JP2007183239A - Method and device for measuring board surface height - Google Patents

Method and device for measuring board surface height Download PDF

Info

Publication number
JP2007183239A
JP2007183239A JP2006177595A JP2006177595A JP2007183239A JP 2007183239 A JP2007183239 A JP 2007183239A JP 2006177595 A JP2006177595 A JP 2006177595A JP 2006177595 A JP2006177595 A JP 2006177595A JP 2007183239 A JP2007183239 A JP 2007183239A
Authority
JP
Japan
Prior art keywords
height
substrate surface
height measurement
measurement
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006177595A
Other languages
Japanese (ja)
Other versions
JP5594923B2 (en
Inventor
Tosuke Kawada
東輔 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Machine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Machine Manufacturing Co Ltd filed Critical Fuji Machine Manufacturing Co Ltd
Priority to JP2006177595A priority Critical patent/JP5594923B2/en
Publication of JP2007183239A publication Critical patent/JP2007183239A/en
Application granted granted Critical
Publication of JP5594923B2 publication Critical patent/JP5594923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve height measurement accuracy at an optional measuring object point on the mounting surface (board surface) of a circuit board, and to shorten a processing time. <P>SOLUTION: Height measuring points 12, 13 to the number of four or more in total are arranged on the board surface so as to be dispersed approximately equally on the whole board surface. After measuring all the height measuring points 12, 13, three adjacent height measuring points 12 or 13 are selected from among the height measuring points 12, 13, and processing for forming a triangular domain having the three height measuring points 12 or 13 as vertexes is repeated, to thereby divide the board surface into a plurality of triangular domains. Then, after selecting a triangular domain including the measuring object point whose height is to be actually measured from among the plurality of triangular domains, the height of the measuring object point within the triangular domain is calculated by interpolation calculation based on each height measured value of the three vertexes (height measuring points 12 or 13) of the triangular domain including the measuring object point. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、回路基板の実装面の任意の測定対象点の高さを測定する基板面高さ測定方法及びその装置に関する発明である。   The present invention relates to a board surface height measuring method and apparatus for measuring the height of an arbitrary measurement target point on a circuit board mounting surface.

電子部品実装機を用いて回路基板の実装面(以下「基板面」という)にディスペンサノズルで半田を塗布したり、吸着ノズルに吸着した電子部品を実装する際に、基板面が反っていることがあるため、実装精度を上げるには、基板面に対するディスペンサノズルや吸着ノズルの上下ストローク(昇降量)を基板面の反りに応じて微調整することが望ましい。これを実現するためには、基板面の反り(高さ)を測定する必要があり、そのために、幾つかの基板面高さ測定技術が提案されている。   When the electronic component mounting machine is used to apply solder to the circuit board mounting surface (hereinafter referred to as “board surface”) with a dispenser nozzle or to mount an electronic component adsorbed to the suction nozzle, the board surface is warped. Therefore, in order to increase the mounting accuracy, it is desirable to finely adjust the vertical stroke (lifting amount) of the dispenser nozzle and the suction nozzle with respect to the substrate surface according to the warp of the substrate surface. In order to realize this, it is necessary to measure the warpage (height) of the substrate surface, and several substrate surface height measurement techniques have been proposed for this purpose.

例えば、特許文献1(特開2005−30793号公報)に記載された基板面高さ測定技術は、基板面に形成されている3箇所の認識マークの位置をオペレータの入力操作又は自動的に指示して、これら3箇所の認識マークの高さをレーザ変位センサにより測定し、これら3箇所の認識マークを含む平面上に部品実装位置が存在するものと仮定して、3箇所の認識マークの高さ測定値に基づいて部品実装位置の高さを線形補間により算出するようにしている。   For example, in the substrate surface height measurement technique described in Patent Document 1 (Japanese Patent Laid-Open No. 2005-30793), the operator's input operation or the automatic indication of the positions of three recognition marks formed on the substrate surface Then, the heights of these three recognition marks are measured by a laser displacement sensor, and the heights of the three recognition marks are assumed on the assumption that the component mounting positions exist on the plane including these three recognition marks. The height of the component mounting position is calculated by linear interpolation based on the measured value.

この特許文献1には、高さ測定に用いる認識マークの選択方法については具体的に記載されていない。特に、高さ測定に用いる認識マークの選択を自動化する場合は、適正な選択基準が無ければ、不適切な位置の認識マークを選択してしまうことになり、線形補間による部品実装位置の高さ測定精度が悪くなるという欠点がある。   This Patent Document 1 does not specifically describe a method for selecting a recognition mark used for height measurement. In particular, when automating the selection of the recognition mark used for height measurement, if there is no appropriate selection criterion, the recognition mark at an inappropriate position will be selected, and the height of the component mounting position by linear interpolation will be selected. There is a disadvantage that the measurement accuracy is deteriorated.

また、特許文献2(特開2004−71641号公報)に記載された基板の反り測定技術は、基板面を複数の四角形領域に分割し、各四角形領域の代表ポイントの高さを反り検出器で検出して、基板全体の反りを推定演算するようにしている。   Further, the substrate warpage measurement technique described in Patent Document 2 (Japanese Patent Application Laid-Open No. 2004-71641) divides the substrate surface into a plurality of quadrangular regions, and the height of the representative points of each quadrangular region is determined by a warp detector. The warpage of the entire substrate is estimated and calculated.

しかし、この方法で、反りの検出精度を高めるには、代表ポイントの個数(四角形領域の個数)を相当に多くする必要があり、そのために、全ての代表ポイントの高さを測定し終えるまでに時間がかかり、反り検出処理時間が長くなるという欠点がある。
特開2005−30793号公報(第7頁等) 特開2004−71641号公報(第7頁等)
However, to increase the accuracy of warp detection using this method, the number of representative points (the number of square areas) needs to be considerably increased. For this reason, until all the representative points have been measured in height, There is a drawback that it takes time and the warp detection processing time becomes long.
Japanese Patent Laying-Open No. 2005-30793 (page 7, etc.) JP-A-2004-71641 (Page 7, etc.)

上述したように、従来の基板面高さ(反り)測定技術では、高さ測定精度が悪くなったり、処理時間が長くなるという欠点があった。   As described above, the conventional substrate surface height (warp) measurement technique has the drawbacks that the height measurement accuracy deteriorates and the processing time becomes long.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、基板面の任意の測定対象点の高さ測定精度向上と処理時間短縮を実現することができる基板面高さ測定方法及びその装置を提供することにある。   The present invention has been made in view of such circumstances, and therefore the object of the present invention is to improve the height measurement accuracy of any measurement target point on the substrate surface and reduce the processing time. It is to provide a measuring method and an apparatus thereof.

上記目的を達成するために、本発明は、回路基板の実装面(以下「基板面」という)の任意の測定対象点の高さを測定する基板面高さ測定方法及びその装置において、前記基板面に設定された4個以上の高さ測定点の中から隣り合う3個の高さ測定点を選択し、当該3個の高さ測定点を頂点とする三角形領域を形成する処理を繰り返して前記基板面を複数の三角形領域に分割し、前記複数の三角形領域の中から実際に高さを測定しようとする測定対象点が含まれる三角形領域を選択し、当該三角形領域の3個の頂点となる3個の高さ測定点の高さを高さ測定手段により測定し、当該3個の高さ測定点の高さ測定値に基づいて当該三角形領域内の測定対象点の高さを補間計算により算出するようにしたものである。   In order to achieve the above object, the present invention provides a substrate surface height measuring method and apparatus for measuring the height of an arbitrary measurement target point on a circuit board mounting surface (hereinafter referred to as “substrate surface”). Select three adjacent height measurement points from four or more height measurement points set on the surface, and repeat the process of forming a triangular area with the three height measurement points as vertices The substrate surface is divided into a plurality of triangular areas, a triangular area including a measurement target point for actually measuring the height is selected from the plurality of triangular areas, and three vertices of the triangular area are selected. The height of the three height measurement points is measured by the height measurement means, and the height of the measurement target points in the triangular area is interpolated based on the height measurement values of the three height measurement points. It is made to calculate by.

この場合、基板面を複数の三角形領域に分割した後に、実際に高さを測定しようとする測定対象点が含まれる三角形領域の3個の頂点(3個の高さ測定点)の高さを測定するようにしたが、最初に、基板面に設定された4個以上の高さ測定点を全て測定した後、基板面を複数の三角形領域に分割するようにしても良い。   In this case, after dividing the substrate surface into a plurality of triangular areas, the heights of the three vertices (three height measuring points) of the triangular area including the measurement target point for which the height is actually measured are set. Although the measurement is performed, first, after measuring all four or more height measurement points set on the substrate surface, the substrate surface may be divided into a plurality of triangular regions.

いずれの場合も、基板面を複数の三角形領域に分割し、実際に高さを測定しようとする測定対象点が含まれる三角形領域を選択し、当該三角形領域の3個の頂点(高さ測定点)の高さ測定値に基づいて当該三角形領域内の測定対象点の高さを補間計算により算出するので、測定対象点に近い3個の高さ測定点の高さ測定値に基づいて測定対象点の高さを補間計算により精度良く算出することができると共に、高さ測定の処理時間を短くすることができる。   In either case, the substrate surface is divided into a plurality of triangular regions, a triangular region including the measurement target point for which the height is actually measured is selected, and three vertices (height measuring points) of the triangular region are selected. ) Is calculated by interpolation calculation based on the height measurement value of the triangle area, so that the measurement target is based on the height measurement values of three height measurement points close to the measurement target point. The height of the point can be calculated with high accuracy by interpolation calculation, and the processing time for height measurement can be shortened.

本発明は、基板面を複数の三角形領域に分割する際に、一辺を共通にする三角形領域の候補が複数存在する場合に、他の2辺のうちの長い方の辺が最も短い三角形領域の候補を有効な三角形領域として選択するようにしても良い。   In the present invention, when a substrate surface is divided into a plurality of triangular regions, when there are a plurality of candidates for a triangular region having a common side, the longer side of the other two sides is the shortest triangular region. The candidate may be selected as an effective triangle area.

或は、基板面を複数の三角形領域に分割する際に、一辺を共通にする三角形領域の候補が複数存在する場合に、他の2辺の合計長さが最も短い三角形領域の候補を有効な三角形領域として選択するようにしても良い。   Alternatively, when the substrate surface is divided into a plurality of triangular regions, if there are a plurality of triangular region candidates that share one side, the candidate of the triangular region having the shortest total length of the other two sides is effective. You may make it select as a triangular area | region.

また、基板面を複数の三角形領域に分割する際に、1個の高さ測定点を共通の頂点とする三角形領域の候補が複数存在する場合に、3辺の合計長さ又は最長辺(3辺のうちの最も長い辺)が最も短い三角形領域の候補を有効な三角形領域として選択するようにしても良い。   In addition, when the substrate surface is divided into a plurality of triangular regions, if there are a plurality of candidates for a triangular region having one height measurement point as a common vertex, the total length of three sides or the longest side (3 A candidate for a triangular region having the shortest side) may be selected as an effective triangular region.

いずれの方法を採用しても、実際に高さを測定しようとする測定対象点と、その測定対象点を含む三角形領域の頂点(高さ測定点)との距離が短くなるように三角形領域を分割することができ、補間計算の精度を向上させることができる。   Regardless of which method is used, the triangle area is adjusted so that the distance between the measurement target point where the height is actually measured and the apex (height measurement point) of the triangle area including the measurement target point is short. Therefore, the accuracy of the interpolation calculation can be improved.

その他、本発明は、基板面を複数の三角形領域に分割しない場合は、基板面に設定された4個以上の高さ測定点の中から実際に高さを測定しようとする測定対象点に最も近い3個の高さ測定点を選択し、当該3個の高さ測定点の高さを高さ測定手段により測定し、当該3個の高さ測定点の高さ測定値に基づいて前記測定対象点の高さを補間計算により算出するようにしても良い。このようにしても、測定対象点の高さを補間計算により精度良く算出することができると共に、高さ測定の処理時間を短くすることができる。   In addition, according to the present invention, when the substrate surface is not divided into a plurality of triangular areas, the measurement target point for which the height is actually measured among the four or more height measurement points set on the substrate surface is the most. Select three closest height measurement points, measure the height of the three height measurement points with the height measurement means, and measure the height based on the height measurement values of the three height measurement points. The height of the target point may be calculated by interpolation calculation. Even in this way, the height of the measurement target point can be calculated with high accuracy by interpolation calculation, and the processing time of the height measurement can be shortened.

また、本発明は、高さ測定点の高さを測定する高さ測定手段として、レーザ変位センサ等の専用の高さ測定装置を用いるようにしても良いが、電子部品実装機に標準装備されたカメラとスリット光を組み合わせて高さ測定点の高さを測定するようにしても良い。   In the present invention, a dedicated height measuring device such as a laser displacement sensor may be used as the height measuring means for measuring the height of the height measuring point. The height of the height measurement point may be measured by combining a camera and slit light.

この場合、基板面に対してスリット光を斜め上方から前記高さ測定点に跨がるように照射するスリット照明手段と、基板面の真上からスリット光の照射部分を撮像するカメラとを備えた画像取り込みシステムを使用し、カメラで撮像したスリット光と高さ測定点とが重なる部分の位置と前記スリット光の照射角度とに基づいて当該高さ測定点の高さを算出するようにすると良い。このようにすれば、電子部品実装機に標準装備されたカメラを使用して高さ測定点の高さを測定することができるため、レーザ変位センサ等の専用の高さ測定装置が不要となり、低コスト化の要求を満たすことができる。   In this case, it is provided with slit illumination means for irradiating the substrate surface with the slit light so as to straddle the height measurement point from obliquely above, and a camera for imaging the irradiated portion of the slit light from directly above the substrate surface. The height measurement point is calculated based on the position of the portion where the slit light imaged by the camera and the height measurement point overlap and the irradiation angle of the slit light. good. In this way, since the height of the height measurement point can be measured using a camera that is standard equipment on the electronic component mounting machine, a dedicated height measurement device such as a laser displacement sensor is not required, It can meet the demand for cost reduction.

カメラを用いて高さ測定点の高さを検出する場合は、前記スリット照明手段の照明のみで前記カメラで撮像した前記スリット光の照射部分の画像を取り込む工程と[図4(a)参照]、前記スリット照明手段を含む全ての照明を消した状態で前記カメラで撮像した上記と同じ部分の画像を取り込む工程と[図4(b)参照]、前記スリット照明手段の照明のみの画像から前記全ての照明を消した状態の画像を差し引いた差分画像を抽出する工程と[図4(c)参照]、前記差分画像に基づいて前記スリット光と前記高さ測定点とが重なる部分の位置を検出する工程と[図4(d)参照]、前記スリット光と前記高さ測定点とが重なる部分の位置と前記スリット光の照射角度とに基づいて当該高さ測定点の高さを算出する工程とを実行するようにしても良い。このようにすれば、カメラで撮像したスリット光と高さ測定点とが重なる部分の位置とスリット光の照射角度とに基づいて当該高さ測定点の高さを幾何学的に精度良く算出することができる。   In the case of detecting the height of the height measurement point using a camera, a step of capturing an image of the irradiated portion of the slit light imaged by the camera only with the illumination of the slit illumination means [see FIG. 4 (a)] A step of capturing an image of the same part imaged by the camera in a state where all illumination including the slit illumination means is turned off [see FIG. 4 (b)], and from the illumination only image of the slit illumination means A step of extracting a difference image obtained by subtracting an image with all the lights off [see FIG. 4C], and a position of a portion where the slit light and the height measurement point overlap based on the difference image. The height of the height measurement point is calculated based on the detecting step and the position of the portion where the slit light and the height measurement point overlap and the irradiation angle of the slit light (see FIG. 4D). To carry out the process It may be. In this way, the height of the height measurement point is geometrically accurately calculated based on the position of the portion where the slit light imaged by the camera and the height measurement point overlap and the irradiation angle of the slit light. be able to.

ところで、回路基板の中には、可視光を全く透過しない不透明な基板もあるが、可視光を透過する半透明又は透明な基板(例えばガラスエポキシ樹脂等の半透明又は透明なプラスチック基板、ガラス基板等)も存在する。このような半透明又は透明な基板に対して斜め上方から可視光のスリット光を照射すると、図10(a)に示すように、可視光のスリット光が基板の上面で反射するだけでなく、基板内部を透過して基板の下面でも反射するため、カメラ側から見て異なる位置で反射する2種類の反射光1,2が存在することになる。このため、可視光のスリット光を半透明又は透明な基板に照射すると、可視光のスリット光と高さ測定点とが重なる部分の位置をカメラで正確に撮像できなくなってしまい、高さ測定点の高さを精度良く算出できなくなってしまう。   By the way, some circuit boards are opaque substrates that do not transmit visible light at all. However, semi-transparent or transparent substrates that transmit visible light (for example, translucent or transparent plastic substrates such as glass epoxy resin, glass substrates). Etc.). When such a semi-transparent or transparent substrate is irradiated with visible slit light from obliquely upward, as shown in FIG. 10 (a), not only the visible slit light is reflected on the upper surface of the substrate, Since the light passes through the inside of the substrate and is also reflected from the lower surface of the substrate, there are two types of reflected light 1 and 2 that are reflected at different positions when viewed from the camera side. For this reason, if the slit light of visible light is irradiated onto a translucent or transparent substrate, the position of the portion where the slit light of visible light and the height measurement point overlap cannot be accurately imaged by the camera, and the height measurement point It becomes impossible to calculate the height of.

この対策として、スリット光を紫外光により形成し、紫外光領域に感度を持つ紫外光カメラを用いるようにすると良い。   As a countermeasure, it is preferable to use an ultraviolet light camera having slit light formed by ultraviolet light and having sensitivity in the ultraviolet light region.

可視光よりも波長が短い紫外光は、半透明又は透明な基板の内部に透過しにくい性質があるため、図10(b)に示すように、紫外光のスリット光を半透明又は透明な基板に対して斜め上方から照射すれば、半透明又は透明な基板内部への紫外光のスリット光の透過をほとんど防止することができて、基板の上面のみで紫外光のスリット光を反射することが可能となる。従って、半透明又は透明な基板であっても、紫外光のスリット光を用いて、紫外光領域に感度を持つ紫外光カメラで撮像すれば、スリット光と高さ測定点とが重なる部分の位置をカメラで正確に撮像することが可能となり、高さ測定点の高さを精度良く算出することができる。   Since ultraviolet light having a wavelength shorter than that of visible light has a property that it is difficult to transmit inside a translucent or transparent substrate, as shown in FIG. 10B, the slit light of the ultraviolet light is translucent or transparent. If it is irradiated obliquely from above, it is possible to almost prevent the transmission of the ultraviolet slit light into the translucent or transparent substrate, and the ultraviolet slit light can be reflected only on the upper surface of the substrate. It becomes possible. Therefore, even if it is a semi-transparent or transparent substrate, if the image is picked up by an ultraviolet camera having sensitivity in the ultraviolet region using the slit light of ultraviolet light, the position of the portion where the slit light and the height measurement point overlap Can be accurately captured by the camera, and the height of the height measurement point can be accurately calculated.

尚、可視光を全く透過しない不透明な基板に対しては、可視光のスリット光を用いても良いことは言うまでもない。   Needless to say, visible light slit light may be used for an opaque substrate that does not transmit visible light at all.

以下、本発明を実施するための最良の形態を具体化した2つの実施例1,2を説明する。   Hereinafter, two Examples 1 and 2, which embody the best mode for carrying out the present invention, will be described.

本発明の実施例1を図1乃至図9に基づいて説明する。まず、図1乃至図5に基づいて回路基板11の実装面に設定された所定の高さ測定点12,13の高さを測定するシステム(高さ測定手段)について説明する。   A first embodiment of the present invention will be described with reference to FIGS. First, a system (height measuring means) for measuring the heights of predetermined height measuring points 12 and 13 set on the mounting surface of the circuit board 11 will be described with reference to FIGS.

図1に示すように、回路基板11の実装面(以下単に「基板面」という)には、その対角線方向の2つのコーナ部分に基板位置検出用の認識マーク12が導体パターン等で形成され、更に、複数の高さ測定点13が基板面全体にほほ均等に分散するように導体パターン等で形成されている。各高さ測定点13は、高さ測定専用の導体パターンとして形成しても良いし、基板面に形成された導体配線パターンの一部(高さ測定に適した箇所)を高さ測定点13として使用しても良い。   As shown in FIG. 1, on the mounting surface of the circuit board 11 (hereinafter simply referred to as “substrate surface”), recognition marks 12 for detecting the substrate position are formed with a conductor pattern or the like at two corner portions in the diagonal direction. Further, the plurality of height measurement points 13 are formed of a conductor pattern or the like so as to be distributed almost evenly over the entire substrate surface. Each height measurement point 13 may be formed as a conductor pattern dedicated to height measurement, or a part of the conductor wiring pattern formed on the substrate surface (a place suitable for height measurement) may be formed as the height measurement point 13. May be used as

本実施例1では、基板位置検出用の2個の認識マーク12も「高さ測定点」として用いられ(以下の説明では認識マーク12も「高さ測定点」と呼ぶ)、これにより、1つの基板面に合計4個以上(図1の例では合計10個)の高さ測定点12,13が基板面全体にほほ均等に分散するように配置されている。   In the first embodiment, two recognition marks 12 for detecting the substrate position are also used as “height measurement points” (in the following description, the recognition marks 12 are also called “height measurement points”). A total of 4 or more height measurement points 12 and 13 (a total of 10 in the example of FIG. 1) are arranged on one substrate surface so as to be almost evenly distributed over the entire substrate surface.

本実施例1では、基板位置検出用の認識マーク12を検出する基板位置認識カメラ14(図2参照)を用いて基板面の高さ測定点12,13の高さを測定する。この基板位置認識カメラ14の光軸に対して所定の傾斜角度θでスリット光15(図4参照)を照射するスリット照明装置16(スリット照明手段)が基板位置認識カメラ14と所定の位置関係で設置されている。このスリット照明装置16は、図3に示すように、ケース17内にLED等の光源18とスリットガラス板19とレンズ20を一列に配列して構成されている。この基板位置認識カメラ14とスリット照明装置16は、電子部品実装機の装着ヘッド21(図2参照)に対して所定の位置関係で設置されている。尚、装着ヘッド21には、半田を塗布するディスペンサノズル(図示せず)や電子部品を吸着する吸着ノズル(図示せず)が下向きに取り付けられている。   In the first embodiment, the height of the substrate surface height measurement points 12 and 13 is measured using a substrate position recognition camera 14 (see FIG. 2) that detects a recognition mark 12 for substrate position detection. A slit illumination device 16 (slit illumination means) that irradiates slit light 15 (see FIG. 4) at a predetermined inclination angle θ with respect to the optical axis of the substrate position recognition camera 14 has a predetermined positional relationship with the substrate position recognition camera 14. is set up. As shown in FIG. 3, the slit illumination device 16 is configured by arranging a light source 18 such as an LED, a slit glass plate 19, and a lens 20 in a case 17 in a line. The board position recognition camera 14 and the slit illumination device 16 are installed in a predetermined positional relationship with respect to the mounting head 21 (see FIG. 2) of the electronic component mounting machine. Note that a dispenser nozzle (not shown) for applying solder and a suction nozzle (not shown) for sucking electronic components are attached to the mounting head 21 downward.

この場合、高さ測定点12,13は、スリット光15を基板位置認識カメラ14側に反射するように導体パターン等で形成され、その外周囲の基板面は、基板位置認識カメラ14側へのスリット光15の反射が少なくなっている。このため、図4(a)に示すように、基板位置認識カメラ14の撮影用の照明を消して、基板面に対してスリット照明装置16のスリット光15を斜め上方から高さ測定点12又は13に跨がるように照射して、そのスリット光15の照射部分を基板位置認識カメラ14で撮影したときに、基板面に照射されるスリット光15のうち高さ測定点12又は13と重なる部分のみが明るい画像となって取り込まれる。   In this case, the height measurement points 12 and 13 are formed of a conductor pattern or the like so as to reflect the slit light 15 to the substrate position recognition camera 14 side, and the outer peripheral substrate surface is directed to the substrate position recognition camera 14 side. The reflection of the slit light 15 is reduced. For this reason, as shown in FIG. 4 (a), the illumination for photographing by the substrate position recognition camera 14 is turned off, and the slit light 15 of the slit illumination device 16 is tilted from the upper side to the height measurement point 12 or the substrate surface. 13, when the irradiated portion of the slit light 15 is photographed by the substrate position recognition camera 14, it overlaps with the height measurement point 12 or 13 in the slit light 15 irradiated on the substrate surface. Only the portion is captured as a bright image.

次に、基板位置認識カメラ14とスリット照明装置16を用いて高さ測定点12,13の高さを測定する方法を図4を用いて説明する。   Next, a method for measuring the heights of the height measurement points 12 and 13 using the substrate position recognition camera 14 and the slit illumination device 16 will be described with reference to FIG.

まず、基板位置認識カメラ14の照明を消して、スリット照明装置16のスリット光15のみの照明で高さ測定点12又は13の画像を取り込む[図4(a)参照]。これにより、基板面に照射されるスリット光15のうち高さ測定点12又は13と重なる部分のみが明るい画像となって取り込まれる。この後、スリット照明装置16のスリット光15も消して、全く照明がない状態で上記と同じ部分の画像を取り込む[図4(b)参照]。   First, the illumination of the substrate position recognition camera 14 is turned off, and the image of the height measurement point 12 or 13 is captured by the illumination of only the slit light 15 of the slit illumination device 16 [see FIG. 4 (a)]. Thereby, only the part which overlaps with the height measurement point 12 or 13 among the slit light 15 irradiated to the substrate surface is captured as a bright image. Thereafter, the slit light 15 of the slit illumination device 16 is also turned off, and an image of the same portion as described above is captured without any illumination [see FIG. 4B].

この後、図4(a)に示すスリット光15の照明のみの画像から図4(b)に示す全く照明がない状態の画像を差し引いた差分画像(スリット光15のうちの高さ測定点12又は13と重なる部分の画像)を抽出する[図4(c)参照]。この後、パターンマッチングの手法を用いてスリット光15と高さ測定点12又は13とが重なる部分のエッジ位置(例えばスリット光15と交差する高さ測定点12又は13のエッジ位置)を検出する。そして、この差分画像のスリット光15のエッジ位置とスリット光15の照射角度θとに基づいて高さ測定点12又は13の高さを算出する。   Thereafter, a difference image (height measurement point 12 in the slit light 15) obtained by subtracting the image with no illumination shown in FIG. 4B from the image only of the slit light 15 shown in FIG. Or an image of a portion overlapping 13) (see FIG. 4C). Thereafter, the edge position of the portion where the slit light 15 and the height measurement point 12 or 13 overlap (for example, the edge position of the height measurement point 12 or 13 intersecting with the slit light 15) is detected using a pattern matching technique. . Then, the height of the height measurement point 12 or 13 is calculated based on the edge position of the slit light 15 in the difference image and the irradiation angle θ of the slit light 15.

例えば、図5に示すように、スリット光15の光軸(中心軸)が基板位置認識カメラ14の光軸(Z軸)と交差する点を基準高さ「0」とした場合、スリット光15のエッジ位置がX軸方向にx[μm]ずれている時の高さ測定点12又は13の高さz[μm]は次式で算出される。
z=x/tan θ
ここで、θは、スリット光15の光軸と基板位置認識カメラ14の光軸との交差角度である。
For example, as shown in FIG. 5, when the point where the optical axis (center axis) of the slit light 15 intersects the optical axis (Z axis) of the substrate position recognition camera 14 is set to the reference height “0”, the slit light 15 The height z [μm] of the height measurement point 12 or 13 when the edge position is shifted by x [μm] in the X-axis direction is calculated by the following equation.
z = x / tan θ
Here, θ is an intersection angle between the optical axis of the slit light 15 and the optical axis of the substrate position recognition camera 14.

ところで、回路基板11の中には、可視光を全く透過しない不透明な基板もあるが、可視光を透過する半透明又は透明な基板(例えばガラスエポキシ樹脂等の半透明又は透明なプラスチック基板、ガラス基板等)も存在する。このような半透明又は透明な基板に対して斜め上方から可視光のスリット光15を照射すると、図10(a)に示すように、可視光のスリット光15が基板の上面で反射するだけでなく、基板内部を透過して基板の下面でも反射するため、カメラ14側から見て異なる位置で反射する2種類の反射光1,2が存在することになる。このため、可視光のスリット光15を半透明又は透明な基板11に照射すると、可視光のスリット光と高さ測定点12又は13とが重なる部分の位置をカメラで正確に撮像できなくなってしまい、高さ測定点12又は13の高さを精度良く算出できなくなってしまう。   By the way, some of the circuit boards 11 are opaque boards that do not transmit visible light at all. However, a semi-transparent or transparent board that transmits visible light (for example, a translucent or transparent plastic board such as glass epoxy resin, glass, etc. Substrate) and the like. When such a translucent or transparent substrate is irradiated with visible slit light 15 obliquely from above, the visible slit light 15 is simply reflected on the upper surface of the substrate as shown in FIG. However, since the light passes through the inside of the substrate and is reflected also on the lower surface of the substrate, there are two types of reflected light 1 and 2 that are reflected at different positions when viewed from the camera 14 side. For this reason, if the slit light 15 of visible light is irradiated to the translucent or transparent substrate 11, the position of the portion where the slit light of visible light and the height measurement point 12 or 13 overlap cannot be accurately imaged by the camera. The height of the height measurement point 12 or 13 cannot be calculated with high accuracy.

この対策として、スリット光15を紫外光により形成し、紫外光領域に感度を持つ紫外光カメラ14を用いるようにすると良い。   As a countermeasure, the slit light 15 may be formed by ultraviolet light, and an ultraviolet light camera 14 having sensitivity in the ultraviolet light region may be used.

可視光よりも波長が短い紫外光は、半透明又は透明な基板11の内部に透過しにくい性質があるため、図10(b)に示すように、紫外光のスリット光を半透明又は透明な基板11に対して斜め上方から照射すれば、半透明又は透明な基板11内部への紫外光のスリット光の透過をほとんど防止することができて、基板11の上面のみで紫外光のスリット光を反射することが可能となる。従って、半透明又は透明な基板11であっても、紫外光のスリット光15を用いて、紫外光領域に感度を持つ紫外光カメラ14で撮像すれば、スリット光15と高さ測定点12又は13とが重なる部分の位置をカメラで正確に撮像することが可能となり、高さ測定点12又は13の高さを精度良く算出することができる。   Since ultraviolet light having a wavelength shorter than that of visible light has a property of being difficult to transmit into the semi-transparent or transparent substrate 11, the slit light of the ultraviolet light is semi-transparent or transparent as shown in FIG. By irradiating the substrate 11 obliquely from above, it is possible to almost prevent the transmission of the ultraviolet slit light into the translucent or transparent substrate 11, and the ultraviolet light slit light can be emitted only on the upper surface of the substrate 11. It becomes possible to reflect. Therefore, even if the substrate 11 is translucent or transparent, if the slit light 15 of ultraviolet light is used to capture an image with the ultraviolet light camera 14 having sensitivity in the ultraviolet light region, the slit light 15 and the height measurement point 12 or The position of the portion overlapping 13 can be accurately captured by the camera, and the height of the height measurement point 12 or 13 can be calculated with high accuracy.

尚、本実施例1では、紫外光のスリット照明装置16の他に、可視光で基板位置検出用の認識マーク12を照明する可視光の照明光源を設けると共に、分光感度特性が可視光領域から紫外光領域までの広レンジのカメラ14を使用し、まず、可視光の照明光源を点灯して基板11上の基板位置検出用の認識マーク12をカメラ14で撮像し、可視光の照明光源を消灯して紫外光のスリット照明装置16を点灯して上述した方法で高さ測定点12又は13の高さを測定するようにしている。   In the first embodiment, in addition to the slit illumination device 16 for ultraviolet light, a visible light illumination light source for illuminating the recognition mark 12 for substrate position detection with visible light is provided, and the spectral sensitivity characteristic is from the visible light region. Using a wide-range camera 14 up to the ultraviolet light region, first, the visible light source is turned on, and the recognition mark 12 for detecting the substrate position on the substrate 11 is imaged by the camera 14, and the visible light source is used. The light is turned off, the slit illumination device 16 for ultraviolet light is turned on, and the height of the height measurement point 12 or 13 is measured by the method described above.

また、本実施例1では、基板面に設定された全ての高さ測定点12,13をそれぞれ前述した方法で測定した後、基板面の高さ測定点12,13の中から隣り合う3個の高さ測定点12又は13を選択し、当該3個の高さ測定点12又は13を頂点とする三角形領域を形成する処理を繰り返して基板面を複数の三角形領域に分割する。   In the first embodiment, after all the height measurement points 12 and 13 set on the substrate surface are measured by the above-described method, three adjacent height measurement points 12 and 13 on the substrate surface are adjacent. The height measurement point 12 or 13 is selected, and the process of forming a triangular region having the three height measurement points 12 or 13 as vertices is repeated to divide the substrate surface into a plurality of triangular regions.

この三角形領域形成工程においては、最初に任意の1つの高さ測定点12又は13を起点として、一定方向(例えば反時計回り)に他の2つの高さ測定点12又は13を選択して、3個の高さ測定点12又は13を頂点とする三角形領域を形成する。   In this triangular region forming step, first, from any one height measurement point 12 or 13, the other two height measurement points 12 or 13 are selected in a certain direction (for example, counterclockwise), A triangular area having three height measurement points 12 or 13 as vertices is formed.

この際、図6(a)に示すように、一辺を共通にする三角形領域の候補が複数存在する場合は、他の2辺のうちの長い方の辺が最も短い三角形領域の候補を有効な三角形領域として選択する。   At this time, as shown in FIG. 6A, when there are a plurality of candidates for a triangular region having a common side, the candidate for the triangular region having the shortest long side among the other two sides is effective. Select as a triangle area.

このような方法で、図6(b)に示すように、最初の1つの三角形領域を形成した後、同様の方法で、図6(c)に示すように、形成済みの三角形領域の一辺を共通にする2個目の三角形領域を形成する。この後も、同様の方法で、図6(d)〜(l)に示すように新たな三角形領域を形成する処理を繰り返して基板面を複数の三角形領域に分割する。   In this way, after forming the first one triangular area as shown in FIG. 6B, the same method is used to form one side of the formed triangular area as shown in FIG. 6C. A second triangular region to be shared is formed. Thereafter, the substrate surface is divided into a plurality of triangular regions by repeating the process of forming a new triangular region as shown in FIGS.

以上のようにして基板面を複数の三角形領域に分割した後、複数の三角形領域の中から実際に高さを測定しようとする測定対象点が含まれる三角形領域を選択する。この際、図7に示すように、三角形領域の3辺を延長した各々の直線の三角形側のサイドに測定対象点が存在するか否かで、当該三角形領域内に測定対象点が含まれるか否かを判定すれば良い。   After the substrate surface is divided into a plurality of triangular areas as described above, a triangular area including a measurement target point whose height is to be actually measured is selected from the plurality of triangular areas. At this time, as shown in FIG. 7, whether or not the measurement target point is included in the triangle area depending on whether or not the measurement target point exists on the triangle side of each straight line obtained by extending the three sides of the triangle area. What is necessary is just to determine.

そして、測定対象点が含まれる三角形領域の3個の頂点となる3個の高さ測定点12(又は13)の高さ測定値に基づいて当該三角形領域内の測定対象点の高さを補間計算により算出する。この際、補間計算は、線形補間又は多項式補間のいずれを用いても良い。線形補間により測定対象点の高さを算出する場合は、三角形領域を平面と見なして、この平面上に任意の測定対象点が位置するものと仮定して、図8に示すように、まず、三角形領域の1つの頂点(A点)と測定対象点(E点)とを結ぶ直線と、他の2つの頂点(B点とC点)を結ぶ直線(底辺)との交点(D点)を求め、この交点(D点)の高さを当該2つの頂点(B点とC点)の高さ測定値に基づいて線形補間により算出する。その後、測定対象点(E点)の高さを1つの頂点(A点)の高さ測定値と交点(D点)の高さの補間計算値に基づいて線形補間により算出する。   Then, based on the height measurement values of the three height measurement points 12 (or 13) which are the three vertices of the triangle region including the measurement target point, the height of the measurement target point in the triangle region is interpolated. Calculate by calculation. At this time, the interpolation calculation may use either linear interpolation or polynomial interpolation. When calculating the height of the measurement target point by linear interpolation, assuming that the triangular region is a plane and assuming that an arbitrary measurement target point is located on this plane, as shown in FIG. An intersection (point D) between a straight line connecting one vertex (point A) and a measurement target point (point E) in the triangular area and a straight line (base) connecting the other two vertices (point B and point C) Then, the height of the intersection (point D) is calculated by linear interpolation based on the height measurement values of the two vertices (point B and point C). Thereafter, the height of the measurement target point (point E) is calculated by linear interpolation based on the height measurement value of one vertex (point A) and the height of the intersection (point D).

また、図1に示すように、基板面の4辺の近傍領域は、三角形領域の外側に位置しているため、この領域に測定対象点が存在する場合は、その測定対象点の高さを次のようにして算出又は決定する。   In addition, as shown in FIG. 1, since the region near the four sides of the substrate surface is located outside the triangular region, if there is a measurement target point in this region, the height of the measurement target point is set to Calculate or determine as follows.

(1)基板面の4隅のコーナ部分22に測定対象点が存在する場合、その測定対象点の高さは、当該コーナ部分22に位置する測定対象点12又は13の高さ測定値と一致するものと見なす。   (1) When the measurement target points exist at the corner portions 22 at the four corners of the substrate surface, the height of the measurement target points coincides with the height measurement value of the measurement target point 12 or 13 located at the corner portion 22. It is considered to be.

(2)コーナ部分22以外の基板面の4辺の近傍領域(三角形領域の外側)に測定対象点が存在する場合、その測定対象点の高さは、その測定対象点に隣接する三角形領域の辺上の対応点の高さと一致するものと見なす。例えば、三角形領域の外側に位置する測定対象点のXY座標が(x1 ,y1 )の場合、X座標がx1 又はY座標がy1 となる三角形領域の辺上の対応点の高さを当該三角形領域の2つの頂点(高さ測定点12又は13)の高さ測定値に基づいて線形補間により算出し、これを測定対象点の高さと見なす。   (2) When a measurement target point exists in a region near the four sides of the substrate surface other than the corner portion 22 (outside the triangular region), the height of the measurement target point is the height of the triangular region adjacent to the measurement target point. It is assumed that it matches the height of the corresponding point on the side. For example, when the XY coordinates of the measurement target point located outside the triangle area are (x1, y1), the height of the corresponding point on the side of the triangle area where the X coordinate is x1 or the Y coordinate is y1 is the triangle area. Are calculated by linear interpolation based on the height measurement values of the two vertices (height measurement point 12 or 13), and this is regarded as the height of the measurement target point.

以上説明した高さ測定点12,13の高さ測定と三角形領域の分割と測定対象点の高さの補間計算は、基板位置認識カメラ14の画像を処理するコンピュータによって実行される。従って、この画像処理用のコンピュータは、特許請求の範囲でいう高さ測定手段、三角形領域分割手段及び補間計算手段としての役割を果たす。   The height measurement of the height measurement points 12 and 13, the division of the triangular area, and the interpolation calculation of the height of the measurement target point described above are executed by a computer that processes the image of the substrate position recognition camera 14. Therefore, this image processing computer serves as height measuring means, triangular area dividing means, and interpolation calculating means in the claims.

以上説明した本実施例1によれば、基板面を複数の三角形領域に分割し、実際に高さを測定しようとする測定対象点が含まれる三角形領域を選択し、当該三角形領域の3個の頂点(高さ測定点12又は13)の高さ測定値に基づいて当該三角形領域内の測定対象点の高さを補間計算により算出するようにしたので、測定対象点に近い3個の高さ測定点の高さ測定値に基づいて測定対象点の高さを補間計算により精度良く算出することができると共に、高さ測定の処理時間を短くすることができる。   According to the first embodiment described above, the substrate surface is divided into a plurality of triangular regions, a triangular region including a measurement target point whose height is to be actually measured is selected, and the three triangular regions are selected. Since the height of the measurement target point in the triangle area is calculated by interpolation calculation based on the height measurement value of the vertex (height measurement point 12 or 13), the three heights close to the measurement target point are calculated. The height of the measurement target point can be accurately calculated by interpolation based on the height measurement value of the measurement point, and the processing time of the height measurement can be shortened.

尚、本実施例1では、最初に、基板面に設定された高さ測定点12又は13を全て測定した後、基板面を複数の三角形領域に分割するようにしたが、基板面を複数の三角形領域に分割した後に、実際に高さを測定しようとする測定対象点が含まれる三角形領域の3個の頂点(3個の高さ測定点12又は13)の高さを測定し、当該3個の高さ測定点12又は13の高さ測定値に基づいて当該三角形領域内の測定対象点の高さを補間計算により算出するようにしても良い。   In the first embodiment, after all the height measurement points 12 or 13 set on the substrate surface are first measured, the substrate surface is divided into a plurality of triangular regions. After dividing into triangular regions, the heights of the three vertices (three height measuring points 12 or 13) of the triangular region including the measurement target points for which the height is actually measured are measured, and the 3 Based on the height measurement values of the individual height measurement points 12 or 13, the heights of the measurement target points in the triangular area may be calculated by interpolation calculation.

また、本実施例1では、基板面を複数の三角形領域に分割する際に、一辺を共通にする三角形領域の候補が複数存在する場合に、他の2辺のうちの長い方の辺が最も短い三角形領域の候補を有効な三角形領域として選択するようにしたが、この他にも、次のような方法が考えられる。   In the first embodiment, when the substrate surface is divided into a plurality of triangular regions, when there are a plurality of candidates for a triangular region having one side in common, the longer one of the other two sides is the most. Although the short triangle area candidate is selected as an effective triangle area, the following method is conceivable.

(1)基板面を複数の三角形領域に分割する際に、一辺を共通にする三角形領域の候補が複数存在する場合に、他の2辺の合計長さが最も短い三角形領域の候補を有効な三角形領域として選択する。   (1) When dividing a substrate surface into a plurality of triangular areas, if there are a plurality of triangular area candidates that share one side, the candidate for the triangular area with the shortest total length of the other two sides is effective. Select as a triangle area.

(2)基板面を複数の三角形領域に分割する際に、1個の高さ測定点を共通の頂点とする三角形領域の候補が複数存在する場合に、3辺の合計長さが最も短い三角形領域の候補を有効な三角形領域として選択する。   (2) When the substrate surface is divided into a plurality of triangular regions, if there are a plurality of candidate triangular regions having one height measurement point as a common vertex, the triangle having the shortest total length of the three sides Select region candidates as valid triangle regions.

(3)基板面を複数の三角形領域に分割する際に、1個の高さ測定点を共通の頂点とする三角形領域の候補が複数存在する場合に、最長辺(3辺のうちの最も長い辺)が最も短い三角形領域の候補を有効な三角形領域として選択する。   (3) When the substrate surface is divided into a plurality of triangular regions, the longest side (the longest of the three sides) is present when there are a plurality of triangular region candidates having a single height measurement point as a common vertex. The candidate of the triangular area with the shortest side) is selected as an effective triangular area.

いずれの方法を採用しても、実際に高さを測定しようとする測定対象点と、その測定対象点を含む三角形領域の頂点(高さ測定点)との距離が短くなるように三角形領域を分割することができ、補間計算の精度を向上させることができる。   Regardless of which method is used, the triangle area is adjusted so that the distance between the measurement target point where the height is actually measured and the apex (height measurement point) of the triangle area including the measurement target point is short. Therefore, the accuracy of the interpolation calculation can be improved.

また、基板面を複数の三角形領域に分割する際に、図9に示すように、一方の三角形領域の候補が他方の三角形領域の候補に含まれる場合は、小さい方の三角形領域の候補を選択するようにしても良い。   In addition, when dividing the substrate surface into a plurality of triangular areas, as shown in FIG. 9, if one of the triangular area candidates is included in the other triangular area candidate, the smaller triangular area candidate is selected. You may make it do.

尚、本実施例1では、電子部品実装機に標準装備された基板位置認識カメラ14を用いて高さ測定点12,13の高さを測定するようにしたので、レーザ変位センサ等の専用の高さ測定装置が不要となり、低コスト化の要求を満たすことができる利点があるが、本発明は、レーザ変位センサ等の専用の高さ測定手段を用いて高さ測定点12,13の高さを測定するようにしても良いことは言うまでもない。   In the first embodiment, since the height of the height measuring points 12 and 13 is measured using the board position recognition camera 14 provided as a standard in the electronic component mounting machine, a dedicated laser displacement sensor or the like is used. Although there is an advantage that a height measuring device is not required and the demand for cost reduction can be satisfied, the present invention uses the height measuring means such as a laser displacement sensor to increase the height of the height measuring points 12 and 13. Needless to say, it may be possible to measure the thickness.

前記実施例1では、基板面を複数の三角形領域に分割したが、本発明の実施例2では、基板面を複数の三角形領域に分割せずに、測定対象点の高さを補間計算により算出する方法を説明する。   In the first embodiment, the substrate surface is divided into a plurality of triangular regions, but in the second embodiment of the present invention, the height of the measurement target point is calculated by interpolation calculation without dividing the substrate surface into a plurality of triangular regions. How to do it.

本実施例2においても、前記実施例1と同様に、1つの基板面に合計4個以上の高さ測定点12又は13を基板面全体にほほ均等に分散するように配置する。そして、基板面に設定された高さ測定点12又は13の中から実際に高さを測定しようとする測定対象点に最も近い3個の高さ測定点12又は13を選択し、当該3個の高さ測定点12又は13の高さを前記実施例1と同様の方法で測定し、当該3個の高さ測定点12又は13の高さ測定値に基づいて測定対象点の高さを補間計算により算出する。   Also in the second embodiment, as in the first embodiment, a total of four or more height measurement points 12 or 13 are arranged on one substrate surface so as to be distributed almost evenly over the entire substrate surface. Then, the three height measurement points 12 or 13 closest to the measurement target point for which the height is actually measured are selected from the height measurement points 12 or 13 set on the substrate surface, and the three The height of the height measurement point 12 or 13 is measured by the same method as in the first embodiment, and the height of the measurement target point is determined based on the height measurement values of the three height measurement points 12 or 13. Calculated by interpolation calculation.

この方法では、測定対象点に最も近い3個の高さ測定点12又は13を頂点とする三角形領域の中に測定対象点が含まれることが多いと思われるが、高さ測定点12又は13の配置具合によっては、測定対象点に最も近い3個の高さ測定点12又は13を頂点とする三角形領域の中に当該測定対象点が含まれないことがある。この場合は、測定対象点の高さを外挿法によって補間計算しても良いし、或は、測定対象点に最も近い3個の高さ測定点12又は13の中から1個又は2個の高さ測定点12又は13を他の高さ測定点12又は13に取り替えて、当該3個の高さ測定点12又は13を頂点とする三角形領域の中に測定対象点を含ませるようにしてから、測定対象点の高さを補間計算しても良い。   In this method, it is considered that the measurement target point is often included in a triangular region having the three height measurement points 12 or 13 closest to the measurement target point as apexes. Depending on the arrangement condition, the measurement target point may not be included in the triangular region having the three height measurement points 12 or 13 closest to the measurement target point as vertices. In this case, the height of the measurement target point may be interpolated by extrapolation, or one or two of the three height measurement points 12 or 13 closest to the measurement target point. The height measurement point 12 or 13 is replaced with another height measurement point 12 or 13 so that the measurement target point is included in a triangular region having the three height measurement points 12 or 13 as vertices. Then, the height of the measurement target point may be calculated by interpolation.

以上説明した本実施例2においても、前記実施例1と同様の効果を得ることができる。   Also in the second embodiment described above, the same effect as in the first embodiment can be obtained.

本発明の実施例1における基板面の高さ測定点の配置と三角形領域の分割を説明するための図である。It is a figure for demonstrating arrangement | positioning of the height measurement point of a board | substrate surface and division | segmentation of a triangular area | region in Example 1 of this invention. 基板位置認識カメラを用いて基板面の高さ測定点の高さを測定するシステムの構成を説明する図である。It is a figure explaining the structure of the system which measures the height of the height measurement point of a board | substrate surface using a board | substrate position recognition camera. スリット照明装置の断面図である。It is sectional drawing of a slit illuminating device. スリット照明装置のスリット光のみの照明で高さ測定点の画像を取り込んでスリット光のエッジ位置(高さ測定点のエッジ位置)を検出する方法を説明する図である。It is a figure explaining the method of taking in the image of a height measurement point with the illumination of only the slit light of a slit illumination device, and detecting the edge position (edge position of a height measurement point) of slit light. スリット光のエッジ位置(高さ測定点のエッジ位置)から高さ測定点の高さを算出する方法を説明する図である。It is a figure explaining the method of calculating the height of a height measurement point from the edge position (edge position of a height measurement point) of slit light. 基板面を複数の三角形領域に分割する手順を説明する図である。It is a figure explaining the procedure which divides | segments a board | substrate surface into several triangular area | regions. 複数の三角形領域の中から実際に高さを測定しようとする測定対象点が含まれる三角形領域を選択する方法を説明する図である。It is a figure explaining the method of selecting the triangular area | region in which the measuring object point which is going to actually measure height is included from several triangular area | regions. 測定対象点が含まれる三角形領域の3個の頂点(高さ測定点)の高さ測定値に基づいて当該三角形領域内の測定対象点の高さを補間計算により算出する方法を説明する図である。It is a figure explaining the method of calculating the height of the measurement object point in the said triangle area | region based on the height measurement value of the three vertex (height measurement point) of the triangle area | region containing a measurement object point by interpolation calculation. is there. 基板面を複数の三角形領域に分割する他の方法を説明する図である。It is a figure explaining the other method of dividing | segmenting a board | substrate surface into a some triangular area | region. (a)は半透明又は透明な基板に対して斜め上方から可視光のスリット光を照射した時の光の反射状態を説明する図であり、(b)は半透明又は透明な基板に対して斜め上方から紫外光のスリット光を照射した時の光の反射状態を説明する図である。(A) is a figure explaining the reflective state of light when the slit light of visible light is irradiated from diagonally upward with respect to a translucent or transparent board | substrate, (b) is with respect to a translucent or transparent board | substrate. It is a figure explaining the reflective state of light when the slit light of ultraviolet light is irradiated from diagonally upward.

符号の説明Explanation of symbols

11…回路基板、12…基板位置検出用の認識マーク(高さ測定点)、13…高さ測定点、14…基板位置認識カメラ(高さ測定手段)、15…スリット光、16…スリット照明装置(スリット照明手段)、21…装着ヘッド   DESCRIPTION OF SYMBOLS 11 ... Circuit board, 12 ... Recognition mark (height measurement point) for board position detection, 13 ... Height measurement point, 14 ... Board position recognition camera (height measurement means), 15 ... Slit light, 16 ... Slit illumination Device (slit illumination means), 21... Mounting head

Claims (17)

回路基板の実装面(以下単に「基板面」という)の任意の測定対象点の高さを測定する基板面高さ測定方法において、
前記基板面に設定された4個以上の高さ測定点の中から隣り合う3個の高さ測定点を選択し、当該3個の高さ測定点を頂点とする三角形領域を形成する処理を繰り返して前記基板面を複数の三角形領域に分割する三角形領域分割工程と、
前記複数の三角形領域の中から実際に高さを測定しようとする測定対象点が含まれる三角形領域を選択し、当該三角形領域の3個の頂点となる3個の高さ測定点の高さを高さ測定手段により測定し、当該3個の高さ測定点の高さ測定値に基づいて当該三角形領域内の測定対象点の高さを補間計算により算出する工程と
を含むことを特徴とする基板面高さ測定方法。
In a board surface height measuring method for measuring the height of an arbitrary measurement target point on a circuit board mounting surface (hereinafter simply referred to as “board surface”),
A process of selecting three adjacent height measurement points from among four or more height measurement points set on the substrate surface and forming a triangular region having the three height measurement points as vertices. A triangular region dividing step of repeatedly dividing the substrate surface into a plurality of triangular regions;
A triangle area including a measurement target point for actually measuring the height is selected from the plurality of triangle areas, and the heights of the three height measurement points serving as the three vertices of the triangle area are selected. And measuring the height of the measurement target point in the triangular region based on the height measurement value of the three height measurement points by interpolation calculation based on the height measurement means. Substrate surface height measurement method.
回路基板の実装面(以下単に「基板面」という)の任意の測定対象点の高さを測定する基板面高さ測定方法において、
前記基板面に設定された4個以上の高さ測定点を高さ測定手段により測定する高さ測定工程と、
前記4個以上の高さ測定点の中から隣り合う3個の高さ測定点を選択し、当該3個の高さ測定点を頂点とする三角形領域を形成する処理を繰り返して前記基板面を複数の三角形領域に分割する三角形領域分割工程と、
前記複数の三角形領域の中から実際に高さを測定しようとする測定対象点が含まれる三角形領域を選択し、当該三角形領域の3個の頂点となる3個の高さ測定点の高さ測定値に基づいて当該三角形領域内の測定対象点の高さを補間計算により算出する工程と
を含むことを特徴とする基板面高さ測定方法。
In a board surface height measuring method for measuring the height of an arbitrary measurement target point on a circuit board mounting surface (hereinafter simply referred to as “board surface”),
A height measuring step of measuring four or more height measuring points set on the substrate surface by a height measuring means;
Three adjacent height measurement points are selected from the four or more height measurement points, and a process of forming a triangular region having the three height measurement points as vertices is repeated to form the substrate surface. A triangular region dividing step of dividing into a plurality of triangular regions;
A triangle area including a measurement target point whose height is to be actually measured is selected from the plurality of triangle areas, and the height measurement of three height measurement points which are the three vertices of the triangle area is selected. And calculating the height of the measurement target point in the triangular region based on the value by interpolation calculation.
前記三角形領域分割工程において、一辺を共通にする三角形領域の候補が複数存在する場合に他の2辺のうちの長い方の辺が最も短い三角形領域の候補を有効な三角形領域として選択することを特徴とすることを特徴とする請求項1又は2に記載の基板面高さ測定方法。   In the triangular region dividing step, when there are a plurality of candidates for a triangular region having a common side, selecting a candidate for a triangular region having the shortest long side among the other two sides as an effective triangular region. The substrate surface height measuring method according to claim 1, wherein the substrate surface height is measured. 前記三角形領域分割工程において、一辺を共通にする三角形領域の候補が複数存在する場合に他の2辺の合計長さが最も短い三角形領域の候補を有効な三角形領域として選択することを特徴とすることを特徴とする請求項1又は2に記載の基板面高さ測定方法。   In the triangular region dividing step, when there are a plurality of candidates for a triangular region sharing one side, a candidate for a triangular region having the shortest total length of the other two sides is selected as an effective triangular region. The substrate surface height measuring method according to claim 1 or 2. 前記三角形領域分割工程において、1個の高さ測定点を共通の頂点とする三角形領域の候補が複数存在する場合に3辺の合計長さ又は最長辺が最も短い三角形領域の候補を有効な三角形領域として選択することを特徴とすることを特徴とする請求項1又は2に記載の基板面高さ測定方法。   In the triangle area dividing step, when there are a plurality of triangle area candidates having one height measurement point as a common vertex, the triangle area candidate whose total length of the three sides or the shortest side is the shortest is the effective triangle The substrate surface height measuring method according to claim 1, wherein the region is selected as a region. 回路基板の実装面(以下単に「基板面」という)の任意の測定対象点の高さを測定する基板面高さ測定方法において、
前記基板面に設定された4個以上の高さ測定点の中から実際に高さを測定しようとする測定対象点に最も近い3個の高さ測定点を選択し、当該3個の高さ測定点の高さを高さ測定手段により測定し、当該3個の高さ測定点の高さ測定値に基づいて前記測定対象点の高さを補間計算により算出することを特徴とする基板面高さ測定方法。
In a board surface height measuring method for measuring the height of an arbitrary measurement target point on a circuit board mounting surface (hereinafter simply referred to as “board surface”),
From the four or more height measurement points set on the substrate surface, three height measurement points closest to the measurement target point to be actually measured are selected, and the three heights are selected. A substrate surface characterized in that the height of the measurement point is measured by a height measurement means, and the height of the measurement target point is calculated by interpolation calculation based on the height measurement values of the three height measurement points. Height measurement method.
前記基板面に対してスリット光を斜め上方から前記高さ測定点に跨がるように照射するスリット照明手段と、前記基板面の真上から前記スリット光の照射部分を撮像するカメラとを使用し、
前記高さ測定手段は、前記カメラで撮像した前記スリット光と前記高さ測定点とが重なる部分の位置と前記スリット光の照射角度とに基づいて当該高さ測定点の高さを算出することを特徴とする請求項1乃至6のいずれかに記載の基板面高さ測定方法。
Using slit illumination means for irradiating the substrate surface with slit light so as to straddle the height measurement point from diagonally above, and using a camera for imaging the irradiated portion of the slit light from directly above the substrate surface And
The height measuring means calculates the height of the height measurement point based on the position of the portion where the slit light imaged by the camera and the height measurement point overlap and the irradiation angle of the slit light. The substrate surface height measuring method according to any one of claims 1 to 6.
前記スリット照明手段は、前記スリット光を紫外光により形成し、
前記カメラは、紫外光領域に感度を持つ紫外光カメラであることを特徴とする請求項7に記載の基板面高さ測定方法。
The slit illumination means forms the slit light with ultraviolet light,
The substrate surface height measuring method according to claim 7, wherein the camera is an ultraviolet light camera having sensitivity in an ultraviolet light region.
回路基板の実装面(以下単に「基板面」という)の任意の測定対象点の高さを測定する基板面高さ測定装置において、
前記基板面に設定された4個以上の高さ測定点の高さを測定する高さ測定手段と、
前記4個以上の高さ測定点の中から隣り合う3個の高さ測定点を選択し、当該3個の高さ測定点を頂点とする三角形領域を形成する処理を繰り返して前記基板面を複数の三角形領域に分割する三角形領域分割手段と、
前記複数の三角形領域の中から実際に高さを測定しようとする測定対象点が含まれる三角形領域を選択し、当該三角形領域の3個の頂点となる3個の高さ測定点の高さ測定値に基づいて当該三角形領域内の測定対象点の高さを補間計算により算出する補間計算手段と を含むことを特徴とする基板面高さ測定装置。
In a board surface height measuring device that measures the height of an arbitrary measurement target point on a circuit board mounting surface (hereinafter simply referred to as “board surface”),
A height measuring means for measuring the height of four or more height measuring points set on the substrate surface;
Three adjacent height measurement points are selected from the four or more height measurement points, and a process of forming a triangular region having the three height measurement points as vertices is repeated to form the substrate surface. A triangular area dividing means for dividing into a plurality of triangular areas;
A triangle area including a measurement target point whose height is to be actually measured is selected from the plurality of triangle areas, and the height measurement of three height measurement points which are the three vertices of the triangle area is selected. Interpolation calculation means for calculating the height of the measurement target point in the triangular region based on the value by interpolation calculation.
前記三角形領域分割手段は、一辺を共通にする三角形領域の候補が複数存在する場合に他の2辺のうちの長い方の辺が最も短い三角形領域の候補を有効な三角形領域として選択することを特徴とすることを特徴とする請求項9に記載の基板面高さ測定装置。   The triangle area dividing means selects a triangle area candidate having the shortest long side of the other two sides as an effective triangle area when there are a plurality of triangle area candidates having a common side. The board | substrate surface height measuring apparatus of Claim 9 characterized by the above-mentioned. 前記三角形領域分割手段は、一辺を共通にする三角形領域の候補が複数存在する場合に他の2辺の合計長さが最も短い三角形領域の候補を有効な三角形領域として選択することを特徴とすることを特徴とする請求項9に記載の基板面高さ測定装置。   The triangle area dividing means selects a triangle area candidate having the shortest total length of the other two sides as an effective triangle area when a plurality of triangle area candidates having one side in common exist. The board | substrate surface height measuring apparatus of Claim 9 characterized by the above-mentioned. 前記三角形領域分割手段は、1個の高さ測定点を共通の頂点とする三角形領域の候補が複数存在する場合に3辺の合計長さ又は最長辺が最も短い三角形領域の候補を有効な三角形領域として選択することを特徴とすることを特徴とする請求項9に記載の基板面高さ測定装置。   The triangle area dividing means is configured such that when there are a plurality of triangle area candidates having one height measurement point as a common vertex, the triangle area candidate having the shortest total length of three sides or the shortest longest side is an effective triangle. The substrate surface height measuring device according to claim 9, wherein the substrate surface height measuring device is selected as a region. 回路基板の実装面(以下単に「基板面」という)の任意の測定対象点の高さを測定する基板面高さ測定装置において、
前記基板面に設定された4個以上の高さ測定点の高さを測定する高さ測定手段と、
前記4個以上の高さ測定点の中から実際に高さを測定しようとする測定対象点に最も近い3個の高さ測定点を選択し、当該3個の高さ測定点の高さ測定値に基づいて前記測定対象点の高さを補間計算により算出する補間計算手段と
を含むことを特徴とする基板面高さ測定装置。
定装置。
In a board surface height measuring device that measures the height of an arbitrary measurement target point on a circuit board mounting surface (hereinafter simply referred to as “board surface”),
A height measuring means for measuring the height of four or more height measuring points set on the substrate surface;
From the four or more height measurement points, select the three height measurement points closest to the measurement target point to actually measure the height, and measure the height of the three height measurement points. Interpolation calculation means for calculating the height of the measurement target point based on the value by interpolation calculation.
Fixed device.
前記基板面に対してスリット光を斜め上方から前記高さ測定点に跨がるように照射するスリット照明手段と、前記基板面の真上から前記スリット光の照射部分を撮像するカメラとを備え、
前記高さ測定手段は、前記カメラで撮像した前記スリット光と前記高さ測定点とが重なる部分の位置と前記スリット光の照射角度とに基づいて当該高さ測定点の高さを算出することを特徴とする請求項9乃至13のいずれかに記載の基板面高さ測定装置。
Slit illuminating means for irradiating the substrate surface with slit light so as to straddle the height measurement point from diagonally above, and a camera for imaging the irradiated portion of the slit light from directly above the substrate surface ,
The height measuring means calculates the height of the height measurement point based on the position of the portion where the slit light imaged by the camera and the height measurement point overlap and the irradiation angle of the slit light. The board | substrate surface height measuring apparatus in any one of Claim 9 thru | or 13 characterized by these.
前記スリット照明手段は、前記スリット光を紫外光で形成し、
前記カメラは、紫外光領域に感度を持つ紫外光カメラであることを特徴とする請求項14に記載の基板面高さ測定装置。
The slit illumination means forms the slit light with ultraviolet light,
The substrate surface height measuring device according to claim 14, wherein the camera is an ultraviolet light camera having sensitivity in an ultraviolet light region.
回路基板の実装面(以下単に「基板面」という)に設けられた高さ測定点の高さを測定する基板面高さ測定方法において、
前記基板面に対してスリット光を斜め上方から前記高さ測定点に跨がるように照射するスリット照明手段と、前記基板面の真上から前記スリット光の照射部分を撮像するカメラとを備えた画像取り込みシステムを使用し、
前記スリット照明手段の照明のみで前記カメラで撮像した前記スリット光の照射部分の画像を取り込む工程と、
前記スリット照明手段を含む全ての照明を消した状態で前記カメラで撮像した上記と同じ部分の画像を取り込む工程と、
前記スリット照明手段の照明のみの画像から前記全ての照明を消した状態の画像を差し引いた差分画像を抽出する工程と、
前記差分画像に基づいて前記スリット光と前記高さ測定点とが重なる部分の位置を検出する工程と、
前記スリット光と前記高さ測定点とが重なる部分の位置と前記スリット光の照射角度とに基づいて当該高さ測定点の高さを算出する工程と
を含むことを特徴とする基板面高さ測定方法。
In the board surface height measurement method for measuring the height of the height measurement point provided on the mounting surface of the circuit board (hereinafter simply referred to as “board surface”),
Slit illuminating means for irradiating the substrate surface with slit light so as to straddle the height measurement point from diagonally above, and a camera for imaging the irradiated portion of the slit light from directly above the substrate surface Using an image capture system
Capturing an image of the irradiated portion of the slit light imaged by the camera only with the illumination of the slit illumination means;
Capturing the image of the same part as the above imaged by the camera with all the illumination including the slit illumination means turned off;
A step of extracting a difference image obtained by subtracting an image in a state in which all the illumination is turned off from an image of only illumination of the slit illumination means;
Detecting the position of the portion where the slit light and the height measurement point overlap based on the difference image;
Calculating the height of the height measurement point based on the position of the portion where the slit light and the height measurement point overlap and the irradiation angle of the slit light. Measuring method.
前記スリット照明手段は、前記スリット光を紫外光で形成し、
前記カメラは、紫外光領域に感度を持つ紫外光カメラであることを特徴とする請求項16に記載の基板面高さ測定方法。
The slit illumination means forms the slit light with ultraviolet light,
The substrate surface height measuring method according to claim 16, wherein the camera is an ultraviolet light camera having sensitivity in an ultraviolet light region.
JP2006177595A 2005-12-08 2006-06-28 Substrate surface height measuring method and apparatus Active JP5594923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006177595A JP5594923B2 (en) 2005-12-08 2006-06-28 Substrate surface height measuring method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005354291 2005-12-08
JP2005354291 2005-12-08
JP2006177595A JP5594923B2 (en) 2005-12-08 2006-06-28 Substrate surface height measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2007183239A true JP2007183239A (en) 2007-07-19
JP5594923B2 JP5594923B2 (en) 2014-09-24

Family

ID=38339457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006177595A Active JP5594923B2 (en) 2005-12-08 2006-06-28 Substrate surface height measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP5594923B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097880A (en) * 2007-10-12 2009-05-07 Sokkia Topcon Co Ltd Two-dimensional coordinate measuring machine
JP2010216838A (en) * 2009-03-13 2010-09-30 Omron Corp Image processing apparatus and method
JP2011174737A (en) * 2010-02-23 2011-09-08 Nippon Telegr & Teleph Corp <Ntt> Interpolation device, interpolation method and program
JP2013140082A (en) * 2012-01-05 2013-07-18 Fuji Mach Mfg Co Ltd Height measuring device and height measuring method
JP2015163902A (en) * 2015-06-03 2015-09-10 ヤマハファインテック株式会社 Electric inspection method and device for circuit board
US9188435B2 (en) 2011-05-11 2015-11-17 Mitutoyo Corporation Method for generating error image and program for generating error image
JP2015230209A (en) * 2014-06-04 2015-12-21 三菱重工業株式会社 Image processor, appearance measuring system, image processing method and system
CN116295046A (en) * 2023-02-20 2023-06-23 上海赫立智能机器有限公司 Method for measuring height of circuit board-mounted component in shape like Chinese character' hui

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07219977A (en) * 1994-01-31 1995-08-18 Nec Corp Method for generating mesh
JPH08320947A (en) * 1995-05-25 1996-12-03 Matsushita Electric Ind Co Ltd Method and device for generating mesh for numerical analysis
JPH09270026A (en) * 1996-03-29 1997-10-14 Sony Corp Device and method for generating free curved surface
JP2000009442A (en) * 1998-06-22 2000-01-14 Fuji Xerox Co Ltd 3-dimensional picture photographing device
JP2000076485A (en) * 1998-08-14 2000-03-14 Xerox Corp Method and device for re-constructing surface by voronoi filtering, and computer medium
JP2003021510A (en) * 2001-07-06 2003-01-24 Nissan Motor Co Ltd Method for detecting local deformation of surface to be measured
JP2003114121A (en) * 2001-10-04 2003-04-18 Mitsutoyo Corp Method for collating measurement data and collating apparatus and program thereof
JP2003518672A (en) * 1999-12-27 2003-06-10 アルコア・ネーデルランド・ベー・ブイ Mesh generator and method for generating mesh during extrusion process
JP2004037274A (en) * 2002-07-03 2004-02-05 Sumitomo Osaka Cement Co Ltd Height measuring apparatus and monitoring device
JP2004110459A (en) * 2002-09-19 2004-04-08 Shigenori Tanaka Three-dimensional model space creating device, three-dimensional model space creating method, three-dimensional model space creating program, and content transmitting server
JP2004184152A (en) * 2002-12-02 2004-07-02 Kansai Tlo Kk Noncontact dynamic characteristic measuring system
JP2005030793A (en) * 2003-07-08 2005-02-03 Matsushita Electric Ind Co Ltd Substrate inspection device and inspection method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07219977A (en) * 1994-01-31 1995-08-18 Nec Corp Method for generating mesh
JPH08320947A (en) * 1995-05-25 1996-12-03 Matsushita Electric Ind Co Ltd Method and device for generating mesh for numerical analysis
JPH09270026A (en) * 1996-03-29 1997-10-14 Sony Corp Device and method for generating free curved surface
JP2000009442A (en) * 1998-06-22 2000-01-14 Fuji Xerox Co Ltd 3-dimensional picture photographing device
JP2000076485A (en) * 1998-08-14 2000-03-14 Xerox Corp Method and device for re-constructing surface by voronoi filtering, and computer medium
JP2003518672A (en) * 1999-12-27 2003-06-10 アルコア・ネーデルランド・ベー・ブイ Mesh generator and method for generating mesh during extrusion process
JP2003021510A (en) * 2001-07-06 2003-01-24 Nissan Motor Co Ltd Method for detecting local deformation of surface to be measured
JP2003114121A (en) * 2001-10-04 2003-04-18 Mitsutoyo Corp Method for collating measurement data and collating apparatus and program thereof
JP2004037274A (en) * 2002-07-03 2004-02-05 Sumitomo Osaka Cement Co Ltd Height measuring apparatus and monitoring device
JP2004110459A (en) * 2002-09-19 2004-04-08 Shigenori Tanaka Three-dimensional model space creating device, three-dimensional model space creating method, three-dimensional model space creating program, and content transmitting server
JP2004184152A (en) * 2002-12-02 2004-07-02 Kansai Tlo Kk Noncontact dynamic characteristic measuring system
JP2005030793A (en) * 2003-07-08 2005-02-03 Matsushita Electric Ind Co Ltd Substrate inspection device and inspection method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097880A (en) * 2007-10-12 2009-05-07 Sokkia Topcon Co Ltd Two-dimensional coordinate measuring machine
JP2010216838A (en) * 2009-03-13 2010-09-30 Omron Corp Image processing apparatus and method
JP2011174737A (en) * 2010-02-23 2011-09-08 Nippon Telegr & Teleph Corp <Ntt> Interpolation device, interpolation method and program
US9188435B2 (en) 2011-05-11 2015-11-17 Mitutoyo Corporation Method for generating error image and program for generating error image
JP2013140082A (en) * 2012-01-05 2013-07-18 Fuji Mach Mfg Co Ltd Height measuring device and height measuring method
JP2015230209A (en) * 2014-06-04 2015-12-21 三菱重工業株式会社 Image processor, appearance measuring system, image processing method and system
JP2015163902A (en) * 2015-06-03 2015-09-10 ヤマハファインテック株式会社 Electric inspection method and device for circuit board
CN116295046A (en) * 2023-02-20 2023-06-23 上海赫立智能机器有限公司 Method for measuring height of circuit board-mounted component in shape like Chinese character' hui
CN116295046B (en) * 2023-02-20 2023-12-19 上海赫立智能机器有限公司 Method for measuring height of circuit board-mounted component in shape like Chinese character' hui

Also Published As

Publication number Publication date
JP5594923B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5594923B2 (en) Substrate surface height measuring method and apparatus
JP5421763B2 (en) Inspection apparatus and inspection method
US20140368835A1 (en) Three-dimensional shape measuring apparatus
JP2003279334A (en) Three-dimensional measuring apparatus, filter lattice moire plate and illuminating means
US20100315655A1 (en) Method And Device For Measuring A Height Difference
JP6056058B2 (en) Three-dimensional measuring apparatus, three-dimensional measuring method, program, and substrate manufacturing method
JPH07311025A (en) Three-dimensional shape inspection device
CN102233468B (en) Inclination inspection device and inclination inspection method
JP4877100B2 (en) Mounting board inspection apparatus and inspection method
JP5566707B2 (en) Appearance inspection apparatus and appearance inspection method
CN103247548B (en) A kind of wafer defect checkout gear and method
JP2015197361A (en) Surface inspection device and surface inspection method
JP4808072B2 (en) Filter checkered plate, three-dimensional measuring device and illumination means
JP2008196974A (en) Device and method for measuring height of projection object
KR101158324B1 (en) Image Sensing System
JP2013228264A (en) Protrusion height measuring apparatus
CN109690408A (en) Substrate Angle Position determines method
JP2013140082A (en) Height measuring device and height measuring method
JP2011169816A (en) Device for measuring junction inclination of semiconductor device
JP2007184417A (en) Detecting method of attachment position displacement of probe card, and prober device
US20040263862A1 (en) Detecting peripheral points of reflected radiation beam spots for topographically mapping a surface
US10458778B2 (en) Inline metrology on air flotation for PCB applications
CN112857234A (en) Measuring method and device for combining two-dimensional and height information of object
JP2007248410A (en) Bump inspection device and bump inspection method
JP4522570B2 (en) Lighting device for pattern inspection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140805

R150 Certificate of patent or registration of utility model

Ref document number: 5594923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250