JP4466532B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4466532B2
JP4466532B2 JP2005301397A JP2005301397A JP4466532B2 JP 4466532 B2 JP4466532 B2 JP 4466532B2 JP 2005301397 A JP2005301397 A JP 2005301397A JP 2005301397 A JP2005301397 A JP 2005301397A JP 4466532 B2 JP4466532 B2 JP 4466532B2
Authority
JP
Japan
Prior art keywords
air
heat exchanger
heating
heater core
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005301397A
Other languages
Japanese (ja)
Other versions
JP2007106340A (en
Inventor
進藤  寛英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005301397A priority Critical patent/JP4466532B2/en
Priority to DE102006048581A priority patent/DE102006048581B4/en
Publication of JP2007106340A publication Critical patent/JP2007106340A/en
Application granted granted Critical
Publication of JP4466532B2 publication Critical patent/JP4466532B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3211Control means therefor for increasing the efficiency of a vehicle refrigeration cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • B60H1/00328Heat exchangers for air-conditioning devices of the liquid-air type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • B60H2001/0035Heat exchangers for air-conditioning devices movable in and out of the air stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator

Description

本発明は、加熱用熱交換器を回転可能に構成する空調装置に関するもので、具体的には温水式加熱用熱交換器を回転可能に構成する車両用空調装置に用いて好適である。   The present invention relates to an air conditioner configured to rotate a heat exchanger for heating, and is specifically suitable for a vehicle air conditioner configured to rotate a hot water heating heat exchanger.

従来、車両用空調装置の温度調整方式としては、冷風と温風との風量割合をエアミックスドアにより調整して、車室内吹出空気温度を調整するエアミックスタイプが代表的である。   Conventionally, as a temperature adjustment method for a vehicle air conditioner, an air mix type in which the air volume ratio between cold air and hot air is adjusted by an air mix door to adjust the temperature of air blown into the vehicle interior is typical.

このエアミックスタイプの車両用空調装置において、温水式の加熱用熱交換器自体を回転可能に構成することにより、加熱用熱交換器にエアミックスドアの役割を兼務させるものが提案されている(例えば、特許文献1参照)。   In this air mix type vehicle air conditioner, it has been proposed that the hot water heating heat exchanger itself is configured to be rotatable so that the heating heat exchanger also serves as an air mix door ( For example, see Patent Document 1).

これによると、エアミックスドアを廃止できるとともに、最大冷房時には加熱用熱交換器を冷風流れの通風抵抗とならない位置に回転操作して、冷風風量を増加できる利点がある。   According to this, the air mix door can be eliminated, and at the time of maximum cooling, there is an advantage that the amount of cold air can be increased by rotating the heat exchanger for heating to a position where the air flow resistance of the cold air does not flow.

具体的には、特許文献1のものでは、加熱用熱交換器の一端部に回転軸を配置し、駆動用モータの動力をギヤ結合により回転軸に伝達して、加熱用熱交換器の一端部を中心として加熱用熱交換器全体を回転駆動するようになっている。
特開2001−47845号公報
Specifically, in Patent Document 1, a rotating shaft is arranged at one end of the heating heat exchanger, and the power of the driving motor is transmitted to the rotating shaft by gear coupling, so that one end of the heating heat exchanger is arranged. The entire heat exchanger for heating is driven to rotate around the part.
JP 2001-47845 A

ところで、本発明者らの実験、検討によると、加熱用熱交換器下流側空気の温度が、加熱用熱交換器の回転軸方向で大きくばらつき、このことが原因となって、車室内吹出空気の温度ばらつきが大きくなることが分かった。   By the way, according to the experiments and examinations of the present inventors, the temperature of the heating heat exchanger downstream side varies greatly in the direction of the rotation axis of the heating heat exchanger. It was found that the temperature variation of was large.

この不具合を図8、図9により詳述する。なお、図8、図9は本発明者の試作品であって、公知のものではない。図8、図9は加熱用熱交換器15を回転軸16を中心として最大暖房位置と最大冷房位置との中間位置に回転操作した温度制御状態を示す。図8、図9において、加熱用熱交換器15の風下側にはシールリブ20が設けられている。このシールリブ20は図9(b)に示すようにケース11の内壁面からケース11内の空気通路に向かって額縁状に突出するものである。   This defect will be described in detail with reference to FIGS. 8 and 9 are prototypes of the present inventor and are not publicly known. 8 and 9 show a temperature control state in which the heating heat exchanger 15 is rotated about the rotation shaft 16 to an intermediate position between the maximum heating position and the maximum cooling position. 8 and 9, a seal rib 20 is provided on the leeward side of the heat exchanger 15 for heating. As shown in FIG. 9B, the seal rib 20 protrudes in a frame shape from the inner wall surface of the case 11 toward the air passage in the case 11.

最大暖房時には、この額縁状シールリブ20に加熱用熱交換器15の周縁部の全周が圧接する。これにより、送風空気の全量が加熱用熱交換器15を通過して加熱され、温風となり、この温風はシールリブ20の中央開口部20aを通過して下流側へ流れる。   During maximum heating, the entire circumference of the peripheral edge of the heating heat exchanger 15 is pressed against the frame-shaped seal rib 20. As a result, the entire amount of the blown air passes through the heating heat exchanger 15 and is heated to become warm air, which flows through the central opening 20a of the seal rib 20 to the downstream side.

一方、温度制御状態では、加熱用熱交換器15が上記シールリブ20から開離するので、冷却用熱交換器13通過後の冷風の一部が図8(c)、図9(a)の矢印cのように加熱用熱交換器15をバイパスして額縁状シールリブ20の中央開口部20aに流れ込む。また、冷風の残部は加熱用熱交換器15を通過して加熱され、温風dとなる
ここで、加熱用熱交換器15の風下側のうち、加熱用熱交換器15の回転軸方向の左右両側部位では、シールリブ20の左右両側の面に沿って冷風が図8、図9の矢印c1のように加熱用熱交換器15の回転軸16に向かって流れる。
On the other hand, in the temperature control state, the heating heat exchanger 15 is separated from the seal rib 20, so that a part of the cold air after passing through the cooling heat exchanger 13 is an arrow in FIGS. 8C and 9A. As shown in c, the heat exchanger 15 for heating is bypassed and flows into the central opening 20a of the frame-shaped seal rib 20. Further, the remaining portion of the cold air is heated by passing through the heat exchanger 15 for heating and becomes hot air d. Here, of the leeward side of the heat exchanger 15 for heating, in the rotation axis direction of the heat exchanger 15 for heating. In the left and right side portions, cold air flows along the left and right side surfaces of the seal rib 20 toward the rotating shaft 16 of the heating heat exchanger 15 as indicated by an arrow c1 in FIGS.

しかし、加熱用熱交換器15の回転軸16とシールリブ20の左右両側の面との間は図8(b)に示すように行き止まりになっているので、シールリブ20に沿う冷風流れc1は行き場を失って、図9(b)(c)の矢印c2のように加熱用熱交換器15の回転軸方向(横方向)に方向転換する。   However, since the dead end is formed between the rotating shaft 16 of the heating heat exchanger 15 and the left and right sides of the seal rib 20 as shown in FIG. 8B, the cold air flow c1 along the seal rib 20 has a place to go. Lost and the direction is changed in the direction of the rotation axis (lateral direction) of the heat exchanger 15 for heating as indicated by an arrow c2 in FIGS.

この方向転換した冷風流れc2は加熱用熱交換器15のコア部の左右両側部(回転軸方向の左右両側部)に流れ込むので、加熱用熱交換器15のコア部の左右両側部の冷風割合が中央部の冷風割合よりも大きくなる。   The direction-changed cold air flow c2 flows into the left and right sides of the core portion of the heating heat exchanger 15 (the left and right sides of the rotation axis direction), so that the ratio of the cold air flow in the left and right sides of the core portion of the heating heat exchanger 15 Becomes larger than the cold air ratio in the central portion.

このため、加熱用熱交換器15のコア部の吹出空気温度は、図8(d)に示すように左右両側部が低くて、中央部が高いというばらつきが発生する。これが原因となって、車室内吹出空気温度のばらつきが発生し、車室内空調の快適性を損なう。   For this reason, as shown in FIG.8 (d), the air temperature of the core part of the heat exchanger 15 for a heating generate | occur | produces the dispersion | variation in which the left and right both sides are low and the center part is high. This causes variations in the temperature of the air blown into the passenger compartment, impairing the comfort of the air conditioning in the passenger compartment.

具体的には、加熱用熱交換器15の回転軸16の軸方向が図8(a)のように車両左右方向に向いている場合は、車両左右方向の中央部への吹出空気温度(センターフェイス吹出空気温度)が高くて、車両左右方向の左右両側部への吹出空気温度(サイドフェイス吹出空気温度)が低くなってしまう。   Specifically, when the axial direction of the rotating shaft 16 of the heat exchanger 15 for heating is in the left-right direction of the vehicle as shown in FIG. 8A, the temperature of air blown to the center in the left-right direction of the vehicle (center The face blowing air temperature) is high, and the blowing air temperature (side face blowing air temperature) to the left and right sides in the vehicle left-right direction is low.

本発明は、上記点に鑑み、回転式加熱用熱交換器の回転軸方向における温度ばらつきを低減することを目的とする。   An object of this invention is to reduce the temperature dispersion | variation in the rotating shaft direction of the heat exchanger for rotary heating in view of the said point.

上記目的を達成するために、本発明では、空調ケース(11)内に回転軸(16)を中心として回転可能に配置される加熱用熱交換器(15)が最大暖房位置に回転したときに、加熱用熱交換器(15)の周縁部が接触するシール面(20)が空調ケース(11)の内部に形成され、
シール面(20)の中央部には空気の通過可能な開口部(20a)が形成され、
空調ケース(11)内で加熱用熱交換器(15)の風上側で、かつ、回転軸(16)の軸方向の左右両側部位にガイド手段(25)が配置され、
ガイド手段(25)は、空気がシール面(20)を避けて流れるように空気を開口部(20a)に向かってガイドするように構成されていることを特徴としている。
In order to achieve the above object, in the present invention, when the heating heat exchanger (15) that is rotatably arranged around the rotating shaft (16) in the air conditioning case (11) rotates to the maximum heating position. The sealing surface (20) with which the peripheral portion of the heat exchanger for heating (15) contacts is formed inside the air conditioning case (11),
An opening (20a) through which air can pass is formed at the center of the sealing surface (20),
Guide means (25) are arranged in the air-conditioning case (11) on the windward side of the heat exchanger for heating (15) and on the left and right sides in the axial direction of the rotating shaft (16),
The guide means (25) is characterized by being configured to guide the air toward the opening (20a) so that the air flows while avoiding the sealing surface (20).

これによると、図2(a)に例示するように回転軸方向の左右両側のシール面(20)を避けて空気が流れるので、図8、図9における矢印c1、c2の冷風流れを消滅できる。そのため、開口部(20a)における回転軸方向の左右両側の冷風割合が中央部に比較して高くなることを抑制でき、開口部(20a)からの吹出空気の温度分布を均一化できる。   According to this, as illustrated in FIG. 2A, air flows while avoiding the seal surfaces (20) on both the left and right sides in the rotation axis direction, so that the cold air flow indicated by arrows c1 and c2 in FIGS. 8 and 9 can be eliminated. . Therefore, it can suppress that the cold-air ratio of the right-and-left both sides of the rotating shaft direction in an opening part (20a) becomes high compared with a center part, and the temperature distribution of the blowing air from an opening part (20a) can be equalize | homogenized.

しかも、本発明によるガイド手段(25)は加熱用熱交換器(15)の風上側に配置されるものであって、加熱前の比体積が小さい冷風だけをガイドすればよいので、加熱用熱交換器(15)の風下側に冷温風混合促進のためのガイド手段を設置する場合に比較して通風抵抗(圧損)の上昇を僅少量に抑制できる利点がある。   Moreover, the guide means (25) according to the present invention is disposed on the windward side of the heat exchanger for heating (15) and only guides the cold air having a small specific volume before heating. There is an advantage that an increase in ventilation resistance (pressure loss) can be suppressed to a small amount as compared with the case where guide means for promoting the mixing of cold and hot air is installed on the leeward side of the exchanger (15).

本発明では、具体的には、ガイド手段は、加熱用熱交換器(15)の回転作動領域よりも風上側に位置する風上側空気通路(18)のうち、少なくともシール面(20)に近接する部位に形成すればよい。   In the present invention, specifically, the guide means is close to at least the seal surface (20) in the windward air passage (18) located on the windward side of the rotational operation region of the heating heat exchanger (15). What is necessary is just to form in the site | part which carries out.

本発明のガイド手段は、具体的には、加熱用熱交換器(15)の風上側通路面積を絞る通路絞り部(25)で構成すればよい。   Specifically, the guide means of the present invention may be constituted by a passage restricting portion (25) for restricting the windward passage area of the heating heat exchanger (15).

そして、この通路絞り部(25)は、具体的には空気流れの上流側から下流側に向かって通路絞り量をテーパ状に増加するように形成するのが好ましい。これによると、通路絞り部(25)にて急曲がりを起こすことなくシール面(20)の中央部の開口部(20a)へ向かって空気流れをスムースにガイドできる。   The passage restricting portion (25) is preferably formed so as to increase the amount of passage restriction in a taper shape from the upstream side to the downstream side of the air flow. According to this, an air flow can be smoothly guided toward the opening part (20a) of the center part of a sealing surface (20), without raise | generating a sharp curve in a channel | path throttle part (25).

なお、上記通路絞り部(25)は、空気流れの上流側から下流側にわたって通路絞り量が一定量となるように構成してもよい。   The passage restricting portion (25) may be configured such that the amount of passage restriction becomes a constant amount from the upstream side to the downstream side of the air flow.

また、本発明のガイド手段は、加熱用熱交換器(15)の風上側の空気流れを開口部(20a)に向けるガイド形状部で構成してもよい。   Moreover, you may comprise the guide means of this invention by the guide-shaped part which orient | assigns the airflow of the windward side of the heat exchanger for heating (15) to an opening part (20a).

また、本発明では、具体的には、加熱用熱交換器(15)のうち回転軸(16)側の端部(15a)が風下側に位置し、加熱用熱交換器(15)のうち回転軸(16)と反対側の端部(15b)が風上側に位置するようにして、加熱用熱交換器(15)が空調ケース(11)内に配置され、
シール面(20)が加熱用熱交換器(15)よりも風下側に配置されるようになっている。
In the present invention, specifically, the end (15a) on the rotating shaft (16) side of the heating heat exchanger (15) is located on the leeward side, and the heating heat exchanger (15) The heating heat exchanger (15) is arranged in the air conditioning case (11) so that the end (15b) opposite to the rotating shaft (16) is located on the windward side,
The sealing surface (20) is arranged on the leeward side with respect to the heating heat exchanger (15).

また、本発明では、具体的には、加熱用熱交換器(15)のうち回転軸(16)側の端部(15a)が風上側に位置し、加熱用熱交換器(15)のうち回転軸(16)と反対側の端部(15b)が風下側に位置するようにして、加熱用熱交換器(15)が空調ケース(11)内に配置され、
シール面(20)が加熱用熱交換器(15)よりも風上側に配置され、ガイド手段(25)はシール面(20)の更に風上側に配置されるようにしてもよい。
In the present invention, specifically, the end (15a) on the rotating shaft (16) side of the heating heat exchanger (15) is located on the windward side, and the heating heat exchanger (15) The heating heat exchanger (15) is arranged in the air conditioning case (11) so that the end (15b) opposite to the rotating shaft (16) is located on the leeward side,
The sealing surface (20) may be disposed on the windward side of the heating heat exchanger (15), and the guide means (25) may be disposed further on the windward side of the sealing surface (20).

また、本発明のシール面は、具体的には、開口部(20a)を囲むように空調ケース(11)の内壁面から額縁状に突出するシールリブ(20)にて構成される。   Moreover, the sealing surface of this invention is specifically comprised by the sealing rib (20) which protrudes in a frame shape from the inner wall face of an air-conditioning case (11) so that an opening part (20a) may be enclosed.

なお、上記各手段および特許請求の範囲に記載の各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means and each means as described in a claim shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
図1は第1実施形態による回転式加熱用熱交換器を備える車両用空調装置の室内空調ユニットの概略断面図で、図2は第1実施形態の要部をなす回転式加熱用熱交換器付近の構成の概略説明図であって、図2(a)は回転式加熱用熱交換器の風上側通路から車室内への吹出通路に至る概略断面図、図2(b)は図2(a)のA−A断面図、図2(c)は図2(a)のB−B断面図、図2(d)は図2(b)のC−C断面位置における温度分布の説明図である。
(First embodiment)
FIG. 1 is a schematic cross-sectional view of an indoor air conditioning unit of a vehicle air conditioner equipped with a rotary heating heat exchanger according to the first embodiment, and FIG. 2 is a rotary heating heat exchanger forming the main part of the first embodiment. FIG. 2A is a schematic cross-sectional view of a configuration in the vicinity, and FIG. 2A is a schematic cross-sectional view from the windward side passage of the rotary heating heat exchanger to the outlet passage to the vehicle interior, and FIG. 2A is a cross-sectional view taken along the line A-B in FIG. 2A, and FIG. 2D is a cross-sectional view taken along the line C-C in FIG. 2B. It is.

最初に、図1により車両用空調装置の室内空調ユニット10の概要を説明すると、室内空調ユニット部10は車室内前部の計器盤(インストルメントパネル、図示せず)内側において車両左右方向の略中央部に配置される。なお、図1における上下前後の各矢印は車両搭載状態における方向を示す。図1の紙面垂直方向が車両左右(幅)方向となる。   First, the outline of the indoor air conditioning unit 10 of the vehicle air conditioner will be described with reference to FIG. 1. Located in the center. In addition, each arrow before and behind in FIG. 1 shows the direction in a vehicle mounting state. The vertical direction in FIG. 1 is the vehicle left-right (width) direction.

室内空調ユニット部10は車室内へ向かって流れる空気の通路を構成する樹脂製の空調ケース11を備えている。この空調ケース11は樹脂成形上の都合、内蔵部品の組付上の都合等から、実際には複数の分割ケース体として成形され、この複数の分割ケース体をねじやクリップ等の締結手段により一体に締結することにより空調ケース11が構成される。   The indoor air-conditioning unit 10 includes a resin air-conditioning case 11 that forms a passage for air flowing toward the passenger compartment. The air-conditioning case 11 is actually formed as a plurality of divided case bodies for convenience in resin molding, assembly of built-in parts, and the like, and the plurality of divided case bodies are integrated by fastening means such as screws and clips. The air-conditioning case 11 is configured by fastening to.

そして、本実施形態では、空調ケース11のうち、車両前方側の上方部に送風機部12を一体に配置した構成になっている。この送風機部12は、遠心式の送風ファン12aをモータ(図示せず)により回転駆動するようになっている。なお、送風ファン12aの吸入口に内外気切替箱(図示せず)を接続し、この内外気切替箱からの導入空気(内気または外気)を送風ファン12aにより矢印aのように上方から下方へ向かって送風するようになっている。   And in this embodiment, it is the structure which has arrange | positioned the air blower part 12 integrally in the upper part of the vehicle front side among the air-conditioning cases 11. FIG. The blower unit 12 is configured to rotationally drive a centrifugal blower fan 12a by a motor (not shown). An inside / outside air switching box (not shown) is connected to the suction port of the blower fan 12a, and the introduced air (inside air or outside air) from the inside / outside air switching box is sent from the top to the bottom as indicated by the arrow a by the blower fan 12a. It is designed to blow air toward you.

空調ケース11内部のうち、車両前方側の下方部に冷却用熱交換器をなす蒸発器13が配置されている。ここで、蒸発器13の外形は矩形状の薄型形状であり、送風機部12の送風空気の全量が矢印bのように通過する。蒸発器13は、周知のように蒸気圧縮式冷凍サイクルの低圧側熱交換器であり、矢印bの通過空気から吸熱して低圧冷媒が蒸発することにより、この通過空気を冷却する。   An evaporator 13 serving as a heat exchanger for cooling is disposed in a lower portion of the air conditioning case 11 on the front side of the vehicle. Here, the outer shape of the evaporator 13 is a rectangular thin shape, and the entire amount of blown air from the blower unit 12 passes as shown by an arrow b. As is well known, the evaporator 13 is a low pressure side heat exchanger of the vapor compression refrigeration cycle, and cools the passing air by absorbing heat from the passing air indicated by the arrow b and evaporating the low pressure refrigerant.

空調ケース11の底面部の最低部位に排水口14が設けられ、この排水口14から蒸発器13で発生する凝縮水が車室外へ排水される。   A drain port 14 is provided at the lowest part of the bottom surface of the air conditioning case 11, and condensed water generated in the evaporator 13 is drained from the drain port 14 to the outside of the passenger compartment.

そして、空調ケース11内において、蒸発器13の風下側にヒータコア15が配置されている。より具体的には、蒸発器13の車両後方側で、かつ、上方側部位にヒータコア15が配置される。ここで、ヒータコア15は、車両エンジン(図示せず)からの温水(エンジン冷却水)を熱源流体として空気を加熱する加熱用熱交換器である。   In the air conditioning case 11, a heater core 15 is disposed on the leeward side of the evaporator 13. More specifically, the heater core 15 is disposed on the vehicle rear side of the evaporator 13 and in an upper portion. Here, the heater core 15 is a heat exchanger for heating that heats air using hot water (engine cooling water) from a vehicle engine (not shown) as a heat source fluid.

そして、ヒータコア15の外形も矩形状の薄型形状であり、その矩形状の外形の一端部15a、具体的には、上端部15aに回転軸16を設定して、この回転軸16によってヒータコア15を空調ケース11に対して回転可能に支持するようになっている。   The outer shape of the heater core 15 is also a rectangular thin shape. One end portion 15a of the rectangular outer shape, more specifically, the rotary shaft 16 is set at the upper end portion 15a. The air-conditioning case 11 is rotatably supported.

図1の例では、回転軸16を蒸発器13の上端部の後方側に隣接配置している。蒸発器13とヒータコア15の間には最大冷房用の遮風壁17が空調ケース11に一体成形されている。この遮風壁17は、蒸発器13の上端部とヒータコア15の上端部(回転軸16側の端部)15aとの間の部位から鉛直方向に垂下する板状に形成される。   In the example of FIG. 1, the rotating shaft 16 is disposed adjacent to the rear side of the upper end portion of the evaporator 13. A windshield wall 17 for maximum cooling is integrally formed in the air conditioning case 11 between the evaporator 13 and the heater core 15. The wind shielding wall 17 is formed in a plate shape that hangs vertically from a portion between the upper end portion of the evaporator 13 and the upper end portion (end portion on the rotating shaft 16 side) 15a of the heater core 15.

この板状の遮風壁17は、車両左右方向(図1の紙面垂直方向)に対しては空調ケース11内部の全域に形成され、遮風壁17の左右両側部は空調ケース11の左右の側壁部に結合される。   The plate-shaped wind shielding wall 17 is formed in the entire area inside the air conditioning case 11 with respect to the vehicle left-right direction (the direction perpendicular to the plane of FIG. 1). Coupled to the side wall.

この板状の遮風壁17はヒータコア15の風上側の面(図1の左側面)の全体を覆うことができるようにヒータコア15とほぼ同一面積に形成される。遮風壁17の下端部およびヒータコア15の下端部15bと、空調ケース11の底面部との間には所定の間隙が設定され、この所定の間隙によってヒータコア風上側の空気通路18が形成される。すなわち、この空気通路18はヒータコア15の回転作動領域に対して風上側の領域に形成される。   The plate-shaped wind shielding wall 17 is formed in substantially the same area as the heater core 15 so as to cover the entire windward surface (left side surface in FIG. 1) of the heater core 15. A predetermined gap is set between the lower end portion of the wind shielding wall 17 and the lower end portion 15b of the heater core 15 and the bottom surface portion of the air conditioning case 11, and the air passage 18 on the upper side of the heater core is formed by the predetermined gap. . That is, the air passage 18 is formed in a region on the windward side with respect to the rotation operation region of the heater core 15.

ヒータコア15は、最大冷房時には遮風壁17の風下側の面(図1の右側面)に沿った破線位置MCに回転操作される。この最大冷房位置MCでは、遮風壁17がヒータコア15の風上側の面を全閉して、蒸発器13風下側の空気がヒータコア15のコア部を通過することを阻止する。  The heater core 15 is rotated to a broken line position MC along the leeward side surface (the right side surface in FIG. 1) of the wind shielding wall 17 during maximum cooling. In the maximum cooling position MC, the wind shielding wall 17 fully closes the windward surface of the heater core 15 and prevents the air on the leeward side of the evaporator 13 from passing through the core portion of the heater core 15.

従って、蒸発器通過空気(冷風)の全量が矢印cのようにヒータコア15をバイパスして流れるので、最大冷房性能を発揮できる。このため、最大冷房時にはヒータコア風上側の空気通路18がヒータコアバイパス通路として作用する。   Accordingly, since the entire amount of the air passing through the evaporator (cold air) flows by bypassing the heater core 15 as indicated by the arrow c, the maximum cooling performance can be exhibited. For this reason, the air passage 18 on the upper side of the heater core acts as a heater core bypass passage during maximum cooling.

なお、ヒータコア15のコア部は周知の構成であり、前述の図9(c)を援用して説明すると、温水が流れる断面偏平状のチューブ15cを多数本並列配置し、この多数本のチューブ15c相互間にコルゲートフィン15dを配置し、このチューブ15cとコルゲートフィン15dとを一体に接合し、チューブ15cとコルゲートフィン15dとの空隙部を蒸発器13風下側の空気が通過するようになっている。   The core portion of the heater core 15 has a well-known configuration, and will be described with reference to FIG. 9C described above. A large number of tubes 15c having a flat cross section through which hot water flows are arranged in parallel. Corrugated fins 15d are disposed between each other, the tubes 15c and the corrugated fins 15d are joined together, and the air on the leeward side of the evaporator 13 passes through the gap between the tubes 15c and the corrugated fins 15d. .

チューブ15cの長手方向の両端部はタンク15eに連通し、このタンク15eにより多数本のチューブ15cに対する温水の分配、集合を行う。なお、図9(c)では、チューブ15cの一端側のタンク15eのみを図示し、他端側のタンク15eの図示は省略している。   Both ends of the tube 15c in the longitudinal direction communicate with the tank 15e, and the tank 15e distributes and collects hot water to the multiple tubes 15c. In FIG. 9C, only the tank 15e on one end side of the tube 15c is shown, and the illustration of the tank 15e on the other end side is omitted.

ところで、本実施形態では、遮風壁17の下端側に形成される風上側の空気通路18に対してヒータコア15の下端部(回転軸16と反対側の端部)15bが接近し、ヒータコア15の上端部(回転軸16側の端部)15aが風上側空気通路18から遠ざかるようにヒータコア15が配置されるので、ヒータコア15の下端部15bが風上側端部となり、ヒータコア15の上端部15aが風下側端部となる。   By the way, in this embodiment, the lower end part (end part on the opposite side to the rotating shaft 16) 15b of the heater core 15 approaches the upwind air passage 18 formed on the lower end side of the wind shielding wall 17, and the heater core 15 Since the heater core 15 is arranged so that the upper end portion (end portion on the rotating shaft 16 side) 15a of the heater core 15 moves away from the windward air passage 18, the lower end portion 15b of the heater core 15 becomes the windward end portion, and the upper end portion 15a of the heater core 15 Becomes the leeward side end.

空調ケース11の内壁面においてヒータコア15の風下側部位にシールリブ20が形成される。このシールリブ20は空調ケース11の内壁面に一体成形され最大暖房時のケース側シール面を構成する。   Seal ribs 20 are formed on the leeward side of the heater core 15 on the inner wall surface of the air conditioning case 11. The seal rib 20 is integrally formed on the inner wall surface of the air conditioning case 11 and constitutes a case-side seal surface during maximum heating.

このシールリブ20は、具体的には空調ケース11の内壁面から空調ケース11の内側へ向かって額縁状に突き出すものである。シールリブ20の額縁状の突出形状は図2(a)に示す通りであり、この額縁状の突出形状の中央部には中央開口部20aが開口している。   Specifically, the seal rib 20 projects in a frame shape from the inner wall surface of the air conditioning case 11 toward the inside of the air conditioning case 11. The protruding shape of the frame shape of the seal rib 20 is as shown in FIG. 2A, and a central opening 20a is opened at the center of the protruding shape of the frame shape.

最大暖房時にはヒータコア15が図1の1点鎖線位置MHに回転操作され、ヒータコア15の矩形状の周縁部がシールリブ20の額縁状の突出形状に圧接する。これにより、最大暖房時には空気通路18と中央開口部20aとが直接連通するヒータコアバイパス通路が遮断され、ヒータコア15の下端部15bと空調ケース11の底面部内壁面との間から中央開口部20aへ直接向かうバイパス空気流れ(冷風流れ)cが遮断される。   During maximum heating, the heater core 15 is rotated to the one-dot chain line position MH in FIG. 1, and the rectangular peripheral edge of the heater core 15 is pressed against the frame-like protruding shape of the seal rib 20. Thereby, at the time of maximum heating, the heater core bypass passage in which the air passage 18 and the central opening 20a directly communicate with each other is blocked, and the space between the lower end portion 15b of the heater core 15 and the inner wall surface of the bottom surface of the air conditioning case 11 directly enters the central opening 20a. The bypass bypass air flow (cold air flow) c is blocked.

このため、空調ケース11内の送風空気の全量がヒータコア15のコア部を通過して加熱されるので、最大暖房性能を発揮できる。ヒータコア15のコア部を通過した温風dはシールリブ20の中央開口部20aを通過して風下側へ流れる。   For this reason, since the whole quantity of blowing air in the air conditioning case 11 passes through the core part of the heater core 15 and is heated, the maximum heating performance can be exhibited. The warm air d that has passed through the core portion of the heater core 15 flows through the central opening 20a of the seal rib 20 to the leeward side.

また、ヒータコア15の図1実線位置は温度制御時の中間開度(中間回転位置)の一例であり、この中間開度の操作位置であると、蒸発器通過空気(冷風)のうち、ヒータコア下方側の流れは矢印cのようにヒータコア15をバイパスして流れ、蒸発器通過空気(冷風)のうち、上方側の流れは矢印d’のようにヒータコア15を通過して流れ加熱されるので、温風dとなる。   Moreover, the solid line position in FIG. 1 of the heater core 15 is an example of an intermediate opening (intermediate rotation position) at the time of temperature control. Since the flow on the side bypasses the heater core 15 as indicated by the arrow c, and the upper flow of the evaporator passing air (cold air) passes through the heater core 15 and is heated as indicated by the arrow d ′, It becomes hot air d.

従って、ヒータコア15の回転位置を調整することにより、ヒータコア15をバイパスする冷風と、ヒータコア15を通過する温風との風量割合を調整して、車室内吹出空気温度を連続的に調整できる。   Therefore, by adjusting the rotation position of the heater core 15, the air volume ratio between the cold air that bypasses the heater core 15 and the hot air that passes through the heater core 15 can be adjusted to continuously adjust the temperature of the air blown into the vehicle interior.

ヒータコア15をバイパスする冷風と、ヒータコア15を通過する温風は、いずれもシールリブ20の中央開口部20aを通過して、シールリブ20の上方領域21にて混合され、所望温度の空調風となった後に、各吹出開口部22、23、24に流入する。   The cold air that bypasses the heater core 15 and the warm air that passes through the heater core 15 both pass through the central opening 20a of the seal rib 20 and are mixed in the upper region 21 of the seal rib 20, resulting in conditioned air at a desired temperature. Later, it flows into each of the outlet openings 22, 23, 24.

次に、車室内各部へ空気を吹き出す吹出開口部22、23、24の配置について説明する。この吹出開口部22、23、24は、空調ケース11のうち送風機部12の車両後方側部位に配置されている。   Next, the arrangement of the blowout openings 22, 23, and 24 for blowing air to each part of the vehicle interior will be described. The blowout openings 22, 23, and 24 are arranged in the vehicle rear side portion of the blower unit 12 in the air conditioning case 11.

デフロスタ開口部22は空調ケース11の上面部に配置され、図示しないデフロスタダクトを介して車両計器盤上面のデフロスタ吹出口に接続され、このデフロスタ吹出口から車両前面窓ガラスの内面に向けて空気を吹き出す。   The defroster opening 22 is disposed on the upper surface of the air conditioning case 11 and is connected to a defroster outlet on the upper surface of the vehicle instrument panel via a defroster duct (not shown). Blow out.

フェイス開口部23はデフロスタ開口部22よりも車両後方側部位に配置される。このフェイス開口部23は具体的には、図2(a)に示すように、車両左右方向の中央部に位置するセンターフェイス開口部231と、車両左右方向の左右両側に位置するサイドフェイス開口部232とに分割される。   The face opening 23 is disposed at a rear side of the vehicle with respect to the defroster opening 22. Specifically, as shown in FIG. 2A, the face opening 23 includes a center face opening 231 located at the center in the vehicle left-right direction and side face openings located on both the left and right sides in the vehicle left-right direction. And H.232.

センターフェイス開口部231にはセンターフェイスダクト231aが接続され、このセンターフェイスダクト231aの先端部吹出口(センターフェイス吹出口)は車両計器盤(インパネ)の左右方向中央部に配置され、ここからから乗員の顔部側へ空気を吹き出す。   A center face duct 231a is connected to the center face opening 231. A front end outlet (center face outlet) of the center face duct 231a is disposed at the center in the left-right direction of the vehicle instrument panel (instrument panel). Air is blown out to the occupant's face.

サイドフェイス開口部232にはサイドフェイスダクト232aが接続され、このサイドフェイスダクト232aの先端部吹出口(サイドフェイス吹出口)は車両計器盤(インパネ)の左右方向両端部に配置され、ここからから乗員の顔部側あるいは車両側面窓ガラス側へ空気を吹き出す。   A side face duct 232a is connected to the side face opening 232, and a front end outlet (side face outlet) of the side face duct 232a is disposed at both left and right ends of the vehicle instrument panel (instrument panel). Air is blown out to the passenger's face side or vehicle side window glass side.

フット開口部24は空調ケース11の左右両側の側壁に配置され、図示しないフットダクトを介して乗員の足元側へ空気を吹き出すものである。なお、デフロスタ開口部22、フェイス開口部23およびフット開口部24は図示しない吹出モードドアにより開閉されるようになっている。   The foot opening 24 is disposed on the left and right side walls of the air conditioning case 11 and blows air to the feet of the occupant through a foot duct (not shown). The defroster opening 22, the face opening 23, and the foot opening 24 are opened and closed by a blowing mode door (not shown).

次に、ヒータコア15の風上側空気通路18に形成される通路絞り部25について説明する。通路絞り部25は、図2(a)に示すように、ヒータコア15の風上側空気通路18のヒータコア回転軸方向(車両左右方向)の幅寸法W1をヒータコア15の幅寸法W2よりも小さくして、幅寸法W1をシールリブ20の中央開口部20aの幅寸法W3とほぼ同一あるいは若干小さめの大きさにしている。   Next, the passage restricting portion 25 formed in the windward air passage 18 of the heater core 15 will be described. As shown in FIG. 2A, the passage restricting portion 25 has a width dimension W <b> 1 in the heater core rotation axis direction (vehicle left-right direction) of the windward air passage 18 of the heater core 15 smaller than the width dimension W <b> 2 of the heater core 15. The width dimension W1 is substantially the same as or slightly smaller than the width dimension W3 of the central opening 20a of the seal rib 20.

図3(a)(b)は通路絞り部25の具体的形態を例示するもので、図3(b)に示すように、通路絞り部25は車両上下方向に対してはヒータコア15下方の空気通路18の形成部位に形成され、そして、車両左右方向に対しては図3(a)に示すように、通路絞り部25は空調ケース11の左右両側の側壁部から内側方向へ突き出すように形成される。   3A and 3B exemplify a specific form of the passage restricting portion 25. As shown in FIG. 3B, the passage restricting portion 25 has air below the heater core 15 in the vehicle vertical direction. As shown in FIG. 3A, the passage restricting portion 25 is formed so as to protrude inward from the left and right side wall portions of the air conditioning case 11 with respect to the vehicle left-right direction. Is done.

更に、この左右両側の通路絞り部25は図3(a)に示すように、空気流れの上流側(遮風壁17の下端側)から下流側(シールリブ20の後方側面の下方側)へ向かって内側方向への突出量がテーパー状に徐々に増大するように形成してある。これにより、空気通路18の通路幅寸法の絞り量がテーパー状に徐々に増大して、シールリブ20の直前部位にて絞り量が最大となっている。すなわち、シールリブ20の直前部位にて空気通路18の通路幅寸法W1がシールリブ20の中央開口部20aの幅寸法W3とほぼ同一あるいは若干小さめの大きさになっている。   Further, as shown in FIG. 3A, the left and right passage restricting portions 25 are directed from the upstream side of the air flow (the lower end side of the wind shield wall 17) to the downstream side (the lower side of the rear side surface of the seal rib 20). Thus, the amount of protrusion in the inward direction is gradually increased in a tapered shape. Thereby, the amount of restriction of the passage width dimension of the air passage 18 gradually increases in a taper shape, and the amount of restriction is maximized immediately before the seal rib 20. In other words, the passage width dimension W1 of the air passage 18 is almost the same as or slightly smaller than the width dimension W3 of the central opening 20a of the seal rib 20 at a position immediately before the seal rib 20.

なお、回転軸16の軸方向の両端部は、図3(a)に示すように空調ケース11の左右の側壁を貫通して空調ケース11の外部へ突出し、回転軸16の一端部(左側端部)は空調ケース11の外部にて温水出入り口機構26に連結される。   As shown in FIG. 3A, both end portions in the axial direction of the rotating shaft 16 pass through the left and right side walls of the air conditioning case 11 and protrude to the outside of the air conditioning case 11. Are connected to the hot water inlet / outlet mechanism 26 outside the air conditioning case 11.

この温水出入り口機構26は、回転軸16側と連結される回転側の温水入口側配管(図示せず)および温水出口側配管(図示せず)と、空調ケース11側に固定される固定側の温水入口側配管(図示せず)および温水出口側配管(図示せず)とを有し、回転側の配管が固定側の配管に対して回転可能となるようにこれらの配管を同軸上で嵌合した同軸2重配管機構にて構成される。ヒータコア15には、温水出入り口機構26および回転軸16の温水通路部を介して温水が循環する。   The hot water inlet / outlet mechanism 26 includes a rotary hot water inlet side pipe (not shown) and a hot water outlet side pipe (not shown) connected to the rotary shaft 16 side, and a fixed side fixed to the air conditioning case 11 side. It has a hot water inlet side pipe (not shown) and a hot water outlet side pipe (not shown), and these pipes are fitted coaxially so that the rotating side pipe can rotate with respect to the fixed side pipe. Consists of a combined coaxial double piping mechanism. Hot water circulates in the heater core 15 through the hot water inlet / outlet mechanism 26 and the hot water passage portion of the rotating shaft 16.

また、回転軸16の他端部(右側端部)は空調ケース11の外部にて回転駆動機構27に連結される。この回転駆動機構27は、回転軸16に連結されるリンク機構、ギヤ機構等の動力伝達機構と、この動力伝達機構を介して回転駆動力を回転軸16に与えるサーボモータ等の駆動機構とにより構成される。なお、回転駆動機構27を乗員の手動操作力により作動するマニュアル式の機構にしてもよい。   Further, the other end (right end) of the rotating shaft 16 is connected to the rotation driving mechanism 27 outside the air conditioning case 11. The rotation drive mechanism 27 includes a power transmission mechanism such as a link mechanism and a gear mechanism connected to the rotation shaft 16 and a drive mechanism such as a servo motor that applies a rotation driving force to the rotation shaft 16 through the power transmission mechanism. Composed. The rotation drive mechanism 27 may be a manual mechanism that is operated by the manual operation force of the occupant.

次に、本実施形態の作動を説明する。回転駆動機構27によりヒータコア15を回転軸16を中心として回転操作し、ヒータコア15が図1の破線位置MCに回転変位すると、前述のように遮風壁17がヒータコア15の風上側の面を全閉して、蒸発器13風下側の空気がヒータコア15のコア部を通過することを阻止する。   Next, the operation of this embodiment will be described. When the heater core 15 is rotated about the rotation axis 16 by the rotation drive mechanism 27 and the heater core 15 is rotationally displaced to the broken line position MC in FIG. 1, the wind shielding wall 17 covers the entire windward surface of the heater core 15 as described above. Closed to prevent the air on the leeward side of the evaporator 13 from passing through the core portion of the heater core 15.

従って、冷凍サイクルおよび送風機16を運転すれば、蒸発器13で冷却された冷風の全量が矢印cのようにヒータコア15をバイパスして流れるので、最大冷房性能を発揮できる。   Therefore, if the refrigeration cycle and the blower 16 are operated, the entire amount of the cold air cooled by the evaporator 13 flows by bypassing the heater core 15 as indicated by the arrow c, so that the maximum cooling performance can be exhibited.

ところで、ヒータコア15の最大冷房位置MCでは、蒸発器通過後の冷風流れcに対して、ヒータコア15のコア面が直交状に配置されるので、冷風流れcがヒータコア15のコア面から十分離れた部位を流れる。   By the way, at the maximum cooling position MC of the heater core 15, the core surface of the heater core 15 is arranged orthogonal to the cold air flow c after passing through the evaporator, so that the cold air flow c is sufficiently separated from the core surface of the heater core 15. It flows through the part.

このため、ヒータコア15の温水回路における温水弁を廃止して、エンジン作動時はヒータコア15に温水が常時流れる構成にしても、ヒータコア15からの放熱による冷風温度の上昇(最大冷房性能の低下)を僅少に抑えることができる。そのため、温水弁を持たないシステム構成にして、空調装置のコストダウンを図ることができる。   For this reason, even if the hot water valve in the hot water circuit of the heater core 15 is abolished and the hot water always flows through the heater core 15 when the engine is operating, the cold air temperature rises (decreases the maximum cooling performance) due to heat radiation from the heater core 15. Slightly reduced. Therefore, it is possible to reduce the cost of the air conditioner by using a system configuration without a hot water valve.

一方、ヒータコア15を図1の1点鎖線位置MHに回転操作すると、前述のように、ヒータコア15の矩形状の周縁部がシールリブ20の額縁状の突出形状に圧接する。これにより、空気通路18とシールリブ20の中央開口部20aとが直接連通する状態が遮断されるので、空気通路18からシールリブ20の中央開口部20aへ直接向かう空気流れ(冷風流れ)cが消滅する。   On the other hand, when the heater core 15 is rotated to the one-dot chain line position MH in FIG. 1, the rectangular peripheral edge of the heater core 15 is pressed against the frame-like protruding shape of the seal rib 20 as described above. As a result, the state in which the air passage 18 and the central opening 20a of the seal rib 20 directly communicate with each other is blocked, so that the air flow (cold air flow) c directly from the air passage 18 to the central opening 20a of the seal rib 20 disappears. .

このため、蒸発器通過後の送風空気の全量がヒータコア15のコア部に流入して加熱されるので、最大暖房性能を発揮できる。   For this reason, since the whole quantity of blowing air after passing through the evaporator flows into the core portion of the heater core 15 and is heated, the maximum heating performance can be exhibited.

一方、ヒータコア15を図1の実線位置で示す中間開度位置(中間回転位置)に回転操作すると、前述のように、蒸発器通過空気(冷風)のうち、下方側の流れは矢印cのようにヒータコア15をバイパスして流れ、蒸発器通過空気(冷風)のうち、上方側の流れは矢印d’のようにヒータコア15を通過して流れ加熱され、温風dとなる。   On the other hand, when the heater core 15 is rotated to the intermediate opening position (intermediate rotation position) indicated by the solid line position in FIG. 1, the lower side flow of the evaporator passing air (cold air) is as indicated by the arrow c as described above. In the evaporator passing air (cold air), the upper flow flows through the heater core 15 as indicated by arrow d ′ and is heated to become hot air d.

従って、ヒータコア15の回転位置を調整することにより、ヒータコア15をバイパスする冷風と、ヒータコア15を通過する温風との風量割合を調整して、車室内吹出空気温度を連続的に調整できる。   Therefore, by adjusting the rotation position of the heater core 15, the air volume ratio between the cold air that bypasses the heater core 15 and the hot air that passes through the heater core 15 can be adjusted to continuously adjust the temperature of the air blown into the vehicle interior.

このようなヒータコア15の中間開度位置(中間回転位置)における冷風と温風の流れの挙動をさらに詳述すると、本実施形態では、ヒータコア15の風上側空気通路18に通路絞り部25を形成して、風上側空気通路18のヒータコア回転軸方向(車両左右方向)の幅寸法W1をシールリブ20の中央開口部20aの幅寸法W3とほぼ同一あるいは若干小さめの大きさとなるように絞っている。   The behavior of the flow of the cold air and the warm air at the intermediate opening position (intermediate rotation position) of the heater core 15 will be described in further detail. In the present embodiment, the passage restricting portion 25 is formed in the upwind air passage 18 of the heater core 15. Then, the width dimension W1 of the windward air passage 18 in the heater core rotation axis direction (the vehicle left-right direction) is narrowed to be substantially the same as or slightly smaller than the width dimension W3 of the central opening 20a of the seal rib 20.

この通路絞り部25により、風上側空気通路18における冷風流れを図2(a)の矢印cのようにシールリブ20の中央開口部20aに向かってガイドすることができる。そのため、風上側空気通路18における冷風がシールリブ20の左右両側の突出面に沿って流れることを抑制できる。   The passage restricting portion 25 can guide the cold air flow in the upwind air passage 18 toward the central opening 20a of the seal rib 20 as indicated by an arrow c in FIG. Therefore, it is possible to suppress the cool air in the upwind air passage 18 from flowing along the left and right protruding surfaces of the seal rib 20.

つまり、本実施形態によると、通路絞り部25の形成によって、風上側空気通路18における冷風がシールリブ20の左右両側の突出面を避けて流れるように冷風を中央開口部20aに向かってガイドすることができる。この結果、シールリブ20の左右両側の突出面に沿った冷風流れ(図2(b)の破線矢印c1参照)を消滅できるので、この冷風流れ(破線矢印c1)に起因して、中央開口部20aからの吹出空気温度が中央部に比較して左右両側部が低くなることを解消できる。そのため、中央開口部20aからの吹出空気の温度分布を図2(d)に示すように車両左右方向でほぼ均一にすることができる。なお、図2(d)は、最上部の斜線部から最下部の白抜き部に向かって温度が順次低下し、かつ、各温度域が車両左右方向に均一に延びることを表している。   That is, according to the present embodiment, by forming the passage restricting portion 25, the cold air is guided toward the central opening 20a so that the cold air in the windward air passage 18 flows avoiding the left and right protruding surfaces of the seal rib 20. Can do. As a result, the cold air flow (see the broken line arrow c1 in FIG. 2B) along the left and right protruding surfaces of the seal rib 20 can be eliminated, so that the central opening 20a is caused by this cold air flow (broken line arrow c1). It is possible to eliminate the fact that the temperature of the air blown from the lower side of the left and right sides is lower than that of the central part. Therefore, the temperature distribution of the air blown from the central opening 20a can be made substantially uniform in the left-right direction of the vehicle as shown in FIG. FIG. 2D shows that the temperature decreases sequentially from the uppermost shaded portion toward the lowermost white portion, and each temperature region extends uniformly in the left-right direction of the vehicle.

以上のごとく吹出空気の温度分布を車両左右方向でほぼ均一にできるので、図2(a)に示すように、センターフェイス開口部231およびサイドフェイス開口部232から同時に空気を吹き出すフェイスモードが設定されているときには、センターフェイス開口部231からの吹出空気温度とサイドフェイス開口部232からの吹出空気温度とをほぼ同等にすることができる。   As described above, since the temperature distribution of the blown air can be made substantially uniform in the left-right direction of the vehicle, a face mode is set in which air is blown out simultaneously from the center face opening 231 and the side face opening 232 as shown in FIG. The air temperature from the center face opening 231 and the air temperature from the side face opening 232 can be made substantially equal.

ところで、本実施形態による通路絞り部25はヒータコア15の風上側空気通路18に形成されるものであって、ヒータコア15加熱前の冷風(低温空気)のガイド作用を果たすものであるから、空調ケース11内の通風抵抗(圧損)の上昇抑制のために有利である。   By the way, the passage restricting portion 25 according to the present embodiment is formed in the windward air passage 18 of the heater core 15 and serves to guide cold air (low temperature air) before the heater core 15 is heated. 11 is advantageous for suppressing an increase in ventilation resistance (pressure loss).

もし、ヒータコア15の風下側空気通路にガイド手段を形成すると、ヒータコア15の加熱後の温風(高温空気)と冷風との混合を良好にする必要が生じるが、温風は温度上昇によって比体積が冷風よりも十分大きくなっているので、この比体積の大きい温風に冷風を良好に混合するためには、温風あるいは冷風の流れを大きく変更するガイド手段が必要となり、空調ケース11内の通風抵抗(圧損)がどうしても大きくなってしまう。   If the guide means is formed in the leeward air passage of the heater core 15, it is necessary to improve the mixing of the warm air (hot air) after heating the heater core 15 and the cool air. Is sufficiently larger than the cold air, and in order to mix the cold air well with the hot air having a large specific volume, a guide means for greatly changing the flow of the hot air or the cold air is required. Ventilation resistance (pressure loss) is inevitably increased.

しかるに、本実施形態によると、通路絞り部25はヒータコア15加熱前の比体積が小さい冷風だけをガイドすればよく、しかも、シールリブ20の左右両側の突出面の幅寸法相当分の冷風をガイドするだけでよい。このため、通路絞り部25の絞り量W0(図2(a)参照)は比較的少量ですみ、通路絞り部25の形成による通風抵抗(圧損)の上昇を僅少量に抑制できる。   However, according to the present embodiment, the passage restricting portion 25 only needs to guide the cold air having a small specific volume before the heater core 15 is heated, and guides the cold air corresponding to the width dimension of the left and right protruding surfaces of the seal rib 20. Just do it. For this reason, the throttle amount W0 (see FIG. 2A) of the passage restricting portion 25 is relatively small, and an increase in ventilation resistance (pressure loss) due to the formation of the passage restricting portion 25 can be suppressed to a very small amount.

また、通路絞り部25は図3(a)に示すように、空気流れの上流側から下流側へ向かって内側方向への突出量がテーパー状に徐々に増大するように形成してあるから、通路絞り部25にて急曲がりを起こすことなくシールリブ20の中央開口部20aへ向かって風上側空気通路18の冷風をスムースにガイドできる。   Further, as shown in FIG. 3A, the passage restricting portion 25 is formed so that the amount of protrusion of the air flow from the upstream side toward the downstream side gradually increases in a taper shape. The cool air in the upwind air passage 18 can be smoothly guided toward the central opening 20a of the seal rib 20 without causing a sharp bend in the passage restricting portion 25.

(第2実施形態)
第1実施形態では、図3(a)に示すようにヒータコア15の風上側空気通路18の通路幅寸法の絞り量が、空気流れの上流側(遮風壁17の下端側)から下流側(シールリブ20側)へ向かってテーパー状に徐々に増大するように通路絞り部25を形成しているが、第2実施形態では、図4(a)に示すように、ヒータコア15の風上側空気通路18の通路幅寸法の絞り量が、空気流れの上流側(遮風壁17の下端側)から下流側(シールリブ20の後方側)へ向かって一定量となるように通路絞り部25を形成している。
(Second Embodiment)
In the first embodiment, as shown in FIG. 3A, the throttle amount of the passage width dimension of the windward air passage 18 of the heater core 15 is reduced from the upstream side (lower end side of the wind shielding wall 17) to the downstream side ( Although the passage restricting portion 25 is formed so as to gradually increase in a tapered shape toward the seal rib 20 side, in the second embodiment, as shown in FIG. The passage restriction portion 25 is formed so that the restriction amount of the passage width dimension of 18 becomes a constant amount from the upstream side of the air flow (the lower end side of the wind shielding wall 17) toward the downstream side (the rear side of the seal rib 20). ing.

すなわち、第2実施形態では、ヒータコア15の風上側空気通路18の通路幅寸法を、下流側(シールリブ20側)だけでなく、上流側(遮風壁17の下端側)でも一律に絞るようにしている。このようにしても、吹出空気温度分布の均一化の面では、第1実施形態と同様の作用効果を発揮できる。   That is, in the second embodiment, the passage width dimension of the windward air passage 18 of the heater core 15 is uniformly reduced not only on the downstream side (the seal rib 20 side) but also on the upstream side (the lower end side of the wind shielding wall 17). ing. Even if it does in this way, the effect similar to 1st Embodiment can be exhibited in the surface of equalization of blowing air temperature distribution.

なお、図5は本発明の比較例であり、ヒータコア15の風上側空気通路18における通路絞り部25を第1実施形態とは逆の形態で形成している。すなわち、ヒータコア15の風上側空気通路18の通路幅寸法の絞り量が、空気流れの上流側(遮風壁17の下端側)で最大となり、そして、下流側(シールリブ20側)へ向かって絞り量がテーパー状に徐々に減少するように通路絞り部25を形成している。   FIG. 5 shows a comparative example of the present invention, in which the passage restricting portion 25 in the upwind air passage 18 of the heater core 15 is formed in the opposite form to the first embodiment. That is, the amount of restriction of the passage width dimension of the windward air passage 18 of the heater core 15 is maximized on the upstream side of the air flow (the lower end side of the wind shielding wall 17), and is restricted toward the downstream side (the seal rib 20 side). The passage restricting portion 25 is formed so that the amount gradually decreases in a tapered shape.

このような形態であると、通路絞り部25を形成しても、シールリブ20の左右両側の突出面に沿った冷風流れ(図2(b)の破線矢印c1参照)が発生するので、吹出空気温度分布の均一化効果を発揮できない。   With such a configuration, even if the passage restricting portion 25 is formed, a cold air flow (see broken line arrow c1 in FIG. 2B) is generated along the left and right protruding surfaces of the seal rib 20, so that the blown air Unable to achieve uniform temperature distribution.

従って、通路絞り部25は、ヒータコア15の風上側空気通路18のうち、少なくとも、シールリブ20に近接する部位に形成することが吹出空気温度分布の均一化のために重要である。   Therefore, it is important for the passage restricting portion 25 to be formed at least in a portion close to the seal rib 20 in the windward air passage 18 of the heater core 15 in order to make the blown air temperature distribution uniform.

(第3実施形態)
第1、第2実施形態では、ヒータコア15の回転軸16側の端部15aを遮風壁17の上方側に配置し、ヒータコア15の回転軸16と反対側の端部15bを遮風壁17の下方側に配置しているので、ヒータコア15の回転軸16側の端部15aが風下側に位置し、ヒータコア15の回転軸16と反対側の端部15bが風上側に位置する配置構成となっているが、第3実施形態では、図6に示すように第1実施形態と反対の配置構成を採用している。
(Third embodiment)
In the first and second embodiments, the end 15a of the heater core 15 on the rotating shaft 16 side is disposed above the wind shield wall 17, and the end 15b of the heater core 15 opposite to the rotating shaft 16 is disposed on the wind shield wall 17. Since the end 15a of the heater core 15 on the rotating shaft 16 side is located on the leeward side, the end 15b of the heater core 15 opposite to the rotating shaft 16 is located on the upwind side. However, in the third embodiment, an arrangement configuration opposite to that of the first embodiment is adopted as shown in FIG.

すなわち、第3実施形態では、ヒータコア15の回転軸16側の端部15aを遮風壁17の下方側に配置し、ヒータコア15の回転軸16と反対側の端部15bを遮風壁17の上方側に配置している。このため、ヒータコア15の回転軸16側の端部15aが風上側に位置し、ヒータコア15の回転軸16と反対側の端部15bが風下側に位置する配置構成となっている。   That is, in the third embodiment, the end 15 a of the heater core 15 on the rotating shaft 16 side is disposed below the wind shield wall 17, and the end 15 b of the heater core 15 opposite to the rotating shaft 16 is disposed on the wind shield wall 17. It is arranged on the upper side. For this reason, the end portion 15a on the rotating shaft 16 side of the heater core 15 is positioned on the windward side, and the end portion 15b on the opposite side of the rotating shaft 16 of the heater core 15 is positioned on the leeward side.

これに伴って、シールリブ20はヒータコア15に対して風上側に配置される。従って、第3実施形態では、通路絞り部25をシールリブ20の更に風上側に形成することになる。この通路絞り部25の形成によって第3実施形態でもヒータコア回転軸方向(車両左右方向)における吹出空気温度分布を均一化できる効果を同様に発揮できる。   Accordingly, the seal rib 20 is disposed on the windward side with respect to the heater core 15. Therefore, in the third embodiment, the passage restricting portion 25 is formed further on the windward side of the seal rib 20. By forming the passage restricting portion 25, the third embodiment can similarly exhibit the effect of uniforming the blown air temperature distribution in the heater core rotation axis direction (the vehicle left-right direction).

(第4実施形態)
第1、第2実施形態では、蒸発器13とヒータコア15との間に遮風壁17を配置し、最大冷房時には遮風壁17によりヒータコア15への空気流入を阻止しているが、第4実施形態は図7に示すようにこの遮風壁17を廃止するヒータコア配置構成に関する。
(Fourth embodiment)
In the first and second embodiments, the wind shielding wall 17 is disposed between the evaporator 13 and the heater core 15, and air flow into the heater core 15 is prevented by the wind shielding wall 17 during maximum cooling. The embodiment relates to a heater core arrangement configuration that eliminates the wind shielding wall 17 as shown in FIG.

第4実施形態では、空調ケース11のうち、最も車両後方側に位置して上下方向に延びる後方壁11aに沿ってヒータコア15を配置している。具体的には、ヒータコア15の回転軸16(端部15a)を後方壁11aの上方側に配置し、ヒータコア15の回転軸16と反対側の端部15bが後方壁11aの下方側に位置するようにヒータコア15を配置している。   In 4th Embodiment, the heater core 15 is arrange | positioned along the back wall 11a which is located in the vehicle rear side among air conditioning cases 11, and is extended in an up-down direction. Specifically, the rotating shaft 16 (end portion 15a) of the heater core 15 is disposed above the rear wall 11a, and the end portion 15b opposite to the rotating shaft 16 of the heater core 15 is positioned below the rear wall 11a. Thus, the heater core 15 is arranged.

従って、ヒータコア15の回転軸16側の端部15aが風下側に位置し、ヒータコア15の回転軸16と反対側の端部15bが風上側に位置する配置構成となっている。   Therefore, the end portion 15a on the rotating shaft 16 side of the heater core 15 is positioned on the leeward side, and the end portion 15b on the opposite side of the rotating shaft 16 of the heater core 15 is positioned on the leeward side.

第4実施形態においても、ヒータコア15の風上側空気通路18に通路絞り部25を形成することにより、ヒータコア回転軸方向(車両左右方向)における吹出空気温度分布を均一化できる効果を同様に発揮できる。   Also in the fourth embodiment, by forming the passage restricting portion 25 in the windward air passage 18 of the heater core 15, it is possible to similarly exhibit the effect of making the blown air temperature distribution uniform in the heater core rotation axis direction (vehicle left-right direction). .

第4実施形態によると、遮風壁17の廃止により空調ケース11内の通風抵抗(圧損)を低減できる利点があるが、その反面、ヒータコア15が破線位置MCに回転操作される最大冷房時に、ヒータコア15のコア面に沿って冷風が流れるので、ヒータコア15に温水が常時流れたままであると、ヒータコア15から冷風への放熱量が増えて、最大冷房性能を悪化させる。   According to the fourth embodiment, there is an advantage that the ventilation resistance (pressure loss) in the air conditioning case 11 can be reduced by eliminating the wind shielding wall 17, but on the other hand, at the maximum cooling when the heater core 15 is rotated to the broken line position MC, Since the cool air flows along the core surface of the heater core 15, if the hot water always flows through the heater core 15, the amount of heat released from the heater core 15 to the cool air increases and the maximum cooling performance is deteriorated.

このため、第4実施形態の配置構成の場合には、ヒータコア15の温水回路に温水弁を設置して、最大冷房時には温水弁を閉弁してヒータコア15への温水循環を遮断する必要が生じる。つまり、第4実施形態では温水弁が必須となり、その分だけコストアップを招く。   For this reason, in the arrangement of the fourth embodiment, it is necessary to install a hot water valve in the hot water circuit of the heater core 15 and close the hot water valve to shut off the hot water circulation to the heater core 15 during maximum cooling. . That is, in the fourth embodiment, a hot water valve is essential, and the cost increases accordingly.

(他の実施形態)
なお、本発明は上記実施形態に限定されることなく、次のごとく種々変形可能である。
(Other embodiments)
The present invention is not limited to the above embodiment, and can be variously modified as follows.

(1)第4実施形態では、空調ケース11の後方壁11aの上方側にヒータコア15の回転軸16(端部15a)を配置し、ヒータコア15の回転軸16と反対側の端部15bが後方壁11aの下方側に位置するようにヒータコア15を配置しているが、これとは逆に、ヒータコア15の回転軸16(端部15a)を空調ケース11の後方壁11aの下方側に配置し、ヒータコア15の回転軸16と反対側の端部15bが後方壁11aの上方側に位置するようにヒータコア15を配置してもよい。   (1) In 4th Embodiment, the rotating shaft 16 (end part 15a) of the heater core 15 is arrange | positioned above the back wall 11a of the air-conditioning case 11, and the edge part 15b on the opposite side to the rotating shaft 16 of the heater core 15 is back. The heater core 15 is disposed so as to be positioned below the wall 11a. On the contrary, the rotating shaft 16 (end portion 15a) of the heater core 15 is disposed below the rear wall 11a of the air conditioning case 11. The heater core 15 may be arranged so that the end 15b of the heater core 15 opposite to the rotating shaft 16 is located above the rear wall 11a.

この変形例では、シールリブ20はヒータコア15に対して風上側に配置されるので、通路絞り部25をこのシールリブ20の更に風上側に形成することになる。   In this modification, the seal rib 20 is disposed on the windward side with respect to the heater core 15, and therefore the passage restricting portion 25 is formed further on the windward side of the seal rib 20.

(2)上記第1〜第4実施形態では、ヒータコア15の風上側空気通路18に形成した通路絞り部25によって、空気流れをシールリブ20の中央開口部20aに向かってガイドするガイド手段を構成しているが、通路絞り部25の代わりに、空気流れのガイド形状部をヒータコア15の風上側空気通路18に形成してもよい。   (2) In the first to fourth embodiments, the guide means for guiding the air flow toward the central opening 20 a of the seal rib 20 by the passage restricting portion 25 formed in the windward air passage 18 of the heater core 15 is configured. However, instead of the passage restricting portion 25, a guide shape portion of the air flow may be formed in the upwind air passage 18 of the heater core 15.

ここで、ガイド形状部とは、風上側空気通路18のケース壁面に部分的に形成され、空気流れを中央開口部20aに向かってガイドするものであり、通路絞り部25のように通路幅(通路面積)自体を絞るものではない。   Here, the guide-shaped portion is partly formed on the case wall surface of the windward side air passage 18 and guides the air flow toward the central opening 20a. It does not limit the passage area itself.

このように、本発明のガイド手段は、通路絞り部25のように通路幅(通路面積)自体を絞るものだけに限定されず、ガイド形状部によって構成してもよい。   Thus, the guide means of the present invention is not limited to the one that narrows the passage width (passage area) itself like the passage restricting portion 25, but may be constituted by a guide-shaped portion.

(3)上記第1実施形態では、第2図(a)に示すように、フェイス吹出を例示して説明しているので、センターフェイス吹出温度とサイドフェイス吹出温度との等温化(全吹出温度との等温化)を図っているが、例えば、シールリブ20の中央開口部20aの中央領域にフット開口部を配置し、中央開口部20aの左右両側領域に左右のサイドフェイス開口部232を配置する場合に、通路絞り部25の絞り量を調整して、フット吹出温度をサイドフェイス吹出温度よりも所定値だけ高くするようにしてもよい。つまり、通路絞り部25の絞り量調整によって上下吹き出し温度差を調整するようにしてもよい。   (3) In the first embodiment, as shown in FIG. 2 (a), the face blowing is illustrated and described, so that the center face blowing temperature and the side face blowing temperature are equalized (total blowing temperature). However, for example, the foot opening is disposed in the central region of the central opening 20a of the seal rib 20, and the left and right side face openings 232 are disposed in both the left and right regions of the central opening 20a. In this case, the foot blowing temperature may be adjusted to be higher than the side face blowing temperature by a predetermined value by adjusting the throttle amount of the passage throttle unit 25. That is, the temperature difference between the upper and lower outlets may be adjusted by adjusting the throttle amount of the passage throttle unit 25.

(5)上記実施形態では、熱源流体として温水を用いるヒータコア15への適用例について説明したが、例えば、エンジンオイル、油圧機械の作動オイル等のオイルを熱源流体として空気を加熱するヒータコア15に本発明を適用してもよい。   (5) In the above embodiment, the application example to the heater core 15 that uses hot water as the heat source fluid has been described. However, for example, the heater core 15 that heats air using oil such as engine oil or hydraulic machine hydraulic oil as the heat source fluid is used. The invention may be applied.

本発明の第1実施形態を示す室内空調ユニットの概略縦断面図である。It is a schematic longitudinal cross-sectional view of the indoor air-conditioning unit which shows 1st Embodiment of this invention. (a)は図1に示す回転式加熱用熱交換器の中間回転位置における冷風と温風の流れ形態の概略説明図、(b)は(a)のA−A断面図、(c)は(a)のB−B断面図、(d)は(b)のC−C断面位置での温度分布の概略説明図である。(A) is schematic explanatory drawing of the flow form of the cold air and the warm air at the intermediate rotation position of the rotary heating heat exchanger shown in FIG. 1, (b) is a cross-sectional view along AA in (a), (c) is (A) BB sectional drawing, (d) is a schematic explanatory drawing of the temperature distribution in CC sectional position of (b). (a)は図1に示す回転式加熱用熱交換器部分の平面断面図、(b)は回転式加熱用熱交換器部分の側面断面図である。(A) is a plane sectional view of the heat exchanger part for rotary heating shown in Drawing 1, (b) is a side sectional view of the heat exchanger part for rotary heating. (a)は第2実施形態による回転式加熱用熱交換器部分の平面断面図、(b)は回転式加熱用熱交換器部分の側面断面図である。(A) is a plane sectional view of the heat exchanger part for rotary heating by a 2nd embodiment, and (b) is a side sectional view of the heat exchanger part for rotary heating. (a)は比較例による回転式加熱用熱交換器部分の平面断面図、(b)は比較例による回転式加熱用熱交換器部分の側面断面図である。(A) is a plane sectional view of the heat exchanger part for rotary heating by a comparative example, (b) is a side sectional view of the heat exchanger part for rotary heating by a comparative example. 第3実施形態を示す室内空調ユニットの概略縦断面図である。It is a schematic longitudinal cross-sectional view of the indoor air conditioning unit which shows 3rd Embodiment. 第4実施形態を示す室内空調ユニットの概略縦断面図である。It is a schematic longitudinal cross-sectional view of the indoor air conditioning unit which shows 4th Embodiment. (a)は本発明者の試作検討した室内空調ユニットの回転式加熱用熱交換器の中間回転位置における冷風と温風の流れ形態の概略説明図、(b)は(a)のA−A断面図、(c)は(a)のB−B断面図、(d)は(b)のC−C断面位置での温度分布の概略説明図である。(A) is schematic explanatory drawing of the flow form of the cold air and the hot air at the intermediate rotation position of the rotary heating heat exchanger of the indoor air conditioning unit examined by the inventor, (b) is an AA of (a). Sectional drawing, (c) is a BB sectional view of (a), and (d) is a schematic explanatory view of a temperature distribution at a CC sectional position of (b). (a)は本発明者の試作検討した室内空調ユニットの概略縦断面図、(b)は(a)のD矢視図、(c)はD矢視による部分斜視図である。(A) is a schematic longitudinal cross-sectional view of the indoor air-conditioning unit which the present inventor has examined as a prototype, (b) is a view in the direction of arrow D in (a), and (c) is a partial perspective view in the direction of arrow D.

符号の説明Explanation of symbols

11…空調ケース、15…回転式ヒータコア(加熱用熱交換器)、16…回転軸、
20…シールリブ(ケース側シール面)、20a…開口部、25…通路絞り部(ガイド手段)。
DESCRIPTION OF SYMBOLS 11 ... Air-conditioning case, 15 ... Rotary heater core (heat exchanger for heating), 16 ... Rotating shaft,
20 ... seal rib (case side seal surface), 20a ... opening, 25 ... passage restrictor (guide means).

Claims (9)

空気と熱源流体との間で熱交換して空気を加熱する加熱用熱交換器(15)が空調ケース(11)内に回転軸(16)を中心として回転可能に配置され、
前記加熱用熱交換器(15)が最大暖房位置に回転したときに前記加熱用熱交換器(15)の周縁部が接触するシール面(20)が前記空調ケース(11)の内部に形成され、
前記シール面(20)の中央部には空気の通過可能な開口部(20a)が形成され、
前記空調ケース(11)内で前記加熱用熱交換器(15)の風上側で、かつ、前記回転軸(16)の軸方向の左右両側部位にガイド手段(25)が配置され、
前記ガイド手段(25)は、空気が前記シール面(20)を避けて流れるように空気を前記開口部(20a)に向かってガイドするように構成されていることを特徴とする空調装置。
A heating heat exchanger (15) for heating the air by exchanging heat between the air and the heat source fluid is disposed in the air conditioning case (11) so as to be rotatable about the rotation shaft (16),
When the heating heat exchanger (15) rotates to the maximum heating position, a sealing surface (20) that contacts the peripheral edge of the heating heat exchanger (15) is formed inside the air conditioning case (11). ,
An opening (20a) through which air can pass is formed at the center of the sealing surface (20),
Guide means (25) are arranged in the air conditioning case (11) on the windward side of the heat exchanger for heating (15) and on the left and right sides in the axial direction of the rotating shaft (16),
The air conditioner characterized in that the guide means (25) is configured to guide air toward the opening (20a) so that the air flows while avoiding the sealing surface (20).
前記ガイド手段は、前記加熱用熱交換器(15)の回転作動領域よりも風上側に位置する風上側空気通路(18)のうち、少なくとも前記シール面(20)に近接する部位に形成されることを特徴とする請求項1に記載の空調装置。 The guide means is formed at least in a portion close to the seal surface (20) in the windward air passage (18) located on the windward side of the rotation operation region of the heat exchanger (15) for heating. The air conditioner according to claim 1. 前記ガイド手段は、前記加熱用熱交換器(15)の風上側通路面積を絞る通路絞り部(25)で構成されることを特徴とする請求項1または2に記載の空調装置。 The air conditioner according to claim 1 or 2, wherein the guide means includes a passage restricting portion (25) that restricts an area on the windward side of the heat exchanger (15) for heating. 前記通路絞り部(25)は、空気流れの上流側から下流側に向かって通路絞り量をテーパ状に増加するように形成されることを特徴とする請求項3に記載の空調装置。 The air conditioner according to claim 3, wherein the passage restricting portion (25) is formed so as to increase the amount of passage restriction in a tapered shape from the upstream side to the downstream side of the air flow. 前記通路絞り部(25)は、空気流れの上流側から下流側にわたって通路絞り量が一定量になっていることを特徴とする請求項3に記載の空調装置。 The air conditioner according to claim 3, wherein the passage restriction portion (25) has a constant passage restriction amount from the upstream side to the downstream side of the air flow. 前記ガイド手段(25)は、前記加熱用熱交換器(15)の風上側の空気流れを前記開口部(20a)に向けるガイド形状部で構成されることを特徴とする請求項1または2に記載の空調装置。 The said guide means (25) is comprised by the guide-shaped part which orient | assigns the airflow of the windward side of the said heat exchanger for heating (15) to the said opening part (20a), The Claim 1 or 2 characterized by the above-mentioned. The air conditioner described. 前記加熱用熱交換器(15)のうち前記回転軸(16)側の端部(15a)が風下側に位置し、前記加熱用熱交換器(15)のうち前記回転軸(16)と反対側の端部(15b)が風上側に位置するようにして、前記加熱用熱交換器(15)が前記空調ケース(11)内に配置され、
前記シール面(20)が前記加熱用熱交換器(15)よりも風下側に配置されることを特徴とする請求項1ないし6のいずれか1つに記載の空調装置。
The end (15a) on the rotating shaft (16) side of the heating heat exchanger (15) is located on the leeward side, and is opposite to the rotating shaft (16) of the heating heat exchanger (15). The heating heat exchanger (15) is arranged in the air conditioning case (11) so that the side end (15b) is located on the windward side,
The air conditioner according to any one of claims 1 to 6, wherein the sealing surface (20) is arranged on the leeward side of the heating heat exchanger (15).
前記加熱用熱交換器(15)のうち前記回転軸(16)側の端部(15a)が風上側に位置し、前記加熱用熱交換器(15)のうち前記回転軸(16)と反対側の端部(15b)が風下側に位置するようにして、前記加熱用熱交換器(15)が前記空調ケース(11)内に配置され、
前記シール面(20)が前記加熱用熱交換器(15)よりも風上側に配置され、前記ガイド手段(25)は前記シール面(20)の更に風上側に配置されることを特徴とする請求項1ないし6のいずれか1つに記載の空調装置。
The end (15a) on the rotating shaft (16) side of the heating heat exchanger (15) is located on the windward side, and is opposite to the rotating shaft (16) of the heating heat exchanger (15). The heating heat exchanger (15) is arranged in the air conditioning case (11) so that the side end (15b) is located on the leeward side,
The sealing surface (20) is disposed on the windward side of the heating heat exchanger (15), and the guide means (25) is disposed further on the windward side of the sealing surface (20). The air conditioner according to any one of claims 1 to 6.
前記シール面は、前記開口部(20a)を囲むように前記空調ケース(11)の内壁面から額縁状に突出するシールリブ(20)にて構成されることを特徴とする請求項1ないし8のいずれか1つに記載の空調装置。
The said seal surface is comprised by the seal rib (20) which protrudes in the shape of a frame from the inner wall surface of the said air-conditioning case (11) so that the said opening part (20a) may be enclosed. The air conditioner as described in any one.
JP2005301397A 2005-10-17 2005-10-17 Air conditioner Active JP4466532B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005301397A JP4466532B2 (en) 2005-10-17 2005-10-17 Air conditioner
DE102006048581A DE102006048581B4 (en) 2005-10-17 2006-10-13 air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005301397A JP4466532B2 (en) 2005-10-17 2005-10-17 Air conditioner

Publications (2)

Publication Number Publication Date
JP2007106340A JP2007106340A (en) 2007-04-26
JP4466532B2 true JP4466532B2 (en) 2010-05-26

Family

ID=37982823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005301397A Active JP4466532B2 (en) 2005-10-17 2005-10-17 Air conditioner

Country Status (2)

Country Link
JP (1) JP4466532B2 (en)
DE (1) DE102006048581B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106671729A (en) * 2016-11-22 2017-05-17 胡立聪 Heating, ventilating and air conditioning system and control method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10921015B2 (en) * 2018-08-28 2021-02-16 Johnson Controls Technology Company Systems and methods for adjustment of heat exchanger position

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1040167A (en) * 1951-07-27 1953-10-13 Chausson Usines Sa Air conditioning unit for motor vehicles
FR1299631A (en) * 1961-06-13 1962-07-27 Applic Ind Soc Et Air conditioning unit for motor vehicle
DE3520548A1 (en) * 1985-06-07 1986-12-11 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart HEATING OR AIR CONDITIONING FOR MOTOR VEHICLES
JP2001047845A (en) * 1999-08-10 2001-02-20 Keihin Corp Vehicular air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106671729A (en) * 2016-11-22 2017-05-17 胡立聪 Heating, ventilating and air conditioning system and control method thereof

Also Published As

Publication number Publication date
JP2007106340A (en) 2007-04-26
DE102006048581B4 (en) 2011-12-08
DE102006048581A1 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
JP4830771B2 (en) Air conditioner for vehicles
JP6269561B2 (en) Air conditioning unit for vehicles
US6743090B2 (en) Vehicle air conditioner with rotary door
JP2008094251A (en) Vehicular air conditioner
JP2007331416A (en) Vehicular air conditioning system
JP3894028B2 (en) Air conditioner for vehicles
JP4415772B2 (en) Air conditioning unit for vehicles
JP4466532B2 (en) Air conditioner
JP2007210598A (en) Air conditioner
JP4285348B2 (en) Air conditioner for vehicles
JP2006001378A (en) Air conditioner for vehicle
JP4433169B2 (en) Air conditioner for vehicles
JP4755931B2 (en) Air intake structure for vehicle air conditioners
JP4624773B2 (en) Air conditioner for vehicles
JP4078743B2 (en) Air conditioner for vehicles
JP5398170B2 (en) Air conditioner for vehicles
JP2001287534A (en) Vehicular air conditioner
JP2007186036A (en) Rotation operation mechanism and air conditioner
JP4289236B2 (en) Air conditioning unit for vehicles
JP4016906B2 (en) Air conditioner for vehicles
JP2022020878A (en) Vehicular air conditioner
JP2008222024A (en) Vehicle air conditioner
JP2022021157A (en) Vehicular air conditioner
JP4049958B2 (en) Air conditioner for automobile
JP4289238B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3