JP2007187221A - Seal structure of rotary part - Google Patents

Seal structure of rotary part Download PDF

Info

Publication number
JP2007187221A
JP2007187221A JP2006004766A JP2006004766A JP2007187221A JP 2007187221 A JP2007187221 A JP 2007187221A JP 2006004766 A JP2006004766 A JP 2006004766A JP 2006004766 A JP2006004766 A JP 2006004766A JP 2007187221 A JP2007187221 A JP 2007187221A
Authority
JP
Japan
Prior art keywords
seal
contact
seal member
rotating part
heater core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006004766A
Other languages
Japanese (ja)
Inventor
Nobuyuki Hashimura
信幸 橋村
Yoshio Miyata
喜夫 宮田
Koichi Ito
伊藤  公一
Takahiro Tokunaga
徳永  孝宏
Fukuichi Yamamoto
福一 山本
Tomonari Masukawa
智成 益川
Masahisa Kurokawa
昌久 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Tokai Riki Mfg Co Ltd
Original Assignee
Denso Corp
Tokai Riki Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Tokai Riki Mfg Co Ltd filed Critical Denso Corp
Priority to JP2006004766A priority Critical patent/JP2007187221A/en
Publication of JP2007187221A publication Critical patent/JP2007187221A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sealing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reliable seal structure advantageous in terms of cost. <P>SOLUTION: This seal structure of a rotary part is formed by arranging a seal member 300 between a rotary member 100 and a fixed member 200. The contact area between the rotary member 100 and the seal member 300 is formed smaller than the contact area between the fixed member 200 and the seal member 300. Thus, the fixed member 200 and the seal member 300 do not slide since the contact area is large and sliding resistance is also large, and the rotary member 100 and the seal member 300 slide. Thus, the fixed member 200 is not required for using a generally low strength and expensive low sliding member, and can select a material advantageous in terms of strength and cost. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、相対的に回転する2つの部材間にシール部材を配置した回転部のシール構造に関するものである。   The present invention relates to a seal structure of a rotating part in which a seal member is disposed between two relatively rotating members.

固定部材と回転部材との間にOリング等のシール部材を配置して流体の外部漏れを防止するシール構造は周知である。そして、回転部材の回転に伴って回転部材とシール部材が摺動するとともに、固定部材とシール部材も摺動するため、摺動抵抗の低減やシール部材の摩耗低減のために、シール部材との摩擦係数が小さい材料(以下、低摺動材という)にて固定部材および回転部材を形成していた。   A seal structure in which a seal member such as an O-ring is disposed between the fixed member and the rotary member to prevent fluid from leaking outside is well known. As the rotating member rotates, the rotating member and the seal member slide, and the fixed member and the seal member also slide. Therefore, in order to reduce sliding resistance and wear of the seal member, The fixed member and the rotating member are formed of a material having a small friction coefficient (hereinafter referred to as a low sliding material).

しかしながら、一般的に低摺動材は強度が低くまたコストも高いために、固定部材および回転部材をともに低摺動材にて形成することは、信頼性とコストの点で面で大きな損失があった。   However, since the low sliding material generally has low strength and high cost, forming both the fixed member and the rotating member with the low sliding material has a large loss in terms of reliability and cost. there were.

本発明は上記点に鑑みて、信頼性とコストの面で有利なシール構造を提供することを目的とする。   In view of the above points, an object of the present invention is to provide a seal structure that is advantageous in terms of reliability and cost.

本発明の第1の特徴では、回転軸(A)を中心として相対的に回転する第1部材(31、100)と第2部材(26、200)との間のシール構造であって、第1部材(31、100)とシール部材(35、300〜330)との接触面積を、第2部材(26、200)とシール部材(35、300〜330)との接触面積よりも小さくしている。   According to a first aspect of the present invention, there is provided a seal structure between a first member (31, 100) and a second member (26, 200) that rotate relative to each other about a rotation axis (A). The contact area between the one member (31, 100) and the seal member (35, 300 to 330) is made smaller than the contact area between the second member (26, 200) and the seal member (35, 300 to 330). Yes.

このような構成では、第2部材(26、200)とシール部材(35、300〜330)は接触面積が大きくて摺動抵抗も大きいため摺動せず、第1部材(31、100)とシール部材(35、300〜330)が摺動する。したがって、第2部材(26、200)は第1部材(31、100)よりも強度やコスト面で有利な材料を選択することができる。   In such a configuration, the second member (26, 200) and the seal member (35, 300 to 330) do not slide because the contact area is large and the sliding resistance is large, and the first member (31, 100) and The seal member (35, 300 to 330) slides. Therefore, the second member (26, 200) can select a material that is more advantageous in terms of strength and cost than the first member (31, 100).

この場合、第1部材(31、100)とシール部材(35、300、310)を1つの線接触部で接触させ、第2部材(26、200)とシール部材(35、300、310)を複数の線接触部で接触させることができる。このようにすれば、接触面積差を確実に確保することができる。   In this case, the first member (31, 100) and the seal member (35, 300, 310) are brought into contact with one line contact portion, and the second member (26, 200) and the seal member (35, 300, 310) are brought into contact with each other. It can be made to contact in a some line contact part. In this way, a contact area difference can be ensured reliably.

また、第2部材(26、200)に断面形状が矩形で環状に連続した溝(26d、202)を設け、溝の底部(26e、202a)を回転軸(A)に対して垂直な平面とし、シール部材(35、300)を溝の底部(26e、202a)に接触させるとともに、溝の内周面(26f、202b)および外周面(26g、202c)の少なくとも一方に接触させることができる。   Also, the second member (26, 200) is provided with a groove (26d, 202) having a rectangular cross-sectional shape and an annular shape, and the bottom (26e, 202a) of the groove is a plane perpendicular to the rotation axis (A). The seal member (35, 300) can be brought into contact with the bottom (26e, 202a) of the groove and at least one of the inner peripheral surface (26f, 202b) and the outer peripheral surface (26g, 202c) of the groove.

このようにすれば、第2部材(26、200)とシール部材(35、300)を複数の線接触部で接触させることができ、接触面積差を確実に確保することができる。   If it does in this way, a 2nd member (26, 200) and a sealing member (35, 300) can be made to contact in a some line contact part, and a contact area difference can be ensured reliably.

また、シール部材(310)を、頂部(310a、310b)を3つ以上有する断面形状とし、1つの頂部(310a)を第1部材(100)に接触させるとともに、複数の頂部(310b)を第2部材(200)に接触させることができる。   The sealing member (310) has a cross-sectional shape having three or more top portions (310a, 310b), one top portion (310a) is in contact with the first member (100), and a plurality of top portions (310b) Two members (200) can be contacted.

このようにすれば、第2部材(200)とシール部材(310)を複数の線接触部で接触させることができ、接触面積差を確実に確保することができる。   If it does in this way, a 2nd member (200) and a sealing member (310) can be made to contact in a some line contact part, and a contact area difference can be ensured reliably.

また、シール部材(320、330)を、頂部(320a、330a)と平面部(320b、330b)を有する断面形状とし、シール部材の頂部(320a、330a)を第1部材(100)に接触させるとともに、平面部(320b、330b)を第2部材(200)に接触させることができる。このようにすれば、接触面積差を確実に確保することができる。   Moreover, let the sealing member (320,330) be the cross-sectional shape which has a top part (320a, 330a) and a plane part (320b, 330b), and makes the top part (320a, 330a) of a sealing member contact the 1st member (100). At the same time, the planar portions (320b, 330b) can be brought into contact with the second member (200). In this way, a contact area difference can be ensured reliably.

本発明の第2の特徴では、回転軸(A)を中心として相対的に回転する第1部材(100)と第2部材(200)との間のシール構造であって、第1部材(100)とシール部材(300)との摩擦係数を、第2部材(200)とシール部材(300)との摩擦係数よりも小さくしている。   According to a second aspect of the present invention, there is provided a seal structure between a first member (100) and a second member (200) that rotate relatively around a rotation axis (A), the first member (100). ) And the seal member (300) is made smaller than the friction coefficient between the second member (200) and the seal member (300).

このような構成では、第2部材(200)とシール部材(300)は摺動しないので、第2部材(200)は第1部材(100)よりも強度やコスト面で有利な材料を選択することができる。   In such a configuration, since the second member (200) and the seal member (300) do not slide, the second member (200) selects a material that is more advantageous in terms of strength and cost than the first member (100). be able to.

この場合、第1部材(100)を、シール部材(300)に接触する接触部材(110)と、シール部材(300)に接触しない非接触部材(120)とから構成し、接触部材(110)とシール部材(300)との摩擦係数を、第2部材(200)とシール部材(300)との摩擦係数よりも小さくすることができる。   In this case, the first member (100) includes a contact member (110) that contacts the seal member (300) and a non-contact member (120) that does not contact the seal member (300), and the contact member (110). And the seal member (300) can be made smaller than the friction coefficient between the second member (200) and the seal member (300).

このような構成では、第1部材(100)における非接触部材(110)も、強度やコスト面で有利な材料を選択することができる。   In such a configuration, a material that is advantageous in terms of strength and cost can be selected for the non-contact member (110) in the first member (100).

なお、特許請求の範囲およびこの欄で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in a claim and this column shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
本発明の第1実施形態について説明する。図1は本発明の第1実施形態に係るシール構造を示す要部の断面図である。
(First embodiment)
A first embodiment of the present invention will be described. FIG. 1 is a cross-sectional view of a main part showing a seal structure according to a first embodiment of the present invention.

図1に示すように、回転軸Aを中心として回転する第1部材としての回転部材100は、樹脂よりなり、中心部には流体通路101が形成されている。また、回転部材100における回転軸A方向の一端面100aは、回転軸Aに対して垂直な平面になっている。   As shown in FIG. 1, a rotating member 100 as a first member that rotates about a rotation axis A is made of resin, and a fluid passage 101 is formed at the center. Further, one end face 100 a of the rotating member 100 in the direction of the rotation axis A is a plane perpendicular to the rotation axis A.

図示しないケースに固定された第2部材としての固定部材200は、樹脂よりなり、中心部には、回転部材100の流体通路101と連通する流体通路201が形成されている。   A fixing member 200 as a second member fixed to a case (not shown) is made of resin, and a fluid passage 201 communicating with the fluid passage 101 of the rotating member 100 is formed at the center.

また、固定部材200における回転軸A方向の一端面200aは、回転部材100の一端面100aと対向している。そして、固定部材200の一端面200aには、流体通路201の開口端部を囲むようにして、断面形状が矩形で環状に連続した溝202が形成されており、この溝202に、EPDM(エチレン・プロピレン・ジエン共重合ゴム)やNBR(アクリロニトリルブタジエンゴム)等の弾性体よりなるシール部材300が挿入されている。なお、本実施形態では、シール部材300として、断面形状が円形で環状に連続したOリングを用いている。   Further, the one end surface 200 a of the fixed member 200 in the direction of the rotation axis A is opposed to the one end surface 100 a of the rotating member 100. A groove 202 having a rectangular cross-sectional shape and a ring shape is formed on one end face 200a of the fixing member 200 so as to surround the opening end of the fluid passage 201. In this groove 202, an EPDM (ethylene / propylene) is formed. A seal member 300 made of an elastic material such as diene copolymer rubber) or NBR (acrylonitrile butadiene rubber) is inserted. In this embodiment, as the seal member 300, an O-ring having a circular cross-sectional shape and an annular shape is used.

溝202の底部202aは、回転軸Aに対して垂直な平面になっている。溝202の内周面202bの直径は、自由状態におけるシール部材300の内径よりも小さく、溝202の外周面202cの直径は、自由状態におけるシール部材300の外径よりも小さく設定されている。   The bottom 202a of the groove 202 is a plane perpendicular to the rotation axis A. The diameter of the inner peripheral surface 202b of the groove 202 is set smaller than the inner diameter of the seal member 300 in the free state, and the diameter of the outer peripheral surface 202c of the groove 202 is set smaller than the outer diameter of the seal member 300 in the free state.

上記構成によると、シール部材300は、回転部材100の一端面100aと線接触する。また、シール部材300は、固定部材200における溝202の底部202a、および溝202の外周面202cと線接触する。   According to the above configuration, the seal member 300 is in line contact with the one end surface 100 a of the rotating member 100. Further, the seal member 300 is in line contact with the bottom portion 202 a of the groove 202 and the outer peripheral surface 202 c of the groove 202 in the fixing member 200.

なお、本明細書では、自由状態におけるシール部材300の曲面部が平坦な面と接触することを線接触という。したがって、使用時のシール部材300は圧縮されて変形するため、使用時におけるシール部材300はある幅をもって各面100a、202a、202cと接触しているが、本明細書ではこれも線接触の範疇に含まれる。   In this specification, contact of the curved surface portion of the seal member 300 in a free state with a flat surface is referred to as line contact. Therefore, since the seal member 300 in use is compressed and deformed, the seal member 300 in use is in contact with each surface 100a, 202a, 202c with a certain width, but this is also a category of line contact in this specification. include.

このように、回転部材100とシール部材300は1つの線接触部で接触し、固定部材200とシール部材300は2つの線接触部で接触しており、回転部材100とシール部材300との接触面積が、固定部材200とシール部材300との接触面積よりも小さくなっている。   As described above, the rotating member 100 and the seal member 300 are in contact with each other at one line contact portion, and the fixed member 200 and the seal member 300 are in contact at two line contact portions, and the rotation member 100 and the seal member 300 are in contact with each other. The area is smaller than the contact area between the fixing member 200 and the seal member 300.

このため、接触面積が大きい固定部材200とシール部材300は摺動抵抗が大きくなり、固定部材200とシール部材300は摺動せず、回転部材100とシール部材300が摺動する。したがって、固定部材200は回転部材100よりも強度やコスト面で有利な材料を選択することができる。   For this reason, the fixed member 200 and the seal member 300 having a large contact area have a large sliding resistance, the fixed member 200 and the seal member 300 do not slide, and the rotating member 100 and the seal member 300 slide. Therefore, the fixing member 200 can select a material that is more advantageous in terms of strength and cost than the rotating member 100.

例えば、回転部材100は、ガラス繊維を含有しないナイロンや、ガラス繊維を含有しないPPS(ポリフェニレンサルファイド)等の、シール部材300との摩擦係数が小さい材料とし、固定部材200は、ガラス繊維入りナイロンや、ガラス繊維入りPPS等の、強度が高く比較的安価な材料を採用することができる。   For example, the rotating member 100 is made of a material having a small friction coefficient with the seal member 300, such as nylon that does not contain glass fiber or PPS (polyphenylene sulfide) that does not contain glass fiber, and the fixing member 200 is made of nylon containing glass fiber or the like. In addition, it is possible to employ a material having high strength and relatively inexpensive such as PPS containing glass fiber.

なお、本実施形態では、固定部材200における溝202の底部202aおよび溝202の外周面202cにシール部材300が線接触するようにしたが、固定部材200における溝202の底部202aおよび溝202の内周面202bにシール部材300が線接触するようにしてもよい。この場合、溝202の内周面202bの直径を、自由状態におけるシール部材300の内径よりも大きくし、溝202の外周面202cの直径を、自由状態におけるシール部材300の外径よりも大きくする。   In this embodiment, the sealing member 300 is in line contact with the bottom 202a of the groove 202 and the outer peripheral surface 202c of the groove 202 in the fixing member 200. However, the inner part of the bottom 202a and groove 202 of the groove 202 in the fixing member 200 The seal member 300 may be in line contact with the peripheral surface 202b. In this case, the diameter of the inner peripheral surface 202b of the groove 202 is made larger than the inner diameter of the seal member 300 in the free state, and the diameter of the outer peripheral surface 202c of the groove 202 is made larger than the outer diameter of the seal member 300 in the free state. .

また、本実施形態では、回転部材100である第1部材および固定部材200である第2部材のうち第1部材のみが回転する例を示したが、本実施形態のシール構造は第1部材と第2部材が相対的に回転する回転部に適用することができる。すなわち、第1部材および第2部材がともに回転してもよいし、第1部材が固定されて第2部材が回転してもよい。同様に、後述する各実施形態のシール構造も、第1部材と第2部材が相対的に回転する回転部に適用することができる。   Moreover, in this embodiment, although the example which only a 1st member rotates among the 1st member which is the rotation member 100, and the 2nd member which is the fixing member 200 was shown, the seal structure of this embodiment is the 1st member. The second member can be applied to a rotating part that rotates relatively. That is, both the first member and the second member may rotate, or the first member may be fixed and the second member may rotate. Similarly, the seal structure of each embodiment to be described later can also be applied to a rotating portion in which the first member and the second member rotate relatively.

(第2実施形態)
本発明の第2実施形態について説明する。図2は本発明の第2実施形態に係るシール構造を示す要部の断面図である。なお、第1実施形態と同一もしくは均等部分には同一の符号を付し、その説明を省略する。
(Second Embodiment)
A second embodiment of the present invention will be described. FIG. 2 is a cross-sectional view of a main part showing a seal structure according to a second embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same or equivalent part as 1st Embodiment, and the description is abbreviate | omitted.

図2に示すように、本実施形態では、断面形状がV字形で環状に連続したシール部材310を用いている。このシール部材310は、V字形の山折り部の頂部310aと、V字形の両端部の頂部310bとを有しており、山折り部の頂部310aが回転部材100の一端面100aと線接触し、両端部の2つの頂部310bが固定部材200における溝202の底部202aと線接触する。   As shown in FIG. 2, in this embodiment, a seal member 310 having a V-shaped cross section and continuous in an annular shape is used. This seal member 310 has a top 310 a of a V-shaped mountain fold, and tops 310 b of both ends of the V-shape, and the top 310 a of the mountain fold is in line contact with one end surface 100 a of the rotating member 100. The two top portions 310 b at both ends are in line contact with the bottom portion 202 a of the groove 202 in the fixing member 200.

したがって、接触面積が大きい固定部材200とシール部材310は摺動抵抗が大きくなり、固定部材200とシール部材310は摺動せず、回転部材100とシール部材310が摺動する。よって、固定部材200は回転部材100よりも強度やコスト面で有利な材料を選択することができる。   Therefore, the fixed member 200 and the seal member 310 having a large contact area have a large sliding resistance, the fixed member 200 and the seal member 310 do not slide, and the rotating member 100 and the seal member 310 slide. Therefore, the fixing member 200 can select a material more advantageous in terms of strength and cost than the rotating member 100.

(第3実施形態)
本発明の第3実施形態について説明する。図3は本発明の第3実施形態に係るシール構造を示す要部の断面図である。なお、第1実施形態と同一もしくは均等部分には同一の符号を付し、その説明を省略する。
(Third embodiment)
A third embodiment of the present invention will be described. FIG. 3 is a cross-sectional view of a main part showing a seal structure according to a third embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same or equivalent part as 1st Embodiment, and the description is abbreviate | omitted.

図3に示すように、本実施形態では、断面形状が三角形で環状に連続したシール部材320を用いている。このシール部材320は、3つの頂部320aと、3つの平面部320bとを有しており、1つの頂部320aが回転部材100の一端面100aと線接触し、1つの平面部320bが固定部材200における溝202の底部202aと面接触する。   As shown in FIG. 3, in the present embodiment, a seal member 320 having a triangular cross-sectional shape and an annular shape is used. The seal member 320 has three top portions 320a and three flat portions 320b. One top portion 320a is in line contact with one end surface 100a of the rotating member 100, and one flat portion 320b is the fixing member 200. In surface contact with the bottom 202a of the groove 202.

したがって、接触面積が大きい固定部材200とシール部材320は摺動抵抗が大きくなり、固定部材200とシール部材320は摺動せず、回転部材100とシール部材320が摺動する。よって、固定部材200は回転部材100よりも強度やコスト面で有利な材料を選択することができる。   Therefore, the fixed member 200 and the seal member 320 having a large contact area have a large sliding resistance, the fixed member 200 and the seal member 320 do not slide, and the rotating member 100 and the seal member 320 slide. Therefore, the fixing member 200 can select a material more advantageous in terms of strength and cost than the rotating member 100.

(第4実施形態)
本発明の第4実施形態について説明する。図4は本発明の第4実施形態に係るシール構造を示す要部の断面図である。なお、第1実施形態と同一もしくは均等部分には同一の符号を付し、その説明を省略する。
(Fourth embodiment)
A fourth embodiment of the present invention will be described. FIG. 4 is a cross-sectional view of a main part showing a seal structure according to a fourth embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same or equivalent part as 1st Embodiment, and the description is abbreviate | omitted.

図4に示すように、本実施形態では、断面形状がD字形で環状に連続したシール部材330を用いている。このシール部材330は、円弧状部位の頂部330aと、1つの平面部330bとを有しており、頂部330aが回転部材100の一端面100aと線接触し、平面部330bが固定部材200における溝202の底部202aと面接触する。   As shown in FIG. 4, in this embodiment, a seal member 330 having a D-shaped cross section and continuous in an annular shape is used. This seal member 330 has a top portion 330 a of an arcuate portion and one flat surface portion 330 b, the top portion 330 a is in line contact with one end surface 100 a of the rotating member 100, and the flat surface portion 330 b is a groove in the fixing member 200. Surface contact with the bottom 202a of 202.

したがって、接触面積が大きい固定部材200とシール部材330は摺動抵抗が大きくなり、固定部材200とシール部材330は摺動せず、回転部材100とシール部材330が摺動する。よって、固定部材200は回転部材100よりも強度やコスト面で有利な材料を選択することができる。   Therefore, the fixed member 200 and the seal member 330 having a large contact area have a large sliding resistance, the fixed member 200 and the seal member 330 do not slide, and the rotating member 100 and the seal member 330 slide. Therefore, the fixing member 200 can select a material more advantageous in terms of strength and cost than the rotating member 100.

(第5実施形態)
本発明の第5実施形態について説明する。図5は本発明の第5実施形態に係るシール構造を示す要部の断面図である。なお、第1実施形態と同一もしくは均等部分には同一の符号を付し、その説明を省略する。
(Fifth embodiment)
A fifth embodiment of the present invention will be described. FIG. 5 is a cross-sectional view of a main part showing a seal structure according to a fifth embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same or equivalent part as 1st Embodiment, and the description is abbreviate | omitted.

第1実施形態では、回転部材100とシール部材300との接触面積を固定部材200とシール部材300との接触面積よりも小さくすることにより、固定部材200とシール部材300は摺動せず、回転部材100とシール部材300が摺動するようにしたが、本実施形態では、回転部材100とシール部材300との摩擦係数を固定部材200とシール部材300との摩擦係数よりも小さくすることにより、固定部材200とシール部材300は摺動せず、回転部材100とシール部材300が摺動するようにしたものである。   In the first embodiment, by making the contact area between the rotating member 100 and the seal member 300 smaller than the contact area between the fixed member 200 and the seal member 300, the fixed member 200 and the seal member 300 do not slide and rotate. The member 100 and the seal member 300 are slid, but in this embodiment, the friction coefficient between the rotating member 100 and the seal member 300 is made smaller than the friction coefficient between the fixed member 200 and the seal member 300. The fixing member 200 and the seal member 300 do not slide, but the rotating member 100 and the seal member 300 slide.

図5に示すように、固定部材200の溝202の外周面202cの直径は、自由状態におけるシール部材300の外径よりも大きく設定されている。したがって、シール部材300は、回転部材100の一端面100aと線接触するとともに、固定部材200における溝202の底部202aと線接触する。   As shown in FIG. 5, the diameter of the outer peripheral surface 202c of the groove 202 of the fixing member 200 is set larger than the outer diameter of the seal member 300 in the free state. Therefore, the seal member 300 is in line contact with the one end surface 100 a of the rotating member 100 and line contact with the bottom 202 a of the groove 202 in the fixing member 200.

そして、回転部材100とシール部材300との摩擦係数をμ1、固定部材200とシール部材300との摩擦係数をμ2としたとき、μ1<μ2となるように、回転部材100、固定部材200およびシール部材300の材質を選定している。   Then, when the friction coefficient between the rotating member 100 and the seal member 300 is μ1, and the friction coefficient between the fixing member 200 and the seal member 300 is μ2, the rotating member 100, the fixing member 200, and the seal are such that μ1 <μ2. The material of the member 300 is selected.

例えば、回転部材100はガラス繊維を含有しないナイロンまたはガラス繊維を含有しないPPSとし、固定部材200はガラス繊維入りナイロンまたはガラス繊維入りPPSとし、シール部材300はEPDMまたはNBRとすることにより、μ1<μ2とすることができる。   For example, the rotating member 100 is made of nylon not containing glass fiber or PPS not containing glass fiber, the fixing member 200 is made of nylon containing glass fiber or PPS containing glass fiber, and the sealing member 300 is made of EPDM or NBR, whereby μ1 < μ2.

また、回転部材100はガラス繊維入りナイロンとし、固定部材200はガラス繊維入りPPSとし、シール部材300はEPDMまたはNBRとすることにより、μ1<μ2とすることができる。   Further, the rotation member 100 is made of glass fiber nylon, the fixing member 200 is made of glass fiber PPS, and the seal member 300 is made of EPDM or NBR, whereby μ1 <μ2.

このように、μ1<μ2とすることにより、固定部材200とシール部材300は摺動せず、回転部材100とシール部材300が摺動する。したがって、固定部材200は回転部材100よりも強度やコスト面で有利な材料を選択することができる。   In this way, by setting μ1 <μ2, the fixing member 200 and the seal member 300 do not slide, and the rotating member 100 and the seal member 300 slide. Therefore, the fixing member 200 can select a material that is more advantageous in terms of strength and cost than the rotating member 100.

(第6実施形態)
本発明の第6実施形態について説明する。図6は本発明の第6実施形態に係るシール構造を示す要部の断面図である。なお、第5実施形態と同一もしくは均等部分には同一の符号を付し、その説明を省略する。
(Sixth embodiment)
A sixth embodiment of the present invention will be described. FIG. 6 is a cross-sectional view of a main part showing a seal structure according to a sixth embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same or equivalent part as 5th Embodiment, and the description is abbreviate | omitted.

第5実施形態では、回転部材100全体を、摩擦係数が小さくなる材料にて形成したが、本実施形態の回転部材100は、図6に示すように、シール部材300に接触する薄板円盤状の接触部材110と、シール部材300に接触しない非接触部材120とから構成されている。この回転部材100は、接触部材110と非接触部材120とを溶着にて接合するか、或いは、インサート成形によって形成される。   In the fifth embodiment, the entire rotating member 100 is formed of a material having a small friction coefficient. However, the rotating member 100 of the present embodiment has a thin disk shape that contacts the seal member 300 as shown in FIG. The contact member 110 and the non-contact member 120 that does not contact the seal member 300 are configured. The rotating member 100 is formed by joining the contact member 110 and the non-contact member 120 by welding or by insert molding.

そして、接触部材110とシール部材300との摩擦係数をμ1、固定部材200とシール部材300との摩擦係数をμ2としたとき、μ1<μ2となるように、接触部材110、固定部材200およびシール部材300の材質を選定している。   Then, when the friction coefficient between the contact member 110 and the seal member 300 is μ1, and the friction coefficient between the fixed member 200 and the seal member 300 is μ2, the contact member 110, the fixed member 200, and the seal are such that μ1 <μ2. The material of the member 300 is selected.

本実施形態によると、非接触部材120も、強度やコスト面で有利な材料を選択することができる。   According to this embodiment, the non-contact member 120 can also select a material advantageous in terms of strength and cost.

(第7実施形態)
本発明の第7実施形態について説明する。図7は本発明の第7実施形態に係るシール構造を用いた車両用空調装置における室内空調ユニット部10の概略断面図である。
(Seventh embodiment)
A seventh embodiment of the present invention will be described. FIG. 7 is a schematic cross-sectional view of the indoor air conditioning unit 10 in the vehicle air conditioner using the seal structure according to the seventh embodiment of the present invention.

室内空調ユニット部10は、車室内前部の計器盤(図示せず)内側において車両左右方向の略中央部に配置される。なお、図7における上下前後の各矢印は車両搭載状態における方向を示す。また、図7の紙面垂直方向が車両左右(幅)方向となる。   The indoor air conditioning unit 10 is disposed at a substantially central portion in the left-right direction of the vehicle inside an instrument panel (not shown) at the front of the vehicle interior. In addition, each arrow before and behind in FIG. 7 shows the direction in a vehicle mounting state. Further, the direction perpendicular to the plane of FIG. 7 is the vehicle left-right (width) direction.

室内空調ユニット部10は、車室内へ向かって流れる空気の通路を構成する樹脂製の空調ケース11を備えている。この空調ケース11は樹脂成形上の都合、内蔵部品の組付上の都合等から、実際には複数の分割ケース体として成形され、この複数の分割ケース体をねじやクリップ等の締結手段により一体に締結することにより空調ケース11が構成される。   The indoor air-conditioning unit 10 includes a resin air-conditioning case 11 that forms a passage for air flowing toward the passenger compartment. The air-conditioning case 11 is actually formed as a plurality of divided case bodies for convenience in resin molding, assembly of built-in parts, and the like, and the plurality of divided case bodies are integrated by fastening means such as screws and clips. The air-conditioning case 11 is configured by fastening to.

そして、本実施形態では、空調ケース11のうち、車両前方側の上方部に送風機部12を一体に配置した構成になっている。この送風機部12は、遠心式の送風ファン12aを電動モータ(図示せず)により回転駆動するようになっている。なお、送風ファン12aの吸入口に内外気切替箱(図示せず)を接続し、この内外気切替箱からの導入空気(内気または外気)を送風ファン12aにより矢印aのように上方から下方へ向かって送風するようになっている。   And in this embodiment, it is the structure which has arrange | positioned the air blower part 12 integrally in the upper part of the vehicle front side among the air-conditioning cases 11. FIG. The blower unit 12 is configured to rotationally drive a centrifugal blower fan 12a by an electric motor (not shown). An inside / outside air switching box (not shown) is connected to the suction port of the blower fan 12a, and the introduced air (inside air or outside air) from the inside / outside air switching box is sent from the top to the bottom as indicated by the arrow a by the blower fan 12a. It is designed to blow air toward you.

空調ケース11内部のうち、車両前方側の下方部に冷却用熱交換器をなす蒸発器13が配置されている。蒸発器13の外形は直方体の薄型形状であり、送風機部12の送風空気の全量が矢印bのように通過する。蒸発器13は、周知のように蒸気圧縮式冷凍サイクルの低圧側熱交換器であり、矢印bの通過空気から吸熱して低圧冷媒が蒸発することにより、この通過空気を冷却する。   An evaporator 13 serving as a heat exchanger for cooling is disposed in a lower portion of the air conditioning case 11 on the front side of the vehicle. The outer shape of the evaporator 13 is a rectangular parallelepiped thin shape, and the entire amount of air blown from the blower unit 12 passes as shown by an arrow b. As is well known, the evaporator 13 is a low pressure side heat exchanger of the vapor compression refrigeration cycle, and cools the passing air by absorbing heat from the passing air indicated by the arrow b and evaporating the low pressure refrigerant.

空調ケース11の底面部の最低部位に排水口14が設けられ、この排水口14から蒸発器13で発生する凝縮水が車室外へ排水される。   A drain port 14 is provided at the lowest part of the bottom surface of the air conditioning case 11, and condensed water generated in the evaporator 13 is drained from the drain port 14 to the outside of the passenger compartment.

空調ケース11内において、蒸発器13の風下側にヒータコア15が配置されている。より具体的には、蒸発器13の車両後方側で、かつ、上方側部位にヒータコア15が配置される。ここで、ヒータコア15は、図示しない車両エンジン(図示せず)からの温水(エンジン冷却水)を熱源流体として空気を加熱する加熱用熱交換器である。   In the air conditioning case 11, a heater core 15 is disposed on the leeward side of the evaporator 13. More specifically, the heater core 15 is disposed on the vehicle rear side of the evaporator 13 and in an upper portion. Here, the heater core 15 is a heating heat exchanger that heats air using hot water (engine cooling water) from a vehicle engine (not shown) as a heat source fluid.

そして、ヒータコア15は後述する温水入出用の同軸2重配管部16と連結されており、同軸2重配管部16の回転軸Aを中心としてヒータコア15が空調ケース11に対して回転するようになっている。この同軸2重配管部16は、蒸発器13の上端部の後方側に隣接配置されている。   The heater core 15 is connected to a coaxial double pipe portion 16 for hot water entering / exiting to be described later, and the heater core 15 rotates relative to the air conditioning case 11 around the rotation axis A of the coaxial double pipe portion 16. ing. The coaxial double pipe portion 16 is disposed adjacent to the rear side of the upper end portion of the evaporator 13.

蒸発器13とヒータコア15の間には最大冷房用の遮風壁17が空調ケース11に一体成形されている。この遮風壁17は、蒸発器13の上端部とヒータコア15の上端部の温水出口タンク15aとの間の部位から鉛直方向に垂下する板状に形成される。   A windshield wall 17 for maximum cooling is integrally formed in the air conditioning case 11 between the evaporator 13 and the heater core 15. The wind shielding wall 17 is formed in a plate shape that hangs vertically from a portion between the upper end portion of the evaporator 13 and the hot water outlet tank 15 a at the upper end portion of the heater core 15.

この板状の遮風壁17は、車両左右方向(図7の紙面垂直方向)に対しては空調ケース11内部の全域に形成され、遮風壁17の左右両側部は空調ケース11の左右の側壁部に結合される。   The plate-shaped wind shielding wall 17 is formed in the entire area inside the air conditioning case 11 with respect to the vehicle left-right direction (perpendicular to the plane of FIG. 7). Coupled to the side wall.

この板状の遮風壁17はヒータコア15の風上側の面(図7の左側面)の全体を覆うことができるようにヒータコア15とほぼ同一面積に形成される。遮風壁17の下端部およびヒータコア15の下端部の温水入口タンク15bと、空調ケース11の底面部との間には所定の間隙が設定され、この所定の間隙によってヒータコア風上側の空気通路18が形成される。すなわち、この空気通路18はヒータコア15の回転作動領域に対して風上側の領域に形成される。   The plate-like wind shielding wall 17 is formed in substantially the same area as the heater core 15 so as to cover the entire windward surface (the left side surface in FIG. 7) of the heater core 15. A predetermined gap is set between the lower end portion of the wind shielding wall 17 and the hot water inlet tank 15b at the lower end portion of the heater core 15 and the bottom surface portion of the air conditioning case 11, and the air passage 18 on the upper side of the heater core is defined by the predetermined gap. Is formed. That is, the air passage 18 is formed in a region on the windward side with respect to the rotation operation region of the heater core 15.

ヒータコア15は、最大冷房時には遮風壁17の風下側の面(図7の右側面)に沿った破線位置MCに回転操作される。この最大冷房位置MCでは、遮風壁17がヒータコア15の風上側の面を全閉して、蒸発器13風下側の空気がヒータコア15のコア部を通過することを阻止する。   The heater core 15 is rotated to a broken line position MC along the leeward side surface (the right side surface in FIG. 7) of the wind shielding wall 17 during maximum cooling. In the maximum cooling position MC, the wind shielding wall 17 fully closes the windward surface of the heater core 15 and prevents the air on the leeward side of the evaporator 13 from passing through the core portion of the heater core 15.

従って、蒸発器通過空気(冷風)の全量が矢印cのようにヒータコア15をバイパスして流れるので、最大冷房性能を発揮できる。このため、最大冷房時にはヒータコア風上側の空気通路18がヒータコアバイパス通路として作用する。   Accordingly, since the entire amount of the air passing through the evaporator (cold air) flows by bypassing the heater core 15 as indicated by the arrow c, the maximum cooling performance can be exhibited. For this reason, the air passage 18 on the upper side of the heater core acts as a heater core bypass passage during maximum cooling.

空調ケース11の内壁面においてヒータコア15の風下側部位にシールリブ20が形成される。このシールリブ20は空調ケース11の内壁面に一体成形され最大暖房時のケース側シール面を構成する。   Seal ribs 20 are formed on the leeward side of the heater core 15 on the inner wall surface of the air conditioning case 11. The seal rib 20 is integrally formed on the inner wall surface of the air conditioning case 11 and constitutes a case-side seal surface during maximum heating.

このシールリブ20は、具体的には空調ケース11の内壁面から空調ケース11の内側へ向かって額縁状に突き出すものである。この額縁状の突出形状の中央部には空気が通過可能な開口部20aが開口している。   Specifically, the seal rib 20 projects in a frame shape from the inner wall surface of the air conditioning case 11 toward the inside of the air conditioning case 11. An opening 20a through which air can pass is opened at the center of the frame-like protruding shape.

最大暖房時にはヒータコア15が一点鎖線位置MHに回転操作され、ヒータコア15の矩形状の周縁部がシールリブ20の額縁状の突出形状に圧接する。これにより、最大暖房時には空気通路18と開口部20aとが直接連通するヒータコアバイパス通路が遮断され、ヒータコア15の下端部の温水入口タンク15bと空調ケース11の底面部内壁面との間から開口部20aへ直接向かうバイパス空気流れ(冷風流れ)cが遮断される。   During maximum heating, the heater core 15 is rotated to the alternate long and short dash line position MH, and the rectangular peripheral edge of the heater core 15 is pressed against the frame-like protruding shape of the seal rib 20. Thereby, the heater core bypass passage in which the air passage 18 and the opening portion 20a directly communicate with each other is blocked during maximum heating, and the opening portion 20a is formed between the hot water inlet tank 15b at the lower end portion of the heater core 15 and the inner wall surface of the bottom surface portion of the air conditioning case 11. The bypass air flow (cold air flow) c which goes directly to is cut off.

このため、空調ケース11内の送風空気の全量がヒータコア15のコア部を通過して加熱されるので、最大暖房性能を発揮できる。ヒータコア15のコア部を通過した温風dはシールリブ20の開口部20aを通過して風下側へ流れる。   For this reason, since the whole quantity of blowing air in the air conditioning case 11 passes through the core part of the heater core 15 and is heated, the maximum heating performance can be exhibited. The warm air d that has passed through the core portion of the heater core 15 passes through the opening 20a of the seal rib 20 and flows to the leeward side.

また、ヒータコア15の図7実線位置は温度制御時の中間開度(中間回転位置)の一例であり、この中間開度の操作位置であると、蒸発器通過空気(冷風)のうち、ヒータコア下方側の流れは矢印cのようにヒータコア15をバイパスして流れ、蒸発器通過空気(冷風)のうち、上方側の流れは矢印d'のようにヒータコア15を通過して流れ加熱されるので、温風dとなる。   Moreover, the solid line position of FIG. 7 of the heater core 15 is an example of an intermediate opening (intermediate rotation position) at the time of temperature control. Since the flow on the side bypasses the heater core 15 as indicated by the arrow c, and the upper flow of the evaporator passing air (cold air) passes through the heater core 15 and is heated as indicated by the arrow d ′, It becomes hot air d.

従って、ヒータコア15の回転位置を調整することにより、ヒータコア15をバイパスする冷風と、ヒータコア15を通過する温風との風量割合を調整して、車室内吹出空気温度を連続的に調整できる。   Therefore, by adjusting the rotation position of the heater core 15, the air volume ratio between the cold air that bypasses the heater core 15 and the hot air that passes through the heater core 15 can be adjusted to continuously adjust the temperature of the air blown into the vehicle interior.

ヒータコア15をバイパスする冷風と、ヒータコア15を通過する温風は、いずれもシールリブ20の開口部20aを通過して、シールリブ20の上方領域21にて混合され、所望温度の空調風となった後に、各吹出開口部22、23、24に流入する。   After the cold air that bypasses the heater core 15 and the warm air that passes through the heater core 15 pass through the opening 20a of the seal rib 20 and are mixed in the upper region 21 of the seal rib 20, the air is conditioned at a desired temperature. , Flows into the blowout openings 22, 23, 24.

次に、車室内各部へ空気を吹き出す吹出開口部22、23、24の配置について説明する。この吹出開口部22、23、24は、空調ケース11のうち送風機部12の車両後方側部位に配置されている。   Next, the arrangement of the blowout openings 22, 23, and 24 for blowing air to each part of the vehicle interior will be described. The blowout openings 22, 23, and 24 are arranged in the vehicle rear side portion of the blower unit 12 in the air conditioning case 11.

デフロスタ開口部22は空調ケース11の上面部に配置され、図示しないデフロスタダクトを介して車両計器盤上面のデフロスタ吹出口に接続され、このデフロスタ吹出口から車両前面窓ガラスの内面に向けて空気を吹き出す。   The defroster opening 22 is disposed on the upper surface of the air conditioning case 11 and is connected to a defroster outlet on the upper surface of the vehicle instrument panel via a defroster duct (not shown). Air is directed from the defroster outlet toward the inner surface of the front window glass of the vehicle. Blow out.

フェイス開口部23はデフロスタ開口部22よりも車両後方側部位に配置される。このフェイス開口部23は、図示しないセンターフェイス開口部と図示しないサイドフェイス開口部とに分割される。   The face opening 23 is disposed at a rear side of the vehicle with respect to the defroster opening 22. The face opening 23 is divided into a center face opening (not shown) and a side face opening (not shown).

センターフェイス開口部には図示しないセンターフェイスダクトが接続され、このセンターフェイスダクトの先端部吹出口(センターフェイス吹出口)は車両計器盤の左右方向中央部に配置され、ここから乗員の顔部側へ空気を吹き出す。   A center face duct (not shown) is connected to the center face opening, and a front end outlet (center face outlet) of the center face duct is disposed at the center in the left-right direction of the vehicle instrument panel, from which the passenger face side Blow air into

サイドフェイス開口部には図示しないサイドフェイスダクトが接続され、このサイドフェイスダクトの先端部吹出口(サイドフェイス吹出口)は車両計器盤の左右方向両端部に配置され、ここから乗員の顔部側あるいは車両側面窓ガラス側へ空気を吹き出す。   A side face duct (not shown) is connected to the side face opening, and a tip outlet (side face outlet) of the side face duct is arranged at both ends in the left-right direction of the vehicle instrument panel, from which the passenger face side Or air is blown out to the vehicle side window glass side.

フット開口部24は空調ケース11の左右両側の側壁に配置され、図示しないフットダクトを介して乗員の足元側へ空気を吹き出すものである。なお、デフロスタ開口部22、フェイス開口部23およびフット開口部24は図示しない吹出モードドアにより開閉されるようになっている。   The foot opening 24 is disposed on the left and right side walls of the air conditioning case 11 and blows air to the feet of the occupant through a foot duct (not shown). The defroster opening 22, the face opening 23, and the foot opening 24 are opened and closed by a blowing mode door (not shown).

次に、ヒータコア15および温水入出用の同軸2重配管部16について説明する。図8は図7のヒータコア15および同軸2重配管部16を示す断面図であり、ヒータコア15の下端部に温水入口タンク15bを配置し、ヒータコア15の上端部に温水出口タンク15aを配置している。そして、この両タンク15a、15bの間に、複数の偏平チューブ15cとコルゲート状伝熱フィン15dとの積層構造により全パスタイプ(すなわち、一方向流れタイプ)のコア部15eを構成している。   Next, the heater core 15 and the hot / cold double pipe section 16 will be described. FIG. 8 is a cross-sectional view showing the heater core 15 and the coaxial double pipe portion 16 of FIG. 7, in which a hot water inlet tank 15 b is arranged at the lower end portion of the heater core 15 and a hot water outlet tank 15 a is arranged at the upper end portion of the heater core 15. Yes. And between these tanks 15a and 15b, the core part 15e of the all-pass type (namely, one-way flow type) is comprised by the laminated structure of the some flat tube 15c and the corrugated heat transfer fin 15d.

ここで、複数の偏平チューブ15cは、車両左右方向に1列に並んで並列配置され、全部の偏平チューブ15cの下端部は温水入口タンク15bに連通し、上端部は温水出口タンク15aに連通する。このため、温水は温水入口タンク15bから全部の偏平チューブ15cを並列に通過して温水出口タンク15aへと一方向に流れる。   Here, the plurality of flat tubes 15c are arranged in parallel in a line in the left-right direction of the vehicle, the lower ends of all the flat tubes 15c communicate with the hot water inlet tank 15b, and the upper ends communicate with the hot water outlet tank 15a. . For this reason, the warm water flows in one direction from the warm water inlet tank 15b through all the flat tubes 15c in parallel to the warm water outlet tank 15a.

両タンク15a、15bは、偏平チューブ15cの配列方向(車両左右方向)に細長く延びる形状になっている。空調ケース11内の送風空気は偏平チューブ15cとコルゲート状伝熱フィン15dとの間の空隙部を通過して加熱される。   Both tanks 15a and 15b are elongated in the direction in which the flat tubes 15c are arranged (the vehicle left-right direction). The blown air in the air conditioning case 11 is heated by passing through the gaps between the flat tubes 15c and the corrugated heat transfer fins 15d.

温水出口タンク15aの側方(タンク長手方向の延長方向)の一端側には、同軸2重配管部16が配置され、温水出口タンク15aの側方の他端側には、同軸2重配管部16の回転軸Aと同軸に、円柱状の軸部15fが一体に設けられている。この軸部15fは、空調ケース11の穴に挿入されて、空調ケース11に回転可能に支持されている。   A coaxial double pipe portion 16 is disposed at one end side of the hot water outlet tank 15a (extending direction in the tank longitudinal direction), and a coaxial double pipe portion is disposed at the other end side of the hot water outlet tank 15a. A cylindrical shaft portion 15 f is integrally provided coaxially with the 16 rotation axes A. The shaft portion 15 f is inserted into the hole of the air conditioning case 11 and is rotatably supported by the air conditioning case 11.

また、軸部15fの一端は空調ケース11の外部にて図示しない回転駆動機構に連結される。この回転駆動機構は、例えば、軸部15fに連結されるリンク機構、ギヤ機構等の動力伝達機構と、この動力伝達機構を介して回転駆動力を軸部15fに与えるサーボモータ等の駆動機構とにより構成される。なお、回転駆動機構を乗員の手動操作力により作動するマニュアル式の機構にしてもよい。   Further, one end of the shaft portion 15 f is connected to a rotation drive mechanism (not shown) outside the air conditioning case 11. The rotational drive mechanism includes, for example, a power transmission mechanism such as a link mechanism and a gear mechanism coupled to the shaft portion 15f, and a drive mechanism such as a servo motor that applies a rotational driving force to the shaft portion 15f via the power transmission mechanism. Consists of. The rotation drive mechanism may be a manual mechanism that is operated by the manual operation force of the occupant.

同軸2重配管部16は、空調ケース11側に図示しないねじ止め等の取付手段により固定される固定部材16aと、ヒータコア15に接合されてヒータコア15とともに回転する回転部材16bとに大別される。そして、固定部材16aは大部分が空調ケース11の外部に位置し、回転部材16bは空調ケース11の内部に位置している。   The coaxial double pipe section 16 is roughly divided into a fixing member 16a fixed to the air conditioning case 11 side by an unillustrated attachment means such as screwing and a rotating member 16b that is joined to the heater core 15 and rotates together with the heater core 15. . And most of the fixing member 16 a is located outside the air conditioning case 11, and the rotating member 16 b is located inside the air conditioning case 11.

固定部材16aは、回転軸A方向に延びる円筒状の固定側内側配管25と、この固定側内側配管25の外周側に所定間隔を隔てて位置する円筒状の固定側外側配管26とを備えている。この固定部材16aの固定側内側配管25と固定側外側配管26は、回転軸Aを中心として同軸状になっている。   The fixed member 16a includes a cylindrical fixed-side inner pipe 25 extending in the direction of the rotation axis A, and a cylindrical fixed-side outer pipe 26 positioned at a predetermined interval on the outer peripheral side of the fixed-side inner pipe 25. Yes. The fixed side inner pipe 25 and the fixed side outer pipe 26 of the fixing member 16a are coaxial with the rotation axis A as the center.

固定側外側配管26には、固定側外側配管26の内部通路に車両エンジンからの温水を流入させる入口パイプ28が結合されている。この入口パイプ28は、回転軸Aに対して垂直方向に延びている。   An inlet pipe 28 that allows hot water from the vehicle engine to flow into the internal passage of the fixed side outer pipe 26 is coupled to the fixed side outer pipe 26. The inlet pipe 28 extends in a direction perpendicular to the rotation axis A.

また、固定側内側配管25には、固定側内側配管25の内部通路から車両エンジンへ温水を流出させる出口パイプ29が結合されている。この出口パイプ29は、回転軸Aに対して垂直方向に延びており、より詳細には、固定側外側配管26の内部通路を横切って固定側外側配管26の外部まで延びている。   Further, the fixed side inner pipe 25 is coupled to an outlet pipe 29 that allows hot water to flow out from the internal passage of the fixed side inner pipe 25 to the vehicle engine. The outlet pipe 29 extends in a direction perpendicular to the rotation axis A. More specifically, the outlet pipe 29 extends to the outside of the fixed side outer pipe 26 across the internal passage of the fixed side outer pipe 26.

固定部材16aは、固定側内側配管25、固定側外側配管26、入口パイプ28、および出口パイプ29が、樹脂材料にて一体成形される。   In the fixing member 16a, a fixed side inner pipe 25, a fixed side outer pipe 26, an inlet pipe 28, and an outlet pipe 29 are integrally formed of a resin material.

一方、回転部材16bは、回転軸A方向に延びる円筒状の回転側内側配管30と、この回転側内側配管30の外周側に所定間隔を隔てて位置する円筒状の回転側外側配管31と、この回転側外側配管31の内部通路に連通するとともに、回転側外側配管31の外周部から回転軸Aに対して垂直方向に延びる連絡配管32とを有している。回転部材16bは、回転側内側配管30、回転側外側配管31、および連絡配管32が、樹脂材料にて一体成形される。   On the other hand, the rotating member 16b includes a cylindrical rotation-side inner pipe 30 extending in the direction of the rotation axis A, and a cylindrical rotation-side outer pipe 31 positioned at a predetermined interval on the outer peripheral side of the rotation-side inner pipe 30. A communication pipe 32 that communicates with the internal passage of the rotation-side outer pipe 31 and extends from the outer periphery of the rotation-side outer pipe 31 in a direction perpendicular to the rotation axis A is provided. As for the rotation member 16b, the rotation side inner side piping 30, the rotation side outer side piping 31, and the connection piping 32 are integrally molded with the resin material.

回転側内側配管30の一端は、固定側内側配管25の内周側に回転可能に且つ水洩れがないように水密的に嵌合しており、回転側内側配管30と固定側内側配管25は連通している。この回転側内側配管30のうち、固定側内側配管25と反対側の端部は温水出口タンク15aの長手方向の一端部に連通している。   One end of the rotation side inner pipe 30 is fitted in a watertight manner so as to be rotatable on the inner peripheral side of the fixed side inner pipe 25 and so as not to leak water. The rotation side inner pipe 30 and the fixed side inner pipe 25 are Communicate. Of this rotating side inner pipe 30, the end opposite to the fixed side inner pipe 25 communicates with one end in the longitudinal direction of the hot water outlet tank 15a.

回転側外側配管31の端部は、固定側外側配管26の内周側に回転可能に嵌合しており、回転側外側配管31と固定側外側配管26は連通している。また、連絡配管32は、図示しないホース等を介して温水入口タンク15bの長手方向の一端部に連通している。なお、回転側外側配管31は本発明の第1部材に相当し、固定側外側配管26は本発明の第2部材に相当する。   The end of the rotation side outer pipe 31 is rotatably fitted to the inner peripheral side of the fixed side outer pipe 26, and the rotation side outer pipe 31 and the fixed side outer pipe 26 communicate with each other. Further, the communication pipe 32 communicates with one end in the longitudinal direction of the hot water inlet tank 15b through a hose or the like (not shown). The rotation side outer pipe 31 corresponds to the first member of the present invention, and the fixed side outer pipe 26 corresponds to the second member of the present invention.

図8の矢印Wは温水流れ流路を示しており、車両エンジンの温水回路から入口パイプ28に流入した温水は、固定側外側配管26の内部通路→回転側外側配管31の内部通路→連絡配管32の内部通路を経て温水入口タンク15bに流入する。この温水は温水入口タンク15b内にて複数の偏平チューブ15cに分配され、複数の偏平チューブ15c内を下方から上方へと流れる。   An arrow W in FIG. 8 indicates a hot water flow channel, and the hot water flowing into the inlet pipe 28 from the hot water circuit of the vehicle engine is the internal passage of the fixed outer pipe 26 → the inner passage of the rotary outer pipe 31 → the connecting pipe. It flows into the warm water inlet tank 15b through 32 internal passages. The hot water is distributed to the plurality of flat tubes 15c in the hot water inlet tank 15b, and flows in the plurality of flat tubes 15c from the bottom to the top.

複数の偏平チューブ15cからの温水は温水出口タンク15a内に流入して集合され、回転側内側配管30の内部通路→固定側内側配管25の内部通路を通過して出口パイプ29へ流出する。そして、その温水は、車両エンジンの温水回路に還流される。   Hot water from the plurality of flat tubes 15 c flows into the hot water outlet tank 15 a and gathers, passes through the internal passage of the rotation-side inner pipe 30 → the internal passage of the fixed-side inner pipe 25, and flows out to the outlet pipe 29. Then, the warm water is returned to the warm water circuit of the vehicle engine.

次に、同軸2重配管部16におけるシール部33について説明する。図9は図8の同軸2重配管部16におけるシール部33の拡大断面図である。   Next, the seal part 33 in the coaxial double pipe part 16 will be described. FIG. 9 is an enlarged cross-sectional view of the seal portion 33 in the coaxial double pipe portion 16 of FIG.

図9に示すように、回転側外側配管31の外周部には、回転軸A(図8参照)に対して垂直方向外方に向かって延びる円盤状の鍔部34が一体に設けられている。この鍔部34における回転軸A方向の一端面34aは、回転軸Aに対して垂直な平面になっている。   As shown in FIG. 9, a disc-shaped flange 34 extending integrally outward in the vertical direction with respect to the rotation axis A (see FIG. 8) is integrally provided on the outer peripheral portion of the rotation-side outer pipe 31. . One end surface 34 a of the flange 34 in the direction of the rotation axis A is a plane perpendicular to the rotation axis A.

固定側外側配管26は、温水が流通する通路を形成する筒状の配管部26aと、配管部26aの端部から回転軸Aに対して垂直方向外方に向かって延びる鍔状の鍔状円環部26bと、鍔状円環部26bの外周部から回転軸A方向に延びる筒状の筒状円環部26cとを有している。そして、鍔状円環部26bは、鍔部34の一端面34aと対向しており、筒状円環部26cは、鍔部34の外周側に位置して鍔部34を覆っている。   The fixed-side outer pipe 26 includes a cylindrical pipe part 26a that forms a passage through which hot water flows, and a bowl-like bowl-shaped circle that extends outward from the end of the pipe part 26a in the direction perpendicular to the rotation axis A. It has the ring part 26b and the cylindrical cylindrical ring part 26c extended in the rotating shaft A direction from the outer peripheral part of the bowl-shaped ring part 26b. The flange-shaped annular portion 26 b faces the one end surface 34 a of the flange portion 34, and the cylindrical annular portion 26 c is located on the outer peripheral side of the flange portion 34 and covers the flange portion 34.

鍔状円環部26bにおける鍔部34の一端面34aと対向する面には、断面形状が矩形で環状に連続した溝26dが形成されており、この溝26dに、EPDMやNBR等の弾性体よりなり、断面形状が円形で環状に連続したシール部材35が挿入されている。   A groove 26d having a rectangular cross-sectional shape and an annular shape is formed on a surface of the flange-shaped annular portion 26b facing the one end surface 34a of the flange 34, and an elastic body such as EPDM or NBR is formed in the groove 26d. The sealing member 35 having a circular cross-sectional shape and continuous in an annular shape is inserted.

溝26dの底部26eは、回転軸Aに対して垂直な平面になっている。溝26dの内周面26fの直径は、自由状態におけるシール部材35の内径よりも小さく、溝26dの外周面26gの直径は、自由状態におけるシール部材35の外径よりも小さく設定されている。   The bottom portion 26e of the groove 26d is a plane perpendicular to the rotation axis A. The diameter of the inner peripheral surface 26f of the groove 26d is smaller than the inner diameter of the seal member 35 in the free state, and the diameter of the outer peripheral surface 26g of the groove 26d is set smaller than the outer diameter of the seal member 35 in the free state.

この構成によると、シール部材35は、鍔部34の一端面34aと線接触する。また、シール部材35は、鍔状円環部26bにおける溝26dの底部26eおよび溝26dの外周面26gと線接触する。   According to this configuration, the seal member 35 is in line contact with the one end surface 34 a of the flange portion 34. Further, the seal member 35 is in line contact with the bottom portion 26e of the groove 26d and the outer peripheral surface 26g of the groove 26d in the bowl-shaped annular portion 26b.

このように、回転部材16b(図8参照)における回転側外側配管31とシール部材35は1つの線接触部で接触し、固定部材16a(図8参照)における固定側外側配管26とシール部材35は2つの線接触部で接触しており、回転側外側配管31とシール部材35との接触面積が、固定側外側配管26とシール部材35との接触面積よりも小さくなっている。   Thus, the rotation side outer pipe 31 and the seal member 35 in the rotation member 16b (see FIG. 8) are in contact with each other at one line contact portion, and the fixed side outer pipe 26 and the seal member 35 in the fixing member 16a (see FIG. 8) Are in contact with each other at two line contact portions, and the contact area between the rotation-side outer pipe 31 and the seal member 35 is smaller than the contact area between the fixed-side outer pipe 26 and the seal member 35.

このため、接触面積が大きい固定側外側配管26とシール部材35は摺動抵抗が大きくなり、固定側外側配管26とシール部材35は摺動せず、回転側外側配管31とシール部材35が摺動する。したがって、固定側外側配管26を含む固定部材16aは、回転側外側配管31を含む固定部材16aよりも強度やコスト面で有利な材料を選択することができる。   For this reason, the sliding resistance of the fixed outer pipe 26 and the seal member 35 having a large contact area increases, the fixed outer pipe 26 and the sealing member 35 do not slide, and the rotating outer pipe 31 and the sealing member 35 slide. Move. Therefore, the fixing member 16a including the fixed side outer pipe 26 can select a material that is more advantageous in terms of strength and cost than the fixing member 16a including the rotation side outer pipe 31.

例えば、回転側外側配管31は、ガラス繊維を含有しないナイロンや、ガラス繊維を含有しないPPS(ポリフェニレンサルファイド)等の、シール部材35との摩擦係数が小さい材料とし、固定側外側配管26は、ガラス繊維入りナイロンや、ガラス繊維入りPPS等の、強度が高く比較的安価な材料を採用することができる。   For example, the rotation-side outer pipe 31 is made of a material having a small coefficient of friction with the seal member 35, such as nylon that does not contain glass fiber or PPS (polyphenylene sulfide) that does not contain glass fiber. A material with high strength and relatively low cost, such as nylon with fibers and PPS with glass fibers, can be used.

なお、本実施形態では、断面形状が円形で環状に連続したシール部材35を用いたが、図2に示すような断面形状がV字形で環状に連続したシール部材、図3に示すような断面形状が三角形で環状に連続したシール部材、図4に示すような断面形状がD字形で環状に連続したシール部材を用いて、回転側外側配管31とシール部材35との接触面積が、固定側外側配管26とシール部材35との接触面積よりも小さくなるようにしてもよい。   In this embodiment, the seal member 35 having a circular cross-sectional shape and an annular shape is used. However, the seal member having a V-shaped cross-sectional shape as shown in FIG. 2 and a cross-section as shown in FIG. Using a seal member having a triangular shape and a continuous ring shape, and a seal member having a D-shaped cross-section as shown in FIG. 4, the contact area between the rotation-side outer pipe 31 and the seal member 35 is fixed. You may make it become smaller than the contact area of the outer side piping 26 and the sealing member 35. FIG.

また、回転側外側配管31とシール部材35との摩擦係数を固定側外側配管26とシール部材35との摩擦係数よりも小さくすることにより、固定側外側配管26とシール部材35は摺動せず、回転側外側配管31とシール部材35が摺動するようにしてもよい。   Further, by making the friction coefficient between the rotation side outer pipe 31 and the seal member 35 smaller than the friction coefficient between the fixed side outer pipe 26 and the seal member 35, the fixed side outer pipe 26 and the seal member 35 do not slide. The rotation side outer pipe 31 and the seal member 35 may slide.

本実施形態では、温水を入口パイプ28から流入させてヒータコア15に流すようにしたが、温水を出口パイプ29から流入させてヒータコア15に流すようにしてもよい。すなわち、図8において温水流れ方向Wを逆転させる構成にしてもよい。   In the present embodiment, warm water is introduced from the inlet pipe 28 and flows to the heater core 15, but warm water may be introduced from the outlet pipe 29 to flow to the heater core 15. That is, the configuration in which the hot water flow direction W is reversed in FIG.

本実施形態では、固定側内側配管25の内周側に回転側内側配管30を嵌合させているが、これとは逆に、固定側内側配管25の外周側に回転側内側配管30を嵌合させるようにしてもよい。   In this embodiment, the rotation side inner pipe 30 is fitted to the inner peripheral side of the fixed side inner pipe 25, but conversely, the rotation side inner pipe 30 is fitted to the outer peripheral side of the fixed side inner pipe 25. You may make it match.

本実施形態では、温水入出用の同軸2重配管部16および軸部15fをヒータコア15の一端側(温水出口タンク15a側)に配置したが、同軸2重配管部16および軸部15fを、ヒータコア15の中間部、すなわち温水入口タンク15bと温水出口タンク15aとの中間位置に配置してもよい。   In the present embodiment, the coaxial double pipe portion 16 and the shaft portion 15f for warm water in / out are arranged on one end side (the hot water outlet tank 15a side) of the heater core 15, but the coaxial double pipe portion 16 and the shaft portion 15f are connected to the heater core. 15 may be arranged at an intermediate position between the hot water inlet tank 15b and the hot water outlet tank 15a.

本実施形態では、ヒータコア15として、温水入口タンク15bから温水が全部のチューブ15cを通過して温水出口タンク15aに向かう、いわゆる全パスタイプ(すなわち、一方向流れタイプ)を使用しているが、ヒータコア15として、温水流れを空気流れ方向の前後でUターンさせる前後Uターンタイプを使用し、この前後Uターンタイプのヒータコア15に対して本発明を適用してもよい。同様に、ヒータコア15として、温水流れをヒータコア左右方向(図8の左右方向)でUターンさせる左右Uターンタイプを使用し、この左右Uターンタイプのヒータコア15に対して本発明を適用してもよい。   In the present embodiment, as the heater core 15, a so-called all-pass type (that is, a one-way flow type) is used in which the hot water passes from the hot water inlet tank 15b through all the tubes 15c to the hot water outlet tank 15a. As the heater core 15, a front / rear U-turn type in which a hot water flow is U-turned before and after the air flow direction may be used, and the present invention may be applied to the front / rear U-turn type heater core 15. Similarly, as the heater core 15, a left / right U-turn type that makes a hot water flow U-turn in the left / right direction of the heater core (left / right direction in FIG. 8) is used. Good.

本実施形態では、同軸2重配管部16の固定部材16aを空調ケース11と別体で成形しているが、この固定部材16aおよび空調ケース11はともに樹脂製の部材であるから、この固定部材16aを空調ケース11に樹脂で一体成形するようにしてもよい。   In the present embodiment, the fixing member 16a of the coaxial double pipe portion 16 is formed separately from the air conditioning case 11, but both the fixing member 16a and the air conditioning case 11 are resin members. 16a may be integrally formed with the air conditioning case 11 with resin.

本実施形態では、ヒータコア15に対して車両エンジンの温水を循環する例について述べたが、ヒータコア15に対して、燃焼式ヒータや燃料電池等の車載熱源機器で加熱された温水を循環させるようにしてもよい。また、ヒータコア15に循環させる熱源流体として、温水の代わりに油圧機器の作動油等を用いてもよい。   In the present embodiment, the example in which the hot water of the vehicle engine is circulated to the heater core 15 has been described. However, the hot water heated by the in-vehicle heat source device such as a combustion heater or a fuel cell is circulated to the heater core 15. May be. In addition, as the heat source fluid to be circulated through the heater core 15, hydraulic oil or the like for hydraulic equipment may be used instead of hot water.

本発明の第1実施形態に係るシール構造を示す要部の断面図である。It is sectional drawing of the principal part which shows the seal structure which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るシール構造を示す要部の断面図である。It is sectional drawing of the principal part which shows the seal structure which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るシール構造を示す要部の断面図である。It is sectional drawing of the principal part which shows the seal structure which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係るシール構造を示す要部の断面図である。It is sectional drawing of the principal part which shows the seal structure which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係るシール構造を示す要部の断面図である。It is sectional drawing of the principal part which shows the seal structure which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係るシール構造を示す要部の断面図である。It is sectional drawing of the principal part which shows the seal structure which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係るシール構造を用いた車両用空調装置における室内空調ユニット部10の概略断面図である。It is a schematic sectional drawing of the indoor air-conditioning unit part 10 in the vehicle air conditioner using the seal structure which concerns on 7th Embodiment of this invention. 図7のヒータコア15および同軸2重配管部16を示す断面図である。It is sectional drawing which shows the heater core 15 and the coaxial double piping part 16 of FIG. 図8の同軸2重配管部16におけるシール部33の拡大断面図である。It is an expanded sectional view of the seal part 33 in the coaxial double piping part 16 of FIG.

符号の説明Explanation of symbols

26、200…第2部材、31、100…第1部材、35、300〜330…シール部材、A…回転軸。   26, 200 ... second member, 31, 100 ... first member, 35, 300-330 ... sealing member, A ... rotating shaft.

Claims (11)

回転軸(A)を中心として相対的に回転する第1部材(31、100)と第2部材(26、200)との間に弾性体よりなる環状のシール部材(35、300〜330)を配置した回転部のシール構造であって、
前記第1部材(31、100)と前記シール部材(35、300〜330)との接触面積が、前記第2部材(26、200)と前記シール部材(35、300〜330)との接触面積よりも小さいことを特徴とする回転部のシール構造。
Between the first member (31, 100) and the second member (26, 200) that rotate relatively around the rotation axis (A), an annular seal member (35, 300 to 330) made of an elastic body is provided. It is a seal structure of the arranged rotating part,
The contact area between the first member (31, 100) and the seal member (35, 300 to 330) is the contact area between the second member (26, 200) and the seal member (35, 300 to 330). The rotating part seal structure characterized by being smaller than the above.
前記第1部材(31、100)と前記シール部材(35、300、310)は1つの線接触部で接触し、前記第2部材(26、200)と前記シール部材(35、300、310)は複数の線接触部で接触していることを特徴とする請求項1に記載の回転部のシール構造。 The first member (31, 100) and the seal member (35, 300, 310) are in contact with each other at one line contact portion, and the second member (26, 200) and the seal member (35, 300, 310) are in contact with each other. The rotating structure seal structure according to claim 1, wherein a plurality of line contact portions are in contact with each other. 前記第2部材(26、200)は、断面形状が矩形で環状に連続した溝(26d、202)を備え、
前記溝(26d、202)は、底部(26e、202a)が前記回転軸(A)に対して垂直な平面であり、
前記シール部材(35、300)は、前記溝の底部(26e、202a)に接触するとともに、前記溝の内周面(26f、202b)および外周面(26g、202c)の少なくとも一方に接触していることを特徴とする請求項2に記載の回転部のシール構造。
The second member (26, 200) includes a groove (26d, 202) having a rectangular cross-sectional shape and an annular shape.
The groove (26d, 202) is a plane whose bottom (26e, 202a) is perpendicular to the rotation axis (A),
The seal member (35, 300) contacts the bottom (26e, 202a) of the groove and contacts at least one of the inner peripheral surface (26f, 202b) and the outer peripheral surface (26g, 202c) of the groove. The seal structure for a rotating part according to claim 2, wherein:
前記シール部材(35、300)の断面形状は、円形であることを特徴とする請求項3に記載の回転部のシール構造。 The sealing structure for a rotating part according to claim 3, wherein the sealing member (35, 300) has a circular cross-sectional shape. 前記シール部材(310)は、頂部(310a、310b)を3つ以上有する断面形状であり、
1つの前記頂部(310a)が前記第1部材(100)に接触するとともに、複数の前記頂部(310b)が前記第2部材(200)に接触していることを特徴とする請求項2に記載の回転部のシール構造。
The sealing member (310) has a cross-sectional shape having three or more top portions (310a, 310b),
The top portion (310a) is in contact with the first member (100), and the top portions (310b) are in contact with the second member (200). Rotating part seal structure.
前記シール部材(310)の断面形状は、V字形であることを特徴とする請求項5に記載の回転部のシール構造。 The seal structure of the rotating part according to claim 5, wherein the cross-sectional shape of the seal member (310) is V-shaped. 前記シール部材(320、330)は、頂部(320a、330a)と平面部(320b、330b)を有する断面形状であり、
前記シール部材の頂部(320a、330a)が前記第1部材(100)に接触するとともに、前記平面部(320b、330b)が前記第2部材(200)に接触していることを特徴とする請求項1に記載の回転部のシール構造。
The seal member (320, 330) has a cross-sectional shape having a top portion (320a, 330a) and a flat portion (320b, 330b),
The top part (320a, 330a) of the sealing member is in contact with the first member (100), and the flat part (320b, 330b) is in contact with the second member (200). Item 2. The rotating part seal structure according to Item 1.
前記シール部材(320)の断面形状は、三角形であることを特徴とする請求項7に記載の回転部のシール構造。 The seal structure of the rotating part according to claim 7, wherein the cross-sectional shape of the seal member (320) is a triangle. 前記シール部材(330)の断面形状は、D字形であることを特徴とする請求項7に記載の回転部のシール構造。 The sealing structure of a rotating part according to claim 7, wherein a cross-sectional shape of the seal member (330) is a D-shape. 回転軸(A)を中心として相対的に回転する第1部材(100)と第2部材(200)との間に弾性体よりなる環状のシール部材(300)を配置した回転部のシール構造であって、
前記第1部材(100)と前記シール部材(300)との摩擦係数が、前記第2部材(200)と前記シール部材(300)との摩擦係数よりも小さいことを特徴とする回転部のシール構造。
A seal structure of a rotating part in which an annular seal member (300) made of an elastic body is disposed between a first member (100) and a second member (200) that rotate relatively around a rotation axis (A). There,
A rotating part seal characterized in that a friction coefficient between the first member (100) and the sealing member (300) is smaller than a friction coefficient between the second member (200) and the sealing member (300). Construction.
前記第1部材(100)は、前記シール部材(300)に接触する接触部材(110)と、前記シール部材(300)に接触しない非接触部材(120)とから構成され、
前記接触部材(110)と前記シール部材(300)との摩擦係数が、前記第2部材(200)と前記シール部材(300)との摩擦係数よりも小さいことを特徴とする請求項10に記載の回転部のシール構造。
The first member (100) includes a contact member (110) that contacts the seal member (300) and a non-contact member (120) that does not contact the seal member (300).
The friction coefficient between the contact member (110) and the seal member (300) is smaller than the friction coefficient between the second member (200) and the seal member (300). Rotating part seal structure.
JP2006004766A 2006-01-12 2006-01-12 Seal structure of rotary part Pending JP2007187221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006004766A JP2007187221A (en) 2006-01-12 2006-01-12 Seal structure of rotary part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006004766A JP2007187221A (en) 2006-01-12 2006-01-12 Seal structure of rotary part

Publications (1)

Publication Number Publication Date
JP2007187221A true JP2007187221A (en) 2007-07-26

Family

ID=38342525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006004766A Pending JP2007187221A (en) 2006-01-12 2006-01-12 Seal structure of rotary part

Country Status (1)

Country Link
JP (1) JP2007187221A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180240A (en) * 2008-01-29 2009-08-13 Denso Corp Flow regulating valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794751U (en) * 1980-12-03 1982-06-10
JPS6322466U (en) * 1986-07-29 1988-02-15
JP2001349437A (en) * 2000-06-05 2001-12-21 Toyota Industries Corp Seal material
JP2004316774A (en) * 2003-04-16 2004-11-11 Nsk Ltd Rolling bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794751U (en) * 1980-12-03 1982-06-10
JPS6322466U (en) * 1986-07-29 1988-02-15
JP2001349437A (en) * 2000-06-05 2001-12-21 Toyota Industries Corp Seal material
JP2004316774A (en) * 2003-04-16 2004-11-11 Nsk Ltd Rolling bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180240A (en) * 2008-01-29 2009-08-13 Denso Corp Flow regulating valve

Similar Documents

Publication Publication Date Title
JP4457958B2 (en) Air conditioner for vehicles
US7694729B2 (en) Air passage opening/closing device
JP3646365B2 (en) Automotive air conditioner
KR100457942B1 (en) Vehicle air conditioner with rotary door
US6398638B1 (en) Vehicle air conditioner with manually operated operation member
JP2007137140A (en) Air passage switching device and air conditioner for vehicle
JP2009001169A (en) Air passage switching device and vehicle air conditioner
JP4784449B2 (en) Seal structure of rotating part and air conditioner using the same
JP2007187221A (en) Seal structure of rotary part
JP2007210598A (en) Air conditioner
JP4084972B2 (en) Air conditioner for vehicles
JP4650274B2 (en) Air conditioner
JP2007008221A (en) Air conditioner for vehicle
JP3671540B2 (en) Air passage switching device and vehicle air conditioner
JP2008195209A (en) Vehicular air conditioner
JP4013383B2 (en) Air conditioner for vehicles
JP3900925B2 (en) Air conditioner for vehicles
JP4466532B2 (en) Air conditioner
JP4289238B2 (en) Air conditioner
JP4432622B2 (en) Air conditioner for vehicles
JP3956521B2 (en) Air conditioner for vehicles
CN107215170B (en) Air conditioner for vehicle
JP2008195213A (en) Fitting structure of air-conditioning case
JP2007168735A (en) Air passage switching device and inside/outside air switching device of air conditioner for vehicle
JP3671538B2 (en) Air conditioner for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208