JP2004141871A - Method and plant for microwave treatment of solid residue resulting from pyrolysis of feed containing organic substance - Google Patents

Method and plant for microwave treatment of solid residue resulting from pyrolysis of feed containing organic substance Download PDF

Info

Publication number
JP2004141871A
JP2004141871A JP2003361952A JP2003361952A JP2004141871A JP 2004141871 A JP2004141871 A JP 2004141871A JP 2003361952 A JP2003361952 A JP 2003361952A JP 2003361952 A JP2003361952 A JP 2003361952A JP 2004141871 A JP2004141871 A JP 2004141871A
Authority
JP
Japan
Prior art keywords
solid residue
carbon
pyrolysis
feed
microwave radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003361952A
Other languages
Japanese (ja)
Inventor
Eric Marty
エリク マルティ
Fabrice Giroudiere
ファブリス ジロディエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of JP2004141871A publication Critical patent/JP2004141871A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/14Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of contaminated soil, e.g. by oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0276Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using direct heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/001Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for sludges or waste products from water treatment installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/10Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/304Burning pyrosolids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/20Combustion to temperatures melting waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2204/00Supplementary heating arrangements
    • F23G2204/20Supplementary heating arrangements using electric energy
    • F23G2204/203Microwave
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/30Solid combustion residues, e.g. bottom or flyash

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Water Supply & Treatment (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for microwave treatment of solid residue resulting from pyrolysis of a feed containing organic substances, and a plant therefor. <P>SOLUTION: The method for treating a feed containing at least 5% organic substances comprises the stages of: (a) thermally decomposing the feed by pyrolysis under such a condition that enable the formation of carbon-containing solid residue and a gas phase, (b) separating the gas phase from the carbon-containing solid residue, and (c) treating the carbon-containing solid residue by microwave radiation in the presence of an oxidizing agent. The plant can implement the method. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、有機物質含有フィード(feed)の熱分解からの固体残渣のマイクロ波処理を目的とした方法およびプラントに関する。 The present invention relates to a method and a plant for the microwave treatment of solid residues from the pyrolysis of organic-containing feeds.

 より具体的には、本発明は、なんら危険性なく環境に廃棄することができる、あるいは道路工事分野または建設業および土木工事での用途の材料として使用できる、少なくとも部分的に化学的不活性でかつ最終的な残渣をもたらすことができる方法およびプラントに関する。 More specifically, the present invention provides an at least partially chemically inert, which can be disposed of in the environment without any danger, or can be used as a material for road construction or construction and civil engineering applications. And a method and plant that can provide the final residue.

 本発明は、とりわけ、家庭廃棄物または産業廃棄物、産業汚泥または下水汚泥、バイオマス、およびより一般的には少なくとも5%の有機物質を含有する任意のフィードの処理にその応用分野が見出される。 The invention finds application, inter alia, in the treatment of domestic or industrial waste, industrial or sewage sludge, biomass, and more generally any feed containing at least 5% organic matter.

 可燃性ガスは、欧州特許出願第0,692,677号および同第1,077,248号に記載のよく知られた方法によるパイロリシス(熱分解(thermolysis)とも称する)などのフィードの熱分解によって、有機画分を含む固体フィードから生成させることができる。 The flammable gas is obtained by pyrolysis of a feed such as pyrolysis (also referred to as thermolysis) by the well-known method described in European Patent Applications 0,692,677 and 1,077,248. Can be produced from a solid feed containing the organic fraction.

 この操作は、バイオマス、産業廃棄物または家庭廃棄物、産業汚泥または下水汚泥などの、少なくとも部分的に有機物質を含むフィードを有利に品質向上させることができる。 This operation can advantageously upgrade feeds containing at least partially organic matter, such as biomass, industrial or household waste, industrial or sewage sludge.

 パイロリシスは、空気、したがって酸素の存在しない状態で行われる、フィードを熱的に分解させる操作である。パイロリシスは、中高程度の、品質改良の可能な発熱量を有し、最も多くはボイラー、エンジン、タービンなどの既知のエネルギー発生装置の燃料として使用され、かつ固体残渣もしくはコークスとも称する、多くは炭素リッチな固相物の製造のために使用されるガスの生成をもたらす。 Pyrolysis is the operation of thermally decomposing a feed, which takes place in the absence of air and thus oxygen. Pyrolysis has a moderate to high quality heating value that can be improved, most often used as fuel for known energy generators such as boilers, engines, turbines, etc., and is also referred to as solid residue or coke. This results in the production of gases used for the production of rich solids.

 通常、低品質の燃料であるこの固相物は、従来型のバーナーで燃焼され、燃焼によって生じる灰分は冷却され廃棄される。 固 相 This solid phase, usually a low quality fuel, is burned in a conventional burner, and the ash from the combustion is cooled and discarded.

 しかし、この解決法にはその実施の点で多くの欠点がある。すなわち、高価な設備と同時に高いエネルギーコストを要する。このことは、コークスの発熱量が低い場合、すなわち、その灰分含量が高く約40%、より具体的には約60%の場合特に当てはまる。 However, this solution has many disadvantages in its implementation. That is, high energy costs are required at the same time as expensive equipment. This is especially true when the calorific value of the coke is low, that is, when its ash content is high, about 40%, and more specifically about 60%.

 したがって、固相物の品質を改良することは、廃棄物の熱分解法の実施のために繰り返し起こる問題である。 Improving the quality of the solid phase is therefore a recurring problem due to the practice of waste pyrolysis.

 この固相物を処理するためのいくつかの解決法が提案されてきた。 解決 Several solutions for treating this solid phase have been proposed.

 欧州特許第1,077,248号には、その発熱量は低いが、熱分解フィードから得られる固体残渣での、熱分解オーブンの加熱用の熱を放出するための燃焼手段が提案されている。 EP 1,077,248 proposes a combustion means for releasing the heat for heating the pyrolysis oven on a solid residue obtained from the pyrolysis feed with a low heating value. .

 他の解決法が米国特許第6,398,921号に提案されている。熱分解法で得られる固体およびガス相を、酸素源の存在しない状態で、マイクロ波照射の作用にかけ、その結果前記固相物の一部をガス化させる。しかし、そうした方法を実施しても、すべてのコークスを転換させることはできず、残留コークスを燃焼し、溶融固化によって燃焼灰分を不活性にするための、通常の最終燃焼段階が必要となる。これは追加のコストとプラントの複雑さの増大をもたらす。 Another solution is proposed in U.S. Patent No. 6,398,921. The solid and gas phases obtained by the pyrolysis method are subjected to the action of microwave irradiation in the absence of an oxygen source, so that a part of the solid phase is gasified. However, implementing such a method does not convert all the coke and requires a normal final combustion stage to burn the residual coke and render the combustion ash inert by melting and solidification. This results in additional costs and increased plant complexity.

 本発明は、上記の問題を、簡単で効率的かつ安価な形で克服することを目的とする方法に関する。 The present invention relates to a method aimed at overcoming the above problems in a simple, efficient and inexpensive manner.

 具体的には、本発明は、
a)炭素含有固体残渣およびガス相の形成をもたらす条件下で、前記フィードをパイロリシスによって熱的に分解させる段階と、
b)ガス相と炭素含有固体残渣とを分離する段階と、
c)酸化剤の存在下で、マイクロ波放射によって前記炭素含有固体残渣を処理する段階
とを含む方法による、少なくとも5%の有機物質を含有するフィードの処理に関する。
Specifically, the present invention provides:
a) pyrolyzing the feed by pyrolysis under conditions that result in the formation of a carbon-containing solid residue and a gas phase;
b) separating the gas phase and the carbon-containing solid residue;
c) treating said carbon-containing solid residue by microwave radiation in the presence of an oxidizing agent.

 より具体的には、酸化剤は、空気、酸素、高酸素濃度空気または蒸気とすることができる。 More specifically, the oxidizing agent can be air, oxygen, high oxygen concentration air or steam.

 炭素含有固体残渣中に存在する大部分の炭素が酸化されて一酸化炭素または炭酸ガスになり、得られる鉱物性固体残渣の少なくとも一部、またはさらに大部分が非浸出性、より多くは溶融固化された形態となるような条件下で、処理を実施する。 Most of the carbon present in the carbon-containing solid residue is oxidized to carbon monoxide or carbon dioxide, and at least some, or even most, of the resulting mineral solid residue is non-leaching, more often melt-solidified The treatment is carried out under the conditions that result in the prescribed form.

 「存在する大部分の炭素」については、炭素含有物質の少なくとも70%、好ましくは90%、最も好ましくは少なくとも95%、さらには99%が酸化されると考えられる。 For "most carbon present", it is believed that at least 70%, preferably 90%, most preferably at least 95%, and even 99% of the carbon-containing material is oxidized.

 「固体残渣の少なくとも一部」については、前記固体の少なくとも30%および好ましくは少なくとも50%が非浸出性な形態となると考えられる。 For "at least a portion of the solid residue", it is believed that at least 30% and preferably at least 50% of the solid is in a non-leaching form.

 熱分解(すなわちパイロリシス)で得られる高温炭素含有固体残渣は、マイクロ波放射に対し非常に反応性が高く、本方法の2つの段階の間に相乗効果を認められることが、出願人によって確認された。炭素含有固体残渣を生成する熱分解段階と、前記高温固体残渣をマイクロ波放射にかける段階とを組み合わせると高温に達し、低いエネルギー消費で、前記残渣を少なくとも部分的に不活性に、さらには溶融固化させることもできる。さらに、例えば溶融固化オーブンの準備運転のための熱的慣性を全く伴うことなく、マイクロ波を生成させるために消費された電気エネルギーが、直接炭素含有固体残渣に伝達される。これにより良好な全エネルギー効率がもたらされる。 It has been confirmed by the applicant that the high temperature carbon-containing solid residue obtained from the pyrolysis (ie pyrolysis) is very reactive to microwave radiation and a synergistic effect is observed between the two stages of the process. Was. Combining the pyrolysis step of producing a carbon-containing solid residue with the step of subjecting the hot solid residue to microwave radiation reaches a high temperature and, with low energy consumption, renders the residue at least partially inert, and even melts. It can also be solidified. Furthermore, the electrical energy consumed to generate the microwaves is transferred directly to the carbon-containing solid residue without any thermal inertia, for example for the preparation operation of the melt-solidification oven. This results in good overall energy efficiency.

 ほとんどの場合、前記パイロリシスは約300〜800℃の温度範囲で実施し、例えば、段階c)の間のマイクロ波放射の作用の下で、固体残渣の温度が600〜1400℃の値となるような条件下で、高温固体残渣上で前記マイクロ波処理を実施する。 In most cases, the pyrolysis is carried out in a temperature range from about 300 to 800 ° C., for example, such that under the action of microwave radiation during step c) the temperature of the solid residue is between 600 and 1400 ° C. The microwave treatment is performed on the high-temperature solid residue under suitable conditions.

 本発明の方法は、段階c)の処理に先行して、炭素含有残渣の化学的および/または物理的改変、選別、重力分離、例えば水での洗浄、粉砕または形成の段階も含むことができる。 The process of the present invention may also include, prior to the treatment of step c), a step of chemical and / or physical modification, sorting, gravity separation, eg washing with water, grinding or forming of the carbon-containing residue. .

 さらに、本発明の範囲を逸脱することなく、処理段階c)の前またはその間に、水を注入することができる。 Furthermore, water can be injected before or during the processing step c) without departing from the scope of the invention.

 マイクロ波放射の周波数は、100MHz(メガヘルツ)〜100GHz(ギガヘルツ)、好ましくは900〜2500MHzの範囲とすることができ、マイクロ波放射の放出は、例えば、一般に0.001〜1秒の範囲の周期を有するパルス形式で行うことができる。 The frequency of the microwave radiation can be in the range of 100 MHz (megahertz) to 100 GHz (gigahertz), preferably 900 to 2500 MHz, and the emission of the microwave radiation can be, for example, a period generally in the range of 0.001 to 1 second. Can be performed in a pulse format having

 マイクロ波放射の電界密度は、30〜2000キロワット/m3とすることができる。 The electric field density of the microwave radiation can be between 30 and 2000 kilowatts / m3.

 本発明の考えられる実施形態によれば、マイクロ波放射の吸収に好都合な少なくとも1種の添加物、あるいは、段階c)からの残渣の最終組成を調節できる少なくとも1種の添加物を、段階b)からの固体残渣に加えることができる。 According to a possible embodiment of the invention, at least one additive favoring the absorption of microwave radiation or at least one additive capable of adjusting the final composition of the residue from step c) is added to step b). ) Can be added to the solid residue from

 本発明は、少なくとも5%の有機物質を含有するフィードを転換させることを目的とする、上記の方法を実施するのに適当なプラントであって、少なくとも、前記フィードの熱分解を目的としたオーブンと、熱分解オーブンからガス相と炭素含有固体残渣とを分離するための手段と、マイクロ波発生装置と連結された、前記固体残渣の処理を目的とするオーブンとを含むプラントにも関する。 The present invention relates to a plant suitable for carrying out the above-mentioned process, aimed at converting a feed containing at least 5% of organic matter, comprising at least an oven intended for the pyrolysis of said feed. A means for separating the gaseous phase and the carbon-containing solid residue from the pyrolysis oven; and an oven connected to the microwave generator for the treatment of said solid residue.

 本発明の実施形態によれば、複数の処理オーブンを単一のマイクロ波発生装置と連結し、前記オーブンのそれぞれに交替でフィードを供給し、かつマイクロ波放射により交替で処理を施す手段を用いることができる。 According to an embodiment of the present invention, a plurality of processing ovens are connected to a single microwave generator, and a means for alternately supplying a feed to each of the ovens and performing the processing alternately by microwave radiation is used. be able to.

 本発明の方法または本発明のプラントは、とりわけ、家庭廃棄物および/または産業廃棄物、産業汚泥および/または下水汚泥、バイオマス、農業廃棄物および副産物、炭化水素で汚染された土壌の処理にその応用分野が見出される。 The process according to the invention or the plant according to the invention is particularly suitable for the treatment of domestic and / or industrial waste, industrial and / or sewage sludge, biomass, agricultural waste and by-products, soils contaminated with hydrocarbons. Application areas are found.

 本発明の他の利点、詳細および特徴は、本発明によるプラントを示す唯一の添付図面を参照して、これに限定されないが、実施例の形で示す以下の実施形態の記述を読むことによって明らかとなるだろう。 Other advantages, details and features of the invention will become apparent on reading the following description of embodiments, given by way of non-limiting example, with reference to the sole accompanying drawings showing a plant according to the invention. Would be.

 本発明による方法は、家庭廃棄物および/または産業廃棄物、産業汚泥および/または下水汚泥、バイオマス、農業廃棄物および副産物、炭化水素で汚染された土壌などの、少なくとも5%の有機物質を含有するフィードの処理を目的とすることが好ましい。 The process according to the invention comprises at least 5% of organic substances, such as household and / or industrial waste, industrial and / or sewage sludge, biomass, agricultural waste and by-products, hydrocarbon-contaminated soil. It is preferably for the purpose of processing feeds.

 フィードの熱分解、とりわけ熱分解すなわちパイロリシスのためには、規模や組成に変動のあるフィードを処理する能力の理由から、回転式オーブン1を使用することが好ましい。 熱 For pyrolysis of the feed, especially pyrolysis or pyrolysis, it is preferred to use a rotary oven 1 because of its ability to process feeds of varying scale and composition.

 本発明は、例えば、フランス特許第2,785,835号に記載のコンベヤーベルトオーブン、流動床、固定床、移動床、移動床(entrained bed)、または回転床炉などの、パイロリシス操作を実施できる当業者に既知のどんな種類のオーブンにも適用することができる。 The present invention can perform a pyrolysis operation, such as, for example, a conveyor belt oven, fluidized bed, fixed bed, moving bed, entrained bed, or rotating bed furnace as described in French Patent No. 2,785,835. It can be applied to any type of oven known to those skilled in the art.

 熱分解の前に原料フィードを処理する必要があることもある。この予備処理段階は、フィードの性質(フィードの種類、粒子径、水分)に左右されるが、粗砕、乾燥、選別、分離などの通常の技術を使用する。この予備処理段階の目的は、フィードが回転式オーブン1の入口での仕様に適合できるようにすることである。すなわち、
−フィードの最大粒子径が30cm未満、好ましくは10cm未満、
−制御されたフィード水分、例えば、最大40重量%、好ましくは20重量%となるように乾燥することができる。
The feed may need to be processed before pyrolysis. This pre-treatment step depends on the nature of the feed (feed type, particle size, moisture), but uses conventional techniques such as crushing, drying, sorting, separation and the like. The purpose of this pretreatment stage is to ensure that the feed can meet the specifications at the entrance of the rotary oven 1. That is,
The maximum particle size of the feed is less than 30 cm, preferably less than 10 cm;
-It can be dried to a controlled feed moisture, for example up to 40% by weight, preferably 20% by weight.

 オーブンを外部からシールしてオーブン中に空気が流入するのを完全に防止する装置(図1の矢印Cで示す)を用いて、間接加熱回転式オーブンなどのオーブン1の中にフィードを供給する。このシールをもたらす装置は、アルキメデスのねじポンプ(Archimedean screw)、またはフィードをコンパクトな処理単位で導入させる装置とすることができる。 The feed is fed into an oven 1, such as an indirectly heated rotary oven, using a device (shown by arrow C in FIG. 1) that seals the oven from the outside and completely prevents air from flowing into the oven. . The device providing this seal can be an Archimedean screw pump or a device allowing the feed to be introduced in a compact processing unit.

 ここで熱分解に使用する回転式オーブンには回転エンクロージャ2を備える。この回転エンクロージャ2はそれを加熱するための環状空間3で囲まれている。 回 転 The rotary oven used for pyrolysis is provided with a rotary enclosure 2. This rotating enclosure 2 is surrounded by an annular space 3 for heating it.

 加熱作用下で、回転エンクロージャ2の中を進行するにしたがって、フィードはその残留水分を放出し、次いで空気の全く存在しない状態での熱分解、すなわち、パイロリシスにかけられる。この操作により、ガス相(原料ガスまたはパイロリシスガス)および固相物(炭素リッチ固体残渣またはコークス)が形成される。 As it travels through the rotating enclosure 2 under the action of heating, the feed releases its residual moisture and is then subjected to pyrolysis, ie pyrolysis, in the absence of any air. By this operation, a gas phase (a raw material gas or a pyrolysis gas) and a solid phase (a carbon-rich solid residue or coke) are formed.

 熱分解により得られるフィード、ガスおよび固体残渣は、このオーブン中を並流で循環する。最も多くは300〜800℃、好ましくは500〜700℃の範囲の温度、および大気圧近傍の圧力でこの操作を行う。オーブン中でのフィードの滞留時間は、有機物質を完全に分解させるのに十分なように長くとる。一般には30〜180分、より正確には45〜90分の範囲である。そうした滞留時間の条件下で、回転式オーブン中での温度プロフィールを考慮すると、ガス相中でのタール物の生成が最小化される。 フ ィ ー ド The feed, gas and solid residue obtained from the pyrolysis circulate in this oven in cocurrent. This operation is most often carried out at a temperature in the range from 300 to 800 ° C, preferably from 500 to 700 ° C, and at a pressure near atmospheric pressure. The residence time of the feed in the oven should be long enough to completely decompose the organic material. It is generally in the range from 30 to 180 minutes, more precisely from 45 to 90 minutes. Under such residence time conditions, the production of tars in the gas phase is minimized, given the temperature profile in the rotary oven.

 一般に、熱分解操作の操作条件、とりわけ最終処理温度および温度上昇速度は、固体生成物およびタール状重質生成物の収率を犠牲にして可燃性ガス収率を最適にするように、当分野の技術者によって選択されることが好ましい。 In general, the operating conditions of the pyrolysis operation, especially the final processing temperature and the rate of temperature rise, are such that the flammable gas yield is optimized at the expense of the yield of solid products and tar-like heavy products in the art. Is preferably selected by a technician.

 次いで、コージェネレーションプラントなどのエネルギー発生手段(図1には示さず)に供給するために、出願人によって出願された欧州特許出願第0,692,677号または同第1,077,248号に記載されているものなどの既知の技術により、可燃性ガス(または熱分解ガス)を処理し品質を向上させる。 Then, in order to supply energy generating means such as a cogeneration plant (not shown in FIG. 1), European Patent Application Nos. 0,692,677 or 1,077,248 filed by the applicant. The flammable gas (or pyrolysis gas) is treated to improve quality by known techniques such as those described.

 ガス相と固相物を分離させる、サイクロンなどの当分野の技術者に知られている任意の通常の手段4によって、炭素含有固体残渣をガス相から分離する。前記ガス相はライン5を通して排出される。ライン6を通して排出される固体残渣は炭素リッチな混合物であり、ほとんどの場合、ケイ酸塩またはアルミン酸塩などの鉱物質を含む。その割合は勿論、初期フィードの組成および熱分解条件(温度、滞留時間)に依存する。 炭素 Separate the carbon-containing solid residue from the gas phase by any conventional means 4 known to those skilled in the art, such as a cyclone, to separate the gas phase from the solid phase. The gas phase is discharged through line 5. The solid residue discharged through line 6 is a carbon-rich mixture and most often contains minerals such as silicates or aluminates. The proportion depends, of course, on the composition of the initial feed and the pyrolysis conditions (temperature, residence time).

 分離手段4からの高温炭素含有固体残渣は、空気、酸素、高酸素濃度空気または蒸気などの酸化剤の存在下で、好ましくは直ちにマイクロ波放射の作用にかける。このマイクロ波への暴露を、ライン6がその中へ開口しているチャンバ7内で行う。このオーブン、特に回転式オーブンの形でのチャンバはそれに対応するように適合されていて、チャンバはマイクロ波誘導チャンネル8によって、よく知られているタイプのマイクロ波発生装置9と連結されている。 The high-temperature carbon-containing solid residue from the separation means 4 is subjected to the action of microwave radiation, preferably immediately, in the presence of an oxidizing agent such as air, oxygen, high oxygen concentration air or steam. Exposure to this microwave takes place in a chamber 7 into which a line 6 opens. This oven, in particular a chamber in the form of a rotary oven, is correspondingly adapted, the chamber being connected by a microwave guiding channel 8 to a microwave generator 9 of a well-known type.

 炭素含有残渣を暴露するマイクロ波の周波数は、100MHz〜100GHz、より好ましくは900〜2500MHzの範囲が好ましい。また、用いる波長範囲はほとんどの場合、炭素含有固体残渣によるその吸収に好都合で、その結果加熱速度を加速するように、当分野の技術者によって選択される。この吸収によって炭素含有固体残渣の急速な加熱が引き起こされ、酸化剤の存在下で、残渣中に存在する炭素の少なくとも一部の、一酸化炭素COおよび炭酸ガスCO2への酸化がもたらされる。この燃焼の効果により、固体残渣の温度が増加し、ほとんどの場合600〜1400℃の範囲の温度に達する。 The frequency of the microwave for exposing the carbon-containing residue is preferably in the range of 100 MHz to 100 GHz, more preferably 900 to 2500 MHz. Also, the wavelength range used is in most cases selected by those skilled in the art to favor its absorption by the carbon-containing solid residue, thus accelerating the heating rate. This absorption causes rapid heating of the carbon-containing solid residue, resulting in the oxidation of at least a portion of the carbon present in the residue to carbon monoxide CO and carbon dioxide CO 2 in the presence of an oxidizing agent. The effect of this combustion increases the temperature of the solid residue, reaching temperatures in most cases in the range of 600-1400C.

 マイクロ波の放出は、連続形式、または例えば0.001〜1秒の範囲の周期を取りうるパルス形式のどちらによっても実施することができる。 The microwave emission can be carried out either in a continuous manner or in a pulsed form, which may have a period in the range, for example, from 0.001 to 1 second.

 酸化反応を起こすのに十分なエネルギーを、短時間で、すなわち1秒〜15分間の周期で供給できるように、任意の既知の技術によりマイクロ波発生装置9の寸法決めを行い選択する。炭素含有物質の化学的組成、とりわけその炭素含量にもよるが、いずれにしろ、電界密度は、典型的には30〜2000キロワット/m3(立方メートル当たりのキロワット)のオーダーの値の範囲である。 The microwave generator 9 is dimensioned and selected by any known technique so that energy sufficient to cause an oxidation reaction can be supplied in a short time, i.e., in a cycle of 1 second to 15 minutes. In any case, depending on the chemical composition of the carbon-containing material, in particular its carbon content, the electric field density is in the range of values on the order of 30 to 2000 kilowatts / m 3 (kilowatts per cubic meter). .

 不活性な固体残渣が得られるまで、すなわち、NFX31210標準による非浸出性鉱物質のみを含有し、かつ一般に5%未満、好ましくは3%未満、典型的には1%未満の残留炭素含量となるまで、処理を継続する。 Until an inert solid residue is obtained, ie containing only non-leaching minerals according to the NFX 31210 standard, and generally having a residual carbon content of less than 5%, preferably less than 3%, typically less than 1% Until the process is continued.

 供給手段10経由で、熱分解から得られる固体残渣に、少なくとも1種の既知の添加物を加えることも有利である。この添加物は、回転式オーブン7中での混合体による前記波長の吸収をさらに向上させ、かつ/または、例えば水または炭素について、最終的に得られる高シリカガラスフリット、炭酸カルシウムなどの不活性な固体残渣の組成を、特に、そうした残渣を建設業および土木工事の分野での材料として品質向上させるために、後で調節することを可能にする。 It is also advantageous to add at least one known additive to the solid residue obtained from the pyrolysis via the feeding means 10. This additive further enhances the absorption of said wavelengths by the mixture in the rotary oven 7 and / or makes it possible, for example, for water or carbon, to obtain an inert high silica glass frit, such as calcium carbonate, which is finally obtained. The composition of the solid residue can be adjusted later, in particular to improve the residue as a material in the field of construction and civil engineering.

 炭素含有残渣の燃焼によって生じるフュームは、続いて処理するために、ライン11を通して処理オーブン7から排出される。この処理を、COのCO2への転換、ダストおよび含有の可能性のある汚染物の除去に含めることができる。 The fumes resulting from the combustion of the carbon-containing residue are discharged from processing oven 7 through line 11 for subsequent processing. This process, conversion to CO 2 in the CO, can be included for removal of contaminants that might dust and containing.

 不活性な固体残渣は、抜出手段12によってオーブンから除去される。また、本発明の範囲を逸脱することなく、高温の不活性固体残渣からのエネルギー回収を目的とした、例えば熱交換器13などの手段もこの抜出手段12上に配置することができる。 The inert solid residue is removed from the oven by the withdrawing means 12. Further, a means such as a heat exchanger 13 for recovering energy from a high-temperature inert solid residue can be arranged on the extraction means 12 without departing from the scope of the present invention.

 本発明はもちろん上記の1つだけの実施形態に限定されるものではない。 も ち ろ ん Of course, the present invention is not limited to only one embodiment described above.

 例えば、回転板上に設けた複数のマイクロ波処理オーブンを設置し、それによって前記オーブンのそれぞれが、交替でフィードの供給を受け、次いで交替でマイクロ波発生装置の作用を受けるというような、本発明の他の実施形態を提供することができる。そうしたレイアウトは特に、プラントの全体的な能力を、簡単で経済的な形で増大させ、同時にそのスペースの必要性を最小にする利点をもたらす。 For example, a plurality of microwave processing ovens provided on a rotating plate are installed, whereby each of the ovens is alternately fed with a feed and then alternately acted upon by a microwave generator. Other embodiments of the invention can be provided. Such a layout in particular offers the advantage of increasing the overall capacity of the plant in a simple and economical way, while at the same time minimizing its space requirements.

本発明によるプラントを示す図である。FIG. 2 shows a plant according to the invention.

符号の説明Explanation of reference numerals

 1 回転式オーブン
 2 回転エンクロージャ
 3 環状空間
 4 分離手段
 5、6、11 ライン
 7 チャンバ
 8 マイクロ波誘導チャンネル
 9 マイクロ波発生装置
 10 供給手段
 12 抜出手段
 13 熱交換器などのエネルギー回収手段
DESCRIPTION OF SYMBOLS 1 Rotary oven 2 Rotating enclosure 3 Annular space 4 Separation means 5, 6, 11 Line 7 Chamber 8 Microwave induction channel 9 Microwave generator 10 Supply means 12 Extraction means 13 Energy recovery means, such as a heat exchanger

Claims (11)

 少なくとも5%の有機物質を含有するフィードの処理を目的とする方法であって、
a)炭素含有固体残渣およびガス相の形成をもたらす条件下で、前記フィードをパイロリシスによって熱的に分解させる段階と、
b)ガス相と炭素含有固体残渣とを分離する段階と、
c)酸化剤の存在下で、マイクロ波放射によって前記炭素含有固体残渣を処理する段階
とを含む方法。
A method intended for treating a feed containing at least 5% of an organic substance, comprising:
a) pyrolyzing the feed by pyrolysis under conditions that result in the formation of a carbon-containing solid residue and a gas phase;
b) separating the gas phase and the carbon-containing solid residue;
c) treating said carbon-containing solid residue by microwave radiation in the presence of an oxidizing agent.
 段階c)の間のマイクロ波放射の作用の下で、固体残渣の温度が600〜1400℃の値となるような条件の下、前記マイクロ波処理を高温固体残渣上で実施する請求項1に記載の方法。 2. The method according to claim 1, wherein the microwave treatment is carried out on the hot solid residue under conditions of microwave radiation during step c) such that the temperature of the solid residue is between 600 and 1400C. The described method.  段階c)の処理に先行して、炭素含有残渣の化学的および/または物理的改変、選別、重力分離、洗浄、粉砕または形成の段階を実施する請求項1または2に記載の方法。 方法 The method according to claim 1 or 2, wherein the step of c) is preceded by a step of chemical and / or physical modification, sorting, gravity separation, washing, grinding or forming of the carbon-containing residue.  処理段階c)の前またはその間に、水を注入する請求項1から3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein water is injected before or during the processing step c).  マイクロ波放射の周波数が100MHz〜100GHzの範囲である請求項1から4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the frequency of the microwave radiation is in the range of 100 MHz to 100 GHz.  マイクロ波放射の放出を、0.001〜1秒の範囲の周期のパルス形式で実施する請求項1から5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein the emission of the microwave radiation is carried out in the form of pulses with a period in the range from 0.001 to 1 second.  マイクロ波放射の電界密度が30〜2000キロワット/m3の範囲である請求項1から6のいずれか一項に記載の方法。 7. The method according to claim 1, wherein the electric field density of the microwave radiation ranges from 30 to 2000 kilowatts / m < 3 >.  マイクロ波放射の吸収に有利に働く少なくとも1種の添加剤を、段階b)からの固体残渣に加える請求項1から7のいずれか一項に記載の方法。 8. The process according to claim 1, wherein at least one additive which favors absorption of microwave radiation is added to the solid residue from step b).  段階c)からの残渣の組成を調節できる少なくとも1種の添加剤を、段階b)からの固体残渣に加える請求項1から8のいずれか一項に記載の方法。 9. A process according to any one of claims 1 to 8, wherein at least one additive capable of adjusting the composition of the residue from step c) is added to the solid residue from step b).  少なくとも、前記フィードの熱分解を目的としたオーブン(1)と、熱分解オーブンからガス相と炭素含有固体残渣とを分離するための手段(4)と、マイクロ波発生装置(9)と連結された、前記固体残渣の処理を目的とするオーブン(7)とを含む、請求項1から9のいずれか一項に記載の方法を実施するための、少なくとも5%の有機物質を含有するフィードを転換させることを目的とするプラント。 At least an oven (1) intended for pyrolysis of the feed, means (4) for separating the gas phase and the carbon-containing solid residue from the pyrolysis oven, and a microwave generator (9) are connected. An oven (7) intended for the treatment of said solid residue, comprising a feed containing at least 5% organic material for carrying out the method according to any of the preceding claims. A plant intended to be converted.  単一のマイクロ波発生装置と連結された複数の処理オーブンと、前記オーブンのそれぞれに交替でフィードを供給し、かつマイクロ波放射により交替で処理を施す手段とを備える請求項10に記載のプラント。 11. The plant of claim 10, comprising a plurality of processing ovens coupled to a single microwave generator, and means for providing alternate feeds to each of the ovens and for performing alternate processing by microwave radiation. .
JP2003361952A 2002-10-22 2003-10-22 Method and plant for microwave treatment of solid residue resulting from pyrolysis of feed containing organic substance Pending JP2004141871A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0213185 2002-10-22

Publications (1)

Publication Number Publication Date
JP2004141871A true JP2004141871A (en) 2004-05-20

Family

ID=32050653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003361952A Pending JP2004141871A (en) 2002-10-22 2003-10-22 Method and plant for microwave treatment of solid residue resulting from pyrolysis of feed containing organic substance

Country Status (2)

Country Link
EP (1) EP1413826A1 (en)
JP (1) JP2004141871A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009018543A1 (en) * 2007-08-01 2009-02-05 Virginia Tech Intellectual Properties, Inc. Thermochemical method for conversion of poultry litter
WO2012048462A1 (en) * 2010-10-13 2012-04-19 Song Jinyou Method for recovering valuable resource from waste gfrp and waste circuit board
CN104633675A (en) * 2015-02-06 2015-05-20 长沙紫宸科技开发有限公司 Waste electric appliance circuit board energy regeneration innocent treatment system
CN106765154A (en) * 2017-01-24 2017-05-31 山东大学 It is a kind of that method of disposal is pyrolyzed based on the medical waste that microwave is quenched
CN106838933A (en) * 2017-01-24 2017-06-13 山东大学 A kind of pyrolyzing sludge method of disposal being quenched based on microwave
CN106871128A (en) * 2017-01-24 2017-06-20 山东大学 A kind of parallel composite construction refuse pyrolysis method of disposal being quenched based on microwave
CN107062270A (en) * 2017-01-24 2017-08-18 山东大学 It is a kind of that method of disposal is pyrolyzed based on the electronic waste that microwave is quenched

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ523665A (en) * 2003-01-15 2004-02-27 Rajeev Prasad Gupta Use of microwave energy for the combustion of organic material
PL389497A1 (en) * 2009-11-06 2011-05-09 Aton-Ht Spółka Akcyjna Mobile device for the disposal of organic waste, particularly medical, catering and veterinary waste
CN102441554A (en) * 2010-10-13 2012-05-09 宋金有 Method for recycling valuable resources of waste glass fiber reinforced plastics and waste circuit boards
WO2015136490A1 (en) 2014-03-13 2015-09-17 Franco Livio Apparatus for the treatment of substances of vegetable origin for producing biomass to be used for generating electric and thermal energy from renewable sources, and relative method
CN108285261B (en) * 2018-03-20 2024-02-06 中国石油大学(北京) Device for treating oily sludge by microwaves and treatment method thereof
US11920004B2 (en) 2020-04-01 2024-03-05 Environmental Waste International, Inc. Hybrid processing of waste material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888086A (en) * 1981-11-20 1983-05-26 Sanki Eng Co Ltd Apparatus for heat-treating waste matter
JPH0691651A (en) * 1992-09-14 1994-04-05 Nippon Ripuro Mach Kogyo Kk Machine for volume-reducing plastic container
JP2000334062A (en) * 1999-05-28 2000-12-05 Agency Of Ind Science & Technol Microwave-solvothermal treatment of harmful organic compound

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822280B2 (en) * 1979-03-22 1983-05-07 株式会社神戸製鋼所 Slurry drying/melting solidification method
JPS60203900A (en) * 1984-03-29 1985-10-15 日本原子力研究所 Method of treating waste containing radioactive nuclide
JPS61153308A (en) * 1984-12-25 1986-07-12 Ebara Corp Incineration of waste ion exchange resin or the like effected by microwave
DE4118365A1 (en) * 1991-06-05 1992-12-10 Kuepper August Gmbh & Co Kg Recycling of used foundry sand - by treating in a microwave furnace to volatilise, decompose or oxidise carbon@ or organic particles without effectively heating the sand
US6398921B1 (en) * 1995-03-15 2002-06-04 Microgas Corporation Process and system for wastewater solids gasification and vitrification
US5886326A (en) * 1996-01-19 1999-03-23 Thermotrex Corporation Microwave waste incinerator
GB9921520D0 (en) * 1999-09-14 1999-11-17 Pearson Frederick Treatment of carbonaceous material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888086A (en) * 1981-11-20 1983-05-26 Sanki Eng Co Ltd Apparatus for heat-treating waste matter
JPH0691651A (en) * 1992-09-14 1994-04-05 Nippon Ripuro Mach Kogyo Kk Machine for volume-reducing plastic container
JP2000334062A (en) * 1999-05-28 2000-12-05 Agency Of Ind Science & Technol Microwave-solvothermal treatment of harmful organic compound

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009018543A1 (en) * 2007-08-01 2009-02-05 Virginia Tech Intellectual Properties, Inc. Thermochemical method for conversion of poultry litter
WO2012048462A1 (en) * 2010-10-13 2012-04-19 Song Jinyou Method for recovering valuable resource from waste gfrp and waste circuit board
CN104633675A (en) * 2015-02-06 2015-05-20 长沙紫宸科技开发有限公司 Waste electric appliance circuit board energy regeneration innocent treatment system
CN106765154A (en) * 2017-01-24 2017-05-31 山东大学 It is a kind of that method of disposal is pyrolyzed based on the medical waste that microwave is quenched
CN106838933A (en) * 2017-01-24 2017-06-13 山东大学 A kind of pyrolyzing sludge method of disposal being quenched based on microwave
CN106871128A (en) * 2017-01-24 2017-06-20 山东大学 A kind of parallel composite construction refuse pyrolysis method of disposal being quenched based on microwave
CN107062270A (en) * 2017-01-24 2017-08-18 山东大学 It is a kind of that method of disposal is pyrolyzed based on the electronic waste that microwave is quenched
CN107062270B (en) * 2017-01-24 2019-03-01 山东大学 A kind of electronic waste pyrolysis method of disposal being quenched based on microwave

Also Published As

Publication number Publication date
EP1413826A1 (en) 2004-04-28

Similar Documents

Publication Publication Date Title
JP4713036B2 (en) Method and apparatus for pyrolysis gasification of organic substance or organic substance mixture
RU2380615C1 (en) Method of recycling domestic waste by using pyrolysis reactor, system for implementation thereof and pyrolysis reactor
JP5890440B2 (en) Waste treatment method and apparatus
JP4154029B2 (en) Waste treatment method and waste treatment apparatus
JP2003504454A5 (en)
RU2424277C2 (en) Procedure for carbonaceous material steam reforming
JP6234579B2 (en) Combined biomass pressurized pyrolysis method and system
JP2004141871A (en) Method and plant for microwave treatment of solid residue resulting from pyrolysis of feed containing organic substance
JP2007177106A (en) Apparatus for gasifying biomass
EA014523B1 (en) Method for producing a product gas rich in hydrogen
JP4502331B2 (en) Method and system for cogeneration with a carbonization furnace
JP2011111511A (en) Regeneration treatment method of carbon compound, gasification apparatus and regeneration treatment system
JP5176016B2 (en) Superheated steam continuous recycling equipment
JP2022508771A (en) Methods for processing carbonaceous materials and equipment for them
WO2009116868A1 (en) Process for the use of alkali metal or alkali earth metal containing organic materials and composites in the microwave-assisted plasma decomposition of said compounds for the production of syngas
JP2007112879A (en) System and method for thermal decomposition treatment of waste product
JP2004051745A (en) System of gasifying biomass
KR20130082131A (en) Apparatus for two-stage pyrolysis and gasfication and method thereof
JP2004204106A (en) Gasifier of organic material
JP2005068435A (en) Method and plant for producing decontaminated syngas at high efficiency from feedstock rich in organic substance
JP4155507B2 (en) Biomass gasification method and gasification apparatus
JP2003268380A (en) Apparatus for manufacturing high quality fuel from organic waste and manufacturing method
RU2696231C1 (en) Method of recycling carbon-containing materials
JPH115100A (en) Sewage sludge treatment system
RU2616079C1 (en) Method and device for plasma gasification of solid carbonaceous material and synthesis gas production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080903

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081203

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100526