the ratio of the effective vibration value of the outer ring small product and the outer ring small product.

Figure 2007192828
Figure 2007192828

この結果により、軸受箱の各固有振動数を含む周波数帯域での振動実効値において、正常品に対する外輪大きず品の実効値の比は、何れの周波数帯域においても約10倍以上に大きいが、外輪小きず品では、0〜3kHz帯域のみで約5倍大きく、それ以外の周波数帯域では正常品のレベルとほとんど変わらない。このため、全周波数帯域において振動実効値が正常品に対して大きい場合には、損傷がかなり進行しており、特定の周波数帯域のみ発生している場合には、損傷が初期段階であることがわかる。従って、回転部品の異常の有無に加え、損傷の程度も判別することができる。   As a result, in the effective vibration value in the frequency band including each natural frequency of the bearing box, the ratio of the effective value of the outer ring not larger than the normal product to the normal product is about 10 times or more in any frequency band. The outer ring small scratch product is about 5 times larger only in the 0 to 3 kHz band, and is almost the same as the normal product level in other frequency bands. For this reason, if the vibration effective value is large compared to the normal product in all frequency bands, the damage has progressed considerably. If only a specific frequency band has occurred, the damage may be in the initial stage. Recognize. Accordingly, it is possible to determine the degree of damage in addition to the presence / absence of abnormality of the rotating component.

また、本実施形態では、回転部品の回転状態に伴う振動と温度が同時に検出されている。これにより、軸受焼付き異常が発生した時には温度で検知でき、軸受軌道面の剥離、歯車の欠損、車輪のフラット磨耗等の異常が発生した場合には、振動で検知することができる。従って、部品が組み込まれている装置を分解することなく実稼動状態で複数の部品の欠陥と損傷の程度を同時に検査することができる。
なお、図13に示された本実施形態の信号処理系統は、第1実施形態の(1)〜(6)の信号処理によって比較照合が行われてもよい。
In the present embodiment, vibration and temperature associated with the rotation state of the rotating component are detected simultaneously. Thus, when a bearing seizure abnormality occurs, it can be detected by temperature, and when an abnormality such as peeling of the bearing raceway surface, gear loss, or wheel flat wear occurs, it can be detected by vibration. Therefore, it is possible to simultaneously inspect the degree of defects and damage of a plurality of parts in an actual operation state without disassembling the apparatus in which the parts are incorporated.
Note that the signal processing system of this embodiment shown in FIG. 13 may be compared and collated by the signal processing of (1) to (6) of the first embodiment.

なお、本発明に係る異常診断装置は、上述した実施形態に限定されるものではなく、適宜な変形、改良等が可能である。本実施形態では、鉄道車両用の転がり軸受装置に異常診断装置が適用されたが、減速機用の転がり軸受装置に異常診断装置が適用されてもよい。 また、本実施形態では、固有振動数は予め固有振動数記憶部に記憶させておいたが、打撃法によって得られた測定結果を直接フィルタ部に取り込むようにしてもよい。   The abnormality diagnosis apparatus according to the present invention is not limited to the above-described embodiment, and appropriate modifications and improvements can be made. In the present embodiment, the abnormality diagnosis device is applied to the rolling bearing device for a railway vehicle. However, the abnormality diagnosis device may be applied to a rolling bearing device for a reduction gear. In this embodiment, the natural frequency is stored in advance in the natural frequency storage unit. However, the measurement result obtained by the striking method may be directly taken into the filter unit.

また、上述した実施形態では、振動センサによって検出され、フィルタ処理部にてフィルタ処理された振動信号を、ヘッドホンまたはスピーカに入力することにより異常の有無を音で確認する聴感判定を行うようにしてもよい。   Further, in the above-described embodiment, the vibration signal detected by the vibration sensor and filtered by the filter processing unit is input to the headphones or the speaker, thereby performing an auditory determination in which the presence or absence of abnormality is confirmed by sound. Also good.

本発明の第1実施形態の転がり軸受装置の断面図である。It is sectional drawing of the rolling bearing apparatus of 1st Embodiment of this invention. 本発明の第1実施形態に係る異常診断装置の信号処理系統図である。It is a signal processing system diagram of the abnormality diagnosis apparatus according to the first embodiment of the present invention. 軸受箱の固有振動数の測定結果を示す図である。It is a figure which shows the measurement result of the natural frequency of a bearing box. 正常な転がり軸受の振動周波数の分析結果を示す図である。It is a figure which shows the analysis result of the vibration frequency of a normal rolling bearing. 本発明の第1実施形態における異常診断の処理フローを示すフローチャートである。It is a flowchart which shows the processing flow of the abnormality diagnosis in 1st Embodiment of this invention. フィルタ処理なしのエンベロープ分析結果を示す図であり、(a)は正常品の分析結果であり、(b)は外輪傷品の分析結果である。It is a figure which shows the envelope analysis result without a filter process, (a) is an analysis result of a normal product, (b) is an analysis result of an outer ring | wound wound product. 1〜3kHzのフィルタ処理後のエンベロープ分析結果を示す図であり、(a)は正常品の分析結果で、(b)は外輪傷品の分析結果である。It is a figure which shows the envelope analysis result after 1-3 kHz filter processing, (a) is an analysis result of a normal product, (b) is an analysis result of an outer ring | wound wound product. 本発明の第2実施形態に係る異常診断装置の信号処理系統図である。It is a signal processing system diagram of the abnormality diagnosis device according to the second embodiment of the present invention. 外輪の損傷が大きい軸受の振動周波数の分析結果を示す図である。It is a figure which shows the analysis result of the vibration frequency of a bearing with a large damage of an outer ring. 外輪の損傷が小さい軸受の振動周波数の分析結果を示す図である。It is a figure which shows the analysis result of the vibration frequency of a bearing with little damage of an outer ring. 0〜3kHzの周波数帯域のエンベロープ分析結果を示す図であり、(a)は外輪の損傷が大きい軸受の分析結果で、(b)は外輪の損傷が小さい軸受の分析結果である。It is a figure which shows the envelope analysis result of a 0-3 kHz frequency band, (a) is an analysis result of a bearing with a large damage of an outer ring | wheel, (b) is an analysis result of a bearing with a small damage of an outer ring | wheel. 4.2〜6kHzの周波数帯域のエンベロープ分析結果を示す図であり、(a)は外輪の損傷が大きい軸受の分析結果で、(b)は外輪の損傷が小さい軸受の分析結果である。It is a figure which shows the envelope analysis result of a frequency band of 4.2-6kHz, (a) is an analysis result of a bearing with a large damage of an outer ring, (b) is an analysis result of a bearing with a small damage of an outer ring. 本発明の第3実施形態に係る異常診断装置の信号処理系統図である。It is a signal processing system diagram of the abnormality diagnosis device according to the third embodiment of the present invention. 従来の軸受装置の断面図である。It is sectional drawing of the conventional bearing apparatus. 従来の他の軸受装置の断面図である。It is sectional drawing of the other conventional bearing apparatus. 従来の更に他の軸受装置の断面図である。It is sectional drawing of the conventional further another bearing apparatus. 従来の異常検知装置のブロック図である。It is a block diagram of the conventional abnormality detection apparatus. 従来の他の異常診断装置のブロック図である。It is a block diagram of another conventional abnormality diagnosis device. 従来の更に他の異常診断装置のブロック図である。It is a block diagram of another conventional abnormality diagnosis device. 軸受の各部材の欠陥と各部材で発生する異常振動周波数の関係を示す関係式である。It is a relational expression showing the relation between the defect of each member of the bearing and the abnormal vibration frequency generated in each member.

符号の説明Explanation of symbols

10 転がり軸受装置
11 複列円すいころ軸受(回転部品)
12 軸受箱(静止部材)
14 内輪
16 外輪
18 円すいころ(転動体)
25 車軸(回転軸)
27 平坦部
31 異常検出用センサ(センサ)
32 振動センサ
33 温度センサ
35,44 フィルタ部(フィルタ処理部)
36 固有振動数記憶部
37 エンベロープ処理部
38 周波数分析部
39 比較照合部
41 理論周波数計算部
42,45,53 異常判定部
43,54 結果出力部
50 演算部
51 コンパレータ(比較部)
52 閾値設定部
10 Rolling bearing device 11 Double row tapered roller bearing (rotating parts)
12 Bearing box (stationary member)
14 Inner ring 16 Outer ring 18 Tapered roller (rolling element)
25 axle (rotating shaft)
27 Flat part 31 Abnormality detection sensor (sensor)
32 Vibration sensor 33 Temperature sensor 35, 44 Filter section (filter processing section)
36 natural frequency storage unit 37 envelope processing unit 38 frequency analysis unit 39 comparison verification unit 41 theoretical frequency calculation unit 42, 45, 53 abnormality determination unit 43, 54 result output unit 50 calculation unit 51 comparator (comparison unit)
52 Threshold setting unit

Claims (1)

静止部材に対して相対的に回転する回転部品の異常を診断する異常診断装置であって、
前記回転部品又は前記軸受箱に固定される、振動センサ、超音波センサ、AEセンサのうちの少なくとも一つのセンサと、
前記センサにより検出された信号の波形から前記回転部品と前記軸受箱と前記センサのいずれかの複数の固有振動数に対応した複数の特定周波数帯域を抽出するフィルタ処理部と、
前記フィルタ処理部から転送されたフィルタ処理後の波形の実効値又は波高率を算出する演算処理部と、
前記演算処理部で算出された各周波数帯域における演算結果を正常値と比較する比較部と、
前記比較部での比較結果に基づき、異常の有無あるいは損傷の程度を診断する異常判定部と、
を備えることを特徴とする異常診断装置。
An abnormality diagnosis device for diagnosing an abnormality of a rotating component that rotates relative to a stationary member,
At least one of a vibration sensor, an ultrasonic sensor, and an AE sensor fixed to the rotating component or the bearing housing;
A filter processing unit that extracts a plurality of specific frequency bands corresponding to a plurality of natural frequencies of any one of the rotating component, the bearing box, and the sensor from a waveform of a signal detected by the sensor;
An arithmetic processing unit that calculates an effective value or a crest factor of the waveform after filtering transferred from the filter processing unit;
A comparison unit that compares a calculation result in each frequency band calculated by the calculation processing unit with a normal value;
Based on the comparison result in the comparison unit, an abnormality determination unit for diagnosing the presence or absence of abnormality or the degree of damage;
An abnormality diagnosis apparatus comprising:
JP2007033797A 2003-07-29 2007-02-14 Abnormality diagnosis device, rolling bearing device having the same, and abnormality diagnosis method Expired - Lifetime JP4117500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007033797A JP4117500B2 (en) 2003-07-29 2007-02-14 Abnormality diagnosis device, rolling bearing device having the same, and abnormality diagnosis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003281795 2003-07-29
JP2007033797A JP4117500B2 (en) 2003-07-29 2007-02-14 Abnormality diagnosis device, rolling bearing device having the same, and abnormality diagnosis method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004074158A Division JP3944744B2 (en) 2003-07-29 2004-03-16 Abnormality diagnosis device and rolling bearing device having the same

Publications (2)

Publication Number Publication Date
JP2007192828A true JP2007192828A (en) 2007-08-02
JP4117500B2 JP4117500B2 (en) 2008-07-16

Family

ID=38448613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007033797A Expired - Lifetime JP4117500B2 (en) 2003-07-29 2007-02-14 Abnormality diagnosis device, rolling bearing device having the same, and abnormality diagnosis method

Country Status (1)

Country Link
JP (1) JP4117500B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010124995A (en) * 2008-11-26 2010-06-10 Kyoraku Sangyo Kk Game machine
JP2010124992A (en) * 2008-11-26 2010-06-10 Kyoraku Sangyo Kk Game machine
JP2010124994A (en) * 2008-11-26 2010-06-10 Kyoraku Sangyo Kk Game machine
JP2010124993A (en) * 2008-11-26 2010-06-10 Kyoraku Sangyo Kk Game machine
JP2011154020A (en) * 2010-01-04 2011-08-11 Ntn Corp Abnormality diagnosis device for rolling bearing, wind power generator, and abnormality diagnosis system
CN103471870A (en) * 2013-10-08 2013-12-25 中国矿业大学(北京) Method for researching sensibility and clustering performance for recognizing states of coal mine equipment based on two-dimensional projection characteristic indexes
TWI424866B (en) * 2008-11-26 2014-02-01 Kyoraku Ind Co Ltd Game machine
US20140133981A1 (en) * 2012-11-13 2014-05-15 Inventus Holdings, Llc Early detection of wind turbine degradation using acoustical monitoring
KR101482509B1 (en) 2013-07-23 2015-01-19 주식회사 우진 Diagnosis System and Method of Bearing Defect
CN104895776A (en) * 2015-05-04 2015-09-09 浙江大学 Method for indirectly measuring spring rigidity of linear compressor and mover mass
CN105277623A (en) * 2015-11-11 2016-01-27 华北理工大学 Determination method for rock catastrophe acoustic emission dominant frequency band
KR101648393B1 (en) * 2015-06-16 2016-08-16 한국항공우주산업 주식회사 Automatically inner defect detection apparatus of Carbide End-mill using natural frequency
US9487843B2 (en) 2011-01-21 2016-11-08 Ntn Corporation Method for producing a bearing ring
JP2017032520A (en) * 2015-08-06 2017-02-09 日本精工株式会社 State monitoring device and state monitoring method
CN106441892A (en) * 2016-09-21 2017-02-22 中国工程物理研究院材料研究所 Predicting method for subcritical resonance rotation speed position of rolling bearing supporting rotor system
JP2017166960A (en) * 2016-03-16 2017-09-21 中国電力株式会社 Measurement diagnostic apparatus and measurement diagnostic method
JP2017219469A (en) * 2016-06-09 2017-12-14 日本精工株式会社 State monitoring device and state monitoring method
CN109027017A (en) * 2018-08-15 2018-12-18 重庆交通大学 A kind of Space Rolling Bearing state of wear appraisal procedure
JP2019120628A (en) * 2018-01-10 2019-07-22 横河電機株式会社 Vibration signal converter
CN112129533A (en) * 2019-06-25 2020-12-25 现代自动车株式会社 Method for detecting bearing damage of engine by using vibration signal
JP2021501097A (en) * 2017-10-27 2021-01-14 パーペトゥーム、リミテッドPerpetuum Ltd. Axle monitoring of railroad vehicles
CN113286995A (en) * 2019-05-21 2021-08-20 芝浦机械株式会社 Predictive maintenance determination device, predictive maintenance determination method, and program

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5419472B2 (en) * 2009-01-09 2014-02-19 Ntn株式会社 Wind turbine generator main shaft bearing monitoring device
KR102034673B1 (en) 2018-08-27 2019-11-08 현대자동차주식회사 Method for detecting damage of bearing of engine using vibration signal
US11506570B2 (en) 2018-08-27 2022-11-22 Hyundai Motor Company Method for sensing damage of bearing of engine using vibration signal

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI424866B (en) * 2008-11-26 2014-02-01 Kyoraku Ind Co Ltd Game machine
JP2010124992A (en) * 2008-11-26 2010-06-10 Kyoraku Sangyo Kk Game machine
JP2010124994A (en) * 2008-11-26 2010-06-10 Kyoraku Sangyo Kk Game machine
JP2010124993A (en) * 2008-11-26 2010-06-10 Kyoraku Sangyo Kk Game machine
JP4712086B2 (en) * 2008-11-26 2011-06-29 京楽産業.株式会社 Game machine
JP4712087B2 (en) * 2008-11-26 2011-06-29 京楽産業.株式会社 Game machine
JP2010124995A (en) * 2008-11-26 2010-06-10 Kyoraku Sangyo Kk Game machine
TWI425972B (en) * 2008-11-26 2014-02-11 Kyoraku Ind Co Ltd Game machine
US9423290B2 (en) 2010-01-04 2016-08-23 Ntn Corporation Abnormality diagnostic device for rolling bearing, wind turbine generation apparatus and abnormality diagnostic system
JP2011154020A (en) * 2010-01-04 2011-08-11 Ntn Corp Abnormality diagnosis device for rolling bearing, wind power generator, and abnormality diagnosis system
US9487843B2 (en) 2011-01-21 2016-11-08 Ntn Corporation Method for producing a bearing ring
US20140133981A1 (en) * 2012-11-13 2014-05-15 Inventus Holdings, Llc Early detection of wind turbine degradation using acoustical monitoring
WO2014078276A1 (en) * 2012-11-13 2014-05-22 Inventus Holdings, Llc Early detection of wind turbine degradation using acoustical monitoring
US10337502B2 (en) 2012-11-13 2019-07-02 Inventus Holdings, Llc Early detection of wind turbine degradation using acoustical monitoring
US9581141B2 (en) * 2012-11-13 2017-02-28 Inventus Holdings, Llc Early detection of wind turbine degradation using acoustical monitoring
KR101482509B1 (en) 2013-07-23 2015-01-19 주식회사 우진 Diagnosis System and Method of Bearing Defect
CN103471870A (en) * 2013-10-08 2013-12-25 中国矿业大学(北京) Method for researching sensibility and clustering performance for recognizing states of coal mine equipment based on two-dimensional projection characteristic indexes
CN104895776A (en) * 2015-05-04 2015-09-09 浙江大学 Method for indirectly measuring spring rigidity of linear compressor and mover mass
KR101648393B1 (en) * 2015-06-16 2016-08-16 한국항공우주산업 주식회사 Automatically inner defect detection apparatus of Carbide End-mill using natural frequency
JP2017032520A (en) * 2015-08-06 2017-02-09 日本精工株式会社 State monitoring device and state monitoring method
CN105277623A (en) * 2015-11-11 2016-01-27 华北理工大学 Determination method for rock catastrophe acoustic emission dominant frequency band
JP2017166960A (en) * 2016-03-16 2017-09-21 中国電力株式会社 Measurement diagnostic apparatus and measurement diagnostic method
JP2017219469A (en) * 2016-06-09 2017-12-14 日本精工株式会社 State monitoring device and state monitoring method
CN106441892A (en) * 2016-09-21 2017-02-22 中国工程物理研究院材料研究所 Predicting method for subcritical resonance rotation speed position of rolling bearing supporting rotor system
JP2021501097A (en) * 2017-10-27 2021-01-14 パーペトゥーム、リミテッドPerpetuum Ltd. Axle monitoring of railroad vehicles
US11697442B2 (en) 2017-10-27 2023-07-11 Hitachi Rail Limited Monitoring an axle of a railway vehicle
JP7374104B2 (en) 2017-10-27 2023-11-06 ヒタチ、レイル、リミテッド Rail vehicle axle monitoring
JP2019120628A (en) * 2018-01-10 2019-07-22 横河電機株式会社 Vibration signal converter
JP7102651B2 (en) 2018-01-10 2022-07-20 横河電機株式会社 Vibration signal transducer
CN109027017A (en) * 2018-08-15 2018-12-18 重庆交通大学 A kind of Space Rolling Bearing state of wear appraisal procedure
CN109027017B (en) * 2018-08-15 2019-12-10 重庆交通大学 method for evaluating wear state of space rolling bearing
CN113286995A (en) * 2019-05-21 2021-08-20 芝浦机械株式会社 Predictive maintenance determination device, predictive maintenance determination method, and program
CN113286995B (en) * 2019-05-21 2023-04-04 芝浦机械株式会社 Predictive maintenance determination device, predictive maintenance determination method, and storage medium
CN112129533A (en) * 2019-06-25 2020-12-25 现代自动车株式会社 Method for detecting bearing damage of engine by using vibration signal

Also Published As

Publication number Publication date
JP4117500B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP4117500B2 (en) Abnormality diagnosis device, rolling bearing device having the same, and abnormality diagnosis method
JP3944744B2 (en) Abnormality diagnosis device and rolling bearing device having the same
JP4581693B2 (en) Abnormality diagnosis device
JP2006077938A (en) Abnormality diagnosing device
EP1548419B1 (en) Method and device for monitoring status of mechanical equipment and abnormality diagnosing device
WO2006030786A1 (en) Abnormality diagnosis device and abnormality diagnosis method
JP5146008B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP4003088B2 (en) Rotating body abnormality diagnosis method and apparatus
JP4581860B2 (en) Machine equipment abnormality diagnosis apparatus and abnormality diagnosis method
JP6714806B2 (en) Status monitoring device and status monitoring method
JP4120099B2 (en) Bearing abnormality diagnosis method and abnormality diagnosis device
JP4935165B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP2004233284A (en) Diagnostic device and diagnostic method of rolling bearing unit
JP2006234785A (en) Abnormality diagnosis device and abnormality diagnosis method for mechanical equipment
JP6508017B2 (en) Evaluation method of machinery and equipment
JP2007278894A (en) Device and method for diagnosing abnormality
JP3871054B2 (en) Machine equipment condition monitoring method and apparatus
JP4529602B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP5067121B2 (en) Rolling bearing abnormality determination method and abnormality determination apparatus
JP2003232674A (en) Abnormality diagnosing method and abnormality diagnosing device of machine equipment or apparatus
JP6714844B2 (en) Abnormality diagnosis method
JP5673382B2 (en) Abnormal diagnosis method
WO2018088564A1 (en) Bearing abnormality diagnostic method and diagnostic system
JP6897064B2 (en) Bearing abnormality diagnosis method and diagnosis system
JP2016170085A (en) Abnormality diagnostic device and abnormality diagnostic method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071024

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080408

R150 Certificate of patent or registration of utility model

Ref document number: 4117500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6