JP6755909B2 - Manufacturing method and manufacturing system for galvanized deformed steel bars - Google Patents

Manufacturing method and manufacturing system for galvanized deformed steel bars Download PDF

Info

Publication number
JP6755909B2
JP6755909B2 JP2018156976A JP2018156976A JP6755909B2 JP 6755909 B2 JP6755909 B2 JP 6755909B2 JP 2018156976 A JP2018156976 A JP 2018156976A JP 2018156976 A JP2018156976 A JP 2018156976A JP 6755909 B2 JP6755909 B2 JP 6755909B2
Authority
JP
Japan
Prior art keywords
steel bar
deformed steel
plating
layer
galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018156976A
Other languages
Japanese (ja)
Other versions
JP2020029606A (en
Inventor
敏夫 高間
敏夫 高間
文武 田中
文武 田中
靖 加治
靖 加治
峰彦 重松
峰彦 重松
義大 三浦
義大 三浦
旭弘 林田
旭弘 林田
Original Assignee
日亜鋼業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日亜鋼業株式会社 filed Critical 日亜鋼業株式会社
Priority to JP2018156976A priority Critical patent/JP6755909B2/en
Publication of JP2020029606A publication Critical patent/JP2020029606A/en
Application granted granted Critical
Publication of JP6755909B2 publication Critical patent/JP6755909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、鉄系の異形棒鋼材が亜鉛を含むめっき層で被覆された亜鉛めっき異形棒鋼材の製造方法および製造システムに関する。 The present invention is deformed steel bars material iron is a manufacturing method and a manufacturing system of the coated galvanized profiled steel bar material with a plating layer containing zinc.

従来より、鉄筋コンクリートなどに用いられる鉄系の異形棒鋼を溶融亜鉛浴に浸漬させてめっきをして亜鉛めっき異形棒鋼を製造する方法が知られている。そのような製造方法として、めっきの必要な付着量を得るために、めっき浴への浸漬時間を長くすることによって、めっきの主成分であるZnと母材の主成分であるFeとのZn−Fe合金層を成長させてこの層を厚くさせる方法がある。 Conventionally, a method has been known in which an iron-based deformed steel bar used for reinforced concrete or the like is immersed in a hot-dip zinc bath and plated to produce a galvanized deformed steel bar. As such a manufacturing method, in order to obtain the required adhesion amount of plating, the immersion time in the plating bath is lengthened, so that Zn, which is the main component of plating, and Fe, which is the main component of the base material, are Zn-. There is a method of growing an Fe alloy layer to make this layer thicker.

しかし、Zn−Fe合金層は脆く、剥離や割れが生じやすいため、Zn−Fe合金層が厚くなると亜鉛めっき異形棒鋼の加工性が悪くなるという問題がある。そこで、めっきの付着量を十分に得て、めっき層の剥離や割れを防止できるようにめっきする異形棒鋼の製造方法が、例えば、特許文献1に示されている。 However, since the Zn-Fe alloy layer is brittle and easily peeled or cracked, there is a problem that the thicker the Zn-Fe alloy layer, the worse the workability of the galvanized deformed steel bar. Therefore, for example, Patent Document 1 discloses a method for producing a deformed steel bar in which a sufficient amount of plating is obtained and plating is performed so as to prevent peeling and cracking of the plating layer.

特許文献1に示されている、Zn−Al系合金めっき異形棒鋼の製造方法では、Al、Ni、Zn等を所定の組成比で含む420℃〜490℃の第1のめっき浴に、異形棒鋼を浸漬した後、組成比が第1のめっき浴とは異なる第2のめっき浴に異形棒鋼を浸漬することにより、めっきされた異形棒鋼が製造される。 In the method for producing a Zn—Al alloy plated deformed steel bar, which is shown in Patent Document 1, the deformed steel bar is placed in a first plating bath at 420 ° C. to 490 ° C. containing Al, Ni, Zn and the like at a predetermined composition ratio. By immersing the deformed steel bar in a second plating bath having a composition ratio different from that of the first plating bath, the plated deformed steel bar is produced.

特許第5961433号公報Japanese Patent No. 59614333

しかし、特許文献1の製造方法では、異形棒鋼を異なる2種類のめっき浴に浸漬するので、煩雑である。また、各めっき浴では、Zn、Al、Niの3種類の金属が含まれるので、めっき浴の調整に手間がかかる。 However, the manufacturing method of Patent Document 1 is complicated because the deformed steel bars are immersed in two different types of plating baths. Further, since each plating bath contains three kinds of metals, Zn, Al, and Ni, it takes time and effort to adjust the plating bath.

本発明は斯かる点に鑑みてなされたものであり、その目的は、加工性に優れた亜鉛めっき異形棒鋼材を簡単に製造できるようにすることにある。 The present invention has been made in view of these points, and an object of the present invention is to make it possible to easily manufacture a galvanized deformed steel bar having excellent workability.

上記の目的を達成するために、この発明では、切断によって亜鉛めっき異形棒鋼とされる亜鉛めっき異形棒鋼材を、めっき浴への浸漬時間およびめっき浴からの引き上げ速度、ならびに、めっき浴の温度を調整し、Zn−Fe合金層とZn層との厚さの比が1:1〜1:6となるようにした。 In order to achieve the above object, in the present invention, the galvanized deformed bar steel, which is made into galvanized deformed bar by cutting, is subjected to the immersion time in the plating bath, the pulling speed from the plating bath, and the temperature of the plating bath. The thickness ratio of the Zn—Fe alloy layer to the Zn layer was adjusted to be 1: 1 to 1: 6.

具体的に、本出願の発明は、鉄系の異形棒鋼材を繰出供給源から牽引してめっきを行い、亜鉛めっき異形棒鋼材を製造する方法であって、前記異形棒鋼材を、浴温が420℃以上500℃以下のめっき浴に6秒以上60秒以下の浸漬時間で浸漬する浸漬工程と、前記浸漬工程において浸漬された前記異形棒鋼材を8m/min〜15m/minの引上速度で垂直に引き上げる引上工程と、前記引上工程において引き上げられた前記異形棒鋼材を冷却する冷却工程と、を含み、前記亜鉛めっき異形棒鋼材は前記異形棒鋼材が、亜鉛を含むめっき層で被覆されており、直径が6mm以上13mm以下であ、前記めっき層は、前記異形棒鋼材の上に形成されたZn−Fe合金層と、該Zn−Fe合金層の上に形成されたZn層と、からなり、前記Zn−Fe合金層の厚さと該Zn層の厚さとの比は1:1〜1:6の範囲であり、めっきによるZnの付着量が550g/m以上であることを特徴とする。 Specifically, the invention of the present application is a method for producing a galvanized deformed bar steel by pulling an iron-based deformed bar from a feeding source to perform plating, and the bath temperature of the deformed bar is the same. A dipping step of immersing in a plating bath of 420 ° C. or higher and 500 ° C. or lower for a dipping time of 6 seconds or more and 60 seconds or less, and a pulling speed of 8 m / min to 15 m / min for the deformed steel bar immersed in the dipping step. wherein the pulling step of pulling vertically, and a cooling step of cooling the profiled bar steel pulled in the pulling process, the galvanized profiled steel bar material, wherein the profiled bars material, a plating layer containing zinc are coated state, and are more 13mm or less 6mm in diameter, the plating layer includes a Zn-Fe alloy layer formed on the profiled bars material, formed on the Zn-Fe alloy layer Zn It is composed of layers, and the ratio of the thickness of the Zn—Fe alloy layer to the thickness of the Zn layer is in the range of 1: 1 to 1: 6, and the amount of Zn adhered by plating is 550 g / m 2 or more. It is characterized by being.

これによれば、亜鉛めっき異形棒鋼材は、めっき層はZn−Fe合金層とZn層とからなるので、めっきにはZn以外の金属を必要としない。したがって、めっきするために複数の種類の金属を必要とする合金めっき異形棒鋼と比較して、簡単に製造できる。 According to this, in the galvanized deformed steel bar, the plating layer is composed of a Zn—Fe alloy layer and a Zn layer, so that no metal other than Zn is required for plating. Therefore, it can be easily manufactured as compared with alloy-plated deformed steel bars that require a plurality of types of metals for plating.

また、亜鉛めっき異形棒鋼材は、めっき層におけるZn−Fe合金層とZn層との厚さの比が1:1〜1:6の範囲であることから、めっき層はZn層が占める体積の割合が大きい。Zn層は、Zn−Fe合金層に比べて展性および延性に富むことから、めっき層を構成する各層の厚さの比が上記範囲にある亜鉛めっき異形棒鋼材は、加工性に優れる Further, in the galvanized deformed steel bar, the thickness ratio of the Zn—Fe alloy layer to the Zn layer in the plating layer is in the range of 1: 1 to 1: 6, so that the plating layer is the volume occupied by the Zn layer. The ratio is large. Since the Zn layer is more malleable and ductile than the Zn—Fe alloy layer, the galvanized deformed steel bar in which the thickness ratio of each layer constituting the plating layer is in the above range is excellent in workability .

実施形態では、前記亜鉛めっき異形棒鋼材の表面の凸部の高さが、前記異形棒鋼材の表面の凸部の高さの0.5〜1.0倍である。 In one embodiment, the height of the convex portion on the surface of the galvanized deformed steel bar is 0.5 to 1.0 times the height of the convex portion on the surface of the deformed steel bar.

これによれば、亜鉛めっき異形棒鋼材は、表面の凸部の高さが異形棒鋼材の表面の高さの0.5〜1.0倍であるので、亜鉛めっき異形棒鋼材は、異形棒鋼材の表面の凹凸が維持されている。したがって、亜鉛めっき異形棒鋼材は、凹凸の効果、例えばコンクリートとの噛み合いの効果など、を発揮できる。 According to this, the height of the convex portion of the surface of the galvanized deformed steel bar is 0.5 to 1.0 times the height of the surface of the deformed steel bar, so that the galvanized deformed steel bar is a deformed bar. The unevenness of the surface of the steel material is maintained. Therefore, the galvanized deformed steel bar can exhibit the effect of unevenness, for example, the effect of meshing with concrete.

一実施形態では、前記亜鉛めっき異形棒鋼材表面の凹部の前記めっき層の厚さと凸部の前記めっき層の厚さとの比が、1:0.8〜1:1.2の範囲である。 In one embodiment, the ratio of the thickness of the plating layer in the concave portion on the surface of the galvanized deformed steel bar to the thickness of the plating layer in the convex portion is in the range of 1: 0.8 to 1: 1.2.

これによれば、亜鉛めっき異形棒鋼材は、凹部のめっき層の厚さと凸部のめっき層の厚さとの比は上記範囲内にあるので、両者は略等しい。すなわち、亜鉛めっき異形棒鋼材は、めっき層の厚さが凹部と凸部とで略同じであり、凹凸が維持されている。したがって、亜鉛めっき異形棒鋼材は、上記と同様に、凹凸の効果、例えばコンクリートとの噛み合いの効果など、を発揮できる According to this, in the galvanized deformed steel bar, the ratio of the thickness of the plating layer of the concave portion to the thickness of the plating layer of the convex portion is within the above range, so that the two are substantially equal. That is, in the galvanized deformed steel bar, the thickness of the plating layer is substantially the same in the concave portion and the convex portion, and the unevenness is maintained. Therefore, the galvanized deformed steel bar can exhibit the effect of unevenness, for example, the effect of meshing with concrete, as described above .

ころで、従来の異形棒鋼のめっき方法においては、あらかじめ所定の長さに切断され、曲げ加工や溶接加工がされた異形棒鋼に対してめっき処理がなされる。しかし、そのような方法では、めっきされた異形棒鋼にはすでに前記の加工がなされているので、使用用途が限定され、汎用性がない。 In time and, in the plating method of the conventional profiled steel bar, it is cut in advance a predetermined length, plating processing is performed with respect to bending and welding have been profiled bars. However, in such a method, since the plated deformed steel bar has already been subjected to the above-mentioned processing, the intended use is limited and it is not versatile.

本発明によれば、所定の長さに切断されていない異形棒鋼材を、繰出供給源から牽引してめっきを行うので、めっきされた亜鉛めっき異形棒鋼材は、用途に応じて切断して後加工することができ、汎用性がある。 According to the present invention, a deformed steel bar that has not been cut to a predetermined length is towed from a feeding source to perform plating. Therefore, the plated galvanized deformed steel bar is cut according to the intended use and then plated. It can be processed and is versatile.

また、異形棒鋼材のめっき浴への浸漬時間およびめっき浴からの引き上げ速度、ならびに、めっき浴の温度を調整することよって、簡単にZn−Fe合金層とZn層との厚さの比およびめっきによるZnの付着量を目的とする範囲になるようにすることができる。さらに、浸漬工程では、母材をZn以外の金属を必要としないめっき浴に、異形棒鋼材を一回のみ浸漬するので、複数種類の金属を含むめっき浴に複数回浸漬する方法に比べて、簡単である。 Further, by adjusting the immersion time of the deformed steel bar in the plating bath, the pulling speed from the plating bath, and the temperature of the plating bath, the thickness ratio of the Zn—Fe alloy layer to the Zn layer and the plating can be easily performed. The amount of Zn adhered by the above can be set to the target range. Further, in the dipping step, since the deformed steel bar is immersed only once in the plating bath that does not require a metal other than Zn, the base metal is immersed in the plating bath containing a plurality of types of metals multiple times, as compared with the method of immersing the base metal in the plating bath containing a plurality of types of metals. It's easy.

本出願の他の発明は、鉄系の異形棒鋼材を繰出供給源から牽引してめっきを行い、亜鉛めっき異形棒鋼材を製造する製造システムであって、浴温が420℃以上500℃以下であり前記異形棒鋼材が浸漬されるめっき浴と、前記めっき浴から引き上げられた前記異形棒鋼材を冷却する冷却手段と、前記めっき浴への浸漬と前記冷却手段による冷却とを連続せしめて行うように前記異形棒鋼材を牽引する牽引手段であって、前記異形棒鋼材が前記めっき浴に6秒以上60秒以下の浸漬時間で浸漬され、浸漬された前記異形棒鋼材がm/min〜15m/minの引上速度で垂直に引き上げられるように、前記異形棒鋼材を牽引する牽引手段と、を含み、前記亜鉛めっき異形棒鋼材は、前記異形棒鋼材が、亜鉛を含むめっき層で被覆されており、直径が6mm以上13mm以下であり、前記めっき層は、前記異形棒鋼材の上に形成されたZn−Fe合金層と、該Zn−Fe合金層の上に形成されたZn層と、からなり、前記Zn−Fe合金層の厚さと前記Zn層の厚さとの比は1:1〜1:6の範囲であり、めっきによるZnの付着量が550g/m 以上であることを特徴とする。 Another invention of the present application is a manufacturing system for producing a galvanized deformed steel bar by pulling an iron-based deformed steel bar from a feeding source to perform galvanizing, at a bath temperature of 420 ° C. or higher and 500 ° C. or lower. Yes, the plating bath in which the deformed steel bar is immersed, the cooling means for cooling the deformed steel bar pulled up from the plating bath, and the immersion in the plating bath and the cooling by the cooling means are continuously performed. A towing means for pulling the deformed steel bar, the deformed steel bar is immersed in the plating bath for a dipping time of 6 seconds or more and 60 seconds or less, and the immersed deformed steel bar is 8 m / min to 15 as raised vertically pulling rate of m / min, see contains a traction means for pulling said profiled bar steel, the galvanized profiled steel bar material, wherein the profiled bars material, a plating layer containing zinc It is coated and has a diameter of 6 mm or more and 13 mm or less, and the plating layer is a Zn-Fe alloy layer formed on the deformed steel bar and a Zn layer formed on the Zn-Fe alloy layer. The ratio of the thickness of the Zn—Fe alloy layer to the thickness of the Zn layer is in the range of 1: 1 to 1: 6, and the amount of Zn adhered by plating is 550 g / m 2 or more. It is characterized by.

本発明によれば、前記の亜鉛めっき異形棒鋼材の製造方法を実施することができる。 According to the present invention, the above-mentioned method for producing a galvanized deformed steel bar can be carried out.

以上説明したように、本発明によると、加工性に優れた亜鉛めっき異形棒鋼材を簡単な方法で製造することができる。 As described above, according to the present invention, a galvanized deformed steel bar having excellent workability can be produced by a simple method.

亜鉛めっき異形棒鋼材を示す。The galvanized deformed steel bar is shown. 亜鉛めっき異形棒鋼材の製造システムを示す。The manufacturing system of galvanized deformed steel bar is shown. 実施例1の亜鉛めっき異形棒鋼材の凸部におけるFe地(母材)およびめっき層の軸線方向断面の光学顕微鏡による1000倍拡大画像である。It is a 1000 times magnified image by the optical microscope of the Fe base (base material) and the axial cross section of the plating layer in the convex part of the galvanized deformed steel bar of Example 1. 実施例2の亜鉛めっき異形棒鋼材の凹部および凸部におけるFe地(母材)及びめっき層の軸線方向断面の光学顕微鏡による50倍拡大画像である。5 is a 50-fold magnified image of an axial cross section of the Fe base (base material) and the plating layer in the concave and convex portions of the galvanized deformed steel bar of Example 2 by an optical microscope. 比較例の亜鉛めっき異形棒鋼の凸部における図3相当図である。It is a figure corresponding to FIG. 3 in the convex part of the galvanized deformed steel bar of the comparative example.

以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。
<亜鉛めっき異形棒鋼材>
図1は、実施形態に係る亜鉛めっき異形棒鋼材1を示す。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following description of preferred embodiments is merely exemplary and is not intended to limit the invention, its applications or its uses.
<Galvanized deformed steel bar>
FIG. 1 shows a galvanized deformed steel bar 1 according to an embodiment.

亜鉛めっき異形棒鋼材1は、例えば、長さ1700〜3600mでありコイル状に巻かれている。亜鉛めっき異形棒鋼材1の径は4mm〜13mmであり、例えば10mmである。 The galvanized deformed steel bar 1 has, for example, a length of 1700 to 3600 m and is wound in a coil shape. The diameter of the galvanized deformed steel bar 1 is 4 mm to 13 mm, for example, 10 mm.

亜鉛めっき異形棒鋼材1は、図1に示すように、その表面に、突起1a(凸部)を有している。突起1aは、亜鉛めっき異形棒鋼材1の軸線方向に沿って延びて形成されている部分と、亜鉛めっき異形棒鋼材1の軸線周りにらせん状に形成されている部分とからなる。軸線方向に隣接するらせん状の突起1a,1aの間には、溝1b(凹部)が構成されている。 As shown in FIG. 1, the galvanized deformed steel bar 1 has protrusions 1a (convex portions) on its surface. The protrusion 1a is composed of a portion formed extending along the axial direction of the galvanized deformed steel bar 1 and a portion spirally formed around the axis of the galvanized deformed steel bar 1. A groove 1b (recess) is formed between the spiral protrusions 1a and 1a adjacent to each other in the axial direction.

亜鉛めっき異形棒鋼材1は、鉄系母材である異形棒鋼材2(以下、母材という)が亜鉛を含むめっき層3で被覆されてなる。めっき層3は、母材2の上に形成されたZn−Fe合金層3aと、Zn−Fe合金層3aの上に形成されたZn層3bと、からなる。Zn−Fe合金層3aの厚さとZn層3bとの厚さの比は、1:1〜1:6の範囲であり、好ましくは1:2〜1:6の範囲である。また、めっきによるZnの付着量は550g/m以上である。 The galvanized deformed steel bar 1 is formed by coating a deformed steel bar 2 (hereinafter referred to as a base material), which is an iron-based base material, with a plating layer 3 containing zinc. The plating layer 3 is composed of a Zn—Fe alloy layer 3a formed on the base material 2 and a Zn layer 3b formed on the Zn—Fe alloy layer 3a. The ratio of the thickness of the Zn—Fe alloy layer 3a to the thickness of the Zn layer 3b is in the range of 1: 1 to 1: 6, preferably in the range of 1: 2 to 1: 6. The amount of Zn adhered by plating is 550 g / m 2 or more.

また、突起1aの高さ(溝1bの最も低い部分を基準とした高さ)は、めっきによって母材2の突起の高さとは異なっているが、その高さの倍率は、母材2の突起の高さに対して、0.5倍以上であり、好ましくは、0.5〜1.0倍、より好ましくは、0.8〜1.0倍である。 Further, the height of the protrusion 1a (the height based on the lowest portion of the groove 1b) is different from the height of the protrusion of the base material 2 due to plating, but the magnification of the height is that of the base material 2. It is 0.5 times or more, preferably 0.5 to 1.0 times, and more preferably 0.8 to 1.0 times the height of the protrusion.

また、突起1aのめっき層3の厚さは、溝1bのめっき層3の厚さの0.8倍以上である。好ましくは、溝1bのめっき層3の厚さと突起1aのめっき層3の厚さとの比は、1:0.8〜1:1.2の範囲である。なお、溝1bのめっき層3の厚さは、溝1bの幅方向で異なるが、溝1bの幅方向中央部の厚さを意味するものとする。 Further, the thickness of the plating layer 3 of the protrusion 1a is 0.8 times or more the thickness of the plating layer 3 of the groove 1b. Preferably, the ratio of the thickness of the plating layer 3 of the groove 1b to the thickness of the plating layer 3 of the protrusion 1a is in the range of 1: 0.8 to 1: 1.2. Although the thickness of the plating layer 3 of the groove 1b differs in the width direction of the groove 1b, it means the thickness of the central portion of the groove 1b in the width direction.

以上説明したように、めっき層3におけるZn−Fe合金層3aとZn層3bとの厚さの比が1:1〜1:6の範囲であることから、めっき層3はZn層3bが占める体積の割合が大きい。Zn層3bは、Zn−Fe合金層3aに比べて展性および延性に富むことから、めっき層3を構成する各層の厚さの比が上記範囲にある亜鉛めっき異形棒鋼材1は、加工性がよい。 As described above, since the ratio of the thickness of the Zn—Fe alloy layer 3a to the Zn layer 3b in the plating layer 3 is in the range of 1: 1 to 1: 6, the plating layer 3 is occupied by the Zn layer 3b. The volume ratio is large. Since the Zn layer 3b is more malleable and ductile than the Zn—Fe alloy layer 3a, the galvanized deformed steel bar 1 in which the thickness ratio of each layer constituting the plating layer 3 is in the above range is workable. Is good.

また、亜鉛めっき異形棒鋼材1の表面の突起1aの高さが、母材2の表面の突起の高さの0.5倍以上であり、突起1aのめっき層3の厚さは、溝1bのめっき層3の厚さの0.8倍以上である。これによって、亜鉛めっき異形棒鋼材1は、母材2の表面の凹凸が維持されている。したがって、亜鉛めっき異形棒鋼材1は、凹凸の効果、例えばコンクリートとの噛み合いの効果など、を発揮できる。 Further, the height of the protrusion 1a on the surface of the galvanized deformed steel bar 1 is 0.5 times or more the height of the protrusion on the surface of the base material 2, and the thickness of the plating layer 3 of the protrusion 1a is the groove 1b. It is 0.8 times or more the thickness of the plating layer 3 of. As a result, the surface unevenness of the base material 2 of the galvanized deformed steel bar 1 is maintained. Therefore, the galvanized deformed steel bar 1 can exhibit the effect of unevenness, for example, the effect of meshing with concrete.

また、亜鉛めっき異形棒鋼材1は、あらかじめ所定の長さに切断され曲げ加工等された上でめっき処理がなされる従来の異形棒鋼と同様の用途に用いることができる。しかも、コイル状に巻かれており、用途に応じて切断して後加工することができるので、上記従来の異形棒鋼と比べて汎用性がある。 Further, the galvanized deformed steel bar 1 can be used for the same purpose as the conventional deformed steel bar which is cut to a predetermined length in advance, bent, and then plated. Moreover, since it is wound in a coil shape and can be cut and post-processed according to the application, it is more versatile than the above-mentioned conventional deformed steel bars.

<亜鉛めっき異形棒鋼材の製造方法および製造システム>
図2は実施形態に係る亜鉛めっき異形棒鋼材1の製造システムSを示す。図2において、4は母材2が巻かれたコイル(繰出供給源)、5は酸洗槽、6はフラックス槽、7は乾燥炉、8はZn浴(めっき浴)、9は水冷槽(冷却手段)、10は巻取機(牽引手段)である。
<Manufacturing method and manufacturing system for galvanized deformed steel bars>
FIG. 2 shows a manufacturing system S of the galvanized deformed steel bar 1 according to the embodiment. In FIG. 2, 4 is a coil around which the base material 2 is wound (feeding source), 5 is a pickling tank, 6 is a flux tank, 7 is a drying furnace, 8 is a Zn bath (plating bath), and 9 is a water cooling tank ( (Cooling means), reference numeral 10 denotes a winder (traction means).

製造システムSでは、母材2を、繰出供給源であるコイル4から巻取機10で牽引してめっきを行って亜鉛めっき異形棒鋼材1を製造する。以下、具体的に説明する。 In the manufacturing system S, the base metal 2 is pulled from the coil 4 which is the feeding supply source by the winder 10 to perform plating, and the galvanized deformed steel bar 1 is manufactured. Hereinafter, a specific description will be given.

−浸漬工程−
コイル4より繰り出された母材2は、酸洗槽5での酸洗い、フラックス槽6でのフラックス処理と乾燥炉7での乾燥を経て、Zn浴8に浸漬される。このとき母材2の表面の上にはZn浴8のZnが付着し、母材2を構成するFeとめっきによるZnとの間で反応が起こり、母材2の上にはZn−Fe合金層3aが形成される。
-Immersion process-
The base material 2 unwound from the coil 4 is immersed in the Zn bath 8 after being pickled in the pickling tank 5, flux treated in the flux tank 6, and dried in the drying furnace 7. At this time, Zn of the Zn bath 8 adheres to the surface of the base material 2, a reaction occurs between Fe constituting the base material 2 and Zn by plating, and a Zn—Fe alloy is formed on the base material 2. Layer 3a is formed.

ここで、Zn−Fe合金層3aの厚さは、Zn浴8の温度と浸漬時間とによって決定される。Zn浴8の温度は、Zn−Fe合金層3aの厚さをZn層3bの厚さに対して1:1〜1:6の範囲の比になるようにするという理由から、420℃〜500℃が好ましく、430℃〜460℃がより好ましい。 Here, the thickness of the Zn—Fe alloy layer 3a is determined by the temperature of the Zn bath 8 and the immersion time. The temperature of the Zn bath 8 is 420 ° C. to 500 because the thickness of the Zn—Fe alloy layer 3a is set to a ratio in the range of 1: 1 to 1: 6 with respect to the thickness of the Zn layer 3b. ℃ is preferable, and 430 ° C to 460 ° C is more preferable.

また、同じ理由から、浸漬時間は、6秒以上60秒以下が好ましく、15秒以上30秒以下がより好ましい。図2に示すように、浸漬は、巻取機10で牽引される母材2の一部分で行われるので、浸漬時間は、巻取機10によって母材2を牽引する速度および母材2の浸漬される部分の長さによって調整される。 For the same reason, the immersion time is preferably 6 seconds or more and 60 seconds or less, and more preferably 15 seconds or more and 30 seconds or less. As shown in FIG. 2, since the immersion is performed on a part of the base material 2 towed by the winder 10, the immersion time is the speed at which the base material 2 is pulled by the winder 10 and the immersion of the base material 2. It is adjusted by the length of the part to be made.

−引上工程−
浸漬によって表面上にZn−Fe合金層3aが形成された母材2は、その後引き上げられる。このとき、Zn−Fe合金層3aの上には、溶融Znが付着しており、流れ落ちずに付着したまま持ち上げられる溶融ZnがZn−Fe合金層3aの上にZn層3bを形成する。
-Pulling process-
The base material 2 on which the Zn—Fe alloy layer 3a is formed on the surface by immersion is then pulled up. At this time, the molten Zn is adhered on the Zn—Fe alloy layer 3a, and the molten Zn that is lifted while adhering without flowing down forms the Zn layer 3b on the Zn—Fe alloy layer 3a.

ここで、母材2の引き上げ速度が速いほど付着したままとなる溶融Znの量が多くなり、その結果、Zn層3bが厚くなる。母材2を引き上げる引き上げ速度は、めっきによるZnの付着量を550g/m以上にするという理由から、5m/min〜30m/minが好ましく、8m/min〜15m/minがより好ましい。引き上げ速度は、巻取機10によって母材2を牽引する速度によって調整される。 Here, the faster the pulling speed of the base material 2, the larger the amount of molten Zn that remains attached, and as a result, the Zn layer 3b becomes thicker. The pulling speed for pulling up the base material 2 is preferably 5 m / min to 30 m / min, more preferably 8 m / min to 15 m / min, because the amount of Zn adhered by plating is 550 g / m 2 or more. The pulling speed is adjusted by the speed at which the base metal 2 is pulled by the winder 10.

−冷却工程−
引き上げられた母材2は、ターンローラ11(引上手段)に捲回されて水冷槽9で水冷される。これによって、母材2が亜鉛めっきされた亜鉛めっき異形棒鋼材1が得られる。
-Cooling process-
The pulled-up base material 2 is wound around a turn roller 11 (pulling means) and water-cooled in a water cooling tank 9. As a result, a galvanized deformed steel bar 1 in which the base material 2 is galvanized is obtained.

そして、亜鉛めっき異形棒鋼材1は、巻取機10によってコイル状に巻き取られる。 Then, the galvanized deformed steel bar 1 is wound into a coil by the winder 10.

以上説明したように、実施形態に係る製造方法では、コイル状に巻かれた母材2を牽引してめっきを行い、めっきされた亜鉛めっき異形棒鋼材1は、再びコイル状に巻き取られるので、用途に応じて切断して後加工することができ、汎用性がある。 As described above, in the manufacturing method according to the embodiment, the base material 2 wound in a coil shape is pulled to perform plating, and the plated galvanized deformed steel bar 1 is wound up in a coil shape again. It can be cut and post-processed according to the application, and is versatile.

また、母材2のZn浴8への浸漬時間およびZn浴8からの引き上げ速度、ならびに、Zn浴8の温度を調整することよって、簡単にZn−Fe合金層3aとZn層3bとの厚さの比およびめっきによるZnの付着量を目的とする範囲になるようにすることができる。さらに、浸漬工程では、Zn浴8に母材2を一回のみ浸漬するので、複数の種類の金属を含むZn浴に複数回浸漬する方法に比べて、簡単である。 Further, the thickness of the Zn—Fe alloy layer 3a and the Zn layer 3b can be easily adjusted by adjusting the immersion time of the base material 2 in the Zn bath 8 and the pulling speed from the Zn bath 8 and the temperature of the Zn bath 8. The ratio of zinc and the amount of Zn adhered by plating can be set within the desired range. Further, in the dipping step, since the base material 2 is dipped only once in the Zn bath 8, it is simpler than the method of dipping in the Zn bath containing a plurality of types of metals a plurality of times.

また、製造システムSによって、以上説明した亜鉛めっき異形棒鋼材1の製造方法を実施することができる。 Further, the manufacturing system S can be used to carry out the method for manufacturing the galvanized deformed steel bar 1 described above.

(その他の実施形態)
上記実施形態において、亜鉛めっき異形棒鋼材1のめっきによるZnの付着量は550g/m以上としたが、使用目的によっては300g/m以上550g/m未満としてもよい。
(Other embodiments)
In the above embodiment, the adhesion amount of Zn by the plating galvanized profiled steel bar material 1 is set to 550 g / m 2 or more, depending on the intended use may be less than 300 g / m 2 or more 550 g / m 2.

異形コイル鉄筋を母材とし、この母材に図2に示す製造システムによってめっきをして、亜鉛めっきされた亜鉛めっき異形棒鋼材を製造した。以下の実施例1および2では、直径の異なる2種類の母材にめっきし、亜鉛めっき異形棒鋼材を製造した。 A deformed coil reinforcing bar was used as a base material, and the base material was plated by the manufacturing system shown in FIG. 2 to produce a galvanized galvanized deformed steel bar. In Examples 1 and 2 below, two types of base materials having different diameters were plated to produce galvanized deformed steel bars.

<実施例1>
母材および亜鉛めっき異形棒鋼材の直径は6mm、めっき用金属はZn、引き上げ速度は10m/min、Zn浴温度は450℃、浸漬時間は25秒とした。
<Example 1>
The diameter of the base metal and the galvanized deformed steel bar was 6 mm, the metal for plating was Zn, the pulling speed was 10 m / min, the Zn bath temperature was 450 ° C., and the immersion time was 25 seconds.

図3は、実施例で製造された亜鉛めっき異形棒鋼材の突起の断面を光学顕微鏡によって撮像した1000倍拡大の画像である。 FIG. 3 is a 1000-fold magnified image of the cross section of the protrusion of the galvanized deformed steel bar manufactured in the example taken by an optical microscope.

この実施例で製造された亜鉛めっき異形棒鋼材では、めっきによるZn付着量は621g/mであった。また、めっき層におけるZn−Fe合金層の厚さとZn層の厚さとの比は、1:3〜1:6であった。亜鉛めっき異形棒鋼材の突起の高さは、母材の突起の高さの0.7倍であった。 In the galvanized deformed steel bar produced in this example, the amount of Zn adhered by plating was 621 g / m 2 . The ratio of the thickness of the Zn—Fe alloy layer to the thickness of the Zn layer in the plating layer was 1: 3 to 1: 6. The height of the protrusions of the galvanized deformed steel bar was 0.7 times the height of the protrusions of the base metal.

<実施例2>
この実施例では、母材および亜鉛めっき異形棒鋼材の直径を10mmとしたこと以外は、実施例1と同様の条件で亜鉛めっき異形棒鋼材を製造した。
<Example 2>
In this example, the galvanized deformed steel bar was manufactured under the same conditions as in Example 1 except that the diameter of the base material and the galvanized deformed steel bar was 10 mm.

図4は、亜鉛めっき異形棒鋼材の突起と溝を含む断面を光学顕微鏡によって撮像した50倍拡大の画像である。 FIG. 4 is a 50-fold magnified image of a cross section of a galvanized deformed steel bar including protrusions and grooves taken with an optical microscope.

この実施例で製造された亜鉛めっき異形棒鋼材では、めっきによるZn付着量は675g/mであった。めっき層におけるZn−Fe合金層の厚さとZn層の厚さとの比は、1:1〜1:1.5であった。また、亜鉛めっき異形棒鋼材の突起の高さは、母材の突起の高さの0.9倍であった。また、亜鉛めっき異形棒鋼材の突起のめっき層の厚さと、溝の幅方向中央のめっき層の厚さとの比は、1:0.8〜1:1.2であった。 In the galvanized deformed steel bar produced in this example, the amount of Zn adhered by plating was 675 g / m 2 . The ratio of the thickness of the Zn—Fe alloy layer to the thickness of the Zn layer in the plating layer was 1: 1 to 1: 1.5. The height of the protrusions of the galvanized deformed steel bar was 0.9 times the height of the protrusions of the base metal. The ratio of the thickness of the plating layer of the protrusions of the galvanized deformed steel bar to the thickness of the plating layer at the center in the width direction of the groove was 1: 0.8 to 1: 1.2.

<比較例>
比較例では、実施例1と同じ直径(6mm)の母材を300mmの長さに切断し、定尺の異形棒鋼とした上で、この異形棒鋼を、温度480℃のZn浴に40秒の浸漬時間で浸漬し、めっきした。
<Comparison example>
In the comparative example, a base material having the same diameter (6 mm) as in Example 1 was cut to a length of 300 mm to obtain a standard-sized deformed steel bar, and this deformed steel bar was placed in a Zn bath at a temperature of 480 ° C. for 40 seconds. It was immersed in the immersion time and plated.

図5は、比較例で製造された亜鉛めっき異形棒鋼の突起の断面を光学顕微鏡によって撮像した1000倍拡大の画像である。 FIG. 5 is a 1000-fold magnified image of the cross section of the protrusion of the galvanized deformed steel bar manufactured in the comparative example taken by an optical microscope.

比較例で製造された亜鉛めっき異形棒鋼のめっきによるZn付着量は576g/mであった。また、めっき層におけるZn−Fe合金層の厚さとZn層の厚さとの比は、1:0.4〜1:0.8であった。 The amount of Zn adhered by plating the galvanized deformed steel bar produced in the comparative example was 576 g / m 2 . The ratio of the thickness of the Zn—Fe alloy layer to the thickness of the Zn layer in the plating layer was 1: 0.4 to 1: 0.8.

以上のように、実施例1の亜鉛めっき異形棒鋼材のめっき層は、Zn−Fe合金層の厚さが、Zn層の厚さに対して1/6〜1/3である。また、実施例2の亜鉛めっき異形棒鋼材のめっき層は、Zn−Fe合金層の厚さが、Zn層の厚さに対して1/1.5〜1/1である。これに対して、比較例の亜鉛めっき異形棒鋼のめっき層は、Zn−Fe合金層の厚さが、Zn層の厚さに対して1/0.8〜1/0.4である。このように、各実施例の亜鉛めっき異形棒鋼材のZn−Fe合金層のZn層に対する相対的な厚さは、比較例の亜鉛めっき異形棒鋼のZn−Fe合金層のZn層に対する相対的な厚さと比較してかなり薄い。したがって、各実施例の亜鉛めっき異形棒鋼材の方が、比較例の亜鉛めっき異形棒鋼よりも加工性に優れている。 As described above, in the plating layer of the galvanized deformed steel bar of Example 1, the thickness of the Zn—Fe alloy layer is 1/6 to 1/3 of the thickness of the Zn layer. Further, in the plating layer of the galvanized deformed steel bar of Example 2, the thickness of the Zn—Fe alloy layer is 1 / 1.5 to 1/1 with respect to the thickness of the Zn layer. On the other hand, in the galvanized deformed steel bar of the comparative example, the thickness of the Zn—Fe alloy layer is 1 / 0.8 to 1 / 0.4 with respect to the thickness of the Zn layer. As described above, the relative thickness of the zinc-Fe alloy layer of the zinc-plated deformed steel bar of each example with respect to the Zn layer is relative to the Zn layer of the zinc-plated deformed steel bar of Comparative Example. It is considerably thin compared to the thickness. Therefore, the galvanized deformed steel bar of each example is superior in workability to the galvanized deformed steel bar of the comparative example.

また、実施例1で製造された亜鉛めっき異形棒鋼材は、突起の高さは、母材の突起の高さの0.7倍であり、実施例2で製造された亜鉛めっき異形棒鋼材は、突起の高さは、母材の突起の高さの0.9倍であった。このように、各実施例で製造された亜鉛めっき異形棒鋼材は、母材の表面の凹凸が維持されている。したがって、各実施例で製造された亜鉛めっき異形棒鋼材は、凹凸の効果、例えばコンクリートとの噛み合いの効果など、を発揮できる。 Moreover, zinc-plated profiled bars material prepared in Example 1, the height of the projections is 0.7 times the height of the protrusions of the base material, galvanized profiled steel bar material produced in Example 2 The height of the protrusions was 0.9 times the height of the protrusions of the base metal. As described above, in the galvanized deformed steel bar produced in each example, the unevenness of the surface of the base material is maintained. Therefore, the galvanized deformed steel bar produced in each embodiment can exhibit the effect of unevenness, for example, the effect of meshing with concrete.

S 亜鉛めっき異形棒鋼材の製造システム
1 亜鉛めっき異形棒鋼材
1a 突起(凸部)
1b 溝(凹部)
2 母材(異形棒鋼材)
3 めっき層
3a Zn−Fe合金層
3b Zn層
4 コイル(繰出供給源)
8 Zn浴(めっき浴)
9 水冷槽(冷却手段)
10 巻取機(牽引手段)
11 ターンローラ(引上手段)
S Galvanized deformed steel bar manufacturing system 1 Galvanized deformed steel bar 1a Projection (convex part)
1b groove (recess)
2 Base material (deformed steel bar)
3 Plating layer 3a Zn-Fe alloy layer 3b Zn layer 4 Coil (feeding source)
8 Zn bath (plating bath)
9 Water cooling tank (cooling means)
10 Winder (towing means)
11 Turn roller (pulling means)

Claims (6)

鉄系の異形棒鋼材を繰出供給源から牽引してめっきを行い、亜鉛めっき異形棒鋼材を製造する方法であって、
前記異形棒鋼材を、浴温が420℃以上500℃以下のめっき浴に6秒以上60秒以下の浸漬時間で浸漬する浸漬工程と、
前記浸漬工程において浸漬された前記異形棒鋼材を8m/min〜15m/minの引上速度で垂直に引き上げる引上工程と、
前記引上工程において引き上げられた前記異形棒鋼材を冷却する冷却工程と、
を含み、
前記亜鉛めっき異形棒鋼材は前記異形棒鋼材が、亜鉛を含むめっき層で被覆されており、直径が6mm以上13mm以下であ
前記めっき層は、前記異形棒鋼材の上に形成されたZn−Fe合金層と、該Zn−Fe合金層の上に形成されたZn層と、からなり、
前記Zn−Fe合金層の厚さと前記Zn層の厚さとの比は1:1〜1:6の範囲であり、めっきによるZnの付着量が550g/m以上である
ことを特徴とする製造方法
It is a method of manufacturing galvanized deformed steel bars by pulling iron-based deformed steel bars from a feeding source and plating them.
A dipping step of immersing the deformed steel bar in a plating bath having a bath temperature of 420 ° C. or higher and 500 ° C. or lower for a dipping time of 6 seconds or more and 60 seconds or less.
A pulling step of vertically pulling up the deformed steel bar immersed in the dipping step at a pulling speed of 8 m / min to 15 m / min, and a pulling step.
A cooling step for cooling the deformed steel bar pulled up in the pulling step,
Including
The galvanized profiled steel bar material, wherein the profiled bars material, is coated with a plating layer containing zinc state, and are more 13mm or less 6mm in diameter,
The plating layer is composed of a Zn-Fe alloy layer formed on the deformed steel bar and a Zn layer formed on the Zn-Fe alloy layer.
The ratio of the thickness of the Zn—Fe alloy layer to the thickness of the Zn layer is in the range of 1: 1 to 1: 6, and the amount of Zn adhered by plating is 550 g / m 2 or more. Manufacturing method .
請求項1に記載した製造方法において、
前記亜鉛めっき異形棒鋼材の表面の凸部の高さが、前記異形棒鋼材の表面の凸部の高さの0.5〜1.0倍である
ことを特徴とする製造方法
In the manufacturing method according to claim 1,
A manufacturing method characterized in that the height of the convex portion on the surface of the galvanized deformed steel bar is 0.5 to 1.0 times the height of the convex portion on the surface of the deformed steel bar.
請求項1または2に記載した製造方法において、
前記亜鉛めっき異形棒鋼材表面の凹部の前記めっき層の厚さと凸部の前記めっき層の厚さとの比が、1:0.8〜1:1.2の範囲である
ことを特徴とする製造方法
In the manufacturing method according to claim 1 or 2 .
A production characterized in that the ratio of the thickness of the plating layer in the concave portion on the surface of the galvanized deformed steel bar to the thickness of the plating layer in the convex portion is in the range of 1: 0.8 to 1: 1.2. Method .
鉄系の異形棒鋼材を繰出供給源から牽引してめっきを行い、亜鉛めっき異形棒鋼材を製造する製造システムであって、
浴温が420℃以上500℃以下であり前記異形棒鋼材が浸漬されるめっき浴と、
前記めっき浴から引き上げられた前記異形棒鋼材を冷却する冷却手段と、
前記めっき浴への浸漬と前記冷却手段による冷却とを連続せしめて行うように前記異形棒鋼材を牽引する牽引手段であって、前記異形棒鋼材が前記めっき浴に6秒以上60秒以下の浸漬時間で浸漬され、浸漬された前記異形棒鋼材がm/min〜15m/minの引上速度で垂直に引き上げられるように、前記異形棒鋼材を牽引する牽引手段と、
を含み、
前記亜鉛めっき異形棒鋼材は、前記異形棒鋼材が、亜鉛を含むめっき層で被覆されており、直径が6mm以上13mm以下であり、
前記めっき層は、前記異形棒鋼材の上に形成されたZn−Fe合金層と、該Zn−Fe合金層の上に形成されたZn層と、からなり、
前記Zn−Fe合金層の厚さと前記Zn層の厚さとの比は1:1〜1:6の範囲であり、めっきによるZnの付着量が550g/m 以上である
ことを特徴とする製造システム。
Odd-shaped bar steel of an iron-based plating is performed by towing from the supply source, a production system for producing a zinc-plated profiled bar steel,
A plating bath in which the bath temperature is 420 ° C. or higher and 500 ° C. or lower and the deformed steel bar is immersed.
A cooling means for cooling the deformed steel bar pulled up from the plating bath, and
A traction means for pulling the deformed steel bar so that the immersion in the plating bath and the cooling by the cooling means are continuously performed, and the deformed steel bar is immersed in the plating bath for 6 seconds or more and 60 seconds or less. A traction means for pulling the deformed steel bar so that the deformed steel bar that has been immersed in time and immersed is vertically pulled up at a pulling speed of 8 m / min to 15 m / min.
Only including,
In the galvanized deformed steel bar, the deformed steel bar is coated with a plating layer containing zinc and has a diameter of 6 mm or more and 13 mm or less.
The plating layer is composed of a Zn-Fe alloy layer formed on the deformed steel bar and a Zn layer formed on the Zn-Fe alloy layer.
The ratio of the thickness of the Zn—Fe alloy layer to the thickness of the Zn layer is in the range of 1: 1 to 1: 6, and the amount of Zn adhered by plating is 550 g / m 2 or more. A characteristic manufacturing system.
請求項4に記載した製造システムにおいて、
前記亜鉛めっき異形棒鋼材の表面の凸部の高さが、前記異形棒鋼材の表面の凸部の高さの0.5〜1.0倍である
ことを特徴とする製造システム
In the manufacturing system according to claim 4,
The height of the convex portion on the surface of the galvanized deformed steel bar is 0.5 to 1.0 times the height of the convex portion on the surface of the deformed steel bar.
A manufacturing system characterized by that .
請求項4または5に記載した製造システムにおいて、
前記亜鉛めっき異形棒鋼材表面の凹部の前記めっき層の厚さと凸部の前記めっき層の厚さとの比が、1:0.8〜1:1.2の範囲である
ことを特徴とする製造システム
In the manufacturing system according to claim 4 or 5.
The ratio of the thickness of the plating layer in the concave portion on the surface of the galvanized deformed steel bar to the thickness of the plating layer in the convex portion is in the range of 1: 0.8 to 1: 1.2.
A manufacturing system characterized by that .
JP2018156976A 2018-08-24 2018-08-24 Manufacturing method and manufacturing system for galvanized deformed steel bars Active JP6755909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018156976A JP6755909B2 (en) 2018-08-24 2018-08-24 Manufacturing method and manufacturing system for galvanized deformed steel bars

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018156976A JP6755909B2 (en) 2018-08-24 2018-08-24 Manufacturing method and manufacturing system for galvanized deformed steel bars

Publications (2)

Publication Number Publication Date
JP2020029606A JP2020029606A (en) 2020-02-27
JP6755909B2 true JP6755909B2 (en) 2020-09-16

Family

ID=69623932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018156976A Active JP6755909B2 (en) 2018-08-24 2018-08-24 Manufacturing method and manufacturing system for galvanized deformed steel bars

Country Status (1)

Country Link
JP (1) JP6755909B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087649A1 (en) 2017-10-30 2019-05-09 パナソニックIpマネジメント株式会社 Steel pipe

Also Published As

Publication number Publication date
JP2020029606A (en) 2020-02-27

Similar Documents

Publication Publication Date Title
CA2911442C (en) Galvannealed steel sheet and manufacturing method thereof
JP2010070810A (en) Plated steel having high corrosion resistance and excellent workability and method for producing the same
JP6755909B2 (en) Manufacturing method and manufacturing system for galvanized deformed steel bars
TW201432091A (en) Hot dip Al-Zn plated steel sheet and method of manufacturing the same
JP4782247B2 (en) Zn-Al plated iron wire and method for producing the same
JP5488735B2 (en) Method for producing hot-dip galvanized steel pipe
US2084209A (en) Coated metal pipe and process of producing the same
JP2008169478A (en) Hot dip coated steel member and method of producing the same
TWI652355B (en) Hot-dipped galvanized steel and method of forming the same
CN1460128A (en) Alloyed zinc dip galvanized steel sheet and mfg. method thereof
JP6509160B2 (en) Molten Al-Zn based plated steel sheet and manufacturing method thereof
JP3390776B2 (en) Surface modification method for steel using aluminum diffusion dilution
JPH0753901B2 (en) Hot dip galvanizing method
JP5688292B2 (en) Metal coating method and coating produced thereby
CN107406956A (en) The deformed wire of allumen plating with excellent anticorrosive and the method for manufacturing it
CN111566252A (en) Fusion plated steel wire and method for producing same
JP3367456B2 (en) Method for producing hot-dip coated steel sheet with spangle pattern
JP7406100B2 (en) Plated wire and its manufacturing method
JPH11315360A (en) Galvannealed steel sheet excellent in plating adhesion, and its manufacture
JP7244719B2 (en) Galvanized steel sheet with excellent hardness and galling resistance, and method for producing the same
JP3644429B2 (en) Ultra-thick galvanized steel wire for overhead power transmission line and its manufacturing method
WO2021215421A1 (en) Hot-dip coated steel sheet and production method for same
JP2007182610A (en) Stainless steel wire for spring and coil spring
JP2006274406A (en) Method for manufacturing galvannealed steel sheet
JPH02118088A (en) Production of hot-dip galvanized alloyed steel sheet excellent in workability and coating property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200826

R150 Certificate of patent or registration of utility model

Ref document number: 6755909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250