JP2006247740A - Copper or copper alloy sheet strip for press forming - Google Patents

Copper or copper alloy sheet strip for press forming Download PDF

Info

Publication number
JP2006247740A
JP2006247740A JP2005071458A JP2005071458A JP2006247740A JP 2006247740 A JP2006247740 A JP 2006247740A JP 2005071458 A JP2005071458 A JP 2005071458A JP 2005071458 A JP2005071458 A JP 2005071458A JP 2006247740 A JP2006247740 A JP 2006247740A
Authority
JP
Japan
Prior art keywords
copper
copper alloy
alloy sheet
sheet strip
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005071458A
Other languages
Japanese (ja)
Other versions
JP4603394B2 (en
Inventor
Takeshi Owaki
武史 大脇
Kazumi Yanagisawa
佳寿美 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005071458A priority Critical patent/JP4603394B2/en
Publication of JP2006247740A publication Critical patent/JP2006247740A/en
Application granted granted Critical
Publication of JP4603394B2 publication Critical patent/JP4603394B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Punching Or Piercing (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper or copper alloy sheet strip which can prevent discoloration and corrosion and improve press productivity, by applying an organic compound rust preventive treatment on the copper or copper alloy sheet strip which prevents accumulation of green powder on a wiping pad during the press forming. <P>SOLUTION: The copper or copper alloy sheet strip is coated with the organic compound rust preventive film on its surface, which reacts to the copper and generates carboxylate. The base material, copper or copper alloy sheet strip, is made to have a half-band width of 0.2 μm or more in a histogram obtained by 3-dimensional surface roughness measurement. The variation in size of irregularity on the surface of the copper or copper alloy sheet strip is suppressed and abrasion or wear between the surface of copper or copper alloy sheet strip and the wiping pad is reduced so that the accumulation of the green powder on the wiping pad is prevented. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体リードフレーム、端子・コネクター、リレー、放熱板などのプレス製品の製造に使用されるプレス加工用銅又は銅合金板条に関し、詳しくは、銅と反応してカルボン酸塩を生成する有機化合物防錆皮膜が表面に形成されたプレス加工用銅又は銅合金板状の改良に関する。本発明では、銅又は銅合金の、比較的広幅の板や、板をスリットなどした比較的狭幅の条などを適用対象としているため、これらを合わせて板条と称する。   The present invention relates to a copper or copper alloy strip for press working used in the manufacture of pressed products such as semiconductor lead frames, terminals / connectors, relays, and heat sinks. Specifically, it reacts with copper to produce a carboxylate. The present invention relates to the improvement of a copper or copper alloy plate for press working on which an organic compound rust preventive film is formed. In the present invention, a relatively wide plate made of copper or a copper alloy, a relatively narrow strip formed by slitting the plate, and the like are applied, and these are collectively referred to as a strip.

銅又は銅合金板条の表面に、その変色防止と防食を目的として、ベンゾトリアゾール(BTA)又はその誘導体を主成分とする防錆剤により防錆処理を施すことが広く一般に行われている(特許文献1〜5参照)。また、このベンゾトリアゾールの他にも、アミン系防錆剤、エステル系防錆剤等により防錆処理を施すことも公知である(特許文献6参照)。   For the purpose of preventing discoloration and anticorrosion on the surface of copper or a copper alloy sheet, it is widely performed to carry out a rust prevention treatment with a rust preventive mainly composed of benzotriazole (BTA) or a derivative thereof ( Patent References 1 to 5). In addition to this benzotriazole, it is also known to carry out a rust prevention treatment with an amine rust inhibitor, an ester rust inhibitor, or the like (see Patent Document 6).

前記ベンゾトリアゾール又はその誘導体、あるいは前記アミン系防錆剤、エステル系防錆剤等の有機化合物防錆皮膜は、銅合金表面で、銅と反応してカルボン酸塩をつくり、銅合金の表面を覆うことにより、防錆効果を発揮する。
特開平6−88258号公報(明細書全文) 特開平7−48641号公報(明細書全文) 特開平7−113184号公報(明細書全文) 特開平9−116066号公報(明細書全文) 特開平9−302485号公報(明細書全文) 特開2003−152155号公報(明細書全文)
The benzotriazole or its derivative, or the organic compound rust preventive film such as the amine-based rust preventive agent and ester-based rust preventive agent reacts with copper to form a carboxylate on the surface of the copper alloy. By covering, the anti-rust effect is demonstrated.
JP-A-6-88258 (the whole specification) JP 7-48641 A (the full description) Japanese Patent Laid-Open No. 7-113184 (full description) Japanese Patent Laid-Open No. 9-116066 (full description) JP-A-9-302485 (the whole specification) JP 2003-152155 A (the full description)

ただ、このように、銅合金表面で銅と反応してカルボン酸塩を生成する有機化合物防錆皮膜(以下、単に有機化合物防錆皮膜とも言う)は、銅又は銅合金板条の打ち抜き等のプレス加工の際に問題を生じやすい。   However, the organic compound rust preventive film that reacts with copper on the surface of the copper alloy to produce a carboxylate (hereinafter also simply referred to as organic compound rust preventive film), such as punching of copper or copper alloy strips, etc. Problems are likely to occur during pressing.

即ち、銅合金板条の表面に付着した、有機化合物防錆皮膜が銅と反応して生成したカルボン酸塩が、プレス入り側のふき取りパッドに粉状に付着、堆積するという現象が場合によって生じる。   In other words, a phenomenon occurs in which the carboxylate formed by the reaction of the organic compound anticorrosive film with copper adhering to the surface of the copper alloy sheet adheres and accumulates in a powdery manner on the wiping pad on the press entry side. .

これによって、プレス入り側のふき取りパッドに粉状に付着、堆積した、カルボン酸塩を有する(カルボン酸塩を付着させた)銅が、パッドから剥離してこぼれ落ち、プレス金型内に入るという問題が生じる。これらプレス金型内に入ったカルボン酸塩を有する銅は、プレス製品の打痕疵の原因となったり、最悪の場合には金型自体の破損につながったりする恐れがある。   As a result, copper having a carboxylate (attached carboxylate) deposited and deposited in a powdery manner on the wiping pad on the press side peels off from the pad and spills into the press mold. Occurs. The copper having a carboxylate contained in these press dies may cause dents in the press product or, in the worst case, damage the die itself.

これらパッドに堆積したカルボン酸塩を有する銅は、緑色もしくは黒色になるが、概して緑色になる場合が多く、通常、緑粉と称される。   Copper with carboxylate deposited on these pads is green or black, but generally is often green and is commonly referred to as green powder.

このため、実操業においては、この緑粉がプレス金型内に入らないように、プレス加工時に、ふき取りパッドを頻繁に交換し、あるいは金型を清掃するなどしている。   For this reason, in actual operation, the wiping pad is frequently replaced or the mold is cleaned at the time of pressing so that the green powder does not enter the press mold.

しかし、これらの作業は、プレス加工の生産性を低下させる大きな要因となる。なお、ふき取りパッドは、本来、プレス加工される銅又は銅合金板条の表面に付着しているかも知れない銅粉、砂又はその他の異物をふき取り、プレス金型内に異物が入るのを防止するためのものである。   However, these operations are a major factor that reduces the productivity of press working. Note that the wiping pad originally wipes off copper powder, sand or other foreign matter that may have adhered to the surface of the copper or copper alloy sheet to be pressed to prevent foreign matter from entering the press mold. Is to do.

このため、ふき取りパッドに緑粉が堆積する問題に対し、銅合金板条の素材側では、従来から、カルボン酸塩を有する銅が主体の緑粉をいかに少なくするかの対策に注力し、例えば、過剰な防錆皮膜を洗い落とすことや、防錆液の清浄度管理などの対策を行ってきた。   For this reason, for the problem that green powder accumulates on the wiping pad, on the material side of the copper alloy sheet, conventionally, the focus has been on measures to reduce the amount of green powder mainly composed of copper with carboxylate, Measures have been taken, such as washing away excess rust-proof coatings and controlling the cleanliness of rust-preventive liquids.

しかしながら、これらの対策では、若干の改善効果はあるものの、問題を解決するまで緑粉を大きく減ずるには至っていない。なお、素板条の輸送期間や保管期間に変色する問題が発生するため、銅合金表面で銅と反応してカルボン酸塩を生成する有機化合物防錆剤の使用を止めることはできない。   However, although these measures have a slight improvement effect, the green powder has not been greatly reduced until the problem is solved. In addition, since the problem which discolors in the transport period and storage period of a base strip occurs, use of the organic compound rust preventive which reacts with copper on the copper alloy surface and produces | generates a carboxylate cannot be stopped.

本発明はこのような課題を解決するためになされたものであって、銅又は銅合金板条に対して,前記有機化合物防錆処理を行いながらも、プレス加工時においてふき取りパッドに緑粉が堆積することを防止し、これにより、銅又は銅合金板条の変色防止と防食を行うと同時に、プレス生産性を向上することを目的とする。   The present invention has been made to solve such a problem, and while performing the organic compound rust prevention treatment for copper or copper alloy sheet, green powder is formed on the wiping pad during press working. The object is to prevent deposition and thereby prevent discoloration and corrosion prevention of copper or copper alloy strips, and at the same time improve press productivity.

この目的を達成するために、本発明のプレス加工用銅又は銅合金板条の要旨は、銅と反応してカルボン酸塩を生成する有機化合物防錆皮膜が表面に形成された銅又は銅合金板条であって、基材である銅又は銅合金板条の3次元表面粗さ測定における度数分布図の半値幅が0.2μm以上であることとする。   In order to achieve this object, the gist of the copper or copper alloy sheet for press working according to the present invention is the copper or copper alloy on the surface of which an organic compound rust preventive film that reacts with copper to produce a carboxylate is formed. It is a strip, and the half width of the frequency distribution diagram in the three-dimensional surface roughness measurement of the copper or copper alloy strip that is the base material is 0.2 μm or more.

プレス加工時におけるふき取りパッドに緑粉が付着、堆積するのは、銅又は銅合金板条の表面に付着したカルボン酸塩を有する銅が剥離するためである。このため、本発明では、基材である銅又は銅合金板条の凹凸を制御する。これによって、プレス加工における、銅又は銅合金板条の前記ふき取り作業時に使用するふき取りパッド(ふき取り布)と銅又は銅合金板条表面との間の、摩擦あるいは摩耗を低減させる。   The reason why the green powder adheres and accumulates on the wiping pad at the time of press working is that the copper having carboxylate attached to the surface of the copper or copper alloy sheet strips. For this reason, in this invention, the unevenness | corrugation of the copper or copper alloy strip which is a base material is controlled. This reduces friction or wear between the wiping pad (wiping cloth) used during the wiping operation of the copper or copper alloy sheet strip and the surface of the copper or copper alloy sheet strip during press working.

通常、銅合金板条に限らず、金属表面の粗度を粗くするなど、表面粗度を制御することはよく行なわれている。また、従来の銅合金板においても、表面粗度を規定すること自体は良く行なわれている。例えば、特開2004−2989号公報には、プレス成形性の向上のために、電子材料用銅合金板を、機械研磨や圧延工程における圧延ロールの粗さを調整することによって、圧延直角方向の算術平均粗さ(Ra)を0.07〜0.13μmの範囲とするとともに、最大高さ(Ry)を1.3μm以下とすることが開示されている。   Usually, not only the copper alloy strips but also the surface roughness is often controlled by, for example, increasing the roughness of the metal surface. Also in the conventional copper alloy plate, the surface roughness itself is well defined. For example, in Japanese Patent Application Laid-Open No. 2004-2989, in order to improve press formability, a copper alloy plate for electronic materials is adjusted in the direction perpendicular to the rolling direction by adjusting the roughness of the rolling roll in mechanical polishing or rolling process. It is disclosed that the arithmetic average roughness (Ra) is in the range of 0.07 to 0.13 μm and the maximum height (Ry) is 1.3 μm or less.

この他、特開2004−68067号公報には、銅系合金材の摺動性や耐久性を向上させるために、銅系合金材表面の中心線平均粗さRaを、選択的化学エッチング液で処理することにより、0.5〜5μmの範囲とすることが開示されている。   In addition, in JP-A-2004-68067, in order to improve the slidability and durability of the copper-based alloy material, the center line average roughness Ra of the surface of the copper-based alloy material is selected with a selective chemical etching solution. By processing, it is disclosed to make it the range of 0.5-5 micrometers.

ただ、このように、従来において、銅合金板の表面粗度を規定する場合、多くは、あるいは常識的には、算術平均粗さ(Ra)が汎用される。   However, conventionally, when the surface roughness of a copper alloy plate is specified, in many cases or commonly known, arithmetic average roughness (Ra) is generally used.

しかし、本発明で課題とする、銅又は銅合金板条表面と、前記ふき取りパッドとの間の摩擦あるいは摩耗と、このような算術平均粗さ(Ra)とは、あまり相関しない。即ち、通常の方法で製造される銅又は銅合金板条の算術平均粗さ(Ra)の範囲では、銅又は銅合金板条表面と前記ふき取りパッドとの間の摩擦あるいは摩耗は、あまり相関しない。   However, the friction or wear between the surface of the copper or copper alloy strip and the wiping pad, which is a subject of the present invention, and the arithmetic average roughness (Ra) are not so correlated. That is, in the range of the arithmetic average roughness (Ra) of copper or copper alloy strip manufactured by a normal method, the friction or wear between the surface of the copper or copper alloy strip and the wiping pad does not correlate so much. .

これに対して、本発明者らは、銅又は銅合金板条の3次元表面粗さ測定における度数分布図の半値幅が、銅又は銅合金板条表面と前記ふき取りパッドとの間の摩擦あるいは摩耗に密接に相関することを知見した。   On the other hand, the present inventors have found that the half-value width of the frequency distribution diagram in the three-dimensional surface roughness measurement of copper or a copper alloy sheet is the friction between the surface of the copper or copper alloy sheet and the wiping pad, or It was found to correlate closely with wear.

通常、金属材表面の3次元表面粗さ測定における度数分布図の半値幅は、表面に存在する凹凸のバラツキの指標として知られている。したがって、銅又は銅合金板条の3次元表面粗さ測定における度数分布図の半値幅は、銅又は銅合金板条の表面に存在する凹凸のばらつきの大きさを示している。即ち、表面に存在する凹凸の大きさが比較的均一であれば、上記半値幅は大きくなる。その一方で、表面に存在する凹凸の大きさのばらつきが比較的大きければ、上記半値幅は小さくなる。   Usually, the half width of the frequency distribution diagram in the three-dimensional surface roughness measurement on the surface of a metal material is known as an index of unevenness on the surface. Therefore, the half-value width of the frequency distribution diagram in the three-dimensional surface roughness measurement of copper or copper alloy strip indicates the size of unevenness existing on the surface of copper or copper alloy strip. That is, if the size of the unevenness present on the surface is relatively uniform, the half width is increased. On the other hand, if the variation in the size of the unevenness present on the surface is relatively large, the half width is small.

そして、この表面に存在する凹凸の大きさのばらつきが比較的大きければ、即ち上記半値幅が小さくなれば、銅又は銅合金板条表面と前記ふき取りパッドとの間の摩擦あるいは摩耗が増大して、銅又は銅合金板条の表面に付着したカルボン酸塩を有する銅が剥離しやすくなり、プレス加工時においてふき取りパッドに堆積する緑粉量が増すことになる。   If the unevenness of the unevenness present on the surface is relatively large, that is, if the half width is reduced, the friction or wear between the surface of the copper or copper alloy sheet and the wiping pad increases. Then, copper having a carboxylate adhering to the surface of the copper or copper alloy sheet becomes easy to peel off, and the amount of green powder deposited on the wiping pad during press working increases.

上記した算術平均粗さ(Ra)が、銅又は銅合金板条表面と前記ふき取りパッドとの間の摩擦あるいは摩耗とあまり相関しないのは、算術平均粗さ(Ra)が、表面粗さデータを単純に平均したものであることに由来する。即ち、算術平均粗さ(Ra)が小さくても、大きくても、銅又は銅合金板条の表面に存在する凹凸のばらつきの大きさとは相関しないからである。   The arithmetic average roughness (Ra) does not correlate so much with the friction or wear between the surface of the copper or copper alloy strip and the wiping pad. The arithmetic average roughness (Ra) It comes from being simply averaged. That is, even if the arithmetic average roughness (Ra) is small or large, it does not correlate with the magnitude of unevenness in the surface of the copper or copper alloy strip.

通常の方法で製造される銅又は銅合金板条の表面に存在する凹凸のばらつきの大きさは、例えば圧延ロール表面の摩耗や、圧延潤滑状態などによっては、比較的大きくなりやすい。したがって、通常の方法で製造される銅又は銅合金板条の上記半値幅も比較的大きくなりやすい。   The magnitude of the unevenness variation present on the surface of the copper or copper alloy sheet manufactured by a normal method tends to be relatively large depending on, for example, the wear on the surface of the rolling roll or the rolling lubrication state. Therefore, the half width of the copper or copper alloy sheet manufactured by a normal method is likely to be relatively large.

したがって、本発明では、積極的に、銅又は銅合金板条の表面に存在する凹凸の大きさのばらつきを抑制し、上記半値幅を大きくして、銅又は銅合金板条表面と前記ふき取りパッドとの間の摩擦あるいは摩耗を低減する。   Therefore, in the present invention, the variation of the unevenness present on the surface of the copper or copper alloy sheet is positively suppressed, the half width is increased, and the surface of the copper or copper alloy sheet and the wiping pad are increased. Reduce friction or wear between the two.

これによって、銅又は銅合金板条に対して,前記有機化合物防錆処理を行いながらも、銅又は銅合金板条の表面に付着したカルボン酸塩を有する銅の剥離を抑制して、プレス加工時においてふき取りパッドに堆積する緑粉量を低減できる。この結果、銅又は銅合金板条の変色防止と防食を行うと同時に、プレス生産性を向上させることができる。   Thus, while performing the organic compound rust prevention treatment for copper or copper alloy sheet, it is possible to suppress the peeling of copper having carboxylate adhering to the surface of copper or copper alloy sheet, and press working The amount of green powder deposited on the wiping pad can be reduced. As a result, it is possible to prevent discoloration and prevent corrosion of the copper or copper alloy sheet and simultaneously improve press productivity.

(銅又は銅合金板条の3次元表面粗さ測定における度数分布図の半値幅)
図1〜4に、銅又は銅合金板条の3次元表面粗さ測定における度数分布図を示す。図1〜4において、縦軸が規格化したポイント数(度数)、横軸が表面の凹凸高さ(μm)である。横軸出示す表面の凹凸高さにおいて、真中の0を中心に、左側の凹凸高さがマイナスであるのは凹み(凹み深さ)、右側の凹凸高さがプラスであるのは凸部(凸部高さ)を各々示す。
(Half width of frequency distribution chart in 3D surface roughness measurement of copper or copper alloy strip)
1 to 4 show frequency distribution diagrams in the three-dimensional surface roughness measurement of copper or copper alloy strips. 1-4, the vertical axis is the normalized number of points (frequency), and the horizontal axis is the surface unevenness height (μm). In the unevenness height of the surface shown on the horizontal axis, with the center 0 at the center, the left unevenness height is negative, the concave (dent depth), and the right unevenness height is positive, the convexity ( The height of each convex portion is shown.

銅又は銅合金板条の表面に存在する凹凸の大きさのばらつきを示す半値幅は、図1〜4における縦軸の最高度数1.0の半分である0.5(半値)における度数分布の横方向の幅(μm)を示している。図1〜3は、半値幅が0.2μm以上の、後述する実施例における発明例1、2、3の例を各々示し、図4は、半値幅が0.2μm未満の後述する実施例における比較例10の例を示している。   The full width at half maximum showing the variation in the size of the unevenness present on the surface of the copper or copper alloy strip is the frequency distribution at 0.5 (half value) which is half of the maximum frequency 1.0 on the vertical axis in FIGS. The horizontal width (μm) is shown. FIGS. 1 to 3 show examples of Invention Examples 1, 2, and 3 in the embodiments described later, each having a half width of 0.2 μm or more, and FIG. 4 illustrates an embodiment described later in which the half width is less than 0.2 μm. The example of the comparative example 10 is shown.

本発明では、前記した通り、基材である銅又は銅合金板条の表面に存在する凹凸の大きさのばらつきを抑制する。これによって、プレス加工における、銅又は銅合金板条の前記ふき取り作業時に使用するふき取りパッド(ふき取り布)と銅又は銅合金板条表面との間の、摩擦あるいは摩耗を低減させる。このため、本発明では、銅又は銅合金板条表面の上記半値幅を、図1〜3における発明例のように、0.2μm以上と大きくする。   In this invention, as above-mentioned, the dispersion | variation in the magnitude | size of the unevenness | corrugation which exists in the surface of the copper or copper alloy strip which is a base material is suppressed. This reduces friction or wear between the wiping pad (wiping cloth) used during the wiping operation of the copper or copper alloy sheet strip and the surface of the copper or copper alloy sheet strip during press working. For this reason, in this invention, the said half value width of copper or a copper alloy strip surface is enlarged with 0.2 micrometer or more like the invention example in FIGS.

一方、上記半値幅が、図4における比較例10のように、0.2μm未満では、半値幅が小さ過ぎる。このため、上記した通り、銅又は銅合金板条の表面に存在する凹凸の大きさのばらつきが大きくなり、前記ふき取りパッド(ふき取り布)と銅又は銅合金板条表面との間の、摩擦あるいは摩耗が大きくなり過ぎる。このため、銅又は銅合金板条の表面に付着したカルボン酸塩を有する銅の剥離を抑制できず、プレス加工時においてふき取りパッドに堆積する緑粉量を低減できない。   On the other hand, if the half width is less than 0.2 μm as in Comparative Example 10 in FIG. 4, the half width is too small. For this reason, as described above, the variation in the size of the unevenness present on the surface of the copper or copper alloy sheet increases, and the friction between the wiping pad (wiping cloth) and the copper or copper alloy sheet surface or Wear becomes too great. For this reason, peeling of copper having a carboxylate adhering to the surface of copper or a copper alloy sheet cannot be suppressed, and the amount of green powder deposited on the wiping pad during press working cannot be reduced.

(銅又は銅合金板条の粗さ曲線のクルトシス値)
本発明では、銅又は銅合金板条の表面に存在する凹凸の大きさのばらつきを更に、低減させるため、上記半値幅だけでは無く、銅又は銅合金板条の3次元表面粗さ測定における、粗さ曲線のクルトシス値(Rku )を4.5以下とすることが好ましい。粗さ曲線のクルトシス値(Rku )は、銅又は銅合金板条の表面における凹凸の尖り具合(丸み具合)を表し、クルトシス値が小さくなるほど凹凸は丸みを帯びた曲線となり、クルトシス値が大きくなるほど凹凸は尖った曲線となる。
(Cultosis value of roughness curve of copper or copper alloy sheet)
In the present invention, in order to further reduce the variation in the size of the unevenness present on the surface of the copper or copper alloy sheet, in addition to the half width, in the three-dimensional surface roughness measurement of the copper or copper alloy sheet, The kurtosis value (Rku) of the roughness curve is preferably 4.5 or less. The kurtosis value (Rku) of the roughness curve represents the sharpness (roundness) of the irregularities on the surface of the copper or copper alloy sheet, and the smaller the kurtosis value, the more the irregularities become rounded, and the greater the kurtosis value. The unevenness is a sharp curve.

粗さ曲線のクルトシス値(Rku )は、金属材の3次元表面粗さ測定における、凹凸の尖り具合の指標として知られている。このクルトシス値(Rku )は、下記式で表され、3次元表面粗さのZ軸方向の凹凸(山の)高さであって、基準長さlr における山の高さZ(x)の下記四乗平均を、下記二乗平均平方根粗さRqの四乗で割ったものである。
基準長さlr における山の高さの四乗平均:
{(1/lr )×∫Z4 (x)dx(但しインテグラルは 0からlr までの積算値)}
二乗平均平方根粗さ:Rq
Rq:√{(1/lr )×∫Z2 (x)dx(但しインテグラルは 0からlr までの積算値)}
粗さ曲線のクルトシス値:Rku
Rku =(1/Rq4 )×{(1/lr )×∫Z4 (x)dx(但しインテグラルは 0からlr までの積算値)}
The kurtosis value (Rku) of the roughness curve is known as an index of the degree of unevenness in the three-dimensional surface roughness measurement of a metal material. This kurtosis value (Rku) is expressed by the following formula, and is the unevenness (mountain) height in the Z-axis direction of the three-dimensional surface roughness, and is the height of the mountain Z (x) at the reference length l r . The following mean square is divided by the square of the following root mean square roughness Rq.
The mean square of the mountain height at the reference length l r :
{(1 / l r ) × ∫Z 4 (x) dx (where integral is the integrated value from 0 to l r )}
Root mean square roughness: Rq
Rq: √ {(1 / l r ) × ∫Z 2 (x) dx (where integral is an integrated value from 0 to l r )}
The kurtosis value of the roughness curve: Rku
Rku = (1 / Rq 4 ) × {(1 / l r ) × ∫Z 4 (x) dx (where integral is an integrated value from 0 to l r )}

前記した通り、銅又は銅合金板条の表面における凹凸の尖り具合、尖り方が険しい程、粗さ曲線のクルトシス値(Rku )は大きくなる。そして、凹凸の尖り具合、尖り方が険しい程、上記半値幅ほどでは無いが、銅又は銅合金板条の表面に存在する凹凸の大きさのばらつきが大きくなる。
したがって、上記半値幅の制御に加えて、凹凸の形状を制御することを示す粗さ曲線のクルトシス値(Rku )を制御すれば、より銅又は銅合金板条の表面に存在する凹凸の大きさのばらつきを、より抑制することができる。
As described above, the kurtosis value (Rku) of the roughness curve increases as the sharpness or sharpness of the unevenness on the surface of the copper or copper alloy strip increases. And, as the sharpness and sharpness of the unevenness become steep, the unevenness of the unevenness existing on the surface of the copper or copper alloy strip becomes larger, although not as much as the half width.
Therefore, in addition to the control of the half-value width, if the kurtosis value (Rku) of the roughness curve indicating that the shape of the unevenness is controlled, the size of the unevenness existing on the surface of the copper or copper alloy strip more. Variation can be further suppressed.

(算術平均粗さ)
本発明において、3次元表面粗さ測定における算術平均粗さ(Ra)は、前記した通り、銅又は銅合金板条の表面に存在する凹凸の大きさのばらつきの低減指標とはなり得ない。しかし、本発明では、前提として、あるいは実際問題として、通常製造される銅又は銅合金板条の、算術平均粗さ(Ra)を、ことさら小さくする、あるいは、ことさら大きく(粗く)する必要は無い。このため、本発明における銅又は銅合金板条の3次元表面粗さ測定における算術平均粗さ(Ra)は、通常製造される銅又は銅合金板条の算術平均粗さ(Ra)レベルの0.07μm以上であって良い。
(Arithmetic mean roughness)
In the present invention, the arithmetic average roughness (Ra) in the three-dimensional surface roughness measurement cannot be an index for reducing the variation in the size of the unevenness existing on the surface of the copper or copper alloy strip as described above. However, in the present invention, as a premise or as a practical problem, it is not necessary to make the arithmetic average roughness (Ra) of the copper or copper alloy sheet ordinarily produced to be much smaller or even larger (rough). . For this reason, the arithmetic average roughness (Ra) in the three-dimensional surface roughness measurement of the copper or copper alloy strip in the present invention is 0, which is the arithmetic average roughness (Ra) level of the copper or copper alloy strip that is normally produced. 0.07 μm or more.

(防錆皮膜)
本発明における、銅又は銅合金板条表面の防錆処理(防錆皮膜)は、前記特許文献1〜6などに開示の、変色防止と防食を目的とした、既存のベンゾトリアゾール(BTA)又はその誘導体を主成分とする防錆剤や、あるいは前記アミン系防錆剤、エステル系防錆剤等、銅合金表面で、銅と反応してカルボン酸塩をつくる公知の有機化合物防錆皮膜が適宜使用できる。
(Rust prevention film)
In the present invention, the anticorrosive treatment (rust preventive film) on the surface of the copper or copper alloy sheet is an existing benzotriazole (BTA) disclosed in Patent Documents 1 to 6 and the like for the purpose of preventing discoloration and preventing corrosion. A known organic compound rust preventive film that reacts with copper to form a carboxylate on the copper alloy surface, such as a rust preventive mainly composed of the derivative, or the amine rust preventive, ester rust preventive, etc. It can be used as appropriate.

これら防錆剤の粘度は、変色防止と防食の効果維持と、作業性やリードフレーム製造工程でのめっき未着帽子などの観点から、1〜30cst(40℃における)の範囲が好ましい。また、防錆皮膜の塗布量乃至付着量は、同じく変色防止と防食の効果維持と、作業性やリードフレーム製造工程でのめっき未着帽子などの観点から、0.01〜10mg/m2 の範囲が好ましい。なお、これら防錆剤の塗布方法は、静電塗布、ローラーコートなど、公知の方法を適宜選択することができる。 The viscosity of these rust preventives is preferably in the range of 1 to 30 cst (at 40 ° C.) from the viewpoints of preventing discoloration and maintaining the effect of anticorrosion, workability, unplated cap in the lead frame manufacturing process, and the like. Also, the coating amount or adhesion amount of the rust preventive film is 0.01 to 10 mg / m 2 from the viewpoint of preventing discoloration and maintaining the anticorrosion effect, and workability and a cap without plating in the lead frame manufacturing process. A range is preferred. In addition, the application method of these rust preventives can select suitably well-known methods, such as electrostatic coating and roller coating.

(銅又は銅合金板条素材)
本発明における銅又は銅合金板条は、前記した、半導体リードフレーム、端子・コネクター、リレー、放熱板などのプレス製品の製造に使用される、既存の銅又は銅合金板条が適宜使用できる。言い換えると、これら用途に要求される、導電率、加工性、強度などの諸特性を満足する、既存のリードフレーム用銅又は銅合金など、種々の銅又は銅合金板条が用途特性に合わせて適宜使用できる。
(Copper or copper alloy sheet material)
As the copper or copper alloy sheet according to the present invention, the existing copper or copper alloy sheet used in the manufacture of press products such as semiconductor lead frames, terminals / connectors, relays, and heat sinks can be used as appropriate. In other words, various copper or copper alloy strips, such as existing copper or copper alloys for lead frames that satisfy the various properties required for these applications, such as conductivity, workability, and strength, can be adapted to the application characteristics. It can be used as appropriate.

本発明における銅又は銅合金板条の製造工程自体は、特別な工程は不要で、通常の方法と同じ工程で製造できる。具体的には、各組成範囲に成分調整した銅合金成溶湯を鋳造し、鋳塊を面削後、加熱または均質化熱処理した後に熱間圧延し、熱延後の板を水冷する。その後、中延べと言われる冷間圧延をする。この中延べ後の銅合金板は、焼鈍、洗浄後に溶体化処理されて、仕上げ冷間圧延後に、最終焼鈍や、必要により時効処理されて、製品板厚の銅合金板とされる。   The manufacturing process itself of the copper or copper alloy sheet according to the present invention does not require a special process and can be manufactured by the same process as a normal method. Specifically, a copper alloy molten metal whose components are adjusted to each composition range is cast, the ingot is chamfered, heated or homogenized and then hot-rolled, and the hot-rolled plate is water-cooled. Then, cold rolling, which is said to be a total roll, is performed. The copper alloy sheet after the intermediate rolling is subjected to solution treatment after annealing and cleaning, and after final cold rolling, it is subjected to final annealing or aging treatment as necessary to obtain a copper alloy sheet having a product thickness.

そして、これら銅合金板は、脱脂、酸洗、水洗などの前処理を経て、前記銅合金表面で銅と反応してカルボン酸塩をつくる有機化合物防錆剤により防錆処理され、製品銅又は銅合金板(巻き取られたコイル状態を含む)とされるか、更に、スリットされて、狭幅の製品銅又は銅合金条(巻き取られたコイル状態を含む)とされる。   And these copper alloy plates are subjected to a pretreatment such as degreasing, pickling, water washing, etc., and are rust-prevented with an organic compound rust inhibitor that reacts with copper on the surface of the copper alloy to form a carboxylate, A copper alloy plate (including a coiled coil state) or a slit is formed into a narrow product copper or copper alloy strip (including a coiled coil state).

(銅又は銅合金板条の3次元表面粗さ測定における度数分布図の半値幅やクルトシス値の制御)
なお、銅又は銅合金板条の上記半値幅やクルトシス値の制御は、上記銅又は銅合金板条の製造工程において、潤滑を含めた圧延条件や、圧延工程における銅又は銅合金板条表面に転写される圧延ロール目を精密に(細かく)制御するなどにより行なう。
(Control of the half-value width and kurtosis value of the frequency distribution diagram in the three-dimensional surface roughness measurement of copper or copper alloy sheet)
In addition, the control of the half width and kurtosis value of the copper or copper alloy strip is performed on the rolling conditions including lubrication or the copper or copper alloy strip surface in the rolling step in the manufacturing process of the copper or copper alloy strip. The transfer is performed by precisely (finely) controlling the rolls to be transferred.

但し、通常の方法で製造される銅又は銅合金板条表面の上記半値幅やクルトシス値は、前記した通り、例えば圧延ロール表面の摩耗や、圧延潤滑状態などによって、比較的大きくなりやすい。このため、前記銅又は銅合金板条表面の防錆処理工程の前までに、化学研磨や機械研磨等の方法により、銅又は銅合金板条の上記半値幅やクルトシス値の制御を行なうことも、場合によっては、上記半値幅やクルトシス値を保証するために必要となる。   However, as described above, the half width and the kurtosis value of the surface of the copper or copper alloy sheet manufactured by a normal method are likely to be relatively large due to, for example, wear on the surface of the rolling roll or rolling lubrication. For this reason, before the rust prevention treatment step of the copper or copper alloy sheet surface, the half width or kurtosis value of the copper or copper alloy sheet may be controlled by a method such as chemical polishing or mechanical polishing. In some cases, it is necessary to guarantee the half-value width and kurtosis value.

以下に本発明の実施例を説明する。最終冷間圧延の際の1パス当たりの冷延率と潤滑条件、更にはロール粗度など、種々の圧延条件を変えて、銅又は銅合金板条の上記半値幅やクルトシス値の制御を行ない、種々の上記半値幅やクルトシス値を有する銅合金条を製造した。そして、前記したプレス加工時におけるふき取りパッドに堆積した緑粉量によって、効果を評価した。これらの結果を表1に示す。   Examples of the present invention will be described below. By controlling various rolling conditions such as cold rolling rate per one pass at the time of final cold rolling, lubrication conditions, and roll roughness, the above half-value width and kurtosis value of copper or copper alloy strip are controlled. Copper alloy strips having various half widths and kurtosis values were produced. And the effect was evaluated by the amount of green powder deposited on the wiping pad at the time of the above-described press working. These results are shown in Table 1.

具体的には、半導体リードフレームに用いられるCDA19400合金、厚さ0.25mm×幅30mm×長さ2000mの銅合金条を、上記仕上げ冷間圧延の後、アルカリ脱脂処理液で洗浄した後、水洗し、80℃のBTA濃度0.5%の水溶液に約5秒間浸漬してBTA処理した後、乾燥し、試験材とした。   Specifically, CDA19400 alloy used for semiconductor lead frames, copper alloy strips of thickness 0.25 mm × width 30 mm × length 2000 m are washed with an alkaline degreasing solution after the above-described cold-rolling, and then washed with water. Then, it was immersed in an aqueous solution having a BTA concentration of 0.5% at 80 ° C. for about 5 seconds, treated with BTA, and then dried to obtain a test material.

(表面粗さ)
これらの銅合金条(試験材)表面の上記半値幅やクルトシス値(Rku )、そして算術平均粗さ(Ra)を測定した。これらの測定には、Veeco社製3次元表面形状測定装置WYKO−NT3300を使用し、測定倍率を50倍に設定し、試験材の120μm×91μmのエリアを、163.1nmの分解能で測定し、736×480箇所のデータを採取後、サンプルの異方性を排除するために、80μm×80μmの正方形のエリア内のみのデータを取り出し、各々の値を解析して求めた。
(Surface roughness)
The above half-value width, kurtosis value (Rku), and arithmetic average roughness (Ra) of the surface of these copper alloy strips (test materials) were measured. For these measurements, a Veeco 3D surface shape measuring device WYKO-NT3300 is used, the measurement magnification is set to 50 times, and an area of 120 μm × 91 μm of the test material is measured with a resolution of 163.1 nm. After collecting data at 736 × 480 locations, in order to eliminate sample anisotropy, data was extracted only within an 80 μm × 80 μm square area, and each value was analyzed and determined.

(摩擦係数による評価)
各銅合金条(試験材)表面の摩擦係数(μ)を測定した。摩擦係数は、銅合金条(試験材)表面の上記半値幅が小さくなるほど、またクルトシス値(Rku )が大きくなるほど大きくなる。そして、この動摩擦係数μが0.4未満を、銅又は銅合金板条の表面に付着したカルボン酸塩を有する銅の剥離を抑制して、プレス加工時においてふき取りパッドに堆積する緑粉量を低減できると評価した。一方、動摩擦係数μが0.4以上では、銅又は銅合金板条の表面に付着したカルボン酸塩を有する銅の剥離を抑制できず、プレス加工時においてふき取りパッドに堆積する緑粉量を低減できないと評価した。
(Evaluation by friction coefficient)
The friction coefficient (μ) on the surface of each copper alloy strip (test material) was measured. The coefficient of friction increases as the half-value width on the surface of the copper alloy strip (test material) decreases and as the kurtosis value (Rku) increases. And this dynamic friction coefficient μ is less than 0.4, suppressing the peeling of copper having carboxylate adhering to the surface of the copper or copper alloy strip, the amount of green powder deposited on the wiping pad during press working It was evaluated that it could be reduced. On the other hand, when the dynamic friction coefficient μ is 0.4 or more, peeling of copper having carboxylate adhering to the surface of the copper or copper alloy strip cannot be suppressed, and the amount of green powder deposited on the wiping pad during pressing is reduced. Evaluated that it was not possible.

摩擦係数(μ)の測定には、新東科学株式会社製表面性測定機HEIDON TYPE:14DRを使用した。ふき取り布を巻きつけた銅製の圧子(10×10×50mm)を、その長手方向が条の圧延方向に向くように当該銅合金条の表面に置き、垂直荷重200g/cm2 をかけて6000mm/minで水平にオートグラフで引っ張る。その際の引張力(F)をロードセルにより測定することで、動摩擦係数(μ)を下記式Aにより計算した。
μ=F/N ------------ 式A(但し、Nは垂直荷重200g/cm2
For measurement of the coefficient of friction (μ), a surface property measuring instrument HEIDON TYPE: 14DR manufactured by Shinto Kagaku Co., Ltd. was used. A copper indenter (10 × 10 × 50 mm) wrapped with a wiping cloth is placed on the surface of the copper alloy strip so that its longitudinal direction is in the rolling direction of the strip, and a vertical load of 200 g / cm 2 is applied to 6000 mm / Pull autograph horizontally in min. The dynamic friction coefficient (μ) was calculated by the following formula A by measuring the tensile force (F) at that time using a load cell.
μ = F / N ------------ Formula A (where N is a vertical load of 200 g / cm 2 )

(堆積緑粉量による評価)
拭き取りパッドに堆積する緑粉の量は、得られた銅合金条(試験材)を巻き解きながら、拭き取り布を用い、面圧力10g/cm2で全長両面を拭き取り、その拭き取り布に付着した緑粉の量を目視で観察した。
(Evaluation based on the amount of accumulated green powder)
The amount of green powder deposited on the wiping pad was measured by wiping the entire length of the copper alloy strip (test material) while unrolling the obtained copper alloy strip with a surface pressure of 10 g / cm2, and adhering to the wiping cloth. The amount of was observed visually.

そして、拭き取りパッドに緑粉の付着が認められない場合を、実際のプレス加工時においても、ふき取りパッドに緑粉の付着が無いと認め、◎と評価した。また、拭き取りパッドに緑粉の付着が部分的に若干認められた場合を、BTA防錆皮膜の改善によっては、実際のプレス加工時においても、ふき取りパッドに緑粉の付着が無い程度に使用可能と認め、○と評価した。更に、拭き取りパッドに緑粉の付着が認められるが、従来に比して、付着量が顕著に減少している場合を、△と評価した。そして、拭き取りパッド全面に緑粉の付着が認められ、従来に比して、付着量が減少していない場合を、実際のプレス加工には使用できないとして×と評価した。   Then, the case where no green powder adheres to the wiping pad was recognized as having no green powder adhering to the wiping pad even during actual pressing, and was evaluated as ◎. In addition, if some green powder adheres to the wiping pad, it can be used to the extent that there is no green powder adhering to the wiping pad, even during actual press processing, by improving the BTA rust prevention film. And evaluated as ○. Furthermore, although the adhesion of green powder was observed on the wiping pad, the case where the amount of adhesion was significantly reduced compared to the conventional case was evaluated as Δ. And the adhesion | attachment of green powder was recognized on the wiping pad whole surface, and the case where the adhesion amount was not reducing compared with the past was evaluated as x which cannot be used for actual press work.

表1から明らかな通り、発明例1〜9は、3次元表面粗さ測定における度数分布図の半値幅が0.2μm以上であり、この半値幅が0.2μm未満である比較例10〜15に比して、動摩擦係数μが0.4未満と低い。   As is apparent from Table 1, Invention Examples 1 to 9 are comparative examples 10 to 15 in which the half value width of the frequency distribution diagram in the three-dimensional surface roughness measurement is 0.2 μm or more, and the half value width is less than 0.2 μm. Compared to the above, the coefficient of dynamic friction μ is as low as less than 0.4.

この発明例の中でも、更に、3次元表面粗さ測定におけるクルトシス値(Rku)が4.5以下を満たす発明例は、クルトシス値(Rku)が比較的高い発明例に比して、動摩擦係数μが低い。   Among the inventive examples, the inventive example in which the kurtosis value (Rku) in the three-dimensional surface roughness measurement satisfies 4.5 or less is higher than the inventive example having a relatively high kurtosis value (Rku). Is low.

また、算術平均粗さ(Ra)は、発明例と比較例との比較では、明瞭な差があるものと、明瞭な差が無いものとがある。このため、臨界的な境目(境界)が不明確である。したがって、算術平均粗さ(Ra)は、緑粉発生抑制の評価には使用できないことが分かる。   Moreover, arithmetic mean roughness (Ra) has a clear difference and a thing without a clear difference in the comparison with an invention example and a comparative example. For this reason, the critical boundary (boundary) is unclear. Therefore, it turns out that arithmetic average roughness (Ra) cannot be used for evaluation of green powder generation | occurrence | production suppression.

したがって、これらの結果から、本発明における、3次元表面粗さ測定における度数分布図の半値幅、クルトシス値の好ましい意義が裏付けられる。   Therefore, these results support the preferable significance of the half-value width and kurtosis value of the frequency distribution diagram in the three-dimensional surface roughness measurement in the present invention.

Figure 2006247740
Figure 2006247740

以上説明したように、本発明によれば、銅又は銅合金板条に対し防錆処理を行って、銅又は銅合金板条に防錆効果(変色防止と防食)を付与すると同時に、打ち抜き等のプレス加工に際して緑粉の発生を抑え、ふき取りパッドへの緑粉の堆積を防止することができる。これにより、緑粉がプレス金型内へ入るのが防止され、プレス製品への打痕疵の発生や金型の破損を防止し、かつふき取りパッドの交換や金型の手入れを減じて、半導体リードフレーム、端子・コネクター、リレー、放熱板などのプレス製品の生産性及び品質を向上することができる。したがって、本発明銅又は銅合金板条はこれら用途へ適用されて最適である。   As described above, according to the present invention, a copper or copper alloy strip is subjected to a rust prevention treatment to impart a rust prevention effect (discoloration prevention and corrosion prevention) to the copper or copper alloy strip, and at the same time, punching, etc. The generation of green powder can be suppressed during the pressing process, and the accumulation of green powder on the wiping pad can be prevented. This prevents the green powder from entering the press mold, prevents the formation of dents and damage to the press product, and reduces the need for wiping pad replacement and mold maintenance. Productivity and quality of press products such as lead frames, terminals / connectors, relays, and heat sinks can be improved. Therefore, the copper or copper alloy sheet according to the present invention is optimally applied to these uses.

実施例発明例1の3次元表面粗さ測定による半値幅を示す度数分布図である。It is a frequency distribution diagram which shows the half value width by the three-dimensional surface roughness measurement of Example Invention Example 1. 実施例発明例2の3次元表面粗さ測定による半値幅を示す度数分布図である。It is a frequency distribution diagram which shows the half value width by the three-dimensional surface roughness measurement of Example Invention Example 2. 実施例発明例7の3次元表面粗さ測定による半値幅を示す度数分布図である。It is a frequency distribution diagram which shows the half value width by the three-dimensional surface roughness measurement of Example Invention Example 7. 実施例比較例10の3次元表面粗さ測定による半値幅を示す度数分布図である。It is a frequency distribution figure which shows the half value width by the three-dimensional surface roughness measurement of the Example comparative example 10.

Claims (3)

銅と反応してカルボン酸塩を生成する有機化合物防錆皮膜が表面に形成された銅又は銅合金板条であって、基材である銅又は銅合金板条の3次元表面粗さ測定における度数分布図の半値幅が0.2μm以上であることを特徴とするプレス加工用銅又は銅合金板条。   An organic compound rust preventive film that reacts with copper to form a carboxylate salt is formed on a surface of a copper or copper alloy sheet, in the three-dimensional surface roughness measurement of a copper or copper alloy sheet that is a base material A copper or copper alloy strip for press working, wherein a half width of a frequency distribution diagram is 0.2 μm or more. 前記銅又は銅合金板条の3次元表面粗さ測定における粗さ曲線のクルトシス値(Rku)が4.5以下である請求項1に記載のプレス加工用銅又は銅合金板条。   The copper or copper alloy sheet for press working according to claim 1, wherein the kurtosis value (Rku) of the roughness curve in the three-dimensional surface roughness measurement of the copper or copper alloy sheet is 4.5 or less. 前記銅又は銅合金板条の3次元表面粗さ測定における算術平均粗さ(Ra)が0.07μm以上である請求項1または2に記載のプレス加工用銅又は銅合金板条。
The copper or copper alloy sheet for press working according to claim 1 or 2, wherein an arithmetic average roughness (Ra) in the three-dimensional surface roughness measurement of the copper or copper alloy sheet is 0.07 µm or more.
JP2005071458A 2005-03-14 2005-03-14 Copper or copper alloy strip for press working Expired - Fee Related JP4603394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005071458A JP4603394B2 (en) 2005-03-14 2005-03-14 Copper or copper alloy strip for press working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005071458A JP4603394B2 (en) 2005-03-14 2005-03-14 Copper or copper alloy strip for press working

Publications (2)

Publication Number Publication Date
JP2006247740A true JP2006247740A (en) 2006-09-21
JP4603394B2 JP4603394B2 (en) 2010-12-22

Family

ID=37088750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005071458A Expired - Fee Related JP4603394B2 (en) 2005-03-14 2005-03-14 Copper or copper alloy strip for press working

Country Status (1)

Country Link
JP (1) JP4603394B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041584A1 (en) * 2006-10-02 2008-04-10 Kabushiki Kaisha Kobe Seiko Sho Copper alloy plate for electrical and electronic components
JP2008273190A (en) * 2007-03-30 2008-11-13 Kobe Steel Ltd Resin-coated metal plate excellent in conductivity, and its manufacturing method
JP2010247399A (en) * 2009-04-14 2010-11-04 Kobe Steel Ltd Resin-coated galvanized steel sheet excellent in spot weldability
JP2012172154A (en) * 2011-02-17 2012-09-10 Jx Nippon Mining & Metals Corp Copper discoloration preventing solution
CN107552572A (en) * 2016-06-30 2018-01-09 宝山钢铁股份有限公司 The method for preventing piling of steel between tandem mill frame
CN113042615A (en) * 2021-03-16 2021-06-29 江西江冶实业有限公司 Punching machine for narrow copper strip
CN116603920A (en) * 2023-07-20 2023-08-18 四川金湾电子有限责任公司 Stamping and unhairing integrated equipment for semiconductor lead frame

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270629A (en) * 1997-03-27 1998-10-09 Nikko Kinzoku Kk Iron alloy superior in resin adhesion
JPH11277106A (en) * 1998-03-25 1999-10-12 Nippon Mining & Metals Co Ltd Manufacture of copper and copper alloy foil
JP2001160610A (en) * 1999-12-02 2001-06-12 Hitachi Ltd Manufacturing method of semiconductor device and controlling method of lead frame for semiconductor device
JP2002292406A (en) * 2001-03-30 2002-10-08 Nippon Mining & Metals Co Ltd Copper alloy for electrical material, production method thereof, bar strand used therefor, copper alloy for electric material produced by using the bar strand, and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270629A (en) * 1997-03-27 1998-10-09 Nikko Kinzoku Kk Iron alloy superior in resin adhesion
JPH11277106A (en) * 1998-03-25 1999-10-12 Nippon Mining & Metals Co Ltd Manufacture of copper and copper alloy foil
JP2001160610A (en) * 1999-12-02 2001-06-12 Hitachi Ltd Manufacturing method of semiconductor device and controlling method of lead frame for semiconductor device
JP2002292406A (en) * 2001-03-30 2002-10-08 Nippon Mining & Metals Co Ltd Copper alloy for electrical material, production method thereof, bar strand used therefor, copper alloy for electric material produced by using the bar strand, and production method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041584A1 (en) * 2006-10-02 2008-04-10 Kabushiki Kaisha Kobe Seiko Sho Copper alloy plate for electrical and electronic components
EP2088214A1 (en) * 2006-10-02 2009-08-12 Kabushiki Kaisha Kobe Seiko Sho Copper alloy plate for electrical and electronic components
EP2088214A4 (en) * 2006-10-02 2009-09-30 Kobe Steel Ltd Copper alloy plate for electrical and electronic components
US8063471B2 (en) 2006-10-02 2011-11-22 Kobe Steel, Ltd. Copper alloy sheet for electric and electronic parts
KR101158113B1 (en) 2006-10-02 2012-06-19 가부시키가이샤 고베 세이코쇼 Copper alloy plate for electrical and electronic components
JP2008273190A (en) * 2007-03-30 2008-11-13 Kobe Steel Ltd Resin-coated metal plate excellent in conductivity, and its manufacturing method
JP2010247399A (en) * 2009-04-14 2010-11-04 Kobe Steel Ltd Resin-coated galvanized steel sheet excellent in spot weldability
JP2012172154A (en) * 2011-02-17 2012-09-10 Jx Nippon Mining & Metals Corp Copper discoloration preventing solution
CN107552572A (en) * 2016-06-30 2018-01-09 宝山钢铁股份有限公司 The method for preventing piling of steel between tandem mill frame
CN113042615A (en) * 2021-03-16 2021-06-29 江西江冶实业有限公司 Punching machine for narrow copper strip
CN116603920A (en) * 2023-07-20 2023-08-18 四川金湾电子有限责任公司 Stamping and unhairing integrated equipment for semiconductor lead frame
CN116603920B (en) * 2023-07-20 2023-09-22 四川金湾电子有限责任公司 Stamping and unhairing integrated equipment for semiconductor lead frame

Also Published As

Publication number Publication date
JP4603394B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
JP4603394B2 (en) Copper or copper alloy strip for press working
JP5044976B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JPWO2011083562A1 (en) Ni-plated steel sheet for battery cans with excellent pressability
JP4551268B2 (en) Method for producing alloyed hot-dip galvanized steel sheet
US20220305538A1 (en) Sheet steel having a deterministic surface structure
KR20120011052A (en) Ni-plated steel sheet for battery can having excellent pressability
CN104334764A (en) Method for producing a metal sheet having oiled Zn-Al-Mg coatings, and corresponding metal sheet
JP5195271B2 (en) Tin-plated steel sheet and method for producing the same
KR101788950B1 (en) Method for manufacturing galvanized steel sheet
JP5806673B2 (en) Stainless steel wire for cold heading
JP2006159291A (en) Plated wire for gas shield arc welding
JP5648308B2 (en) Zinc-based plated steel sheet with excellent slidability
JP5347295B2 (en) Zinc-based plated steel sheet and method for producing the same
JP2007231375A (en) Galvannealed steel sheet
JP5648309B2 (en) Method for producing hot dip galvanized steel sheet
JP4826486B2 (en) Method for producing galvannealed steel sheet
KR20190075479A (en) Rolling roll, method for treating surface of rolling roll, and coated steel sheet manufactured by rolling roll
JP2007138231A (en) Hot dip galvannealed steel sheet manufacturing method, and hot dip galvannealed steel sheet
JP2007231376A (en) Galvannealed steel sheet
JP2005171366A (en) Copper or copper alloy sheet or strip for press working and method for manufacturing the same
JP4253998B2 (en) Temper rolling method of hot-dip galvanized steel sheet
KR102379727B1 (en) Manufacturing method of galvanized steel wire using anti-white-blue agent
JP6992831B2 (en) Manufacturing method of hot-dip galvanized steel sheet
CN115558876B (en) Hot dip galvanized steel sheet and preparation method thereof
JP2013252539A (en) Method for manufacturing cold-rolled steel strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees