JP2007188769A - Solid polymer electrolyte - Google Patents

Solid polymer electrolyte Download PDF

Info

Publication number
JP2007188769A
JP2007188769A JP2006005976A JP2006005976A JP2007188769A JP 2007188769 A JP2007188769 A JP 2007188769A JP 2006005976 A JP2006005976 A JP 2006005976A JP 2006005976 A JP2006005976 A JP 2006005976A JP 2007188769 A JP2007188769 A JP 2007188769A
Authority
JP
Japan
Prior art keywords
polymer
polymer electrolyte
group
solid polymer
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006005976A
Other languages
Japanese (ja)
Other versions
JP5054309B2 (en
Inventor
Masayuki Jokai
真之 畳開
Hiroaki Kuwabara
広明 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2006005976A priority Critical patent/JP5054309B2/en
Publication of JP2007188769A publication Critical patent/JP2007188769A/en
Application granted granted Critical
Publication of JP5054309B2 publication Critical patent/JP5054309B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid polymer electrolyte composed of a rigid heterocyclic polymer superior in ion conductivity and oxidation resistance. <P>SOLUTION: This is the solid polymer electrolyte composed of at least one kind of repeating units selected from a group consisting of the repeating units expressed by formulae (A) and (B) and composed of 100 pts.wt. of the rigid heterocyclic polymer in which reduced viscosity of concentration of 0.5 g/100 ml by methane sulfonic acid solution is 0.05-200 dl/g measured at 25°C, and composed of 0.01-30 pts.wt. of fullerenes. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、剛直系複素環高分子およびフラーレン類とからなる固体高分子電解質、及び燃料電池用固体高分子電解質膜に関する。   The present invention relates to a solid polymer electrolyte comprising a rigid heterocyclic polymer and fullerenes, and a solid polymer electrolyte membrane for fuel cells.

固体高分子電解質は高分子鎖中に電解質基を有する固体高分子材料であり、特定のイオンと強固に結合して、陽イオン又は陰イオンを選択的に透過する性質を有していることから、粒子、繊維、あるいは膜状に成形し、電気透析、拡散透析、電池隔膜等、各種の用途に利用されている。   A solid polymer electrolyte is a solid polymer material having an electrolyte group in a polymer chain, and has a property of selectively permeating a cation or an anion by firmly binding to a specific ion. It is formed into particles, fibers, or membranes, and is used for various applications such as electrodialysis, diffusion dialysis, and battery membranes.

燃料電池はプロトン伝導性の固体高分子電解質膜の両面に一対の電極を設け、水素ガスやメタノールなどを燃料として一方の電極(燃料極)へ供給し、酸素ガスあるいは空気を酸化剤として他方の電極(空気極)へ供給し、起電力を得るものである。また、水電解は、固体高分子電解質膜を用いて水を電気分解することにより水素と酸素を製造するものである。   A fuel cell is provided with a pair of electrodes on both sides of a proton-conducting solid polymer electrolyte membrane, supplies hydrogen gas, methanol, or the like as a fuel to one electrode (fuel electrode), and oxygen gas or air as an oxidant. It supplies to an electrode (air electrode) and obtains an electromotive force. In water electrolysis, hydrogen and oxygen are produced by electrolyzing water using a solid polymer electrolyte membrane.

ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)の商品名で知られる高いプロトン伝導性を有するパーフルオロスルホン酸膜に代表されるふっ素系電解質膜は化学的安定性に優れていることから燃料電池や水電解等の固体高分子電解質膜として、広く使用されている。   Perfluorosulfonic acid membranes with high proton conductivity known by the trade names Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), and Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.) Fluorine-based electrolyte membranes represented by them are widely used as solid polymer electrolyte membranes for fuel cells and water electrolysis because of their excellent chemical stability.

また、食塩電解は固体高分子電解質膜を用いて塩化ナトリウム水溶液を電気分解することにより、水酸化ナトリウム、塩素と水素を製造するものである。この場合、固体高分子電解質膜は塩素と高温、高濃度の水酸化ナトリウム水溶液にさらされるので、これらに対する耐性の乏しい炭化水素系電解質膜を使用することができない。そのため、食塩電解用の固体高分子電解質膜には、一般に、塩素及び高温、高濃度の水酸化ナトリウム水溶液に対して耐性があり、さらに、発生するイオンの逆拡散を防ぐために表面に部分的にカルボン酸基を導入したパーフルオロスルホン酸膜が用いられている。   Moreover, salt electrolysis produces sodium hydroxide, chlorine, and hydrogen by electrolyzing a sodium chloride aqueous solution using a solid polymer electrolyte membrane. In this case, since the solid polymer electrolyte membrane is exposed to chlorine, high temperature, and high concentration sodium hydroxide aqueous solution, it is not possible to use a hydrocarbon electrolyte membrane having poor resistance to these. For this reason, solid polymer electrolyte membranes for salt electrolysis are generally resistant to chlorine and high-temperature, high-concentration sodium hydroxide aqueous solution, and in addition, partly on the surface to prevent back diffusion of generated ions. A perfluorosulfonic acid film into which a carboxylic acid group is introduced is used.

ところで、パーフルオロスルホン酸膜に代表されるふっ素系電解質は、C−F結合を有しているために化学的安定性が非常に大きく、上述した燃料電池用、水電解用、あるいは食塩電解用の固体高分子電解質膜の他、ハロゲン化水素酸電解用の固体高分子電解質膜としても用いられ、さらにはプロトン伝導性を利用して、湿度センサー、ガスセンサー、酸素濃縮器等にも広く応用されている。   By the way, a fluorine-based electrolyte typified by a perfluorosulfonic acid membrane has a very large chemical stability because it has a C—F bond, and is used for the fuel cell, water electrolysis, or salt electrolysis described above. In addition to these solid polymer electrolyte membranes, they are also used as solid polymer electrolyte membranes for hydrohalic acid electrolysis, and also widely applied to humidity sensors, gas sensors, oxygen concentrators, etc. using proton conductivity Has been.

しかしながら、ふっ素系電解質は製造が困難で、非常に高価であるという欠点がある。そのため、ふっ素系電解質膜は、宇宙用あるいは軍用の固体高分子型燃料電池等、限られた用途に用いられ、自動車用の低公害動力源としての固体高分子型燃料電池等、民生用への応用を困難なものとしていた。   However, the fluorine-based electrolyte has a drawback that it is difficult to manufacture and is very expensive. Therefore, fluorine-based electrolyte membranes are used in limited applications such as space or military polymer electrolyte fuel cells, and are used in consumer applications such as polymer electrolyte fuel cells as low-pollution power sources for automobiles. Application was difficult.

そこで、安価な固体高分子電解質膜として、エンジニアリングプラスチックに代表される芳香族炭化水素系高分子をスルホン酸化した電解質膜が提案された。(例えば、特許文献1、2、3、4、5参照)。これらエンジニアリングプラスチックをスルホン酸化した芳香族炭化水素系電解質膜をナフィオンに代表されるふっ素系電解質膜と比較すると、製造が容易で低コストという利点がある。しかし、耐酸化性という面で非常に弱いという欠点も有している。   Therefore, an electrolyte membrane obtained by sulfonating an aromatic hydrocarbon polymer represented by engineering plastics has been proposed as an inexpensive solid polymer electrolyte membrane. (For example, see Patent Documents 1, 2, 3, 4, and 5). An aromatic hydrocarbon electrolyte membrane obtained by sulfonating these engineering plastics has an advantage of easy production and low cost when compared with a fluorine electrolyte membrane represented by Nafion. However, it has a drawback that it is very weak in terms of oxidation resistance.

非特許文献1によると、例えばスルホン酸化ポリエーテルエーテルケトンやポリエーテルスルホンはスルホン酸に隣接したエーテル部位から劣化すると報告している。このことから、スルホン酸の近傍に電子供与性基が存在すると、そこから酸化劣化が開始すると考えられる。そこで耐酸化性の向上を目的として、主鎖が電子吸引性基と芳香族環のみからなるスルホン酸化ポリフェニレンスルホンが提案され(特許文献6)、スルホン基の隣接部位にスルホン酸を導入したスルホン酸化ポリスルホンが提案された(非特許文献2)。   According to Non-Patent Document 1, it is reported that, for example, sulfonated polyether ether ketone and polyether sulfone deteriorate from an ether portion adjacent to sulfonic acid. From this, it is considered that when an electron donating group is present in the vicinity of the sulfonic acid, the oxidative degradation starts therefrom. Therefore, for the purpose of improving oxidation resistance, a sulfonated polyphenylenesulfone whose main chain is composed of only an electron-withdrawing group and an aromatic ring has been proposed (Patent Document 6), and sulfonated by introducing a sulfonic acid into a site adjacent to the sulfonate group. Polysulfone has been proposed (Non-Patent Document 2).

だが、特許文献7によると、芳香族炭化水素系電解質膜の劣化は酸化劣化以外にも、芳香族環に直接結合しているプロトン伝導性置換基であるスルホン酸基が、強酸、高温下において脱離してイオン伝導率が低下することも一因として考えられ、特許文献6や非特許文献2にあるようなスルホン酸化ポリフェニレンスルホンやスルホン酸化ポリスルホンではスルホン酸の脱離による劣化が避けられない。従って、プロトン伝導性置換基がスルホン酸であることは望ましくなく、特許文献7ではスルホン酸の代わりにアルキルスルホン酸を用いることを提案している。こちらはスルホン酸の脱離によるイオン伝導率の低下の改善には有効だが、使用する芳香族高分子の主鎖に電子供与性基が含まれ、耐酸化性に劣っている。   However, according to Patent Document 7, the aromatic hydrocarbon electrolyte membrane is deteriorated not only by oxidative deterioration but also by a sulfonic acid group, which is a proton-conductive substituent directly bonded to the aromatic ring, under strong acid and high temperature. It is considered that the ionic conductivity is decreased due to desorption, and sulfonated polyphenylenesulfone and sulfonated polysulfone as described in Patent Document 6 and Non-Patent Document 2 cannot avoid deterioration due to sulfonic acid desorption. Therefore, it is not desirable that the proton conductive substituent is a sulfonic acid, and Patent Document 7 proposes to use an alkylsulfonic acid instead of the sulfonic acid. This is effective in improving the decrease in ionic conductivity due to elimination of sulfonic acid, but the main chain of the aromatic polymer used contains an electron-donating group, which is inferior in oxidation resistance.

一方、アゾール系ポリマーは耐熱性、耐薬品性に優れたポリマーとして燃料電池用固体電解質膜として期待される。
プロトン導電性を有するアゾール系ポリマーとして例えばスルホン化されたアゾール系ポリマーが報告されている(特許文献8)。しかしながら、上述のとおりポリマーを原料として芳香環上に導入されたスルホン酸基は酸または熱により脱スルホン酸反応が起こりやすく、燃料電池用電解質膜として使用するには耐久性が十分であるとは言えない。
On the other hand, azole polymers are expected as solid electrolyte membranes for fuel cells as polymers having excellent heat resistance and chemical resistance.
For example, a sulfonated azole polymer has been reported as an azole polymer having proton conductivity (Patent Document 8). However, as described above, a sulfonic acid group introduced onto an aromatic ring using a polymer as a raw material is likely to undergo a desulfonic acid reaction due to acid or heat, and is sufficiently durable to be used as an electrolyte membrane for a fuel cell. I can not say.

水酸基を有するアゾール系ポリマー及びその製造方法としては例えば非特許文献3に報告されている。また水酸基を有するアゾールポリマーフィルムのイオンインプランテーション品の伝導度測定の報告例がある(非特許文献4)。
しかしながら、これらのいずれにおいても水酸基をイオン伝導させる官能基として着目しているものはなく、いずれも燃料電池と使用する条件において十分耐久性を例示するものではなかった。
Non-patent document 3, for example, reports an azole polymer having a hydroxyl group and a method for producing the azole polymer. There is also a report example of conductivity measurement of an ion implantation product of an azole polymer film having a hydroxyl group (Non-Patent Document 4).
However, none of these has been focused on as a functional group for ion-conducting a hydroxyl group, and none of them has sufficiently exemplified durability under the conditions for use with a fuel cell.

フラーレン類とは、フラーレン、フラーレン誘導体、フラーレン誘導体、およびフラーレンならびにフラーレン誘導体の混合物をいう。)に関する研究が精力的に展開されるとともに、フラーレン類の用途開発が望まれている。これら用途のうちでも、電気電子機器、自動車、建築資材、工業機械の部品など様々な製品へ応用される樹脂組成物への適用は、フラーレン類の用途として大きく期待される分野の一つである。
その中でフラーレン類は(非特許文献5)にあるように、たとえばC60(OH)12のような表面に水酸基を有するフラーレンの成型体は高いプロトン伝導性を示すことが報告されている。しかしながらフラーレンの構造上、成形性、薄膜化等が困難である。
Fullerenes refer to fullerenes, fullerene derivatives, fullerene derivatives, and fullerenes and mixtures of fullerene derivatives. ) Is being developed vigorously, and the development of fullerene applications is desired. Among these uses, application to resin compositions applied to various products such as electrical and electronic equipment, automobiles, building materials, and parts of industrial machinery is one of the fields that are highly expected as fullerenes. .
Among them, as described in (Non-patent Document 5), fullerene molded products having a hydroxyl group on the surface such as C 60 (OH) 12 have been reported to exhibit high proton conductivity. However, due to the fullerene structure, it is difficult to form and thin the film.

特開平6−93114号公報JP-A-6-93114 特開平9−245818号公報JP-A-9-245818 特開平11−116679号公報Japanese Patent Laid-Open No. 11-116679 特表平11−510198号公報Japanese National Patent Publication No. 11-510198 特表平11−515040号公報Japanese National Patent Publication No. 11-515040 特開2000−80166号公報JP 2000-80166 A 特開2002−110174号公報JP 2002-110174 A 特開2002−146018号公報JP 2002-146018 A 高分子論文集 Vol.59、No.8、460〜473頁Polymer Papers Vol. 59, no. 8, 460-473 pages Journal of Polymer Science : Part A : Polymer Chemistry, Vol. 34, 241-2438 (1996)Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 34, 241-2438 (1996) Polymer, 35 , (1994) 3091Polymer, 35, (1994) 3091 Polymeric Materials Science and Engineering (1991), 64, 171-2Polymeric Materials Science and Engineering (1991), 64, 171-2 Chem. Phys. Lett., 341 442 (2001)Chem. Phys. Lett., 341 442 (2001)

イオン伝導性および耐酸化性に優れた固体高分子電解質を提供する。   Provided is a solid polymer electrolyte excellent in ion conductivity and oxidation resistance.

本発明は下記式(A)および(B)

Figure 2007188769
で表わされる繰り返し単位よりなる群から選ばれる少なくとも1種の繰り返し単位からなり、0.5g/100mlの濃度のメタンスルホン酸溶液で25℃にて測定した還元粘度が0.05〜200dl/gである剛直系複素環高分子100重量部、およびフラーレン類0.01〜30重量部とからなる固体高分子電解質である。 The present invention relates to the following formulas (A) and (B)
Figure 2007188769
The reduced viscosity measured at 25 ° C. with a methanesulfonic acid solution having a concentration of 0.5 g / 100 ml is at least 0.05 to 200 dl / g, comprising at least one repeating unit selected from the group consisting of repeating units represented by A solid polymer electrolyte comprising 100 parts by weight of a rigid heterocyclic polymer and 0.01 to 30 parts by weight of fullerenes.

本発明により燃料電池、水電解、ハロゲン化水素酸電解、食塩電解、酸素濃縮器、湿度センサー、ガスセンサー等に用いられる電解質膜等に好適な耐酸化性等に優れた低コスト高耐久性固体高分子電解質を得ることができる。そして該固体高分子膜を用いた燃料電池用固体高分子電解質膜を得ることができる。   Low cost, high durability solid excellent in oxidation resistance and the like suitable for electrolyte membranes used in fuel cells, water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrators, humidity sensors, gas sensors, etc. A polymer electrolyte can be obtained. And the solid polymer electrolyte membrane for fuel cells using this solid polymer membrane can be obtained.

(剛直系複素環高分子組成物)
本発明の高分子電解質膜は 下記式(A)および(B)

Figure 2007188769
で表わされる繰り返し単位よりなる群から選ばれる少なくとも1種の繰り返し単位からなり、0.5g/100mlの濃度のメタンスルホン酸溶液で25℃にて測定した還元粘度が0.05〜200dl/gである剛直系複素環高分子100重量部、およびフラーレン類0.01〜30重量部とからなる固体高分子電解質である。 (Rigid heterocyclic polymer composition)
The polymer electrolyte membrane of the present invention has the following formulas (A) and (B)
Figure 2007188769
The reduced viscosity measured at 25 ° C. with a methanesulfonic acid solution having a concentration of 0.5 g / 100 ml is at least 0.05 to 200 dl / g, comprising at least one repeating unit selected from the group consisting of repeating units represented by A solid polymer electrolyte comprising 100 parts by weight of a rigid heterocyclic polymer and 0.01 to 30 parts by weight of fullerenes.

フラーレン類は剛直系複素環高分子100重量部に対して0.01〜50重量部であることが好ましく、さらには0.1〜30重量部であることが好ましい。   The fullerene is preferably 0.01 to 50 parts by weight, more preferably 0.1 to 30 parts by weight, based on 100 parts by weight of the rigid heterocyclic polymer.

(剛直系複素環高分子の製造方法について)
上記の如き剛直系複素環高分子は、Polymer, 39 , (1998) 5981に報告されるような従来公知の技術によって良好な生産性で工業的に製造することができる。
(About manufacturing method of rigid heterocyclic polymers)
The rigid heterocyclic polymers as described above can be industrially produced with good productivity by a conventionally known technique as reported in Polymer, 39, (1998) 5981.

すなわち下記式(C)

Figure 2007188769
で表わされる芳香族アミンおよびその強酸塩よりなる群より選ばれる少なくとも1種と、下記式(D)
Figure 2007188769
(LはOH、ハロゲン原子、またはORで表される基であり、Rは炭素数6〜20の芳香族基である)
で表わされる芳香族ジカルボン酸類よりなる群から選ばれる少なくとも1種とを反応させる方法が好ましく挙げられる。 That is, the following formula (C)
Figure 2007188769
At least one selected from the group consisting of an aromatic amine represented by the formula:
Figure 2007188769
(L is a group represented by OH, a halogen atom, or OR, and R is an aromatic group having 6 to 20 carbon atoms)
The method of making it react with at least 1 sort (s) chosen from the group which consists of aromatic dicarboxylic acid represented by these is preferable.

ここで強酸としては塩酸、燐酸、硫酸が好ましく挙げられる。
Rの芳香族基における水素原子のうち1つまたは複数が各々独立にフッ素、塩素、臭素等のハロゲン基;メチル基、エチル基、プロピル基、ヘキシル基等の炭素数1〜6のアルキル基;シクロペンチル基、シクロヘキシル基等の炭素数5〜10のシクロアルキル基;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基等で置換されていてもよい。
Here, preferred examples of the strong acid include hydrochloric acid, phosphoric acid and sulfuric acid.
One or more of the hydrogen atoms in the aromatic group of R are each independently a halogen group such as fluorine, chlorine or bromine; an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group or a hexyl group; It may be substituted with a C5-C10 cycloalkyl group such as a cyclopentyl group or a cyclohexyl group; an alkoxycarbonyl group such as a methoxycarbonyl group or an ethoxycarbonyl group.

各モノマー(反応成分)のモル数が下記数式(1)
0.8≦(c)/(d) ≦1.2 (1)
[上記式中cは上記式(C)で表される芳香族アミン誘導体、dは上記式(D)で表される芳香族ジカルボン酸誘導体の各仕込みモル数である。]
を同時に満たすことが好ましい(c)/(d)が0.8より小さい場合や1.2より大きい場合には、重合度の十分なポリマーを得ることが困難である場合がある。(c)/(d)の下限としては、0.9以上が適当であり、より好ましくは0.93以上、さらに好ましくは0.95以上である。また、(c)/(d)の上限としては、1.1以下が適当であり、より好ましくは1.07以下、さらに好ましくは1.05以下である。従って、本発明における(c)/(d)の最適範囲は0.95≦(c)/(d)≦1.05ということができる。
The number of moles of each monomer (reaction component) is the following formula (1)
0.8 ≦ (c) / (d) ≦ 1.2 (1)
[Wherein c is the aromatic amine derivative represented by the above formula (C) and d is the number of moles charged for the aromatic dicarboxylic acid derivative represented by the above formula (D). ]
When (c) / (d) is preferably smaller than 0.8 or larger than 1.2, it may be difficult to obtain a polymer having a sufficient degree of polymerization. The lower limit of (c) / (d) is suitably 0.9 or more, more preferably 0.93 or more, and even more preferably 0.95 or more. Moreover, as an upper limit of (c) / (d), 1.1 or less is suitable, More preferably, it is 1.07 or less, More preferably, it is 1.05 or less. Therefore, it can be said that the optimum range of (c) / (d) in the present invention is 0.95 ≦ (c) / (d) ≦ 1.05.

反応は、溶媒中で行う反応、無溶媒の加熱溶融反応のいずれも採用できるが、例えば、後述する反応溶媒中で攪拌下に加熱反応させるのが好ましい。反応温度は、50℃から500℃が好ましく、100℃から350℃がさらに好ましい。50℃より温度が低いと反応が進まず、あるいは500℃より温度が高いと分解等の副反応が起こりやすくなるためである。反応時間は温度条件にもよるが、通常は1時間から数十時間である。反応は加圧下から減圧下で行うことができる。   For the reaction, either a reaction performed in a solvent or a solvent-free heating and melting reaction can be employed. For example, it is preferable to carry out a heating reaction in a reaction solvent described later with stirring. The reaction temperature is preferably 50 ° C to 500 ° C, more preferably 100 ° C to 350 ° C. This is because if the temperature is lower than 50 ° C., the reaction does not proceed, or if the temperature is higher than 500 ° C., side reactions such as decomposition tend to occur. Although the reaction time depends on temperature conditions, it is usually 1 hour to several tens of hours. The reaction can be carried out from under pressure to under reduced pressure.

反応は、通常、無触媒でも進行するが、必要に応じてエステル交換触媒を用いてもよい。本発明で用いるエステル交換触媒としては三酸化アンチモンといったアンチモン化合物、酢酸第一錫、塩化錫、オクチル酸錫、ジブチル錫オキシド、ジブチル錫ジアセテートといった錫化合物、酢酸カルシウムのようなアルカリ土類金属塩、炭酸ナトリウム、炭酸カリウムのようなアルカリ金属塩等、亜リン酸ジフェニル、亜リン酸トリフェニル等の亜リン酸を例示することができる。   The reaction usually proceeds even without a catalyst, but a transesterification catalyst may be used if necessary. Examples of transesterification catalysts used in the present invention include antimony compounds such as antimony trioxide, stannous acetate, tin chloride, tin octylate, tin compounds such as dibutyltin oxide and dibutyltin diacetate, and alkaline earth metal salts such as calcium acetate. And phosphorous acid such as alkali metal salts such as sodium carbonate and potassium carbonate, diphenyl phosphite and triphenyl phosphite.

反応に際しては、必要に応じて溶媒を用いることが出来る。好ましい溶媒としては1−メチル−2−ピロリドン、1−シクロヘキシル−2−ピロリドン、ジメチルアセトアミド、ジメチルスルホキシド、ジフェニルエーテル、ジフェニルスルホン、ジクロロメタン、クロロロホルム、テトラヒドロフラン、o−クレゾール、m−クレゾール、p−クレゾール、りん酸、ポリりん酸等を挙げることが出来るがこれに限定されるものではない。   In the reaction, a solvent can be used as necessary. Preferred solvents include 1-methyl-2-pyrrolidone, 1-cyclohexyl-2-pyrrolidone, dimethylacetamide, dimethyl sulfoxide, diphenyl ether, diphenyl sulfone, dichloromethane, chloroform, tetrahydrofuran, o-cresol, m-cresol, p-cresol, Although phosphoric acid, polyphosphoric acid, etc. can be mentioned, it is not limited to this.

剛直系複素環高分子の分解及び着色を防ぐため、反応は乾燥した不活性ガス雰囲気下で行うことが望ましい。
このようにして製造される剛直系複素環高分子の還元粘度は、0.5g/100mlの濃度のメタンスルホン酸溶液で25℃にて測定した値が0.05〜200dl/gの範囲のものである。剛直系複素環高分子の還元粘度の好ましい範囲は1.0〜100dl/g、さらに好ましくは10〜80dl/g以下である。
In order to prevent decomposition and coloring of the rigid heterocyclic polymer, the reaction is desirably performed in a dry inert gas atmosphere.
The reduced viscosity of the rigid heterocyclic polymer thus produced has a value measured in a methanesulfonic acid solution having a concentration of 0.5 g / 100 ml at 25 ° C. in the range of 0.05 to 200 dl / g. It is. The preferable range of the reduced viscosity of the rigid heterocyclic polymer is 1.0 to 100 dl / g, more preferably 10 to 80 dl / g or less.

(フラーレン類について)
本発明に用いられるフラーレン類としては、フラーレン、フラーレン誘導体、およびフラーレンならびにフラーレン誘導体の混合物を挙げることができる。フラーレンとは球殻状または楕円状の炭素分子であり、本発明の目的を満たす限り限定されないが、C60、C70、C74、C76、C78、C80、C82、C84、C86、C88、C90、C92、C94、C96、C98、C100等又はこれら化合物の2量体、3量体等を挙げることができる。
(About fullerenes)
Examples of fullerenes used in the present invention include fullerenes, fullerene derivatives, and mixtures of fullerenes and fullerene derivatives. A fullerene is a spherical or elliptical carbon molecule, and is not limited as long as the object of the present invention is satisfied, but C 60 , C 70 , C 74 , C 76 , C 78 , C 80 , C 82 , C 84 , C 86 , C 88 , C 90 , C 92 , C 94 , C 96 , C 98 , C 100 and the like, or dimer and trimer of these compounds can be exemplified.

本発明において、これらフラーレンの中でも好ましいのは、C60、C70、又はこれらの2量体、3量体である。C60、C70は工業的に得やすく、また樹脂に対する分散性に優れているので特に好ましい。また、これらフラーレンの複数を併用してもよく、このように複数を併用する場合は、C60およびC70を併用することがさらに好ましい。 In the present invention, among these fullerenes, C 60 , C 70 , or a dimer or trimer thereof is preferable. C 60 and C 70 are particularly preferable because they are industrially easy to obtain and are excellent in dispersibility in resins. Further, a plurality of these fullerenes may be used in combination, and when using a plurality of such fullerenes, it is more preferable to use C 60 and C 70 in combination.

また、本発明に用いられるフラーレン誘導体とは、フラーレンを構成する少なくとも1つの炭素に有機化合物の一部分を形成する原子団や無機元素からなる原子団が結合した化合物をいう。フラーレン誘導体を得るために用いるフラーレンとしては、本発明の目的を満たす限り限定されず、上記に具体的に示したフラーレンのいずれを用いてもよい。フラーレン誘導体としては、例えば、水素化フラーレン、酸化フラーレン、水酸化フラーレン、ハロゲン(F、Cl、Br、I)化フラーレン等を挙げることが出来、さらにはカルボキシル基、アルキル基、アミノ基などを含んでいても良い。この中で本発明上好ましいのはフラーレン類の表面に水酸基、あるいはスルホン酸基を有するフラーレン誘導体である。   In addition, the fullerene derivative used in the present invention refers to a compound in which an atomic group forming a part of an organic compound or an atomic group composed of an inorganic element is bonded to at least one carbon constituting the fullerene. The fullerene used for obtaining the fullerene derivative is not limited as long as the object of the present invention is satisfied, and any of the fullerenes specifically shown above may be used. Examples of fullerene derivatives include hydrogenated fullerenes, oxidized fullerenes, fullerene hydroxides, halogenated (F, Cl, Br, I) fullerenes, and further include carboxyl groups, alkyl groups, amino groups, and the like. You can leave. Among these, preferred in the present invention are fullerene derivatives having a hydroxyl group or a sulfonic acid group on the surface of fullerenes.

表面に水酸基を有するフラーレン類を得る方法としては例えばJ. Chem. Soc. , Chem. Commun. , 1992, 1791やJ. Org.Chem. 1994,59,3960、特開2002−63917号公報記載の方法などが挙げられる。
表面にスルホン酸基を有するフラーレン類を得る方法としては例えばJ. Org.Chem. 1994,59,3960記載の方法などが挙げられる。
なお、本発明においては、これらフラーレン誘導体の複数種類を併用しても構わないし、他のフラーレン誘導体を併用しても構わない。
Examples of methods for obtaining fullerenes having a hydroxyl group on the surface include those described in J. Chem. Soc., Chem. Commun., 1992, 1791, J. Org. Chem. 1994, 59, 3960, and JP-A-2002-63917. The method etc. are mentioned.
Examples of the method for obtaining fullerenes having a sulfonic acid group on the surface include the method described in J. Org. Chem. 1994, 59, 3960.
In the present invention, a plurality of these fullerene derivatives may be used in combination, or other fullerene derivatives may be used in combination.

フラーレンは、例えば、抵抗加熱法、レーザー加熱法、アーク放電法、燃焼法などにより得られたフラーレン含有スートから抽出分離することによって得られる。この際、必ずしも完全に分離する必要はなく、性能を損なわない範囲でフラーレンの含有率を調整することができる。また、フラーレン誘導体は、フラーレンに対して従来公知の方法を用いて合成することができる。例えば、求核剤との反応(求核付加反応)、環化付加反応、光付加(環化)反応、酸化反応等を利用して、所望のフラーレン誘導体を得ることができる。   Fullerenes can be obtained, for example, by extraction and separation from fullerene-containing soot obtained by a resistance heating method, a laser heating method, an arc discharge method, a combustion method, or the like. At this time, it is not always necessary to completely separate, and the content of fullerene can be adjusted within a range that does not impair the performance. Moreover, a fullerene derivative is compoundable using a conventionally well-known method with respect to fullerene. For example, a desired fullerene derivative can be obtained by utilizing a reaction with a nucleophile (nucleophilic addition reaction), a cycloaddition reaction, a photoaddition (cyclization) reaction, an oxidation reaction, or the like.

(成型方法について)
本発明で用いられる高分子電解質を燃料電池用として使用する際には、通常膜の状態で使用される。剛直系複素環高分子とフラーレン類の組成物を膜へ転化する方法に特に制限はないが、溶液状態より製膜する方法(溶液キャスト法)が好ましく利用できる。具体的に溶液キャスト法については、例えば組成物溶液をガラス板上に流延塗布し、溶媒を除去することにより製膜する。製膜に用いる溶媒は、高分子を溶解し、その後に除去し得るものであるならば特に制限はなくN,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、ヘキサメチルホスホンアミドなど非プロトン極性溶媒や、ポリリン酸、メタンスルホン酸、硫酸、トリフルオロ酢酸などの強酸を用いることができるがこれらに限定されるものではない。
(About molding method)
When the polymer electrolyte used in the present invention is used for a fuel cell, it is usually used in a membrane state. The method for converting the rigid heterocyclic polymer and fullerene composition into a film is not particularly limited, but a method of forming a film from a solution state (solution casting method) can be preferably used. Specifically, for the solution casting method, for example, the composition solution is cast-coated on a glass plate to form a film by removing the solvent. The solvent used for film formation is not particularly limited as long as it dissolves the polymer and can be removed thereafter. N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, N-methyl-2- Aprotic polar solvents such as pyrrolidone and hexamethylphosphonamide, and strong acids such as polyphosphoric acid, methanesulfonic acid, sulfuric acid, and trifluoroacetic acid can be used, but are not limited thereto.

これらの溶媒は、可能な範囲で複数を混合して使用してもよい。また、溶解性を向上させる手段として、臭化リチウム、塩化リチウム、塩化アルミニウムなどのルイス酸を有機溶媒に添加したものを溶媒としてもよい。溶液中の組成物濃度は0.1〜30重量%の範囲であることが好ましい。低すぎると成形性が悪化し、高すぎると加工性が悪化する。
また上記記載のポリマーは溶媒中でリオトロピック液晶を形成する事がありこの液晶性を示すポリマードープを成型に使用することも好ましく利用できる。
A plurality of these solvents may be used as a mixture within a possible range. As a means for improving the solubility, a solvent obtained by adding a Lewis acid such as lithium bromide, lithium chloride, or aluminum chloride to an organic solvent may be used. The composition concentration in the solution is preferably in the range of 0.1 to 30% by weight. If it is too low, the moldability will deteriorate, and if it is too high, the workability will deteriorate.
In addition, the polymers described above may form lyotropic liquid crystals in a solvent, and it is preferable to use a polymer dope exhibiting liquid crystallinity for molding.

また、後酸化法に付いては、溶液キャスト法で製膜した剛直系複素環高分子とフラーレン類の組成物を酸化剤を溶かした溶液に含浸することで酸化する。ここで用いられる酸化剤には特に制限はなく、オキソン(Du Pont社製)、過酢酸、過酸化水素、次亜塩素酸塩、硫酸、塩素、塩化チオニル、二酸化窒素、三酸化クロム、過マンガン酸アルカリ、硝酸、有機化酸化物などが使用される。   As for the post-oxidation method, the composition is made by impregnating a solution of a rigid heterocyclic polymer and fullerenes formed by a solution casting method into a solution in which an oxidizing agent is dissolved. There is no restriction | limiting in particular in the oxidizing agent used here, Oxone (made by Du Pont), peracetic acid, hydrogen peroxide, hypochlorite, a sulfuric acid, chlorine, thionyl chloride, nitrogen dioxide, chromium trioxide, permanganese. Acid alkali, nitric acid, organic oxide, etc. are used.

該高分子電解質膜の厚みは特に制限はないが10〜200μmが好ましい。特に30〜100μmが好ましい。実用に耐える膜の強度を得るには10μmより厚い方が好ましく、膜抵抗の低減つまり発電性能向上のためには200μmより薄い方が好ましい。溶液キャスト法の場合、膜厚は溶液濃度あるいは基板上への塗布厚により制御できる。溶融状態より製膜する場合、膜厚は溶融プレス法あるいは溶融押し出し法等で得た所定厚さのフィルムを所定の倍率に延伸することで膜厚を制御できる。   The thickness of the polymer electrolyte membrane is not particularly limited, but is preferably 10 to 200 μm. 30-100 micrometers is especially preferable. A thickness of more than 10 μm is preferable to obtain a membrane strength that can withstand practical use, and a thickness of less than 200 μm is preferable in order to reduce membrane resistance, that is, improve power generation performance. In the case of the solution casting method, the film thickness can be controlled by the solution concentration or the coating thickness on the substrate. When the film is formed from a molten state, the film thickness can be controlled by stretching a film having a predetermined thickness obtained by a melt press method or a melt extrusion method at a predetermined magnification.

触媒電極層は、ポリマーを電解質膜作成に使用した溶媒に溶解させ、これを用いて触媒電極同士を接合することで作成する。
ここでの触媒電極は、触媒金属の微粒子を導電材に担持することで作成できる。触媒電極に使用される触媒金属としては、水素の酸化反応および酸素の還元反応を促進する金属であればいずれのものでもよく、例えば、白金、金、銀、パラジウム、イリジウム、ロジウム、ルテニウム、鉄、コバルト、ニッケル、クロム、タングステン、マンガン、バナジウム、あるいはそれらの合金が挙げられる。特に白金が多くの場合用いられる。触媒となる金属の粒径は、通常は10〜300オングストロームである。これらの触媒はカーボン等の担体に付着させた方が触媒の使用量が少なくコスト的に有利である。触媒の担持量は電極が成形された状態で0.01〜10mg/cm2 が好ましい。
The catalyst electrode layer is prepared by dissolving the polymer in the solvent used for preparing the electrolyte membrane and joining the catalyst electrodes together using the polymer.
The catalyst electrode here can be prepared by supporting fine particles of catalyst metal on a conductive material. The catalyst metal used for the catalyst electrode may be any metal that promotes the oxidation reaction of hydrogen and the reduction reaction of oxygen. For example, platinum, gold, silver, palladium, iridium, rhodium, ruthenium, iron , Cobalt, nickel, chromium, tungsten, manganese, vanadium, or alloys thereof. In particular, platinum is often used. The particle size of the metal serving as a catalyst is usually 10 to 300 angstroms. When these catalysts are attached to a carrier such as carbon, the amount of the catalyst used is small and advantageous in terms of cost. The amount of the catalyst supported is preferably 0.01 to 10 mg / cm 2 with the electrode formed.

導電材としては、電子伝導性物質であればいずれのものでも良く、例えば各種金属や炭素材料などが挙げられる。炭素材料としては、例えば、ファーネスブラック、チャンネルブラック、およびアセチレンブラック等のカーボンブラック、活性炭、黒鉛等が挙げられ、これらが単独あるいは混合して使用される。   As the conductive material, any material can be used as long as it is an electron conductive material, and examples thereof include various metals and carbon materials. Examples of the carbon material include carbon black such as furnace black, channel black, and acetylene black, activated carbon, graphite, and the like, and these are used alone or in combination.

これら導電材に触媒金属を担持させる方法としては、触媒金属を還元法により導電材(主に炭素材料の場合に使用)の表面に析出させる方法や、溶剤に触媒金属を懸濁させ、これを導電材表面に塗布する方法などがある。   As a method for supporting the catalyst metal on these conductive materials, the catalyst metal is deposited on the surface of the conductive material (mainly used in the case of carbon materials) by a reduction method, or the catalyst metal is suspended in a solvent. There is a method of applying to the surface of a conductive material.

膜/電極接合体は、スペーサー構造を挟んだスルホン酸もしくはスペーサー構造を挟んだスルホンアミド化スルホン酸を導入したPPSO系高分子を電解質膜作成に使用した溶媒に溶解させた溶液を触媒電極層に塗布し、電解質膜と接合させることで作成する。   In the membrane / electrode assembly, a solution obtained by dissolving a PPSO polymer into which a sulfonic acid sandwiching a spacer structure or a sulfonamidated sulfonic acid sandwiching a spacer structure is dissolved in a solvent used for forming an electrolyte membrane is used as a catalyst electrode layer. It is created by applying and bonding to the electrolyte membrane.

燃料電池は、以上のように形成された膜/電極接合体の外側にセパレータと呼ばれる燃料流路もしくは酸化剤流路を形成する溝付きの集電体を配したものを単セルとし、この様な単セルを複数個、冷却板等を介して積層することにより構成される。燃料電池は高い温度で作動させる方が電極の触媒活性が上がり電極過電圧が減少するため望ましいが、電解質膜は水分がないと機能しないため、水分管理が可能な温度で作動させる必要がある。燃料電池の作動温度の好ましい範囲は室温〜100℃である。   In the fuel cell, a single cell is formed by arranging a current collector with a groove forming a fuel flow path or an oxidant flow path called a separator on the outside of the membrane / electrode assembly formed as described above. A plurality of single cells are stacked through a cooling plate or the like. It is desirable to operate the fuel cell at a high temperature because the catalytic activity of the electrode increases and the electrode overvoltage decreases. However, since the electrolyte membrane does not function without moisture, it needs to be operated at a temperature at which moisture management is possible. The preferable range of the operating temperature of the fuel cell is room temperature to 100 ° C.

以下、実施例及び比較例により本発明をさらに具体的に説明するが、本発明はこれらによっていささかも限定されるものではない。なお、以下の実施例における各測定値は次の方法により求めた値である。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited at all by these. In addition, each measured value in the following examples is a value obtained by the following method.

[還元粘度]
0.5g/100mlの濃度のメタンスルホン酸溶液で25℃にて測定した値である。
[イオン伝導度測定]
本発明の電解質膜を、電気化学インピーダンス測定装置(ソーラトロン製、SI1287)を用いて周波数0.1Hz〜65kHzの領域で4端子インピーダンス測定をし、イオン伝導度を測定した。なお、上記測定で電解質膜は水蒸気雰囲気下、75℃にて保存された。
[耐酸化性試験]
本発明の電解質膜を、30%過酸化水素水20mlに硫酸鉄7水和物1.9mgを加えることからなる60℃に加熱したフェントン試薬(鉄40ppmを含む)に浸漬させ、電解質膜がフェントン試薬に溶解するに至る時間を求めた。
[Reduced viscosity]
It is a value measured at 25 ° C. with a methanesulfonic acid solution having a concentration of 0.5 g / 100 ml.
[Ion conductivity measurement]
The electrolyte membrane of the present invention was subjected to a four-terminal impedance measurement in an area of a frequency of 0.1 Hz to 65 kHz using an electrochemical impedance measuring device (manufactured by Solartron, SI1287), and ion conductivity was measured. In the above measurement, the electrolyte membrane was stored at 75 ° C. in a water vapor atmosphere.
[Oxidation resistance test]
The electrolyte membrane of the present invention was immersed in Fenton reagent (containing 40 ppm of iron) heated to 60 ° C. consisting of adding 1.9 mg of iron sulfate heptahydrate to 20 ml of 30% hydrogen peroxide solution, and the electrolyte membrane was Fenton. The time required for dissolution in the reagent was determined.

<参考例1>(モノマー合成1)
2,3,5,6−テトラアミノピリジン三塩酸塩1水和物17.772重量部を、窒素で脱気した水100重量部に溶解した。2,5−ジヒドロキシテレフタル酸13.208重量部を、1M水酸化ナトリウム水溶液137重量部に溶解し窒素で脱気した。2,3,5,6−テトラアミノピリジン三塩酸塩1水和物溶液を、2,5−ジヒドロキシテレフタル酸二ナトリウム塩水溶液に10分間かけて滴下し、24.3重量部のポリりん酸と35重量部の窒素で脱気した水を加え1重量部の酢酸を加え得られた塩を、ろ過し、窒素で脱気した水3000重量部に分散混合し、再度ろ過を行った。この分散混合、ろ過操作を3回繰り返し行い2,3,5,6−テトラアミノピリジン/2,5−ジヒドロキシテレフタル酸塩を得た。
<Reference Example 1> (Monomer Synthesis 1)
17.772 parts by weight of 2,3,5,6-tetraaminopyridine trihydrochloride monohydrate was dissolved in 100 parts by weight of water deaerated with nitrogen. 13.208 parts by weight of 2,5-dihydroxyterephthalic acid was dissolved in 137 parts by weight of 1M aqueous sodium hydroxide solution and degassed with nitrogen. 2,3,5,6-tetraaminopyridine trihydrochloride monohydrate solution was dropped into 2,5-dihydroxyterephthalic acid disodium salt aqueous solution over 10 minutes, and 24.3 parts by weight of polyphosphoric acid and The salt obtained by adding water degassed with 35 parts by weight of nitrogen and adding 1 part by weight of acetic acid was filtered, dispersed and mixed in 3000 parts by weight of water degassed with nitrogen, and filtered again. This dispersion mixing and filtration operation was repeated three times to obtain 2,3,5,6-tetraaminopyridine / 2,5-dihydroxyterephthalate.

<参考例2>(ポリマーの重合)
参考例1にて得られた2,3,5,6−テトラアミノピリジン/2,5−ジヒドロキシテレフタル酸塩22.88重量部にポリりん酸62.54重量部、5酸化りん14.76重量部を加え100℃にて1時間攪拌混合した。その後2時間かけ140℃に昇温し140℃にて1時間攪拌を行った。その後1時間かけて180℃に昇温し180℃にて5時間反応を行い、ポリマードープを得た。偏光顕微鏡による測定の結果このポリマードープは液晶性を示した。このドープを水にて再沈殿し洗浄する事によってポリマーを得た。得られたポリマーの還元粘度は15dl/gであった。
<Reference Example 2> (Polymer polymerization)
22.88 parts by weight of 2,3,5,6-tetraaminopyridine / 2,5-dihydroxyterephthalate obtained in Reference Example 1, 62.54 parts by weight of polyphosphoric acid, 14.76 parts by weight of phosphorus pentoxide The mixture was added and stirred at 100 ° C. for 1 hour. Thereafter, the temperature was raised to 140 ° C. over 2 hours and stirred at 140 ° C. for 1 hour. Thereafter, the temperature was raised to 180 ° C. over 1 hour, and the reaction was carried out at 180 ° C. for 5 hours to obtain a polymer dope. As a result of measurement with a polarizing microscope, this polymer dope exhibited liquid crystallinity. The dope was reprecipitated with water and washed to obtain a polymer. The polymer obtained had a reduced viscosity of 15 dl / g.

<参考例3>(水酸化フラーレンの合成)
この合成は、先述した文献J.Org.Chem.1994,59,3960、特開2002−63917を参考にしておこなった。アルドリッチ社製フラーレンC60の粉末2重量部を発煙硫酸15重量部中に加えて、窒素雰囲気下60℃で3日間攪拌した。得られた反応物を、氷浴内で冷やした無水ジエチルエーテル中に少しずつ投下し、その沈殿物を遠心分離で分別し、さらにジエチルエーテルで3回、およびジエチルエーテルとアセトニトリルの2:1混合液で2回洗浄したあと、40℃にて減圧中で乾燥させた。さらに、この乾燥物を60mlのイオン交換水中に入れ、85℃で窒素によるバブリングを行いながら10時間攪拌した。反応生成物は遠心分離によって沈殿物を分離し、この沈殿物をさらに純水で数回洗浄し、遠心分離を繰り返した後に、40℃で減圧乾燥し水酸化フラーレンを得た。
<Reference Example 3> (Synthesis of fullerene hydroxide)
This synthesis was performed with reference to the above-mentioned document J. Org. Chem. 1994, 59, 3960 and JP-A-2002-63917. 2 parts by weight of Aldrich fullerene C60 powder was added to 15 parts by weight of fuming sulfuric acid and stirred at 60 ° C. for 3 days in a nitrogen atmosphere. The obtained reaction product was dropped little by little into anhydrous diethyl ether cooled in an ice bath, and the precipitate was separated by centrifugation, and further three times with diethyl ether and a 2: 1 mixture of diethyl ether and acetonitrile. After washing twice with the liquid, it was dried at 40 ° C. under reduced pressure. Further, this dried product was placed in 60 ml of ion exchange water and stirred for 10 hours while bubbling with nitrogen at 85 ° C. The reaction product was separated into precipitates by centrifugation, and the precipitates were further washed several times with pure water, repeated centrifugation, and dried under reduced pressure at 40 ° C. to obtain fullerene hydroxide.

<参考例4>(スルホン酸基を有するフラーレンの合成)
これも同様に、前記の文献を参考にして合成した。参考例3にて得られた水酸化フラーレンの粉末1重量部を30重量部の発煙硫酸中に投下し、室温にて窒素雰囲気下で3日間攪拌した。得られた反応物を、氷浴内で冷やした無水ジエチルエーテル中に少しずつ投下し、その沈殿物を遠心分離で分別し、さらにジエチルエーテルで3回、およびジエチルエーテルとアセトニトリルの2:1混合液で2回洗浄した後、40℃にて減圧下で乾燥させた目的の化合物を得た。
Reference Example 4 (Synthesis of fullerene having a sulfonic acid group)
This was similarly synthesized with reference to the above literature. One part by weight of the fullerene hydroxide powder obtained in Reference Example 3 was dropped into 30 parts by weight of fuming sulfuric acid and stirred at room temperature in a nitrogen atmosphere for 3 days. The obtained reaction product was dropped little by little into anhydrous diethyl ether cooled in an ice bath, and the precipitate was separated by centrifugation, and further three times with diethyl ether and a 2: 1 mixture of diethyl ether and acetonitrile. After washing twice with the liquid, the desired compound was obtained which was dried at 40 ° C. under reduced pressure.

[実施例1](キャストフィルムの作成)
参考例2にて再沈殿して得られたポリマー1重量部とフラーレン(アルドリッチ社製C60)0.03重量部をメタンスルホン酸100重量部に溶解させポリマードープを得た。得られたポリマードープをドクターナイフにて流延し膜厚18μmのキャストフィルムを得た。このフィルムのイオン伝導度測定、及び耐酸化性試験の結果を表1に示す。
[Example 1] (Creation of cast film)
1 part by weight of the polymer obtained by reprecipitation in Reference Example 2 and 0.03 part by weight of fullerene (Aldrich C60) were dissolved in 100 parts by weight of methanesulfonic acid to obtain a polymer dope. The obtained polymer dope was cast with a doctor knife to obtain a cast film having a thickness of 18 μm. Table 1 shows the results of ion conductivity measurement and oxidation resistance test of this film.

[実施例2](キャストフィルムの作成)
参考例2にて再沈殿して得られたポリマー1重量部と参考例3にて得られた水酸基を有するフラーレン0.03重量部をメタンスルホン酸100重量部に溶解させポリマードープを得た。得られたポリマードープをドクターナイフにて流延し膜厚15μmのキャストフィルムを得た。このフィルムのイオン伝導度測定、及び耐酸化性試験の結果を表1に示す。
[Example 2] (Creation of cast film)
1 part by weight of the polymer obtained by reprecipitation in Reference Example 2 and 0.03 part by weight of fullerene having a hydroxyl group obtained in Reference Example 3 were dissolved in 100 parts by weight of methanesulfonic acid to obtain a polymer dope. The obtained polymer dope was cast with a doctor knife to obtain a cast film having a film thickness of 15 μm. Table 1 shows the results of ion conductivity measurement and oxidation resistance test of this film.

[実施例3](キャストフィルムの作成)
参考例2にて再沈殿して得られたポリマー1重量部と参考例4にて得られたスルホン酸基を有するフラーレン0.03重量部をメタンスルホン酸100重量部に溶解させポリマードープを得た。得られたポリマードープをドクターナイフにて流延し膜厚18μmのキャストフィルムを得た。このフィルムのイオン伝導度測定、及び耐酸化性試験の結果を表1に示す。
[Example 3] (Creation of cast film)
1 part by weight of the polymer obtained by reprecipitation in Reference Example 2 and 0.03 part by weight of fullerene having a sulfonic acid group obtained in Reference Example 4 are dissolved in 100 parts by weight of methanesulfonic acid to obtain a polymer dope. It was. The obtained polymer dope was cast with a doctor knife to obtain a cast film having a thickness of 18 μm. Table 1 shows the results of ion conductivity measurement and oxidation resistance test of this film.

Figure 2007188769
Figure 2007188769

Claims (4)

下記式(A)および(B)
Figure 2007188769
で表わされる繰り返し単位よりなる群から選ばれる少なくとも1種の繰り返し単位からなり、0.5g/100mlの濃度のメタンスルホン酸溶液で25℃にて測定した還元粘度が0.05〜200dl/gである剛直系複素環高分子100重量部、およびフラーレン類0.01〜30重量部とからなる固体高分子電解質。
The following formulas (A) and (B)
Figure 2007188769
The reduced viscosity measured at 25 ° C. with a methanesulfonic acid solution having a concentration of 0.5 g / 100 ml is at least 0.05 to 200 dl / g, comprising at least one repeating unit selected from the group consisting of repeating units represented by A solid polymer electrolyte comprising 100 parts by weight of a certain rigid heterocyclic polymer and 0.01 to 30 parts by weight of fullerenes.
請求項1記載のフラーレン類が表面に水酸基を有することを特徴とする固体高分子電解質。   A solid polymer electrolyte, wherein the fullerene according to claim 1 has a hydroxyl group on its surface. 請求項1記載のフラーレン類が表面にスルホン酸基を有することを特徴とする固体高分子電解質。   A solid polymer electrolyte, wherein the fullerene according to claim 1 has a sulfonic acid group on its surface. 請求項1〜3のいずれかに記載の固体高分子電解質からなる燃料電池用固体高分子電解質膜。   The solid polymer electrolyte membrane for fuel cells which consists of a solid polymer electrolyte in any one of Claims 1-3.
JP2006005976A 2006-01-13 2006-01-13 Solid polymer electrolyte Expired - Fee Related JP5054309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006005976A JP5054309B2 (en) 2006-01-13 2006-01-13 Solid polymer electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006005976A JP5054309B2 (en) 2006-01-13 2006-01-13 Solid polymer electrolyte

Publications (2)

Publication Number Publication Date
JP2007188769A true JP2007188769A (en) 2007-07-26
JP5054309B2 JP5054309B2 (en) 2012-10-24

Family

ID=38343785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006005976A Expired - Fee Related JP5054309B2 (en) 2006-01-13 2006-01-13 Solid polymer electrolyte

Country Status (1)

Country Link
JP (1) JP5054309B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050628A (en) * 2003-07-28 2005-02-24 Sony Corp Ion conductor and its manufacturing method as well as electrochemical device
JP2005290318A (en) * 2004-04-05 2005-10-20 Teijin Ltd Solid polyelectrolyte

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050628A (en) * 2003-07-28 2005-02-24 Sony Corp Ion conductor and its manufacturing method as well as electrochemical device
JP2005290318A (en) * 2004-04-05 2005-10-20 Teijin Ltd Solid polyelectrolyte

Also Published As

Publication number Publication date
JP5054309B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
EP1788655B1 (en) Polymer membrane for fuel cell, method of preparing same, and membrane-electrode assemby for fuel cell comprising same
JP5713335B2 (en) POLYSULFONE POLYMER, POLYMER ELECTROLYTE MEMBRANE CONTAINING THE SAME, MEMBRANE-ELECTRODE ASSEMBLY CONTAINING THE SAME, FUEL CELL USING THE SAME, AND METHOD FOR PRODUCING THE POLYMER
JP4886675B2 (en) Electrolyte membrane
KR20090053499A (en) Monomer for a proton-conducting polymer having acid group in side chain, the proton-conducting polymer, preparation method of the polymer, membrane comprising the polymer and membrane-electrode assembly employing the membrane
KR101210514B1 (en) Sulfonated Bis(phenylsulfonyl)-1,1&#39;-Biphenyl Compounds and Their Manufacturing Methods
JP6698148B2 (en) Fluorine-based nanocomposite membrane containing polyhedral oligomeric silsesquioxane having a proton donor and a proton acceptor, and method for producing the same
JP2009235260A (en) Polymer organic compound including aromatic ring having sulfonated pyridyloxy group or sulfonate-binding pyridyloxy group as structure unit in molecule, organic compound consisting of aromatic ring having sulfonated pyridyloxy or sulfonate-binding pyridyloxy group, and pharmaceutical, pesticide, disinfectant or antimicrobial, ion exchanger, electrolyte membrane, catalyst, membrane electrode conjugate, and fuel cell each using them
JP5233065B2 (en) Polymer having ionic group, polymer electrolyte material, polymer electrolyte component, membrane electrode composite, and polymer electrolyte fuel cell
JP2009129703A (en) Dendronized polymer electrolyte, manufacturing method thereof, solid polymer electrolyte membrane, electrode for solid polymer fuel cell, and fuel cell
JP4554541B2 (en) Proton conducting electrolyte and fuel cell
EP2212372B1 (en) Ionically conductive polymer for use in electrochemical devices
JP2009026638A (en) Solid polymer electrolyte
KR101042960B1 (en) Solid polymer electrolyte for fuel cell and fuel cell using the same
JP2005290318A (en) Solid polyelectrolyte
JP5054309B2 (en) Solid polymer electrolyte
KR101773245B1 (en) Sulfonated hydrocarbon nanocomposite membrane comprising polyhedral oligomeric silsesquioxane with proton donor and proton acceptor and Method of preparing the same
JP2004288497A (en) Solid polymer electrolyte and manufacturing method of the same, as well as film , catalytic electrode layer, film/electrode junction and fuel cell using the same
KR100589345B1 (en) Preparation method of sulfonated polybenzimidazole and sulfonated polybenzimidazole prepared therefrom, and polymer electrolyte membrane comprising the same
KR101235738B1 (en) Proton conductive copolymer, method for preparing the saem and use thereof
JP4813218B2 (en) Proton conducting electrolyte and fuel cell
KR20110032257A (en) Polysufone based polymer, polymer electrolyte membrane comprising polymer, membranes-electrode assembly comprising membrane and fuel cell comprising membrane, and preparing method thereof
JP5463530B2 (en) Electrolyte membranes based on wholly aromatic multiblock copolymers
JP4077011B2 (en) Solid polymer electrolyte, membrane electrode assembly and fuel cell
JP5080019B2 (en) Solid polymer electrolyte
JP2010129292A (en) Polymer electrolyte, polymer electrolyte membrane, and its utilization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080814

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110711

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees