JP2007182610A - Stainless steel wire for spring and coil spring - Google Patents

Stainless steel wire for spring and coil spring Download PDF

Info

Publication number
JP2007182610A
JP2007182610A JP2006001681A JP2006001681A JP2007182610A JP 2007182610 A JP2007182610 A JP 2007182610A JP 2006001681 A JP2006001681 A JP 2006001681A JP 2006001681 A JP2006001681 A JP 2006001681A JP 2007182610 A JP2007182610 A JP 2007182610A
Authority
JP
Japan
Prior art keywords
stainless steel
steel wire
spring
springs
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006001681A
Other languages
Japanese (ja)
Inventor
Eiji Matsuoka
映史 松岡
Yuichi Sano
裕一 佐野
Kenichi Okamoto
賢一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SEI Steel Wire Corp
Sumitomo Electric Tochigi Co Ltd
Original Assignee
Sumitomo SEI Steel Wire Corp
Sumitomo Electric Tochigi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SEI Steel Wire Corp, Sumitomo Electric Tochigi Co Ltd filed Critical Sumitomo SEI Steel Wire Corp
Priority to JP2006001681A priority Critical patent/JP2007182610A/en
Publication of JP2007182610A publication Critical patent/JP2007182610A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Springs (AREA)
  • Metal Extraction Processes (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stainless steel wire for a spring, which is excellent in workability when it is formed into the spring although it does not contain nickel, and to provide a coil spring. <P>SOLUTION: The stainless steel wire for the spring is obtained by drawing a stainless steel wire on which a phosphate coating film having a coating film amount of 6.0-14.5 g/m<SP>2</SP>is formed. The surface roughness of the stainless steel wire for the spring is 1.5-2.3 μm. The stainless steel wire for the spring which hardly causes seizing or the like and on which a lubricant is uniformly and surely stuck can be obtained by applying the phosphate coating film having fine unevenness and setting the coating film amount of the phosphate coating film and the surface roughness to the values, respectively. When the coil spring is formed, the coil exhibits excellent workability by using the stainless steel wire for the spring. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ばね用ステンレス鋼線及びコイルばねに関するものである。   The present invention relates to a stainless steel wire for a spring and a coil spring.

一般に、ステンレス鋼線は炭素鋼線と比べて加工性の点で劣っていることが知られている。そこで、ばね用ステンレス鋼線としては、例えば特許文献1に記載されているように、ばね成形時の加工性を向上させる目的でステンレス鋼線にニッケルめっきを施した後、潤滑剤を付着させて伸線したものが用いられてきた。
特許3053789号公報
In general, it is known that stainless steel wires are inferior in workability compared to carbon steel wires. Therefore, as a stainless steel wire for a spring, for example, as described in Patent Document 1, after applying nickel plating to a stainless steel wire for the purpose of improving workability at the time of forming a spring, a lubricant is attached. The drawn wire has been used.
Japanese Patent No. 3053789

特許文献1のばね用ステンレス鋼線では、製造時にニッケルめっき廃液が排出される。ニッケルめっき廃液は多くの有害物質を含む。そのため、ニッケルめっき廃液の処理には多大なコストを要する。また、ニッケルは高価な金属であるため、材料コストが高い。   In the spring stainless steel wire of Patent Document 1, nickel plating waste liquid is discharged during production. Nickel plating waste liquid contains many harmful substances. Therefore, processing of nickel plating waste liquid requires a great deal of cost. Moreover, since nickel is an expensive metal, the material cost is high.

しかしながら、ニッケルめっきの代わりに、水溶性材料や樹脂材料から成る皮膜を施したばね用ステンレス鋼線では、ばね成形時の加工性が低下してしまう。その結果、得られるばねは自由長等がばらついたものとなってしまう。   However, in the case of a stainless steel wire for a spring provided with a film made of a water-soluble material or a resin material instead of nickel plating, the workability at the time of spring forming is lowered. As a result, the obtained spring has a variation in free length and the like.

そこで、本発明の目的は、ニッケルを用いずともばね成形時の加工性に優れたばね用ステンレス鋼線及びコイルばねを提供することとする。   Therefore, an object of the present invention is to provide a stainless steel wire for springs and a coil spring that are excellent in workability at the time of spring forming without using nickel.

本発明のばね用ステンレス鋼線は、皮膜量が6.0〜14.5g/mのリン酸塩皮膜が形成されたステンレス鋼線を伸線することによって得られ、表面粗さが1.5〜2.3μmであることを特徴とするものである。 The stainless steel wire for springs of the present invention is obtained by drawing a stainless steel wire on which a phosphate coating having a coating amount of 6.0 to 14.5 g / m 2 is formed. It is 5 to 2.3 μm.

リン酸塩皮膜の皮膜量を6.0g/m以上とすることにより、皮膜は十分な厚さとなるため、伸線時における焼付きがないばね用ステンレス鋼線を得ることができる。リン酸塩皮膜の皮膜量を14.5g/m以下とすることにより、皮膜が厚すぎるということがなくなるため、伸線時におけるダイスの目詰まりが生じにくくなる。よって、表面状態が均一なばね用ステンレス鋼線を得ることができる。焼付きが無く表面状態が均一なばね用ステンレス鋼線は加工性が良く、ばね成形をスムーズに行うことができる。 By setting the coating amount of the phosphate coating to 6.0 g / m 2 or more, the coating has a sufficient thickness, so that a stainless steel wire for springs without seizure during wire drawing can be obtained. When the coating amount of the phosphate coating is 14.5 g / m 2 or less, the coating is not too thick, and it is difficult for clogging of dies during wire drawing. Therefore, a stainless steel wire for a spring having a uniform surface state can be obtained. The stainless steel wire for springs having a uniform surface state with no seizure has good workability and can be smoothly formed.

リン酸塩皮膜は微細な凹凸を有する。そのため、伸線前のステンレス鋼線には、潤滑剤を十分に付着させることができる。伸線後の表面粗さを1.5μm以上とすることで、表面が平坦すぎないばね用ステンレス鋼線を得ることができる。また、伸線後の表面粗さを2.3μm以下とすることで、表面が粗くなりすぎないばね用ステンレス鋼線を得ることができる。このように、表面が適度な粗さのばね用ステンレス鋼線には、潤滑剤がほぼ均一に且つ確実に残存することとなる。潤滑剤が均一に且つ確実に残存しているばね用ステンレス鋼線であれば、ばね成形をよりスムーズに行うことができる。   The phosphate film has fine irregularities. Therefore, the lubricant can be sufficiently adhered to the stainless steel wire before drawing. By setting the surface roughness after drawing to 1.5 μm or more, a stainless steel wire for springs whose surface is not too flat can be obtained. Further, by setting the surface roughness after drawing to 2.3 μm or less, it is possible to obtain a stainless steel wire for springs whose surface is not too rough. In this way, the lubricant remains almost uniformly and reliably on the stainless steel wire for springs having an appropriate surface roughness. If it is a stainless steel wire for a spring in which the lubricant remains uniformly and reliably, spring forming can be performed more smoothly.

よって、ニッケルを用いずとも、ばね成形時の加工性に優れたばね用ステンレス鋼線を得ることができる。   Therefore, a stainless steel wire for springs excellent in workability at the time of spring forming can be obtained without using nickel.

好ましくは、ステンレス鋼線の表面が伸線時に用いた潤滑剤で覆われており、当該表面に対する潤滑剤の付着量が1.1〜1.3g/mである。潤滑剤が1.1g/m以上付着しているため、ばね成形時に治具との摩擦を抑制することができ、スティックスリップや焼付きを防止できる。潤滑剤の付着量は1.3g/m以下であるため、ばね成形時にばね用ステンレス鋼線が滑り、治具で適切に保持できない、という事態を抑制できる。よって、ばね成形時に不具合が生じにくくなり、自由長ばらつき等が少ないばねを確実に得ることが可能となる。 Preferably, the surface of the stainless steel wire is covered with the lubricant used at the time of wire drawing, and the adhesion amount of the lubricant to the surface is 1.1 to 1.3 g / m 2 . Since 1.1 g / m 2 or more of the lubricant is adhered, it is possible to suppress friction with the jig at the time of spring molding, and stick stick and seizure can be prevented. Since the adhesion amount of the lubricant is 1.3 g / m 2 or less, it is possible to suppress a situation where the spring stainless steel wire slips during spring forming and cannot be properly held by a jig. Therefore, it is difficult to cause a problem when forming the spring, and it is possible to reliably obtain a spring with little variation in free length.

また、好ましくは、ステンレス鋼線におけるリン酸塩皮膜は、電解処理により形成されたものである。この場合、リン酸塩皮膜が均一に形成されたステンレス鋼線を得ることができる。よって、加工性が良好なばね用ステンレス鋼線をより確実に得ることができる。   Preferably, the phosphate film on the stainless steel wire is formed by electrolytic treatment. In this case, a stainless steel wire in which a phosphate film is uniformly formed can be obtained. Therefore, a stainless steel wire for springs with good workability can be obtained more reliably.

また、好ましくは、ステンレス鋼線には亜鉛めっきが施されており、当該亜鉛めっき上にリン酸塩皮膜が形成されている。この場合、リン酸塩皮膜の密着性を向上させることができる。   Preferably, the stainless steel wire is galvanized, and a phosphate film is formed on the galvanized plate. In this case, the adhesiveness of the phosphate film can be improved.

また、本発明のコイルばねは、上記のばね用ステンレス鋼線を備えることを特徴とするものである。このように上述したばね用ステンレス鋼線を用いることによって、コイルばねを成形する際に、ニッケルを用いずとも加工性を良好にすることができる。   The coil spring of the present invention is characterized by comprising the above-described stainless steel wire for springs. Thus, by using the stainless steel wire for springs described above, workability can be improved without using nickel when forming a coil spring.

本発明によれば、ニッケルを用いずとも、ばね成形時の加工性に優れたばね用ステンレス鋼線を提供することができる。したがって、本発明のばね用ステンレス鋼線を用いれば、自由長ばらつき等が少ないコイルばねを得ることができる。   According to the present invention, it is possible to provide a stainless steel wire for a spring excellent in workability at the time of forming a spring without using nickel. Therefore, if the stainless steel wire for springs of the present invention is used, a coil spring with little variation in free length can be obtained.

以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.

図1は本実施形態に係るばね用ステンレス鋼線を用いたコイルばねの斜視図である。図1に示されるコイルばねS1は、ばね用ステンレス鋼線W1を巻回したものである。ばね用ステンレス鋼線W1は、リン酸塩皮膜が形成されたステンレス鋼線を伸線したものである。   FIG. 1 is a perspective view of a coil spring using a spring stainless steel wire according to the present embodiment. A coil spring S1 shown in FIG. 1 is obtained by winding a stainless steel wire W1 for a spring. The spring stainless steel wire W1 is obtained by drawing a stainless steel wire on which a phosphate film is formed.

図2は、ばね用ステンレス鋼線W1の製造方法を示す図である。図2に示されるように、ばね用ステンレス鋼線W1を製造する際には、まず、供給リールから繰り出されたステンレス鋼線を、メカニカルデスケーラー等によりベンディングする(ステップS21)。ベンディング後、ステンレス鋼線を酸洗して、ステンレス鋼線の表面に付着した酸化物を除去する(ステップS22)。酸洗には、電解方式又は非電解方式(バッチ方式)を用いることができるが、本実施形態では、ステンレス鋼線を陰極とした電解方式を適用する。   FIG. 2 is a diagram showing a method of manufacturing the spring stainless steel wire W1. As shown in FIG. 2, when producing the spring stainless steel wire W1, first, the stainless steel wire fed from the supply reel is bent by a mechanical descaler or the like (step S21). After bending, the stainless steel wire is pickled to remove oxides attached to the surface of the stainless steel wire (step S22). For pickling, an electrolytic method or a non-electrolytic method (batch method) can be used, but in this embodiment, an electrolytic method using a stainless steel wire as a cathode is applied.

酸洗後、ステンレス鋼線の水洗を行い、酸溶液を洗い流す(ステップS23)。水洗後、必要に応じてステンレス鋼線に亜鉛めっきを施す(ステップS24)。亜鉛めっきは、電解方式で行う。亜鉛めっきを施すことにより、リン酸塩皮膜の密着性を向上させることができる。   After pickling, the stainless steel wire is washed with water to wash away the acid solution (step S23). After washing with water, the stainless steel wire is galvanized as necessary (step S24). Zinc plating is performed by electrolysis. By applying galvanization, the adhesion of the phosphate film can be improved.

続いて、リン酸塩皮膜化成を行う(ステップS25)。リン酸塩皮膜化成には、電解方式又は非電解方式(バッチ方式)を用いることができるが、本実施形態では、ステンレス鋼線を陰極とした電解方式を適用する。酸洗処理及びリン酸塩皮膜化成処理を電解方式で行うことにより、リン酸塩皮膜が均一に付着したステンレス鋼線を得ることができる。形成するリン酸塩皮膜の皮膜量は6.0〜14.5g/mとする。皮膜量が6.0g/mより小さい場合、皮膜が過度に薄いため、伸線時においてステンレス鋼線に焼付きが生じ易くなる。皮膜量が14.5g/mより大きい場合には、皮膜が過度に厚いため、伸線時においてダイスの目詰まりが生じ易くなり、その結果、表面状態が均一なばね用ステンレス鋼線W1を得ることが難しくなる。 Subsequently, phosphate film formation is performed (step S25). For the phosphate film formation, an electrolytic method or a non-electrolytic method (batch method) can be used, but in this embodiment, an electrolytic method using a stainless steel wire as a cathode is applied. By performing the pickling treatment and the phosphate film chemical conversion treatment by an electrolytic method, a stainless steel wire having a phosphate film uniformly attached can be obtained. The film amount of the phosphate film to be formed is 6.0 to 14.5 g / m 2 . When the coating amount is smaller than 6.0 g / m 2 , the coating is excessively thin, so that the stainless steel wire is easily seized during wire drawing. When the coating amount is greater than 14.5 g / m 2 , the coating is excessively thick, and thus clogging of the dies is likely to occur during wire drawing. It becomes difficult to obtain.

続いて、リン酸塩皮膜が形成されたステンレス鋼線を湯洗する(ステップS26)。湯洗は、酸溶液を洗い流すと共にリン酸塩皮膜の形成を促進させる目的で行われる。湯洗後、ステンレス鋼線を乾燥させる(ステップS27)。そして、乾燥したステンレス鋼線に潤滑剤を付着させ、ダイスを用いて伸線する(ステップS28)。以上のようにして、ばね用ステンレス鋼線W1が得られる。得られたばね用ステンレス鋼線W1は巻取リールに巻き取られる。   Subsequently, the stainless steel wire on which the phosphate film is formed is washed with hot water (step S26). Hot water washing is performed for the purpose of rinsing out the acid solution and promoting the formation of a phosphate film. After the hot water washing, the stainless steel wire is dried (step S27). Then, a lubricant is attached to the dried stainless steel wire, and the wire is drawn using a die (step S28). As described above, the stainless steel wire W1 for spring is obtained. The obtained spring stainless steel wire W1 is wound around a take-up reel.

なお、上記の製造方法では、ばね用ステンレス鋼線W1の表面粗さが1.5〜2.3μmとなるように調整される。表面粗さが1.5μmよりも小さい場合、表面が過度に平坦であるため、伸線中に潤滑剤の多くがダイス側に付着してしまい、潤滑剤が殆ど残存していないばね用ステンレス鋼線W1となる可能性がある。表面粗さが2.3μmよりも大きい場合、表面が過度に粗いため、潤滑剤の分散が不均一なばね用ステンレス鋼線W1となる可能性がある。表面粗さが1.5〜2.3μmに調整されたばね用ステンレス鋼線W1は、表面に潤滑剤が均一に且つ確実に付着している。そのため、コイルばねS1の成形をスムーズに行うことができる。   In the manufacturing method described above, the surface roughness of the spring stainless steel wire W1 is adjusted to 1.5 to 2.3 μm. If the surface roughness is less than 1.5 μm, the surface is excessively flat, so much of the lubricant adheres to the die during wire drawing, and spring stainless steel with almost no lubricant remaining There is a possibility of becoming the line W1. When the surface roughness is larger than 2.3 μm, the surface is excessively rough, and there is a possibility that the stainless steel wire W1 for springs with non-uniform dispersion of the lubricant may be obtained. The spring stainless steel wire W1 whose surface roughness is adjusted to 1.5 to 2.3 μm has the lubricant uniformly and reliably attached to the surface. Therefore, the coil spring S1 can be formed smoothly.

さらに、上記の製造方法では、ばね用ステンレス鋼線W1における潤滑剤の付着量が1.1〜1.3g/mとなるよう調整される。潤滑剤の付着量が1.1g/mよりも小さいと、コイルばねS1の成形時に、ばね用ステンレス鋼線W1と治具との摩擦が大きくなる。その結果、スティックスリップや焼付きが生じ易くなる。潤滑剤の付着量が1.3g/mよりも大きいと、コイルばねS1を成形する際に、ばね用ステンレス鋼線W1が滑り、治具による保持が難しくなる。潤滑剤の付着量が1.1〜1.3g/mとなるように調整することで、ばね成形時に不具合が生じにくいばね用ステンレス鋼線W1を得ることができる。 Furthermore, in said manufacturing method, it adjusts so that the adhesion amount of the lubrication agent in the stainless steel wire W1 for springs may be 1.1-1.3g / m < 2 >. If the adhesion amount of the lubricant is smaller than 1.1 g / m 2 , the friction between the spring stainless steel wire W1 and the jig becomes large when the coil spring S1 is formed. As a result, stick slip and seizure are likely to occur. When the adhesion amount of the lubricant is larger than 1.3 g / m 2 , the spring stainless steel wire W1 slips when the coil spring S1 is formed, and it becomes difficult to hold it by the jig. By adjusting the adhesion amount of the lubricant to be 1.1 to 1.3 g / m 2 , it is possible to obtain a spring stainless steel wire W1 that is less likely to cause problems during spring formation.

続いて、コイルばねS1の成形方法について説明する。図3はコイルばねS1を製造するための、コイリングマシンを示す概略構成図である。このコイリングマシンM1によれば、巻取リールから繰り出されたばね用ステンレス鋼線W1は、ローラ1によって略直線状に矯正される。矯正されたばね用ステンレス鋼線W1は、フィードローラ2の回転に応じてワイヤガイド3に案内され、心棒5に沿うようコイリングピン4によって屈曲され、巻回されていく。この間、巻線間のピッチはピッチツール6によって所定の値に設定され、所定の巻数だけ巻回されると、ばね用ステンレス鋼線W1はカッタ7によって切断される。このようにして、コイルばねS1が成形される。   Next, a method for forming the coil spring S1 will be described. FIG. 3 is a schematic configuration diagram showing a coiling machine for manufacturing the coil spring S1. According to this coiling machine M1, the stainless steel wire W1 for spring fed out from the take-up reel is corrected by the roller 1 into a substantially straight line. The straightened stainless steel wire W1 for spring is guided by the wire guide 3 according to the rotation of the feed roller 2, bent by the coiling pin 4 along the mandrel 5, and wound. During this time, the pitch between the windings is set to a predetermined value by the pitch tool 6, and when the predetermined number of turns are wound, the spring stainless steel wire W <b> 1 is cut by the cutter 7. In this way, the coil spring S1 is formed.

以上のように、ばね用ステンレス鋼線W1は、リン酸塩皮膜が形成されたステンレス鋼線を伸線したものである。伸線前におけるリン酸塩皮膜の皮膜量は6.0〜14.5g/mであるため、伸線時に焼付きやダイスの目詰まりが生じることがない。したがって、損傷のないばね用ステンレス鋼線W1を得ることができる。リン酸塩皮膜は微細な凹凸があるため、伸線前のステンレス鋼線には潤滑剤を十分に付着させることができる。伸線後の表面粗さを1.5〜2.3μmとすることで、潤滑剤が確実に且つ均一に残存したばね用ステンレス鋼線W1を得ることができる。このように、損傷がなく、潤滑剤が確実に且つ均一に残存したばね用ステンレス鋼線W1は、ばね成形時の加工性に優れたものとなる。 As described above, the spring stainless steel wire W1 is obtained by drawing a stainless steel wire on which a phosphate film is formed. Since the coating amount of the phosphate film before wire drawing is 6.0 to 14.5 g / m 2 , no seizure or clogging of dies occurs during wire drawing. Therefore, the stainless steel wire W1 for springs without damage can be obtained. Since the phosphate film has fine irregularities, the lubricant can be sufficiently adhered to the stainless steel wire before drawing. By setting the surface roughness after drawing to 1.5 to 2.3 μm, it is possible to obtain the spring stainless steel wire W1 in which the lubricant remains reliably and uniformly. Thus, the stainless steel wire W1 for springs which is not damaged and the lubricant remains reliably and uniformly becomes excellent in workability at the time of spring forming.

ここで、本実施形態のばね用ステンレス鋼線W1がばね成形時の加工性に優れたものであることを確認するため、以下のような実験を行った。   Here, the following experiment was performed in order to confirm that the stainless steel wire W1 for springs of this embodiment is excellent in workability at the time of spring forming.

ばね用ステンレス鋼線W1がばね成形時の加工性に優れたものであることを確認するにあたって、まず、リン酸塩皮膜を施したステンレス鋼線を用意した。ステンレス鋼線は3.45mm径のものを用いた。酸洗は硫酸酸洗とし、酸洗時の電流密度は19.6A/dm又は39.5A/dm、酸洗時の浸漬時間は8秒又は17秒とした。また、リン酸塩皮膜化成には、リン酸イオン20〜70g/l、亜鉛イオン20〜50g/l、硝酸イオン30〜80g/lを含有し、温度が75〜85℃に保持された溶液を用いた。この場合、形成されるリン酸塩皮膜はリン酸亜鉛皮膜となる。リン酸塩皮膜化成時の電流密度は3.0〜12.9A/dm、リン酸塩皮膜化成時の浸漬時間は8秒又は17秒とした。亜鉛めっきを施す場合には、めっき量を2.6g/mとした。形成されたリン酸塩皮膜の皮膜量を表1に示す。

Figure 2007182610

In order to confirm that the stainless steel wire W1 for springs was excellent in workability at the time of spring forming, first, a stainless steel wire to which a phosphate film was applied was prepared. A stainless steel wire having a diameter of 3.45 mm was used. The pickling was sulfuric acid pickling, the current density during pickling was 19.6 A / dm 2 or 39.5 A / dm 2 , and the immersion time during pickling was 8 seconds or 17 seconds. In addition, a solution containing phosphate ions 20 to 70 g / l, zinc ions 20 to 50 g / l, nitrate ions 30 to 80 g / l, and maintained at a temperature of 75 to 85 ° C. is used for phosphate film formation. Using. In this case, the formed phosphate film is a zinc phosphate film. The current density during phosphate film formation was 3.0 to 12.9 A / dm 2 , and the immersion time during phosphate film formation was 8 seconds or 17 seconds. In the case of applying galvanization, the plating amount was 2.6 g / m 2 . Table 1 shows the coating amount of the formed phosphate coating.

Figure 2007182610

実施例1〜5の皮膜量は6.0〜14.5g/mであった。これに対して、比較例1の皮膜量は3.3g/mであり、比較例2の皮膜量は18.1g/mであった。 The film amounts of Examples 1 to 5 were 6.0 to 14.5 g / m 2 . On the other hand, the coating amount of Comparative Example 1 was 3.3 g / m 2 , and the coating amount of Comparative Example 2 was 18.1 g / m 2 .

次に、上述の実施例1〜5及び比較例1,2のステンレス鋼線と、電解法によりニッケルめっきを施したステンレス鋼線と、水溶性皮膜として硫酸カリウム皮膜を施したステンレス鋼線とを用意した。用意したこれらの鋼線にステアリン酸カルシウム系の粉末潤滑剤を付着させ、複数段の超硬ダイスで連続伸線した後、焼結ダイヤモンドダイスにて更に伸線した。これにより、1.00mm径のばね用鋼線を得た。得られたばね用ステンレス鋼線の、表面粗さと潤滑剤の付着量とを測定した。   Next, the stainless steel wires of Examples 1 to 5 and Comparative Examples 1 and 2, the stainless steel wire plated with nickel by the electrolytic method, and the stainless steel wire coated with a potassium sulfate film as a water-soluble film. Prepared. A calcium stearate-based powder lubricant was adhered to these prepared steel wires, and after continuous drawing with a multi-stage cemented carbide die, further drawing was performed with a sintered diamond die. Thus, a spring steel wire having a diameter of 1.00 mm was obtained. The obtained stainless steel wire for spring was measured for the surface roughness and the adhesion amount of the lubricant.

なお、ここでいう表面粗さとは、十点平均粗さ(Rz)である。すなわち、図4に示されるように、断面曲線から基準長さだけ抜きとった部分において、平均線に平行、かつ断面曲線を横切らない線から縦倍率の方向に測定した最高から5番目までの山頂の標高の平均値と最深から5番目までの谷底の標高の平均値との差の値をマイクロメータ(μm)で表わしたものをいう。   Here, the surface roughness is a ten-point average roughness (Rz). That is, as shown in FIG. 4, in the portion extracted from the cross-section curve by the reference length, the peak from the highest to the fifth measured in the direction of the vertical magnification from the line parallel to the average line and not crossing the cross-section curve. The value of the difference between the average value of the altitude and the average value of the altitude of the bottom valley from the deepest to the fifth is expressed in micrometers (μm).

以上のようにして測定した結果を表2に示す。

Figure 2007182610

The results measured as described above are shown in Table 2.

Figure 2007182610

測定結果を検討すると、実施例1〜5のばね用ステンレス鋼線は、表面粗さが1.5〜2.3μmであり、潤滑剤の付着量が1.1〜1.3g/mであった。比較例1のばね用ステンレス鋼線は、表面粗さが1.0μmであり、潤滑剤の付着量が0.5g/mであった。比較例2のばね用ステンレス鋼線は、表面粗さが2.3μmであり、潤滑剤の付着量が2.0g/mであった。比較例3のばね用ステンレス鋼線は、表面粗さが3.5μmであり、潤滑剤の付着量が2.1g/mであった。比較例4のばね用ステンレス鋼線は、表面粗さが3.3μmであり、潤滑剤の付着量が3.0g/mであった。 Examining the measurement results, the stainless steel wires for springs of Examples 1 to 5 have a surface roughness of 1.5 to 2.3 μm and a lubricant adhesion amount of 1.1 to 1.3 g / m 2 . there were. The spring stainless steel wire of Comparative Example 1 had a surface roughness of 1.0 μm and a lubricant adhesion amount of 0.5 g / m 2 . The stainless steel wire for springs of Comparative Example 2 had a surface roughness of 2.3 μm and a lubricant adhesion amount of 2.0 g / m 2 . The stainless steel wire for springs of Comparative Example 3 had a surface roughness of 3.5 μm and an adhesion amount of lubricant of 2.1 g / m 2 . The spring stainless steel wire of Comparative Example 4 had a surface roughness of 3.3 μm and a lubricant adhesion amount of 3.0 g / m 2 .

表面粗さ及び潤滑剤の付着量を測定した後、各ばね用ステンレス鋼線を用いてコイルばねを成形した。より具体的には、上述したコイリングマシンM1を用いて、実施例1〜5、比較例1〜4のばね用ステンレス鋼線から300個のばねをそれぞれ成形した。そして、得られたコイルばねの自由長平均と標準偏差とを計測した。なお、コイルばねの中心径は10.0mm、総巻数は8.5、有効巻数(コイルばねの総巻数から両端の座巻を引いた巻数)は7.5、自由長は40.0mmとした。計測した結果を表3に示す。

Figure 2007182610

After measuring the surface roughness and the adhesion amount of the lubricant, coil springs were formed using the stainless steel wires for each spring. More specifically, 300 springs were formed from the stainless steel wires for springs of Examples 1 to 5 and Comparative Examples 1 to 4, respectively, using the coiling machine M1 described above. And the free length average and standard deviation of the obtained coil spring were measured. The center diameter of the coil spring is 10.0 mm, the total number of turns is 8.5, the effective number of turns (the number of turns obtained by subtracting the end turns at both ends from the total number of turns of the coil spring) is 7.5, and the free length is 40.0 mm. . The measured results are shown in Table 3.

Figure 2007182610

測定結果を検討すると、実施例1〜5のばね用ステンレス鋼線を用いたコイルばねは、自由長平均が40.001〜40.020mmであり、標準偏差が0.190〜0.211mmであった。   Examining the measurement results, the coil springs using the spring stainless steel wires of Examples 1 to 5 had a free length average of 40.001 to 40.020 mm and a standard deviation of 0.190 to 0.211 mm. It was.

比較例1のばね用ステンレス鋼線を用いたコイルばねは、自由長平均が39.988mmであり、標準偏差が0.415mmであった。比較例2のばね用ステンレス鋼線を用いたコイルばねは、自由長平均が39.998mmであり、標準偏差が0.275mmであった。比較例3のばね用ステンレス鋼線を用いたコイルばねは、自由長平均が40.011mmであり、標準偏差が0.185mmであった。比較例4のばね用ステンレス鋼線を用いたコイルばねは、自由長平均が40.008mmであり、標準偏差が0.315mmであった。   The coil spring using the spring stainless steel wire of Comparative Example 1 had an average free length of 39.988 mm and a standard deviation of 0.415 mm. The coil spring using the spring stainless steel wire of Comparative Example 2 had an average free length of 39.998 mm and a standard deviation of 0.275 mm. The coil spring using the spring stainless steel wire of Comparative Example 3 had an average free length of 40.111 mm and a standard deviation of 0.185 mm. The coil spring using the spring stainless steel wire of Comparative Example 4 had an average free length of 40.008 mm and a standard deviation of 0.315 mm.

このように、実施例1〜5のばね用ステンレス鋼線は、ニッケルめっきが施された比較例3のばね用ステンレス鋼線と同等の自由長平均及び標準偏差を有するものであった。よって、リン酸塩皮膜の皮膜量が6.0〜14.5g/mであるステンレス鋼線を伸線することによって得られ、表面粗さが1.5〜2.3μmであり、潤滑剤の付着量が1.1〜1.3g/mであるばね用ステンレス鋼線からは、自由長ばらつきの少ないコイルばねを得られることがわかった。これにより、本実施形態のばね用ステンレス鋼線W1は、ばね成形時の加工性が優れていることが確認された。 Thus, the stainless steel wires for springs of Examples 1 to 5 had the same free length average and standard deviation as the stainless steel wires for springs of Comparative Example 3 to which nickel plating was applied. Therefore, it is obtained by drawing a stainless steel wire having a phosphate coating amount of 6.0 to 14.5 g / m 2 and has a surface roughness of 1.5 to 2.3 μm. It was found that a coil spring with little variation in free length can be obtained from a stainless steel wire for springs having an adhesion amount of 1.1 to 1.3 g / m 2 . Thereby, it was confirmed that the stainless steel wire W1 for springs of this embodiment is excellent in workability at the time of spring forming.

ここで、比較例1,2について、実施例1〜5よりもコイルばねの良品率が低い原因を検討する。   Here, in Comparative Examples 1 and 2, the reason why the yield rate of the coil spring is lower than those in Examples 1 to 5 is examined.

比較例1のばね用ステンレス鋼線では、伸線前の皮膜量が3.3g/mと小さい。そのため、伸線時に更に皮膜が薄くなり、その結果、焼付きが生じ易くなる。また、皮膜が過度に薄いばね用ステンレス鋼線は、ばね加工時に治具で損傷し易く、その結果、皮膜内側のステンレス鋼線部分が露出する可能性が高くなる。焼付きやステンレス鋼線部分の露出がみられるばね用ステンレス鋼線では、ばね成形が安定せず、得られるコイルばねに自由長ばらつき等が生じてしまう。更に、比較例1のばね用鋼線では、表面粗さが1.0μmと小さい。そのため、伸線前に付着させた潤滑剤が、伸線の際に落ち易くなる。その結果、得られるばね用鋼線は潤滑剤の付着量が0.5g/mと少ないものとなってしまう。潤滑剤の付着量が少ない場合にも、ばね成形をスムーズに行うことが難しくなる。 In the spring stainless steel wire of Comparative Example 1, the coating amount before drawing is as small as 3.3 g / m 2 . Therefore, the film is further thinned at the time of wire drawing, and as a result, seizure easily occurs. In addition, the spring stainless steel wire having an excessively thin coating is easily damaged by a jig during spring processing, and as a result, the possibility of exposing the stainless steel wire portion inside the coating is increased. In the case of a stainless steel wire for a spring in which seizure or exposure of the stainless steel wire portion is seen, the spring forming is not stable, and the resulting coil spring has variations in free length and the like. Further, the spring steel wire of Comparative Example 1 has a small surface roughness of 1.0 μm. Therefore, the lubricant adhered before wire drawing tends to fall off during wire drawing. As a result, the obtained spring steel wire has a small amount of lubricant adhesion of 0.5 g / m 2 . Even when the adhesion amount of the lubricant is small, it is difficult to perform the spring molding smoothly.

比較例2のばね用ステンレス鋼線では、伸線前の皮膜量が18.1g/mと大きい。そのため、伸線時にダイスの目詰まりが生じ易くなる。その結果、表面状態が不均一となる。表面状態が不均一なばね用ステンレス鋼線では、ばね成形が安定せず、得られるコイルばねに自由長ばらつき等が生じてしまう。 In the spring stainless steel wire of Comparative Example 2, the coating amount before drawing is as large as 18.1 g / m 2 . Therefore, clogging of the die is likely to occur during wire drawing. As a result, the surface state becomes non-uniform. In a stainless steel wire for springs with a non-uniform surface state, the spring forming is not stable, and the resulting coil spring has variations in free length and the like.

以上のことを鑑みると、少なくとも、伸線前のリン酸塩皮膜の皮膜量と、伸線後の表面粗さとが適切な値であれば、ばね成形時の加工性が良好なばね用ステンレス鋼線となる。つまり、リン酸塩皮膜の皮膜量が6.0〜14.5g/mであるステンレス鋼線を伸線することによって得られ、伸線後の表面粗さが1.5〜2.3μmのばね用ステンレス鋼であれば、ばね成形をスムーズに行うことができる。更に、潤滑剤の付着量を実施例1〜5と同様の値(具体的には1.1〜1.3g/m)とし、リン酸塩皮膜を電解処理により形成した場合には、ばね成形時の加工性をいっそう向上させることができるといえる。 In view of the above, a stainless steel for springs having good workability at the time of spring forming if at least the amount of the phosphate film before drawing and the surface roughness after drawing are appropriate values. Become a line. That is, it is obtained by drawing a stainless steel wire having a phosphate coating amount of 6.0 to 14.5 g / m 2 , and the surface roughness after drawing is 1.5 to 2.3 μm. If it is stainless steel for springs, spring shaping can be performed smoothly. Further, when the adhesion amount of the lubricant is the same value as in Examples 1 to 5 (specifically 1.1 to 1.3 g / m 2 ) and the phosphate film is formed by electrolytic treatment, the spring It can be said that the workability at the time of molding can be further improved.

以上、本発明の好適な実施形態について説明してきたが、本発明は必ずしもこれらの実施形態に限定されるものではない。例えば、本実施形態では、ばね用ステンレス鋼線からコイルばねを成形するとしたが、本発明のばね用ステンレス鋼線から成形可能なばねはコイルばねに限られない。   The preferred embodiments of the present invention have been described above, but the present invention is not necessarily limited to these embodiments. For example, in the present embodiment, the coil spring is formed from the spring stainless steel wire, but the spring that can be formed from the spring stainless steel wire of the present invention is not limited to the coil spring.

本実施形態に係るばね用ステンレス鋼線を用いたコイルばねの斜視図である。It is a perspective view of the coil spring using the stainless steel wire for springs concerning this embodiment. 本実施形態に係るばね用ステンレス鋼線の製造方法を示す図である。It is a figure which shows the manufacturing method of the stainless steel wire for springs which concerns on this embodiment. コイリングマシンを示す概略構成図である。It is a schematic block diagram which shows a coiling machine. 十点表面粗さを説明するための図である。It is a figure for demonstrating ten-point surface roughness.

符号の説明Explanation of symbols

W1・・・ばね用ステンレス鋼線、S1・・・コイルばね。   W1 ... stainless steel wire for spring, S1 ... coil spring.

Claims (5)

皮膜量が6.0〜14.5g/mのリン酸塩皮膜が形成されたステンレス鋼線を伸線することによって得られ、表面粗さが1.5〜2.3μmであることを特徴とするばね用ステンレス鋼線。 It is obtained by drawing a stainless steel wire on which a phosphate film having a film amount of 6.0 to 14.5 g / m 2 is formed, and has a surface roughness of 1.5 to 2.3 μm. Stainless steel wire for springs. 表面が前記伸線時に用いた潤滑剤で覆われており、当該表面に対する前記潤滑剤の付着量が1.1〜1.3g/mであることを特徴とする請求項1に記載のばね用ステンレス鋼線。 2. The spring according to claim 1, wherein a surface is covered with a lubricant used at the time of wire drawing, and an adhesion amount of the lubricant to the surface is 1.1 to 1.3 g / m 2. Stainless steel wire. 前記リン酸塩皮膜は、電解処理により形成されたものであることを特徴とする請求項1又は2に記載のばね用ステンレス鋼線。   The stainless steel wire for springs according to claim 1 or 2, wherein the phosphate film is formed by electrolytic treatment. 前記ステンレス鋼線には亜鉛めっきが施されており、当該亜鉛めっき上に前記リン酸塩皮膜が形成されていることを特徴とする請求項1〜3のいずれか一項に記載のばね用ステンレス鋼線。   The stainless steel wire for spring according to any one of claims 1 to 3, wherein the stainless steel wire is galvanized, and the phosphate film is formed on the galvanized metal. Steel wire. 請求項1〜4のいずれか一項に記載の前記ばね用ステンレス鋼線を備えることを特徴とするコイルばね。   A coil spring comprising the stainless steel wire for a spring according to any one of claims 1 to 4.
JP2006001681A 2006-01-06 2006-01-06 Stainless steel wire for spring and coil spring Pending JP2007182610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006001681A JP2007182610A (en) 2006-01-06 2006-01-06 Stainless steel wire for spring and coil spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006001681A JP2007182610A (en) 2006-01-06 2006-01-06 Stainless steel wire for spring and coil spring

Publications (1)

Publication Number Publication Date
JP2007182610A true JP2007182610A (en) 2007-07-19

Family

ID=38338943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006001681A Pending JP2007182610A (en) 2006-01-06 2006-01-06 Stainless steel wire for spring and coil spring

Country Status (1)

Country Link
JP (1) JP2007182610A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057246A (en) * 2010-09-13 2012-03-22 Manho Rope & Wire Ltd Stainless steel wire excellent in headability
CN103603022A (en) * 2013-11-18 2014-02-26 贵州钢绳股份有限公司 Steel wire heat treatment-electrolysis-phosphorization continuous production line equipment and process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057246A (en) * 2010-09-13 2012-03-22 Manho Rope & Wire Ltd Stainless steel wire excellent in headability
CN103603022A (en) * 2013-11-18 2014-02-26 贵州钢绳股份有限公司 Steel wire heat treatment-electrolysis-phosphorization continuous production line equipment and process

Similar Documents

Publication Publication Date Title
JP5108284B2 (en) Steel wire for spring
JP5894721B2 (en) Surface-treated metal plate and method for producing molded product using the surface-treated metal plate
WO2013179434A1 (en) Fixed-abrasive-grain wire-saw, method for manufacturing same, and method for cutting workpiece using same
KR20140102214A (en) Method for manufacturing brass-plated steel wire and brass-plated steel wire
JP5066508B2 (en) Fixed abrasive wire saw
JP2006159291A (en) Plated wire for gas shield arc welding
US2084209A (en) Coated metal pipe and process of producing the same
JP2007182610A (en) Stainless steel wire for spring and coil spring
JP2006247740A (en) Copper or copper alloy sheet strip for press forming
CN107406956A (en) The deformed wire of allumen plating with excellent anticorrosive and the method for manufacturing it
JP6755909B2 (en) Manufacturing method and manufacturing system for galvanized deformed steel bars
JP2006169621A (en) Stainless steel wire for spring having excellent formability, and its manufacturing method
JPH06226330A (en) Steel wire for automatic coiling and manufacture thereof
US2288762A (en) Zinc coated ferrous article
WO2012055712A1 (en) A sawing wire with abrasive particles electrodeposited onto a substrate wire
JP2011255475A (en) Fixed abrasive wire
WO2020045089A1 (en) Composite member and method for manufacturing same
US20140079957A1 (en) Process for tin coating a metallic substrate, process for hardening a tin layer and wire having a tin coating
JP6532550B2 (en) Method of manufacturing a wire made of a first metal, having a sheath layer made of a second metal
JP2007186736A (en) Method for manufacturing metallic wire, metallic cord for reinforcing rubber product, and vehicle tire
KR101674760B1 (en) Master roll for fabricating micro metal wires and method for fabricating micro metal wires using the same
WO2008023561A1 (en) Nickel-plated stainless-steel wire
JP2007270346A (en) Method for manufacturing metal wire, metal cord for reinforcing rubber article, and car tire
JP2008229703A (en) Method of manufacturing copper-coated aluminum wire and copper-coated aluminum wire
KR100806371B1 (en) Fixed abrasive-grain wire