JP2007187526A - 位置検出システムおよびその位置検出システムに用いられる発光装置 - Google Patents

位置検出システムおよびその位置検出システムに用いられる発光装置 Download PDF

Info

Publication number
JP2007187526A
JP2007187526A JP2006005196A JP2006005196A JP2007187526A JP 2007187526 A JP2007187526 A JP 2007187526A JP 2006005196 A JP2006005196 A JP 2006005196A JP 2006005196 A JP2006005196 A JP 2006005196A JP 2007187526 A JP2007187526 A JP 2007187526A
Authority
JP
Japan
Prior art keywords
light
light emitting
moving body
emitting device
optical beacon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006005196A
Other languages
English (en)
Inventor
Masahito Sano
雅仁 佐野
Takeshi Takanose
剛 高野瀬
Akiko Numata
亜紀子 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba TEC Corp
Original Assignee
Toshiba TEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba TEC Corp filed Critical Toshiba TEC Corp
Priority to JP2006005196A priority Critical patent/JP2007187526A/ja
Publication of JP2007187526A publication Critical patent/JP2007187526A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】 移動体ごとに面倒な校正登録作業などの初期設定を要することなく、可動式の走査器を要することもなく、また各発光手段を適正な順序で発光動作させることができ、高い精度と信頼性をもって移動体の位置を検出することが可能な位置検出システムおよびその位置検出システムに用いられる発光装置を提供する。
【解決手段】 光学ビーコン♯1〜♯26が、自身以外の光学ビーコンから発せられる光を受けるための受光部9を有している。この受光部9の向く方向が本体に対して可変である。
【選択図】 図2

Description

この発明は、移動体の移動空間たとえば屋内等における移動体の位置を検出する位置検出システムおよびその位置検出システムに用いられる発光装置に関する。
従来、移動体の位置を知るための手段として、移動体に回転式のレーザレーダを設けるとともに、移動体の周りの空間に少なくとも3つの反射器を固定し、レーザレーダから発せられるレーザ光により移動体の周囲を走査するシステムが知られている。このシステムでは、レーザ光の走査に伴う各反射器からの反射光の有無、およびレーザ光の走査角度情報に基づいて、移動体から見た各反射器の方向を検知することができる。また、各反射器で反射した光が戻ってくるまでの時間を計ることにより、移動体と各反射器との間の距離を検知することができる。そして、検知した方向および距離に基づいて、移動体の位置を特定することができる(例えば、特許文献1)。
特開2003−302469号公報
上記のシステムでは、初期設定として、敷設後に移動体を定点に置いて校正登録作業を行う必要があることから、多数の移動体を用いるような場合には各移動体ごとに上記校正登録作業を行わねばならず、面倒であるため、このような用途には向いていなかった。また、それ以降も移動体の移動データを継続的に取得しながら各反射器の位置を監視し続け、場合によっては移動体の自律移動の制御データ(デッドレコニング)との比較をしなければならず、この点からも、多数の移動体が出入りしたり自由な移動を行うような用途には向いていなかった。また、回転式のレーザレーダのような可動式の走査器を設けねばならないために、移動体が大型化したり、故障の可能性およびコストが高くなるという問題がある。
これに対し、移動体の移動空間に複数の発光手段を設け、これら発光手段から発せられる光の方向を検出し、この検出結果に基づいて移動体の位置を検出するシステムが考えられる。このシステムによれば、上記のような可動式の走査器を設けることなく、移動体の位置を検出することが可能である。また、上記システムにおいて、各発光手段を順に発光動作させるようにすれば、全ての発光手段を常に発光させておく必要がないので、消費電力を低減することが可能である。各発光手段を順に発光動作させる手段として、各発光手段から発せられる光を発光手段の相互間で順に受け継いでいくことが考えられる。
この場合、各発光手段がどのように配置されていても、発光手段間での光の受け継ぎが途切れないようにする必要がある。
この発明は、上記事情を考慮したもので、移動体ごとに面倒な校正登録作業などの初期設定を要することなく、可動式の走査器を要することもなく、また各発光手段を適正な順序で発光動作させることができ、高い精度と信頼性をもって移動体の位置を検出することが可能な位置検出システムおよびその位置検出システムに用いられる発光装置を提供することを目的とする。
請求項1に係る発明の位置検出システムは、移動体の移動空間に分散して設けられ、自身以外の発光装置から発せられる光を受けることにより動作して、それぞれ自己の識別情報を含む発光パターンで発光する複数の発光装置と、上記移動体に設けられ、上記各発光装置により発せられる光の識別情報から少なくとも3つの発光装置を識別するとともに、識別した各発光装置からの光の方向を検出し、この検出結果に基づいて上記移動体の位置を検出する検出手段と、を備えている。そして、上記発光装置は、光源が設けられた本体と、自身以外の発光装置から発せられる光を受けるための受光部を有し、この受光部の向く方向が上記本体に対して可変である。
請求項2に係る発明の発光装置は、移動体の移動空間に分散して設けられ、自身以外の発光装置から発せられる光を受けることにより動作して、それぞれ自己の識別情報を含む発光パターンで発光する複数の発光装置と、上記移動体に設けられ、上記各発光装置により発せられる光の識別情報から少なくとも3つの発光装置を識別するとともに、識別した各発光装置からの光の方向を検出し、この検出結果に基づいて上記移動体の位置を検出する検出手段と、を備えた位置検出システムに用いられるものであって、光源が設けられた本体と、自身以外の発光装置から発せられる光を受けるための受光部を有し、この受光部の向く方向が前記本体に対して可変である。
この発明の位置検出システムおよびその位置検出システムに用いられる発光装置によれば、移動体ごとに面倒な校正登録作業などの初期設定を要することなく、可動式の走査器を要することもない。これにより、多数の移動体を用いるようなものにも適用可能とすることができ、さらには、移動体が大型化したり、故障の可能性およびコストが高くなるといった不都合を生じることもない。しかも、各発光装置の個数や取付け空間の大きさなどにかかわらず、各発光装置を適正な順序で発光動作させることができ、高い精度と信頼性をもって移動体の位置を検出することができる。
[1]以下、この発明の第1の実施形態について図面を参照して説明する。
図1に示すように、1は大型商店などの建物で、床、壁、天井で覆われ、内部に棚2を有している。この建物1の床面に移動体3が移動自在に存している。
建物1の内壁上部、棚2の上部、および天井に、少なくとも3つ以上の発光装置たとえば27個の光学ビーコン♯0〜♯26が分散して取付けられている。これら光学ビーコン♯0〜♯26は、光源として赤外線光を発する発光ダイオードを用いており、取付け位置(平面座標)については敷設時に移動体3に設けられた後述する検出ユニットの位置データメモリに記憶されている。
光学ビーコン♯0〜♯26から発せられる赤外線光は、壁面や棚2に取付けられている場合に平面図上で最大180度(角部に取付けのものは90度または270度)の範囲で側方ないし下方向に拡がり、天井に取付けられている場合に平面図上で最大360度の範囲で側方ないし下方向に拡がる。
光学ビーコン♯0〜♯26のうち、光学ビーコン♯0は定期的に発光動作し、それに続いて残りの光学ビーコン♯1〜♯26が順に発光動作する。この順繰りの発光動作を可能にするため、光学ビーコン♯0から発せられる赤外線光の到達領域に光学ビーコン♯1が取付けられ、光学ビーコン♯1から発せられる赤外線光の到達領域に光学ビーコン♯2が取付けられている。同様に、光学ビーコン♯3〜♯26も、発光順位が1つ前の光学ビーコンから発せられる赤外線光の到達領域に、それぞれ取付けられている。
光学ビーコン♯1〜♯26のうち、壁面や棚2に取付けられる光学ビーコンの具体的な構成を図2および図3に示している。図2は光学ビーコンの本体4を側方から見た図、図3は本体4を上方から見た図である。
壁面1aに光学ビーコンの本体4が取付けられ、その本体4の側部から下部にかけての湾曲状の周面に複数の光源として発光ダイオード5が取付けられている。なお、この発光ダイオード5は、移動体3に対して発光する光源としてだけでなく、他の光学ビーコンに対して発光する発光部としての機能をも有する。これら発光ダイオード5は、本体4の側部から下部にかけての周面が下方に向いた半円状に設けられていることにより、互いに異なる方向に向いて取付けられており、その結果互いに異なる方向(側方ないし下方)に光を発する。とくに、本体4の周面の一部を縦方向(図2において上下方向)に見た場合に、周面の上部に多くの個数の発光ダイオード5が取付けられ、周面の略中央部に上部よりも少ない個数の発光ダイオード5が取付けられ、周面の下部に略中央部よりも少ない個数の発光ダイオード5が取付けられている。このような発光ダイオード5の取付け位置および取付け個数の選定により、光学ビーコンの発光強度が側方から下方にかけて徐々に小さくなる。
これら光学ビーコンは、設置される前において受光部9がその向きを可変となるように構成されている。すなわち、本体4の周面上部の壁面1aに近い位置に支軸6が略垂直方向に立設され、その支軸6に環状部材7が回動自在に装着されている。そして、環状部材7の外周面にロッド8の一端部が連結され、そのロッド8の他端部に受光部9が設けられている。環状部材7が回動操作されると、図3に破線で示すようにロッド8が回動し、受光部9が本体4の周面上部の端縁に沿って回動する。
なお、光学ビーコンが壁や天井に取付けられていて、位置検出システムの一部として実際に動作する際には、環状部材7が、図示しない位置決め部材によって支軸6に対して位置決めされる。このように本件各発明において、受光部9の向く方向が本体4に対して可変であるとは、光学ビーコン単体の状態でそのようになっていればよく、位置検出システムの動作時には受光部9はいずれかの位置に固定されているものでもよい。
また、光学ビーコン♯1〜♯26のうち、天井面に取付けられる光学ビーコンの具体的な構成を図4に示している。まず、本体4の側部から下部にかけての湾曲状の周面に複数の光源として発光ダイオード5が取付けられている。これら発光ダイオード5は、本体4の側部から下部にかけての周面が湾曲していることにより、互いに異なる方向(側方ないし下方)に光を発する。とくに、本体4の周面の一部を縦方向に見た場合に、周面の上部に多くの個数の発光ダイオード5が取付けられ、周面の略中央部に上部よりも少ない個数の発光ダイオード5が取付けられ、周面の下部に略中央部よりも少ない個数の発光ダイオード5が取付けられている。このような発光ダイオード5の取付け位置および取付け個数の選定により、当該光学ビーコンの発光強度が側方から下方にかけて徐々に小さくなる。
本体4の周面上部の略中央位置に支軸6が略垂直方向に立設され、その支軸6の上端部が天井面1bに固定されている。そして、支軸6に環状部材7が回動自在に装着され、その環状部材7の外周面にロッド8を介して受光部9が取付けられている。環状部材7が回動操作されると、ロッド8が回動し、受光部9が本体4の周面上部の端縁に沿って回動する。この回動範囲は360度である。
上記受光部9は、他の光学ビーコンから発せられる赤外線光を受けるためのもので、受光方向が環状部材7の回動操作により可変であり、発光順位が1つ前の光学ビーコン、より詳細にはその発光ダイオード5に対して受光方向が設定される。すなわち、光学ビーコン♯1における受光部9の受光方向は、発光順序が1つ前の光学ビーコン♯0に対し、良好な指向性をもって設定される。光学ビーコン♯2における受光部9の受光方向は、発光順序が1つ前の光学ビーコン♯1に対し、良好な指向性をもって設定される。同様に、光学ビーコン♯3〜♯26における受光部9の受光方向も、発光順位が1つ前の光学ビーコンに対し、それぞれ良好な指向性をもって設定される。例として、光学ビーコン♯18〜♯20における受光部9の受光方向を図5に示している。
なお、発光順位が1番目の光学ビーコン♯0は、他の光学ビーコンから発せられる赤外線光を受ける必要がないため、支軸6、環状部材7、ロッド8、および受光部9の構成は有していない。
光学ビーコン♯0の制御回路を図6に示している。すなわち、制御部10にタイマ11,12、ID設定部14、変調駆動回路15が接続されている。
タイマ11は、当該光学ビーコン♯0の定期的な発光動作を設定するための一定時間すなわち発光パターンの周期T1をカウントする。タイマ12は、当該光学ビーコン♯0の発光パターンの中で、方向検出用の発光動作をする一定時間T2をカウントする。ID設定部14は、当該光学ビーコン♯0に固有の識別情報いわゆるIDを人為的な操作により可変設定するためのものである。変調駆動回路15は、所定周波数のキャリア信号を制御部10の制御に応じて変調し、その変調信号(パルス信号)によって各発光ダイオード5を発光させる。
制御部10の制御による光学ビーコン♯0の発光動作を図7のタイムチャートに示している。
すなわち、タイマ11のカウントに基づく一定時間T1ごとに、開始コードを含む発光動作(オン,オフパターン)で先ず発光し、次にIDコードを含む発光パターンで発光し、続いてタイマ12のカウントに基づく一定時間T2だけ方向検出用として連続的に発光し、最後に終了コードを含む発光動作で発光する。方向検出用の発光は、当該光学ビーコン♯0の方向を移動体3に確実に検出させるためのものである。
光学ビーコン♯1〜♯26の制御回路を図8に示している。すなわち、制御部20にタイマ22,23、ID設定部24、変調駆動回路25、受信復調回路27が接続されている。
タイマ22は、当該光学ビーコンの方向検出用の発光動作を設定するための一定時間T2をカウントする。タイマ23は、当該光学ビーコンの直前に発光する光学ビーコンが方向検出用の発光を開始してから、当該光学ビーコンが発光を開始するまでの規制時間T3(図9参照)、をカウントする。ID設定部24は、当該光学ビーコンに固有のIDを人為的な操作により可変設定するためのものである。変調駆動回路25は、所定周波数のキャリア信号を制御部10の制御に応じて変調し、その変調信号(パルス信号)によって各発光ダイオード5を発光させる。受信復調回路27は、他の光学ビーコンから発せられる光を受光部9内の受光素子(例えばフォトダイオード)28で受け、受けた光に含まれている開始コード、IDコード、終了コードを復調により抽出して制御部20に供給する。
制御部20の制御による光学ビーコン♯1〜♯26の一部の発光動作を図9のタイムチャートに示している。
すなわち、光学ビーコン♯1は、他の光学ビーコンから受けた光がどの光学ビーコンから発せられたものであるかを光から抽出されるIDコードに基づいて常に監視しており、予め定められている発光順序が1つ前の光学ビーコン♯0の発光を受けて、かつ光学ビーコン♯0の方向検出用の発光が開始されてからタイマ23のカウントに基づく規制時間T3が経過した後に、所定の発光パターンでの発光動作を開始する。まず、開始コードを含む発光動作で発光し、次にIDコードを含む発光動作で発光し、続いてタイマ22のカウントに基づく一定時間T2だけ方向検出用として連続的に発光し、最後に終了コードを含む発光動作で発光する。方向検出用の発光は、光学ビーコン♯1の方向を移動体3に確実に検出させるためのものである。
光学ビーコン♯2は、他の光学ビーコンから受けた光がどの光学ビーコンから発せられたものであるかを光から抽出されるIDコードに基づいて常に監視しており、予め定められている発光順序が1つ前の光学ビーコン♯1の発光を受けて、かつ光学ビーコン♯1の方向検出用の発光が開始されてからタイマ23のカウントに基づく規制時間T3が経過した後に、所定の発光パターンでの発光動作を開始する。まず、開始コードを含む発光動作で発光し、次にIDコードを含む発光パターンで発光し、続いてタイマ22のカウントに基づく一定時間T2だけ方向検出用として連続的に発光し、最後に終了コードを含む発光動作で発光する。方向検出用の発光は、光学ビーコン♯2の方向を移動体3に確実に検出させるためのものである。
同様に、光学ビーコン♯3〜♯26が順次に動作して発光する。
一方、移動体3は、図10および図11に示す検出ユニット(検出手段)30を備えている。検出ユニット30は、受光部40、演算部50、および位置データメモリ51を有している。そして、検出ユニット30は、光学ビーコン♯0〜♯26から発せられる光のうち受光した各光に含まれているIDコードを参照することにより少なくとも3つの光学ビーコンを識別するとともに、識別した各光学ビーコンからの光の方向を検出し、この検出結果及びIDコードによる位置データメモリ内の位置データに基づいて移動体3の位置を検出するものである。
受光部40は、軸方向が垂直となるように移動体3に設けられた円筒状の筐体41を有し、その筐体41の上部開口を遮光板42で閉塞し、上方からの光を遮光板42の略中央部に形成されている開口(絞り)42aを通して筐体41内に導入する。導入された光は、レンズ43により、二次元受光素子であるCMOSイメージセンサ44に集光する。すなわち、CMOSイメージセンサ44の上面に集光点Pが形成される。
位置データメモリ51は、光学ビーコン♯0〜♯26の位置データを同光学ビーコン♯0〜♯26のIDコードに対応付けて記憶している。
演算部50は、受光部40のCMOSイメージセンサ44で受けた光に含まれているIDコードを解読する解読手段と、この解読手段で解読された各IDコードに基づいて位置データメモリ51を参照することにより少なくとも3つの光学ビーコンを識別する識別手段と、この識別手段で識別された各光学ビーコンからの光(方向検出用の発光)の方向を上記CMOSイメージセンサ44の出力から検出する検出手段と、この検出手段で検出された光の方向により移動体3の位置を演算する演算手段と、を有している。
各光学ビーコンからの光の方向については、CMOSイメージセンサ44の中心点を原点とした集光点PのX,Y座標から算出することができる。
CMOSイメージセンサ44における集光点Pの一例を図12に示している。
CMOSイメージセンサ44bにおける各画素のうち、受光強度が最も大きい画素のX,Y座標であるXp,Ypが、CMOSイメージセンサ44における集光点のX,Y座標として検出される。このXp,Ypを用いた下式で得られる角度の方向に、発光元の光学ビーコンが存在する。
tan−1(Yp/Xp)±π
以上のように、IDコードを含む発光パターンで発光する複数の光学ビーコン♯0〜♯26を移動体3の移動空間に分散して設けるとともに、移動体3には、光学ビーコン♯0〜♯26から発せられる光に含まれているIDコードから少なくとも3つの光学ビーコンを識別し、識別した各光学ビーコンからの光の方向を検出し、検出した光の方向に基づいて移動体3の位置を検出する検出ユニット30を設けることにより、従来のような敷設後に各移動体を所定の位置に置いて行う校正登録作業などの初期設定を要することなく、可動式の走査器を要することもない。したがって、移動体3が大型化したり、故障の可能性およびコストが高くなるといった不都合を生じない。
しかも、移動体3の受光部6よりも上方に位置するように設けられる各光学ビーコンにおいて、その発光強度が側方から下方にかけて徐々に小さくなるように、各光学ビーコンにおける各発光ダイオード5の取付け位置および取付け個数を選定している(本体4の周面の上部に多くの個数の発光ダイオード5を取付け、周面の略中央部に上部よりも少ない個数の発光ダイオード5を取付け、周面の下部に略中央部よりも少ない個数の発光ダイオード5を取付けている)。このため、光学ビーコンは、床面上の遠い位置に対してより強い発光強度で発光するので、移動体3が1つの光学ビーコンから受ける光の強度を、移動体3の位置にかかわらず、均一にすることができ、移動体3の受光部6のダイナミックレンジを広げることなく、受光精度を向上させることができる。
光学ビーコン♯0〜♯26の発光については、常に発光させることなく、所定の順序で発光させるので、光学ビーコン♯0〜♯26の発光に要する電力が少なくてすみ、省エネルギー効果が得られる。しかも、光学ビーコン♯0〜♯26が同時に発光しないので、移動体3側の受光システムの複雑化や高コスト化を招くことなく、光学ビーコン♯0〜♯26の光を移動体3側でそれぞれ個別に確実に捕らえることができる。
光学ビーコン♯0は定期的に発光し、かつ♯1〜♯26は自身以外の光学ビーコン(発光順序が1つ前の光学ビーコン)から発せられる光を受けて順に発光するので、光学ビーコン♯0〜♯26の相互を信号線接続する必要がない。よって、構成の簡略化およびコストの低減が図れるだけでなく、設置する位置の自由度を高めることができる。
また、光学ビーコン♯1〜♯26は、単体の状態において受光部9が本体4に対して可動に設けられているので、受光部9を、発光順序が1つ前の光学ビーコンに向けることができる。このため、光学ビーコン♯1〜♯26は、受光部9の向きが個別に設定されるにもかかわらず、光学ビーコンを共通化でき、しかも、良好な指向性をもって設定できる。したがって、各光学ビーコンは、発光順序が1つ前の光学ビーコンから発せられた光を忠実かつ的確に捕らえることができ、各光学ビーコンを適正な順序で間断なく発光動作させることができる。すなわち、発光の連係が途絶えてしまうなどの不都合を生じない。このように、光学ビーコンの共通化によりコスト低減が図れるとともに、移動体3における位置検出の精度および信頼性を高めることができる。
光学ビーコン♯0が定期的に発光し、それに続いて残りの光学ビーコン♯1〜♯26が順に発光するので、仮に、光学ビーコン♯1〜♯26の一連の発光が何らかの原因で一時的に途切れた場合でも、それにかかわらず、光学ビーコン♯0〜♯26の発光を確実に継続することができる。
ID設定部14,24によって光学ビーコン♯0〜♯26のIDコードを可変設定できるので、光学ビーコン♯0〜♯26の構成を共通化することができる。すなわち、光学ビーコン♯0は図6の構成を有し、光学ビーコン♯1〜♯26は図8の構成を有しているが、両者は部品数、制御機能、符号が異なるだけで、基本的なハードウェアは同じである。このうち、光学ビーコン♯0が有する2つのタイマ11,12、および光学ビーコン♯1〜♯26がそれぞれ有する2つのタイマ22,23に関しては、ID設定部14,24で設定されるIDコードに応じて各タイマの機能(カウント時間T1,T2,T3)を設定することにより、ハードウェアとしての共通化が可能である。このように、光学ビーコン♯0〜♯26の構成を共通化できることにより、コストの低減が図れる。
光学ビーコン♯0〜♯26から発せられる光を移動体3の受光部40に取込み、取込んだ光をレンズ43を通して二次元受光素子であるCMOSイメージセンサ44に集光し、その集光点から光の方向を検出し、検出した光の方向から移動体3の位置を検出する構成であるから、従来のように移動体に回転式のレーザレーダを設けて移動体の周囲をレーザ光により走査するようなシステムに比べ、移動体3の構成がコンパクトになる。移動体3の構成がコンパクトであることにより、スーパーマーケットのような狭い移動空間においても、移動体3のスムーズな移動が可能となる。
移動体3に設けられる検出ユニット30の演算部50は、各光学ビーコンからの光に含まれているIDコードをCMOSイメージセンサ44の出力から解読し、解読した各IDコードに基づいて位置データメモリ51内の位置データを参照することにより少なくとも3つの光学ビーコンを識別し、識別した各光学ビーコンからの光の方向をCMOSイメージセンサ44の出力から検出し、検出した光の方向に基づいて移動体3の位置を演算するので、CMOSイメージセンサ44への集光に基づく位置検出を精度よく確実に実現することができる。
[2]第2の実施形態について説明する。
発光装置である各光学ビーコンは、図13に示すように、本体4の周面の一部を縦方向に見た場合に、本体4の側部から下部にかけての周面の上部に1個の発光ダイオード5が取付けられ、同周面の略中央部に1個の発光ダイオード5が取付けられ、同周面の下部に1個の発光ダイオード5が取付けられている。この縦方向の3個の発光ダイオード5ごとに、図14に示す駆動回路が構成されている。
すなわち、図14に示すように、駆動電圧Vdが、NPN型トランジスタ80のコレクタ・エミッタ間および抵抗81aを介して、上部の発光ダイオード5に印加される。同様に、駆動電圧Vdが、NPN型トランジスタ80のコレクタ・エミッタ間および抵抗81bを介して、略中央部の発光ダイオード5に印加される。同様に、駆動電圧Vdが、NPN型トランジスタ80のコレクタ・エミッタ間および抵抗81cを介して、下部の発光ダイオード5に印加される。抵抗81a,81b,81cの抵抗値は、互いに異なり、81a<81b<81cの関係がある。
トランジスタ80のベース・エミッタ間に電圧が印加されてトランジスタ80がオンすると、抵抗81a,81b,81cを通して各発光ダイオード5に電流が流れ、各発光ダイオード5が発光する。このとき、抵抗81a,81b,81cの抵抗値の関係により、上部の発光ダイオード5に流れる電流がもっとも大きく、略中央部の発光ダイオード5に流れる電流が次に大きく、下部の発光ダイオード5に流れる電流がもっとも小さい。したがって、上部の発光ダイオード5の発光量がもっとも大きく、略中央部の発光ダイオード5の発光量が次に大きく、下部の発光ダイオード5の発光量がもっとも小さくなる。
図13は壁取付け用の光学ビーコンの構成であるが、天井取付け用の光学ビーコンの構成もほぼ同じである。
このように、各発光ダイオード5から発せられる光の強度が側方から下方にかけて徐々に小さくなるように、各発光ダイオード5の発光量が互いに異なる値に設定されることにより、移動体3が1つの光学ビーコンから受ける光の強度を、移動体3の位置にかかわらず、均一化することができ、第1の実施形態と同様の効果を得ることができる。
他の構成、作用、効果は、第1の実施形態と同じである。よって、その説明は省略する。
[3]第3の実施形態について説明する。
図15に示すように、本体4の周面の一部を縦方向に見た場合に、本体4の側部から下部にかけての周面の上部に1個の発光ダイオード5が取付けられ、同周面の略中央部に1個の発光ダイオード5が取付けられ、同周面の下部に1個の発光ダイオード5が取付けられている。上部の発光ダイオード5の発光量、略中央部の発光ダイオード5の発光量、下部の発光ダイオード5の発光量は、互いに同じである。
そして、本体4の側部から下部にかけての周面および各発光ダイオード5の全体を被う状態に、プラスチックなどの半透明のカバー90が設けられている。カバー90は、透明度が側部から下部にかけて徐々に小さくなっている。
したがって、各発光ダイオード5が点灯したとき、カバー90の上部から照射される光の量がもっとも大きく、カバー90の略中央部から照射される光の量が次に大きく、カバー90の下部から照射される光の量がもっとも小さくなる。
図15は壁取付け用の光学ビーコンの構成であるが、天井取付け用の光学ビーコンの構成もほぼ同じである。
上記のようなカバー90を採用して、各光学ビーコンから発せられる光の強度を側方から下方にかけて徐々に小さくすることにより、移動体3が1つの光学ビーコンから受ける光の強度を、移動体3の位置にかかわらず、均一化することができ、第1の実施形態と同様の効果を得ることができる。
他の構成、作用、効果は、第1の実施形態と同じである。よって、その説明は省略する。
[4]第4の実施形態について説明する。
図16に示すように、本体4の周面の一部を縦方向に見た場合に、本体4の側部から下部にかけての周面の上部に1個の発光ダイオード5が取付けられ、同周面の略中央部に1個の発光ダイオード5が取付けられ、同周面の下部に1個の発光ダイオード5が取付けられている。各発光ダイオード5の発光量は互いに同じであるが、上部の発光ダイオード5が発する光の照射角がもっとも小さく、略中央部の発光ダイオード5が発する光の照射角が次に小さく、下部の発光ダイオード5が発する光の照射角が最も大きい。
照射角の違いは、各発光ダイオード5へ封入する樹脂の形状を変えたり、各発光ダイオード5にそれぞれ異なるレンズを設けることにより、達成することができる。
図16は壁取付け用の光学ビーコンの構成であるが、天井取付け用の光学ビーコンの構成もほぼ同じである。
このように、発光量が互いに同じ複数の発光ダイオード5を光学ビーコンごとに設け、各発光ダイオード5が発する光の照射角を側方から下方にかけて徐々に大きくすることにより、移動体3が1つの光学ビーコンから受ける光の強度を、移動体3の位置にかかわらず、均一化することができ、第1の実施形態と同様の効果を得ることができる。
他の構成、作用、効果は、第1の実施形態と同じである。よって、その説明は省略する。
[5]第5の実施形態について説明する。
壁面や棚2に取付けられる光学ビーコンの具体的な構成を図17および図18に示している。図17は光学ビーコンの本体4を側方から見た図、図18は本体4を上方から見た図である。
本体4の周面上部に受光保持板82が設けられている。受光保持板82は、本体4の周面上部と同じ形状を有し、かつ本体4の周面上部よりも僅かに小さい面積を有している。この受光保持板82の周縁に、一定間隔で複数(例えば6個)の受光部9が埋設されている。各受光部9の受光面は、側方に向かって露出しており、それぞれ同じ有効入射角(例えば30度)を有している。有効入射角は、内部の受光素子28へ封入される樹脂の形状や、同受光素子28に装着されるレンズなどにより、決定される。
そして、図19に示すように、各受光部9内の受光素子28の出力が、オートゲインコントローラ(AGC)83、同期フィルタ(BPF)84、および2値化回路85を介して、それぞれオア回路86に入力される。このオア回路86の出力が上記受信復調回路27に供給される。すなわち、各受光部9のいずれかの受光出力が、受信復調回路27に供給される。
図17および図18は壁取付け用の光学ビーコンの構成であるが、天井取付け用の光学ビーコンの構成もほぼ同じである。
このように、1つの光学ビーコンに複数の受光部9を設けることにより、発光順序が1つ前の光学ビーコンがどの位置にあっても、その光学ビーコンに対する受光方向を良好な指向性をもって設定できる。例えば、建物1内の棚2の位置換えなどに伴って光学ビーコンの位置が変更になった場合でも、人為的な操作を何も要することなく、その位置変更に対処することができる。
他の構成、作用、効果は、第1の実施形態と同じである。よって、その説明は省略する。
[6]第6の実施形態について説明する。
光学ビーコン♯1〜♯26のうち、壁面や棚2に取付けられる光学ビーコンの具体的な構成を図20および図21に示している。図20は光学ビーコンの本体4を側方から見た図、図21は本体4を上方から見た図である。
本体4の周面上部の壁面1aに近い位置に支軸6が略垂直方向に立設され、その支軸6に環状部材7,87がそれぞれ回動自在に装着されている。そして、環状部材7の外周面にロッド8の一端部が連結され、そのロッド8の他端部に受光部9が設けられている。環状部材7が回動操作されると、図21に破線で示すようにロッド8が回動し、受光部9が本体4の周面上部の端縁に沿って回動する。受光部9内には上記受光素子28が収容されている。また、環状部材87の外周面にロッド88の一端部が連結され、そのロッド88の他端部に発光部89が設けられている。環状部材87が回動操作されると、図21に矢印で示すようにロッド88が回動し、発光部89が本体4の周面上部の端縁に沿って回動する。これにより、発光部89の向く方向を本体4に対して可変設定することができる。発光部89の向く方向が本体4に対して可変であるとは、光学ビーコン単体の状態でそのようになっていればよく、位置検出システムの動作時には発光部89はいずれかの位置に固定されるものでもよい。発光部89内には、本体4の周面における各発光ダイオード5と同様に駆動される少なくとも1つの発光ダイオード5が収容されている。
図20および図21は壁取付け用の光学ビーコンの構成であるが、天井取付け用の光学ビーコンの構成もほぼ同じである。
光学ビーコンが壁や天井に取付けられて、位置検出システムの一部として実際に動作する際には、発光部89を支持する環状部材87が、図示しない位置決め部材によって支軸6に対し位置決めされる。この位置決めにより、各光学ビーコンの発光方向がそれぞれ最適状態に可変設定される。
受光部9は、環状部材7の回動操作により、発光順位が1つ前の光学ビーコンに対して受光方向が設定される。発光部89は、環状部材87の回動操作により、発光順位が1つ後の光学ビーコンに対して発光方向が設定される。例として、光学ビーコン♯18〜♯20における受光部9の受光方向および発光部89の発光方向を図22に示している。
なお、発光順位が1番目の光学ビーコン♯0は、図示していないが、他の光学ビーコンから発せられる赤外線光を受ける必要がないため、支軸6に環状部材87のみ装着し、その環状部材7の外周面にロッド88を介して発光部89を設けた構成であり、環状部材7、ロッド8、受光部9は有していない。ただ、光学ビーコン♯0については、他の光学ビーコンと同様の構成のものを採用し、環状部材7、ロッド8、受光部9を使用しないようにすることも可能である。
以上のように、光学ビーコン♯1〜♯26における受光部9の受光方向を、発光順序が1つ前の光学ビーコンに対し、良好な指向性をもって設定できる。また、光学ビーコン♯0〜♯26における発光部89の発光方向を、発光順序が1つ後の光学ビーコンに対し、良好な指向性をもって設定できる。
光学ビーコン♯1〜♯26の受光部9が本体4に対してそれぞれ可動に設けられているので、受光部9の構成に関して、光学ビーコン♯1〜♯26を共通化することができる。しかも、光学ビーコン♯0〜♯26の発光部89が本体4に対してそれぞれ可動に設けられているので、発光部89の構成に関して、光学ビーコン♯0〜♯26を共通化することができる。これらの共通化により、コストの低減が図れる。
他の構成、作用、効果は、第1の実施形態と同じである。よって、その説明は省略する。
各実施形態の全体的な構成を示す図。 第1の実施形態における壁取付け用の光学ビーコンの構成を側方から見た図。 第1の実施形態における壁取付け用の光学ビーコンの構成を上方から見た図。 第1の実施形態における天井取付け用の光学ビーコンの構成を示す図。 第1の実施形態における各光学ビーコンの受光部の受光方向を示す図。 各実施形態の発光順位が第1位の光学ビーコンの制御回路のブロック図。 各実施形態の発光順位が第1位の光学ビーコンの発光動作を示すタイムチャート。 各実施形態の残りの各光学ビーコンの制御回路のブロック図。 各実施形態の残りの各光学ビーコンの発光動作を示すタイムチャート。 第1の実施形態の検出ユニットの構成を断面して示す図。 第1の実施形態の検出ユニットの構成を上方から見た図。 第1の実施形態のCMOSイメージセンサにおける集光点を示す図。 第2の実施形態における壁取付け用の光学ビーコンの構成を示す図。 第2の実施形態における各発光ダイオードの駆動回路のブロック図。 第3の実施形態における壁取付け用の光学ビーコンの構成を示す図。 第4の実施形態における壁取付け用の光学ビーコンの構成を示す図。 第5の実施形態における壁取付け用の光学ビーコンの構成を側方から見た図。 第5の実施形態における壁取付け用の光学ビーコンの構成を上方から見た図。 第5の実施形態における各光学ビーコンの制御回路の要部のブロック図。 第6の実施形態における壁取付け用の光学ビーコンの構成を側方から見た図。 第6の実施形態における壁取付け用の光学ビーコンの構成を上方から見た図。 第6の実施形態における各光学ビーコンの受光部の受光方向および発光部の発光方向を示す図。
符号の説明
1…建物、1a…壁面、1b…天井面、3…移動体、4…本体、5…発光ダイオード(光源)、6…支軸、7…環状部材、8…ロッド、9…受光部、81a,81b,81c…抵抗、90…カバー、82…受光保持板、87…環状部材、88…ロッド、89…発光部、♯0〜♯26…光学ビーコン、30…検出ユニット、40…受光部、41…筐体、42…遮光板、42a…開口(絞り)、43…レンズ、44…CMOSイメージセンサ(二次元受光素子)

Claims (5)

  1. 移動体の移動空間に分散して設けられ、自身以外の発光装置から発せられる光を受けることにより動作して、それぞれ自己の識別情報を含む発光パターンで発光する複数の発光装置と、
    前記移動体に設けられ、前記各発光装置により発せられる光の識別情報から少なくとも3つの発光装置を識別するとともに、識別した各発光装置からの光の方向を検出し、この検出結果に基づいて前記移動体の位置を検出する検出手段と、を備え、
    前記発光装置は、光源が設けられた本体と、自身以外の発光装置から発せられる光を受けるための受光部を有し、この受光部の向く方向が前記本体に対して可変であることを特徴とする位置検出システム。
  2. 移動体の移動空間に分散して設けられ、自身以外の発光装置から発せられる光を受けることにより動作して、それぞれ自己の識別情報を含む発光パターンで発光する複数の発光装置と、
    前記移動体に設けられ、前記各発光装置により発せられる光の識別情報から少なくとも3つの発光装置を識別するとともに、識別した各発光装置からの光の方向を検出し、この検出結果に基づいて前記移動体の位置を検出する検出手段と、
    を備えた位置検出システムに用いられる発光装置であって、
    光源が設けられた本体と、自身以外の発光装置から発せられる光を受けるための受光部を有し、この受光部の向く方向が前記本体に対して可変であることを特徴とする発光装置。
  3. 移動体の移動空間に分散して設けられ、自身以外の発光装置から発せられる光を受けることにより、それぞれ自己の識別情報を含む発光パターンで発光する複数の発光装置と、
    前記移動体に設けられ、前記各発光装置により発せられる光の識別情報から少なくとも3つの発光装置を識別するとともに、識別した各発光装置からの光の方向を検出し、この検出結果に基づいて前記移動体の位置を検出する検出手段と、を備え、
    前記発光装置は、自身以外の発光装置から発せられる光を受けるための複数の受光部を有し、これら受光部は互いに異なる方向に向くように配設されていることを特徴とする位置検出システム。
  4. 移動体の移動空間に分散して設けられ、自身以外の発光装置から発せられる光を受けることにより動作して、それぞれ自己の識別情報を含む発光パターンで発光する複数の発光装置と、
    前記移動体に設けられ、前記各発光装置により発せられる光の識別情報から少なくとも3つの発光装置を識別するとともに、識別した各発光装置からの光の方向を検出し、この検出結果に基づいて前記移動体の位置を検出する検出手段と、を備え、
    前記発光装置は、前記移動体に対して発光する光源が設けられた本体と、自身以外の発光装置からの光を受けるための受光部と、自身以外の発光装置に対して発光する発光部とを有し、この発光部の向く方向が前記本体に対して可変であることを特徴とする位置検出システム。
  5. 移動体の移動空間に分散して設けられ、自身以外の発光装置から発せられる光を受けることにより動作して、それぞれ自己の識別情報を含む発光パターンで発光する複数の発光装置と、
    前記移動体に設けられ、前記各発光装置により発せられる光の識別情報から少なくとも3つの発光装置を識別するとともに、識別した各発光装置からの光の方向を検出し、この検出結果に基づいて前記移動体の位置を検出する検出手段と、
    を備えた位置検出システムに用いられる発光装置であって、
    前記移動体に対して発光する光源が設けられた本体と、自身以外の発光装置からの光を受けるための受光部と、自身以外の発光装置に対して発光する発光部とを有し、この発光部の向く方向が前記本体に対して可変であることを特徴とする発光装置。
JP2006005196A 2006-01-12 2006-01-12 位置検出システムおよびその位置検出システムに用いられる発光装置 Pending JP2007187526A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006005196A JP2007187526A (ja) 2006-01-12 2006-01-12 位置検出システムおよびその位置検出システムに用いられる発光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006005196A JP2007187526A (ja) 2006-01-12 2006-01-12 位置検出システムおよびその位置検出システムに用いられる発光装置

Publications (1)

Publication Number Publication Date
JP2007187526A true JP2007187526A (ja) 2007-07-26

Family

ID=38342797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006005196A Pending JP2007187526A (ja) 2006-01-12 2006-01-12 位置検出システムおよびその位置検出システムに用いられる発光装置

Country Status (1)

Country Link
JP (1) JP2007187526A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010191819A (ja) * 2009-02-19 2010-09-02 Fujitsu Ltd 車両支援装置及びその方法
CN107091671A (zh) * 2017-06-28 2017-08-25 贵州航天智慧农业有限公司 一种利用光照强度进行检测的线性液位传感器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010191819A (ja) * 2009-02-19 2010-09-02 Fujitsu Ltd 車両支援装置及びその方法
CN107091671A (zh) * 2017-06-28 2017-08-25 贵州航天智慧农业有限公司 一种利用光照强度进行检测的线性液位传感器

Similar Documents

Publication Publication Date Title
JP4224487B2 (ja) 位置検出システム
EP1562055B1 (en) Scanning rangefinder
US8461991B2 (en) Security light with plural possible directions of illumination
JP3563735B2 (ja) ロボットの位置を特定して閉じ込めておく方法およびシステム
US9127965B2 (en) Gobo wheel location drive
US9976853B2 (en) Movable devices
US9429652B2 (en) Apparatus for measuring distance
EP3329616B1 (en) Light emitting device for generating light with embedded information
JP2009128364A (ja) 回転レーザー
CN103229501A (zh) 监控摄像机位置校准设备
JP6758372B2 (ja) インテリジェントゲーティングメカニズム
US20100231926A1 (en) Apparatus for determining the position of an industrial truck
JP2011134058A (ja) 光学式自己位置検知装置及び方法
JP2007187526A (ja) 位置検出システムおよびその位置検出システムに用いられる発光装置
JP2007171143A (ja) 位置検出システム
JP2013228343A (ja) 物体検出装置、物体検出方法、及び駐車場の管理システム
WO2020045474A1 (ja) センサユニット、移動体
JP7126149B2 (ja) 距離測定装置
JP6748910B2 (ja) インテリジェントターゲット
KR100569181B1 (ko) 실내 항법을 위한 좌표확인 시스템
WO2022244170A1 (ja) 位置通知システム、移動体、および位置通知方法
JP6105673B2 (ja) 三次元駆動装置
CN214014590U (zh) 亮度调节装置及发光设备
JP2007170848A (ja) 位置検出システム
CN110520762B (zh) 人体检测装置以及照明装置