JP2007186651A - Method for treating organic matter - Google Patents

Method for treating organic matter Download PDF

Info

Publication number
JP2007186651A
JP2007186651A JP2006007671A JP2006007671A JP2007186651A JP 2007186651 A JP2007186651 A JP 2007186651A JP 2006007671 A JP2006007671 A JP 2006007671A JP 2006007671 A JP2006007671 A JP 2006007671A JP 2007186651 A JP2007186651 A JP 2007186651A
Authority
JP
Japan
Prior art keywords
raw material
organic matter
pyrolysis
organic
treating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006007671A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Takeuchi
竹内  善幸
Masahiro Harada
昌博 原田
Shigeki Yoshida
茂樹 吉田
Takeshi Betsuyaku
武 別役
Masayasu Sakai
正康 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RYOSEN ENGINEERS CO Ltd
MHI Solution Technologies Co Ltd
Original Assignee
RYOSEN ENGINEERS CO Ltd
MHI Solution Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RYOSEN ENGINEERS CO Ltd, MHI Solution Technologies Co Ltd filed Critical RYOSEN ENGINEERS CO Ltd
Priority to JP2006007671A priority Critical patent/JP2007186651A/en
Publication of JP2007186651A publication Critical patent/JP2007186651A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/58Construction or demolition [C&D] waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein when a gasifiable raw material chiefly composed of organic matters such as biomass such as variety of grass (rice and bamboo) of the Poaceae family, organic wastes (such as waste plastics, animal dung, and waste wood from buildings) are gasified, clogging, coking, etc., by e.g., softened/molten substances, foaming substances, etc., formed during heat decomposition occur in the apparatus. <P>SOLUTION: It is possible to continuously operate a gasifying furnace without any operation troubles by foaming the easily foamable gasifiable raw material once by decomposition by previous heat treatment, grinding the product to adjust its particle diameter, and feeding the previously heat-treated product into the gasifying furnace. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、稲科草本類(稲、竹)、木本類等のバイオマス、有機系廃棄物等の有機物を主体とするガス化原料をガス化する場合、当該ガス化原料を前処理熱分解した後にガス化することにより、熱分解時に発生する軟化・溶融物質、発泡物質等によって発生する装置内の閉塞やコーキング等の課題を解消する方法に関する。 In the present invention, in the case of gasifying a gasification raw material mainly composed of biomass such as rice plants (rice, bamboo) and woody materials, and organic matter such as organic waste, the gasification raw material is subjected to pretreatment pyrolysis. The present invention relates to a method for eliminating problems such as blockage and coking in the apparatus caused by softening / melting substances, foaming substances, etc. generated during pyrolysis by gasification after the process.

本発明において、有機系廃棄物とは、廃棄物処理法で分類されている一般廃棄物の中では可燃ゴミ(紙類、厨芥、繊維、木、竹類、プラスチック、ゴム)、産業廃棄物の中では廃プラスチック、有機汚泥、紙くず、木くず、繊維くず、動植物性残渣、ゴムくず、動物の糞尿が該当する。当該物質には、構成する元素として炭素および水素を含んでおり、炭素および水素を含有する有機物であれば、前記物質に特定されるものではない。 In the present invention, organic waste refers to combustible waste (paper, firewood, fiber, wood, bamboo, plastic, rubber), industrial waste among general waste classified by the Waste Disposal Law. Among them are waste plastic, organic sludge, paper waste, wood waste, textile waste, animal and vegetable residues, rubber waste, and animal manure. The substance contains carbon and hydrogen as constituent elements, and is not limited to the substance as long as it is an organic substance containing carbon and hydrogen.

有機物を酸素が存在しない環境で加熱していくと、以下の工程を経て熱分解が進行する。プラスチックを除く有機物では、一般に約60〜200℃の温度領域において、水分が蒸発して有機物の熱分解が始まる。ヘミセルロース構造を持つ物質ではこの熱分解が始まり、熱に弱い高分子成分が壊れて低分子に変わっていく。 When an organic substance is heated in an environment where oxygen is not present, thermal decomposition proceeds through the following steps. In the organic matter excluding plastic, in general, in a temperature range of about 60 to 200 ° C., moisture is evaporated and thermal decomposition of the organic matter starts. In a material with a hemicellulose structure, this thermal decomposition begins, and the high-molecular component that is vulnerable to heat breaks down and becomes a low molecule.

初期の熱分解段階で、木酢液や竹酢液のような有機酸類、アルコール類、フェノール類等を含む熱分解生成物が発生する。この熱分解段階で発泡状態を示す有機物がある。これらの状態では、熱分解生成物が媒体となって、熱分解過程の固体粒子を相互に融着させる場合がある。その結果、装置内で固体の粒径が増大して閉塞のトラブルや、発泡した粒子が装置壁面に融着してコーキングトラブルの要因になる場合がある。 In the initial pyrolysis stage, pyrolysis products containing organic acids such as wood vinegar and bamboo vinegar, alcohols, phenols and the like are generated. There are organic substances that show a foamed state in this thermal decomposition stage. In these states, the pyrolysis product becomes a medium, and solid particles in the pyrolysis process may be fused to each other. As a result, the solid particle size may increase in the apparatus, causing clogging troubles, and foamed particles may be fused to the apparatus wall surface, causing caulking troubles.

プラスチックを除く有機物をさらに加熱すると、一般に約150〜450℃の温度領域において、セルロースやリグニンの熱分解が起こり、高温ではこれらのほとんどが分解してしまう。 When organic substances other than plastic are further heated, cellulose and lignin are generally thermally decomposed in a temperature range of about 150 to 450 ° C., and most of them are decomposed at high temperatures.

プラスチックを除く有機物をさらに高温に加熱すると、一般に約450℃以上の温度領域においては、さらに炭化が進行してゆく。この炭化が進行した状態では、固体粒子(炭化物)相互の融着は発生しない。 When an organic substance other than plastic is heated to a higher temperature, carbonization generally proceeds further in a temperature range of about 450 ° C. or higher. In the state where the carbonization has progressed, the solid particles (carbides) are not fused together.

一方、プラスチックの場合にはその種類により熱分解の状態が異なる。熱可塑性プラスチック(ポリプロピレン、ポリエチレン、ポリスチレン、塩化ビニル等)では、約150〜250℃の温度領域において、軟化・溶融が始まる。 On the other hand, in the case of plastic, the state of thermal decomposition differs depending on the type. In thermoplastics (polypropylene, polyethylene, polystyrene, vinyl chloride, etc.), softening and melting begin in a temperature range of about 150 to 250 ° C.

熱可塑性プラスチックを約250〜450℃に加熱すると熱分解が進行し、さらに高温では炭化が進行する。この熱分解初期の段階では、発泡現象を生じる場合があり、装置の壁面等への付着が発生する。この溶融プラスチックが壁面に付着した状態のままでさらに高温に加熱を続けると、炭化が進行してコーキング等のトラブルの要因となる。 When the thermoplastic is heated to about 250 to 450 ° C., thermal decomposition proceeds, and at higher temperatures, carbonization proceeds. In the initial stage of the thermal decomposition, a foaming phenomenon may occur, and adhesion to the wall surface of the apparatus occurs. If heating is continued to a higher temperature while the molten plastic is still attached to the wall surface, carbonization proceeds and causes troubles such as coking.

有機物の炭化については、例えば後掲非特許文献1に特性の詳細が紹介されている。廃プラスチックの熱分解特性については、例えば後掲非特許文献2に紹介されている。また、例えば特許文献1にはゴム系廃棄物について、特許文献2には有機汚泥について、特許文献3には熱分解装置について、それぞれの方法や装置が提案されている。ところが、従来提案されている炭化の方法や装置には、炭化する原料の軟化・溶融現象及びその対策については記載されていない。 Regarding the carbonization of organic substances, details of characteristics are introduced in Non-Patent Document 1, for example. The thermal decomposition characteristics of waste plastics are introduced in Non-Patent Document 2, for example. Further, for example, Patent Document 1 proposes respective methods and apparatuses for rubber waste, Patent Document 2 for organic sludge, and Patent Document 3 for a thermal decomposition apparatus. However, the conventionally proposed carbonization method and apparatus do not describe the softening / melting phenomenon of the raw material to be carbonized and the countermeasures.

大谷杉朗、真田雄三、「炭素化工学の基礎」、オーム社、昭和55年、p.1−58Otani Sugiro, Sanada Yuzo, “Basics of Carbonization Engineering”, Ohmsha, 1980, p. 1-58 社団法人プラスチック処理促進協会、「廃プラスチックの有効利用実例集(その積極的利用と用途開発)」、化学工学社、昭和47年、p.159−223Japan Plastics Promotion Association, “A collection of examples of effective use of waste plastics (its active use and development of applications)”, Chemical Engineering Co., Ltd., 1972, p. 159-223

特開平8−159430JP-A-8-159430 特開平9―47795JP-A-9-47795 特開平9―217910JP-A-9-217910

有機物をガス化する場合、ガス化反応に必要な熱を供給する方法として、ガス化原料である有機物の一部を燃焼させて、この時に発生する燃焼熱をガス化反応熱として使用する部分酸化ガス化法がある。この方法では、燃焼時に発生する二酸化炭素がガス化生成ガス中に混在するために、生成ガスの発熱量が低下するため、高発熱量のガスを必要とする場合には、部分酸化ガス化法は好ましくない。 When gasifying organic substances, as a method of supplying the heat necessary for the gasification reaction, a part of the organic substance that is the gasification raw material is combusted and the combustion heat generated at this time is used as the gasification reaction heat. There is a gasification method. In this method, carbon dioxide generated at the time of combustion is mixed in the gasification product gas, so the calorific value of the product gas decreases, so if a high calorific value gas is required, the partial oxidation gasification method Is not preferred.

前処理熱分解時に必要な熱の供給ガス媒体として、酸素ガス濃度が10vol.%以下の加熱ガスを媒体として供給する方法がある。一般に、酸素が存在する雰囲気で有機物を加熱処理すると、有機物は着火する。着火条件は有機物の種類、加熱温度、酸素濃度により異なるが、酸素濃度が約10vol.%以下では着火しにくくなる。低酸素濃度の加熱ガスとして、燃焼排ガスが一般に利用される。この方法では、残留酸素による燃焼反応が進行する可能性があるので、酸素ガスを含まない加熱ガスを媒体として供給する方が好ましい。この場合、水蒸気、窒素、二酸化炭素等の加熱ガスが使用される。 As a supply gas medium for heat necessary for pretreatment pyrolysis, the oxygen gas concentration is 10 vol. There is a method of supplying a heating gas of not more than% as a medium. Generally, when an organic substance is heat-treated in an atmosphere where oxygen is present, the organic substance is ignited. Ignition conditions vary depending on the type of organic matter, heating temperature, and oxygen concentration, but the oxygen concentration is about 10 vol. Less than% makes it difficult to ignite. Combustion exhaust gas is generally used as a heating gas having a low oxygen concentration. In this method, since a combustion reaction due to residual oxygen may proceed, it is preferable to supply a heating gas not containing oxygen gas as a medium. In this case, a heating gas such as water vapor, nitrogen, carbon dioxide is used.

一方、必要なガス化反応熱をガス化炉の外部加熱により供給する間接加熱ガス化法がある。この方法では、燃焼時に発生する二酸化炭素がガス化生成ガスと混在しないため、発熱量約4,000(kcal/Nm3)以上の高発熱量のガス化生成ガスが得られる。 On the other hand, there is an indirect heating gasification method in which necessary gasification reaction heat is supplied by external heating of a gasification furnace. In this method, since carbon dioxide generated during combustion does not coexist with the gasification product gas, a gasification product gas having a high calorific value of about 4,000 (kcal / Nm 3 ) or more can be obtained.

この間接加熱ガス化法の場合、前処理熱分解を行っていないガス化原料をガス化炉内に供給すると以下の課題が発生する場合がある。すなわち、常温から高温のガス化状態にガス化原料が昇温されていく過程で、発泡状態となった固体粒子が相互に融着する。その結果、これが装置の運転トラブルの要因となる。 In the case of this indirect heating gasification method, if a gasification raw material that has not been subjected to pretreatment pyrolysis is supplied into the gasification furnace, the following problems may occur. That is, in the process of raising the temperature of the gasification raw material from the normal temperature to the high temperature gasification state, the solid particles in the foamed state are fused to each other. As a result, this becomes a cause of operation trouble of the apparatus.

前記ガス化原料の中で、特に稲科草本類(稲、竹等)等のバイオマス、プラスチック類を含む廃棄物等の有機物は、常温から高温のガス化状態にガス化原料が昇温されていく過程で、発泡状態になりやすい。 Among the gasification raw materials, in particular, biomass such as grasses (rice, bamboo, etc.) and organic matter such as waste containing plastics are heated from the normal temperature to a high temperature gasification state. In the process, it tends to become foamed.

そこで、本発明は実用規模で有機物をガス化する場合、発泡しやすいガス化原料を前処理熱分解して一度発泡させ、その後に粉砕して粒径を調整し、ガス化炉に供給することにより、装置の運転トラブルを発生させることなく連続運転ができる方法を提案する。 Therefore, in the case of gasifying organic substances on a practical scale, the present invention is to pre-heat pyrolyze a gasification raw material that is easy to foam, foam once, then pulverize to adjust the particle size, and supply it to the gasification furnace Thus, a method is proposed in which continuous operation can be performed without causing operation trouble of the apparatus.

また、発泡状態を発生しやすい有機物と、発泡しない有機物とを事前に混合処理した後に前処理熱分解することにより、ガス化原料の全体が融着して大粒径の固体粒子に成長することを防止できる方法を提案する。 In addition, the gasification raw material as a whole is fused and grows into large-sized solid particles by pre-processing and pyrolyzing an organic material that is prone to foaming and an organic material that does not foam in advance. We propose a method that can prevent this.

稲科草本類(稲、竹等)、木本類等のバイオマス、有機系廃棄物(プラスチック、畜糞、建設系廃木材等)等の有機物を主体とするガス化原料をガス化する場合、当該ガス化原料を前処理熱分解して、発泡現象により融着を発生する要因になる成分を事前に分解処理した後に、生成した当該熱分解処理物をガス化する。この前処理により、従来の方法では防止できなかった熱分解時に発生する軟化・溶融物質を事前に分離することができ、発泡物質等による固体粒子の相互融着を防止することができる。その結果、装置内の閉塞やコーキング等の課題を解消して、安全に連続してガス化を行うことができる。 When gasifying raw materials mainly composed of organic matter such as biomass (rice, bamboo, etc.), biomass such as wood, and organic waste (plastic, livestock excrement, construction waste wood, etc.) The gasification raw material is pretreated and thermally decomposed, and components that cause fusion due to the foaming phenomenon are decomposed in advance, and the generated pyrolyzed product is gasified. By this pretreatment, it is possible to separate in advance the softened / molten material generated during thermal decomposition, which could not be prevented by the conventional method, and to prevent mutual fusion of solid particles due to foamed material or the like. As a result, problems such as blockage and coking in the apparatus can be solved and gasification can be performed safely and continuously.

本発明の実施の形態を、図1の実施例に基づいて以下に説明する。前処理工程において、粒径の調整や予備脱水・乾燥等の処理をされたガス化原料1は、ノズル2を経て熱分解炉3の内部に供給される。熱分解炉3の内部に供給されたガス化原料1の加熱は、酸素濃度が低い加熱用ガス4をガス化原料1に直接接触させる方法や、ガス化原料1を供給した熱分解炉3の内筒5を外側から間接的に加熱する方法がある。図1に示す実施例では、熱分解炉3の外筒6に配設されたノズル7と、内筒に配設されたノズル8の両方に加熱用ガス4を供給できる構造の例を示す。 An embodiment of the present invention will be described below based on the example of FIG. In the pretreatment step, the gasified raw material 1 that has been subjected to the particle size adjustment, preliminary dehydration, drying, and the like is supplied into the pyrolysis furnace 3 through the nozzle 2. The heating of the gasification raw material 1 supplied to the inside of the pyrolysis furnace 3 can be performed by a method in which the heating gas 4 having a low oxygen concentration is brought into direct contact with the gasification raw material 1 or by the pyrolysis furnace 3 supplied with the gasification raw material 1. There is a method of heating the inner cylinder 5 indirectly from the outside. In the embodiment shown in FIG. 1, an example of a structure in which the heating gas 4 can be supplied to both the nozzle 7 disposed in the outer cylinder 6 of the pyrolysis furnace 3 and the nozzle 8 disposed in the inner cylinder is shown.

加熱用ガス4としては、酸素濃度が低い燃焼排ガスや、水蒸気が好ましい。加熱用ガス4として空気を使用してもよいが、熱分解時に発生した低沸点ガスが燃焼する場合があるので好ましくはない。加熱用ガス4として炭酸ガスや窒素等の不活性ガスを使用してもよいが、処理コストが高くなる。 As the heating gas 4, combustion exhaust gas having a low oxygen concentration or water vapor is preferable. Although air may be used as the heating gas 4, it is not preferable because the low boiling point gas generated during the thermal decomposition may burn. An inert gas such as carbon dioxide or nitrogen may be used as the heating gas 4, but the processing cost increases.

プラスチックを除く有機物の場合、一般に約60〜200℃の温度領域において、水分が蒸発して有機物の熱分解が始まる。ヘミセルロース構造を持つ物質ではこの熱分解が始まり、熱に弱い高分子成分が壊れて低分子に変わっていく。一方、熱可塑性プラスチック(ポリプロピレン、ポリエチレン、ポリスチレン、塩化ビニル等)の場合、約150〜250℃の温度領域において、軟化・溶融が始まる。従って、ガス化原料の加熱用ガス4の供給温度は、放熱を考慮して100〜300℃が好ましい。適正な加熱用ガス4の温度は、ガス化原料の種類、量、熱分解炉3の放熱量等を考慮して設定する。加熱温度が300℃以上になるとガス化原料の炭化が急激に進行する。炭化度を高くする場合には、前記加熱用ガス4の温度を300〜500℃の高温に設定する場合もある。 In the case of organic substances excluding plastics, in general, in a temperature range of about 60 to 200 ° C., moisture evaporates and thermal decomposition of organic substances starts. In a material with a hemicellulose structure, this thermal decomposition begins, and the high-molecular component that is vulnerable to heat breaks down and becomes a low molecule. On the other hand, in the case of thermoplastics (polypropylene, polyethylene, polystyrene, vinyl chloride, etc.), softening / melting starts in a temperature range of about 150 to 250 ° C. Therefore, the supply temperature of the heating gas 4 for the gasification raw material is preferably 100 to 300 ° C. in consideration of heat dissipation. The appropriate temperature of the heating gas 4 is set in consideration of the type and amount of the gasification raw material, the heat radiation amount of the pyrolysis furnace 3 and the like. When the heating temperature is 300 ° C. or higher, the carbonization of the gasification raw material proceeds rapidly. When increasing the degree of carbonization, the temperature of the heating gas 4 may be set to a high temperature of 300 to 500 ° C.

熱分解炉3の構造としては、ロータリーキルンのような横型回転体の型式でもよいが、稲科草本類、木本類等のバイオマス、有機系廃棄物等の有機物の中で熱分解時に軟化・溶融して固体粒子の相互融着を生ずるガス化原料に対して、融着した固体粒子を分離させることができる機能を有する構造が好ましい。図1の実施例では、熱分解炉内筒5の内部に二軸の攪拌機9を配設した横置き円筒型熱分解炉の構造例を示す。熱分解炉3として、竪置き円筒型熱分解炉を使用する場合もある。 The structure of the pyrolysis furnace 3 may be a horizontal rotary type such as a rotary kiln, but it softens and melts during pyrolysis among biomass such as rice plants and woods, and organic matter such as organic waste. Thus, a structure having a function capable of separating the fused solid particles with respect to the gasification raw material that causes mutual fusion of the solid particles is preferable. The embodiment of FIG. 1 shows a structural example of a horizontal cylindrical pyrolysis furnace in which a biaxial stirrer 9 is disposed inside a pyrolysis furnace inner cylinder 5. As the pyrolysis furnace 3, there is a case where a vertical cylinder type pyrolysis furnace is used.

図1に示す構造の熱分解炉3を使用する場合、ガス化原料1はノズル2を経て熱分解炉3の内筒5に供給された後、加熱ガス4で加熱されて熱分解を開始する。熱分解の過程でガス化原料の固体粒子が融着した場合には、熱分解炉3の内筒5の内部に配設された攪拌機9により融着状態が破壊されて個々の固体粒子に分離される。 When the pyrolysis furnace 3 having the structure shown in FIG. 1 is used, the gasification raw material 1 is supplied to the inner cylinder 5 of the pyrolysis furnace 3 through the nozzle 2 and then heated by the heating gas 4 to start pyrolysis. . When solid particles of the gasification raw material are fused in the process of pyrolysis, the fused state is broken by the stirrer 9 disposed in the inner cylinder 5 of the pyrolysis furnace 3 and separated into individual solid particles. Is done.

所定の滞留時間を経過して熱分解が進行した熱分解生成物は、ノズル10から排出されてガス化炉に供給される。加熱ガス4は、内筒5に配接された排ガスノズル11または外筒6に配接された排ガスノズル12を経て排出される。 The thermal decomposition product which has undergone thermal decomposition after a predetermined residence time is discharged from the nozzle 10 and supplied to the gasifier. The heated gas 4 is discharged through the exhaust gas nozzle 11 disposed on the inner cylinder 5 or the exhaust gas nozzle 12 disposed on the outer cylinder 6.

図2に、熱分解装置で熱分解処理された後のガス化原料を利用するシステムについての実施例を示す。熱分解工程13で熱分解処理されたガス化原料(以下炭化物と呼ぶ)は、次の粉砕工程14で粉砕処理される。前記炭化物の粉砕機としては、竪型ロールミルやボールミル等が一般に使用される。 In FIG. 2, the Example about the system using the gasification raw material after thermally decomposing with a thermal decomposition apparatus is shown. The gasified raw material (hereinafter referred to as carbide) that has been pyrolyzed in the pyrolysis step 13 is pulverized in the next pulverization step 14. As the carbide crusher, a vertical roll mill, a ball mill or the like is generally used.

粉砕処理された炭化物は、造粒工程15で輸送しやすい粒径に造粒される。但し、炭化物
の利用工程が熱分解工程と直接連続しており、造粒が不用な場合には当該造粒工程15は省略される場合がある。
The pulverized carbide is granulated to a particle size that is easy to transport in the granulation step 15. However, when the carbide utilization process is directly continuous with the pyrolysis process and the granulation is unnecessary, the granulation process 15 may be omitted.

造粒工程15により適正な粒径に造粒された炭化物は、輸送工程16を経て、次に微粉炭ボイラ17,ガス化炉18,燃料加工工程19等に輸送されて利用される。 The carbide granulated to an appropriate particle size by the granulation step 15 is transported to the pulverized coal boiler 17, the gasifier 18, the fuel processing step 19 and the like through the transporting step 16, and used.

前処理熱分解時に必要な熱の供給媒体としては、前述の加熱ガスの代わりに、加熱された固形物(砂、石灰石、触媒等)を熱分解炉内に供給して、ガス化原料と直接混合することにより加熱しても良い。この場合、加熱された固形物が媒体となり、その周囲にガス化原料が融着して数ミリメートルの粒径に自然に造粒される場合がある。この場合には、前記の造粒操作が不要になる。 As a heat supply medium necessary for pretreatment pyrolysis, heated solids (sand, limestone, catalyst, etc.) are supplied into the pyrolysis furnace instead of the aforementioned heating gas, and directly with the gasification raw material. You may heat by mixing. In this case, the heated solid material becomes a medium, and the gasification raw material is fused around the medium and may be naturally granulated to a particle diameter of several millimeters. In this case, the granulation operation becomes unnecessary.

前記の操作により造粒された固体粒子(熱分解処理を行ったガス化原料)は、次の工程でガス化炉の原料として使用される。ガス化炉の型式は特に限定されるものではなく、噴流層型、流動層型、ロータリーキルン型があり、いずれの型式にも利用できる。 The solid particles granulated by the above operation (gasification raw material subjected to thermal decomposition treatment) are used as a raw material for the gasification furnace in the next step. The type of the gasifier is not particularly limited, and there are a spouted bed type, a fluidized bed type, and a rotary kiln type, which can be used for any type.

前記の方法で熱分解処理を行った固体粒子は、ガス化原料のほかに、微粉炭ボイラ、焼却炉等の燃料としても使用することができる。 The solid particles subjected to the pyrolysis treatment by the above-described method can be used as fuel for pulverized coal boilers, incinerators, etc. in addition to gasification raw materials.

以上のように熱分解操作により製造した熱分解生成物は、前記の熱分解処理過程において融着の原因となる形質成分が揮発・分離されることになる。従って、次段階でガス化原料や微粉炭ボイラ、焼却炉等の燃料として、熱分解生成物の固体粒子が相互に融着することを防止することができる。その結果、種々の工程において、運転トラブルを発生することなく、高効率で運転操作を遂行することができる。 As described above, in the pyrolysis product produced by the pyrolysis operation, trait components causing fusion are volatilized and separated in the above pyrolysis process. Therefore, it is possible to prevent the solid particles of the pyrolysis product from being fused to each other as fuel for a gasification raw material, a pulverized coal boiler, an incinerator or the like in the next stage. As a result, the driving operation can be performed with high efficiency in various processes without causing a driving trouble.

本発明による図1に示す処理方法により、以下の条件で熱分解運転を行った。
(1)熱分解条件
1)ガス化原料
竹材、粒径6mm以下、25kg/h
2)熱分解温度
熱分解炉内筒の平均温度150〜155℃
3)熱分解装置
図1に示す二軸撹拌機付き横型円筒
(2)熱分解運転結果
熱分解生成物の状況は、以下の通りであった。
a)攪拌機を回転しない場合
竹材の粒子が相互に融着して、約20〜40mmの粒径に成長した固体粒子が得られた。
b)攪拌機を回転させた場合
融着した固体粒子を攪拌機が破砕してしまうために、粒径6mm以上の固体粒子は発生しなかった。
(3)ガス化運転結果
前記の図1に示す熱分解炉により製造した固体粒子を使用して、図2に示すガス化システムによりガス化運転を行った。その結果、安定した運転を継続することができた。
1)ガス化炉
噴流層型ガス化炉を使用した。
ガス化原料供給量 20kg/h
ガス化温度 855℃
2)生成ガス
a)ガス組成
45、CO 26、CO 14、CH 7、その他 8(vol.%)
b)生成ガス量
50Nm/h
By the processing method shown in FIG. 1 according to the present invention, the pyrolysis operation was performed under the following conditions.
(1) Thermal decomposition conditions 1) Gasification raw material
Bamboo, particle size 6mm or less, 25kg / h
2) Thermal decomposition temperature
Average temperature of pyrolysis furnace inner cylinder 150-155 ° C
3) Pyrolysis device
Horizontal cylinder with a biaxial stirrer shown in FIG.
a) When the stirrer is not rotated Bamboo particles were fused to each other, and solid particles grown to a particle size of about 20 to 40 mm were obtained.
b) When the stirrer is rotated Since the fused solid particles are crushed by the stirrer, solid particles having a particle diameter of 6 mm or more were not generated.
(3) Gasification operation result The gasification operation was performed by the gasification system shown in FIG. 2 using the solid particles produced by the pyrolysis furnace shown in FIG. As a result, stable operation could be continued.
1) Gasification furnace A spouted bed type gasification furnace was used.
Gasification raw material supply rate 20kg / h
Gasification temperature 855 ℃
2) Product gas a) Gas composition
H 2 45, CO 26, CO 2 14, CH 4 7, and other 8 (vol.%)
b) Generated gas amount
50 Nm 3 / h

本発明による図1に示す処理方法により、以下の条件で熱分解運転を行った。
(1)熱分解条件
1)ガス化原料
竹 材、粒径6mm以下、15kg/h
間伐材、粒径6mm以下、10kg/h
2)熱分解温度
熱分解炉内筒の平均温度150〜155℃
3)熱分解装置
図1に示す二軸撹拌機付き横型円筒
(2)熱分解運転結果
融着した固体粒子はほとんど発生せず、粒径6mm以下の固体粒子が得られた。。
(3)ガス化運転結果
前記の図1に示す熱分解炉により製造した固体粒子を使用して、図2に示すガス化システムによりガス化運転を行った。その結果、安定した運転を継続して高発熱量のガスを製造することができた。
1)ガス化炉
噴流層型ガス化炉を使用した。
ガス化原料供給量 20kg/h
ガス化温度 860℃
2)生成ガス
a)ガス組成
44、CO 25、CO 16、CH 7、その他 8(vol.%)
b)生成ガス量
57Nm/h
By the processing method shown in FIG. 1 according to the present invention, the pyrolysis operation was performed under the following conditions.
(1) Thermal decomposition conditions 1) Gasification raw material
Bamboo, particle size 6mm or less, 15kg / h
Thinned wood, particle size 6mm or less, 10kg / h
2) Thermal decomposition temperature
Average temperature of pyrolysis furnace inner cylinder 150-155 ° C
3) Pyrolysis device
Horizontal cylinder with biaxial agitator shown in Fig. 1 (2) Pyrolysis operation results
Fused solid particles were hardly generated, and solid particles having a particle size of 6 mm or less were obtained. .
(3) Gasification operation results
A gasification operation was carried out by the gasification system shown in FIG. 2 using solid particles produced by the pyrolysis furnace shown in FIG. As a result, it was possible to produce a gas with a high calorific value by continuing stable operation.
1) Gasification furnace A spouted bed type gasification furnace was used.
Gasification raw material supply rate 20kg / h
Gasification temperature 860 ℃
2) Product gas a) Gas composition
H 2 44, CO 25, CO 2 16, CH 4 7, and other 8 (vol.%)
b) Generated gas amount
57 Nm 3 / h

本発明における実施の形態を示す一例である。It is an example which shows embodiment in this invention. 本発明を示す熱分解・ガス化・発電システム全体の実施例を示す図である。It is a figure which shows the Example of the whole pyrolysis, gasification, and electric power generation system which shows this invention.

符号の説明Explanation of symbols

1…ガス化用原料
2…ノズル
3…熱分解炉
4…加熱用ガス
5…熱分解炉内筒
6…熱分解炉外筒
7…ノズル
8…ノズル
9…攪拌機
10…ノズル
11…排ガスノズル
12…排ガスノズル
13…熱分解工程
14…粉砕工程
15…造粒工程
16…輸送工程
17…微粉炭ボイラ
18…ガス化炉
19…燃料加工工程
DESCRIPTION OF SYMBOLS 1 ... Gasification raw material 2 ... Nozzle 3 ... Pyrolysis furnace 4 ... Heating gas 5 ... Pyrolysis furnace inner cylinder 6 ... Pyrolysis furnace outer cylinder 7 ... Nozzle 8 ... Nozzle 9 ... Stirrer 10 ... Nozzle 11 ... Exhaust gas nozzle 12 ... exhaust gas nozzle 13 ... pyrolysis process 14 ... grinding process 15 ... granulation process 16 ... transport process 17 ... pulverized coal boiler 18 ... gasifier 19 ... fuel processing process

Claims (13)

有機物を主体とするガス化原料を100℃〜400℃の温度範囲内で前処理熱分解した後に、400℃以上でガス化することを特徴とする有機物の処理方法。 A method for treating an organic material, characterized in that a gasification raw material mainly comprising an organic material is subjected to pretreatment pyrolysis within a temperature range of 100 ° C to 400 ° C and then gasified at 400 ° C or higher. 請求項1において、有機物を主体とするガス化原料が稲科草本類、木本類のバイオマス、有機系廃棄物であることを特徴とする有機物の処理方法。 2. The method for treating organic matter according to claim 1, wherein the gasification raw material mainly composed of organic matter is rice plants, woody biomass, or organic waste. 請求項1において、有機物を主体とするガス化原料が稲科草本類と木本類のバイオマスの混合物であることを特徴とする有機物の処理方法。 2. The method for treating organic matter according to claim 1, wherein the gasification raw material mainly comprising the organic matter is a mixture of biomass of rice plants and woody species. 請求項1において、有機物を主体とするガス化原料が木本類のバイオマスとプラスチックとの混合物であることを特徴とする有機物の処理方法。 2. The method for treating an organic material according to claim 1, wherein the gasification raw material mainly comprising the organic material is a mixture of woody biomass and plastic. 請求項1において、有機物を主体とするガス化原料が稲科草本類と建設系廃木材との混合物であることを特徴とする有機物の処理方法。 The method for treating organic matter according to claim 1, wherein the gasification raw material mainly comprising organic matter is a mixture of herbaceous grasses and construction waste wood. 請求項1において、有機物を主体とするガス化原料がプラスチックと建設系廃木材との混合物であることを特徴とする有機物の処理方法。 The method for treating organic matter according to claim 1, wherein the gasification raw material mainly comprising organic matter is a mixture of plastic and construction waste wood. 請求項1、請求項2、請求項3、請求項4、請求項5、請求項6において、前処理熱分解時に必要な熱の供給方法として、酸素ガス濃度が10vol.%以下である加熱ガスを媒体として供給することを特徴とする有機物の処理方法。 In claim 1, claim 2, claim 3, claim 4, claim 5 and claim 6, as a method of supplying heat necessary for pretreatment pyrolysis, the oxygen gas concentration is 10 vol. % Or less of a heated gas as a medium. 請求項1、請求項2、請求項3、請求項4、請求項5、請求項6において、前処理熱分解時に必要な熱の供給方法として、酸素ガスを含まない加熱ガスを媒体として供給することを特徴とする有機物の処理方法。 In claim 1, claim 2, claim 3, claim 4, claim 5 and claim 6, as a method of supplying heat necessary for pretreatment pyrolysis, a heating gas not containing oxygen gas is supplied as a medium. A method for treating organic matter. 請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8において、前処理熱分解時に必要な熱の供給媒体である加熱ガスの代わりに、加熱された固形物をガス化原料と直接混合して使用することを特徴とする有機物の処理方法。 In claim 1, claim 2, claim 3, claim 4, claim 5, claim 7, claim 8, in place of the heating gas that is a supply medium of heat necessary for pretreatment pyrolysis And a method for treating an organic material, wherein the heated solid is directly mixed with a gasification raw material. 請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8、請求項9において、前処理熱分解時に必要な熱の供給を間接加熱により共有することを特徴とする有機物の処理方法。 In claim 1, claim 2, claim 3, claim 4, claim 5, claim 7, claim 8, claim 9, indirect heating for supplying heat necessary for pretreatment pyrolysis A method for treating organic matter, characterized in that it is shared by 請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8、請求項9、請求項10において、前処理熱分解時に固体粒子の撹拌機能を設けた熱分解装置を使用することを特徴とする有機物の処理方法。 In claim 1, claim 2, claim 3, claim 4, claim 5, claim 6, claim 8, claim 8, claim 9 and claim 10, solid particles are stirred during pretreatment pyrolysis. A method for treating organic matter, comprising using a thermal decomposition apparatus having a function. 請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8、請求項9、請求項10、請求項11において、前処理の熱分解工程で処理した有機物を粉砕工程で粉砕処理し、次の造粒工程で適正な粒径に造粒した後に、当該造粒固体粒子をガス化炉の原料として使用することを特徴とする有機物の処理方法。 In claim 1, claim 2, claim 3, claim 4, claim 5, claim 6, claim 7, claim 8, claim 9, claim 11, and claim 11, the thermal decomposition of the pretreatment The organic substance treated in the process is pulverized in the pulverization process, granulated to an appropriate particle size in the next granulation process, and then the granulated solid particles are used as a raw material for the gasifier. Processing method. 請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8、請求項9、請求項10、請求項11において、前処理の熱分解工程で処理した有機物を粉砕工程で粉砕処理し、次の造粒工程で適正な粒径に造粒した後に、当該造粒固体粒子を微粉炭ボイラ、焼却炉等の燃料として使用することを特徴とする有機物の処理方法。
In claim 1, claim 2, claim 3, claim 4, claim 5, claim 6, claim 7, claim 8, claim 9, claim 11, and claim 11, the thermal decomposition of the pretreatment The organic material treated in the process is pulverized in the pulverization process, granulated to an appropriate particle size in the next granulation process, and then the granulated solid particles are used as fuel for pulverized coal boilers, incinerators, etc. And a method for treating organic matter.
JP2006007671A 2006-01-16 2006-01-16 Method for treating organic matter Pending JP2007186651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007671A JP2007186651A (en) 2006-01-16 2006-01-16 Method for treating organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007671A JP2007186651A (en) 2006-01-16 2006-01-16 Method for treating organic matter

Publications (1)

Publication Number Publication Date
JP2007186651A true JP2007186651A (en) 2007-07-26

Family

ID=38342033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007671A Pending JP2007186651A (en) 2006-01-16 2006-01-16 Method for treating organic matter

Country Status (1)

Country Link
JP (1) JP2007186651A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248068A (en) * 2007-03-30 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Method for gasifying waste
WO2014164296A1 (en) * 2013-03-10 2014-10-09 Funk Kip W Multiple temperature control zone pyrolyzer and methods of use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248068A (en) * 2007-03-30 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Method for gasifying waste
WO2014164296A1 (en) * 2013-03-10 2014-10-09 Funk Kip W Multiple temperature control zone pyrolyzer and methods of use

Similar Documents

Publication Publication Date Title
JP5734230B2 (en) Waste treatment method and apparatus
CN1232613C (en) Method of gasifying carbonaceous material and apparatus therefor
EP2385096B1 (en) Process for biomass torrefaction
JP5379957B2 (en) Pyrolysis treatment method and pyrolysis treatment system
US9988588B2 (en) Post torrefaction biomass pelletization
CN108314040A (en) A kind of method of wood substance grain gasifying electricity generation co-producing active carbon
KR101798643B1 (en) Method for preparing solid fuel using organic waste
JP2010242035A (en) Manufacturing process of biomass charcoal
EP2589648B1 (en) Pelletization of torrified biomass
JP2008086982A (en) Superheated steam continuously-recycling treatment apparatus
EP3963028A1 (en) Method for treating solid biomass by steam cracking integrating the energy of the co-products
JP5464355B2 (en) Biomass carbonization apparatus and biomass carbonization method
JP2004141871A (en) Method and plant for microwave treatment of solid residue resulting from pyrolysis of feed containing organic substance
JP2007186651A (en) Method for treating organic matter
JP2009013027A (en) System for producing hydrogen using biomass
JP2012224677A (en) System and method for carbonizing wet biomass
US20190276746A1 (en) Plasma arc carbonizer
JP5945929B2 (en) Waste gasification and melting equipment
JP2008308570A (en) Method for utilizing highly hydrous waste and treatment apparatus
KR100636616B1 (en) Recyling of Food Waste by Rapid Pyrolysis Process
JP2006241318A (en) Method for producing valuables from livestock dung as raw material
JP2004041848A (en) Method for gasifying carbonaceous resources and apparatus therefor
KR102402473B1 (en) Integrated Torrefaction and Gasification Apparatus For Biomass And Method Thereof
JP2007146044A (en) Process and apparatus for producing fuel from waste like municipal waste
CN117304953A (en) Combustible wood base, paper base and other combustible waste treatment systems