JP2007182347A - Bonding glass and flat panel display using the bonding glass - Google Patents

Bonding glass and flat panel display using the bonding glass Download PDF

Info

Publication number
JP2007182347A
JP2007182347A JP2006001303A JP2006001303A JP2007182347A JP 2007182347 A JP2007182347 A JP 2007182347A JP 2006001303 A JP2006001303 A JP 2006001303A JP 2006001303 A JP2006001303 A JP 2006001303A JP 2007182347 A JP2007182347 A JP 2007182347A
Authority
JP
Japan
Prior art keywords
glass
substrate
flat panel
panel display
bonding glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006001303A
Other languages
Japanese (ja)
Other versions
JP5011481B2 (en
Inventor
Yuichi Sawai
裕一 沢井
Osamu Shiono
修 塩野
Takashi Namekawa
滑川  孝
Hiroyuki Akata
広幸 赤田
Takashi Naito
内藤  孝
Keiichi Kanazawa
啓一 金澤
Yuichi Kijima
勇一 木島
Shigemi Hirasawa
重實 平澤
Shunichi Asakura
俊一 浅倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Display Inc
Original Assignee
Hitachi Ltd
Hitachi Displays Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Displays Ltd filed Critical Hitachi Ltd
Priority to JP2006001303A priority Critical patent/JP5011481B2/en
Priority to US11/620,107 priority patent/US8022000B2/en
Publication of JP2007182347A publication Critical patent/JP2007182347A/en
Application granted granted Critical
Publication of JP5011481B2 publication Critical patent/JP5011481B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Compositions (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bonding glass desirable to constitute a flat panel display which can avoid wiring damage and vacuum loss and therefore has high reliability and a long life. <P>SOLUTION: The bonding glass contains, as expressed in terms of oxides, 25 to 50 wt.% V<SB>2</SB>O<SB>5</SB>, 5 to 30 wt.% BaO, 20 to 40 wt.% TeO<SB>2</SB>, 1 to 25 wt.% WO<SB>3</SB>, and 0 to 20 wt.% P<SB>2</SB>O<SB>5</SB>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、接合用ガラスとこの接合用ガラスを用いた平板型ディスプレイ装置に係り、特に、その背面基板と前面基板を直接または縁枠およびスペーサを介して一体化して真空容器を形成するための接合用ガラスとこの接合用ガラスを用いた平板型ディスプレイ装置に関する。   The present invention relates to a bonding glass and a flat panel display device using the bonding glass, and more particularly to form a vacuum vessel by integrating the back substrate and the front substrate directly or via an edge frame and a spacer. The present invention relates to a bonding glass and a flat panel display device using the bonding glass.

平板状の背面基板および前面基板を貼り合わせた、所謂平板型ディスプレイ装置として多様な形式が知られている。例えば、マトリクス状に配置した電子源を有する平板型ディスプレイ装置(フラットパネルディスプレイ:FPD)が注目されており、その一つとして、微少で集積可能な冷陰極を利用する電界放出型画像表示装置(FED:Field Emission Display)や電子放出型画像表示装置が知られている。これらの陰極には、スピント型電子源、表面伝導型電子源、カーボンナノチューブ型電子源、金属―絶縁体―金属を積層したMIM(Metal−Insulator−Metal)型、金属―絶縁体―半導体を積層したMIS(Metal−Insulator−Semiconductor)型、あるいは金属―絶縁体―半導体−金属型等の薄膜型電子源などがある。   Various types are known as so-called flat display devices in which a flat back substrate and a front substrate are bonded together. For example, a flat panel display device (flat panel display: FPD) having electron sources arranged in a matrix has been attracting attention, and one of them is a field emission image display device using a small and accumulating cold cathode ( FED (Field Emission Display) and electron emission type image display devices are known. These cathodes are Spindt type electron sources, surface conduction electron sources, carbon nanotube type electron sources, metal-insulator-metal laminated MIM (Metal-Insulator-Metal) type, and metal-insulator-semiconductor laminated. MIS (Metal-Insulator-Semiconductor) type or thin-film type electron source such as metal-insulator-semiconductor-metal type.

自発光型FPDは、上記のような電子源を備えた背面基板と、蛍光体層とこの蛍光体層に電子源から放出される電子を射突させるための加速電圧を形成する陽極を備えた前面基板とを貼り合わせて両パネルの対向する内部空間を所定の真空状態に封止する。背面基板にはマトリクス配列した多数の電子源を有し、前面基板は蛍光体層と電子源から放出された電子を蛍光体層に射突させる電界を形成するための加速電圧を形成する陽極を有する。   The self-luminous FPD includes a rear substrate including the electron source as described above, and a phosphor layer and an anode that forms an acceleration voltage for causing electrons emitted from the electron source to collide with the phosphor layer. The front substrate is bonded to seal the internal space facing both panels in a predetermined vacuum state. The back substrate has a large number of electron sources arranged in a matrix, and the front substrate has a phosphor layer and an anode for forming an accelerating voltage for forming an electric field for projecting electrons emitted from the electron source to the phosphor layer. Have.

個々の電子源は、対応する蛍光体層と対になって単位画素を構成する。通常は、赤(R)、緑(G)、青(B)の3色の単位画素で一つの画素(カラー画素、ピクセル)が構成される。なお、カラー画素の場合、単位画素は副画素(サブピクセル)とも呼ばれる。   Each electron source is paired with a corresponding phosphor layer to constitute a unit pixel. Usually, one pixel (color pixel, pixel) is composed of unit pixels of three colors of red (R), green (G), and blue (B). In the case of a color pixel, the unit pixel is also called a sub-pixel (sub-pixel).

背面基板と前面基板の間隔は、表示領域内に両基板を支えるように配置される隔壁と称する部材(スペーサ)で所定間隔に保持される。このスペーサはガラスやセラミックスなどの絶縁材あるいは幾分かの導電性を有する部材で形成した板状体からなり、通常、複数の画素ごとに画素の動作を妨げない位置に設置される。   The distance between the rear substrate and the front substrate is maintained at a predetermined interval by a member (spacer) called a partition wall arranged to support both substrates in the display area. This spacer is made of a plate-like body formed of an insulating material such as glass or ceramics or a member having some conductivity, and is usually installed at a position where the operation of the pixel is not hindered for each of the plurality of pixels.

また、補強板で表した背面基板と前面基板を用いたもの、枠ガラスで高真容器を形成するものが特許文献3に開示されている。そして、ガラス板の封着に用いるフリットガラスとしての無鉛低融点ガラスに関しては、特許文献4に開示がある。特許文献4には、環境汚染の原因となるPbO-B23に代えてB23又はV25、BaOを用いた無鉛低融点
ガラスを開示する。また、特許文献5には、V25-TeO2系ガラスが開示されている。
特開平7−65710号公報 特開平10−153979号公報 特開2000−206905号公報 特開2003−192378号公報 特開2004−250276号公報
Further, Patent Document 3 discloses a method using a back substrate and a front substrate represented by a reinforcing plate, and a device that forms a Takashin container using frame glass. Patent Document 4 discloses a lead-free low-melting glass as a frit glass used for sealing a glass plate. Patent Document 4 discloses a lead-free low-melting glass using B 2 O 3, V 2 O 5 , or BaO instead of PbO—B 2 O 3 that causes environmental pollution. Patent Document 5 discloses V 2 O 5 —TeO 2 -based glass.
JP-A-7-65710 Japanese Patent Laid-Open No. 10-153979 JP 2000-206905 A JP 2003-192378 A JP 2004-250276 A

平板型ディスプレイ装置では、電子源アレイを形成した背面基板と蛍光体アレイを形成した前面基板を、それらの周縁で封止して真空容器を構成している。背面基板の内面の端縁には、電子源アレイに選択信号や表示データを供給するための多数の配線が金属薄膜で形成されている。また、前面基板の内面に有する加速電極に給電するための配線は、背面基板に形成した配線を経由するもの、あるいは前面基板の内面の端縁に加速電極の給電用配線を形成したものもある。背面基板と前面基板との封止には、所謂低融点フリットガラスが用いられる。この低融点フリットガラスを上記配線領域を含む両基板の周縁に塗布して接合して、真空封止する。   In a flat panel display device, a vacuum substrate is configured by sealing a rear substrate on which an electron source array is formed and a front substrate on which a phosphor array is formed at the periphery thereof. A large number of wirings for supplying a selection signal and display data to the electron source array are formed of a metal thin film on the edge of the inner surface of the rear substrate. In addition, there are wiring for feeding power to the acceleration electrode on the inner surface of the front substrate via a wiring formed on the rear substrate, or wiring for feeding acceleration electrodes on the inner edge of the front substrate. . A so-called low melting point frit glass is used for sealing the back substrate and the front substrate. This low melting point frit glass is applied and bonded to the peripheral edges of both substrates including the wiring region and vacuum sealed.

背面基板あるいは前面基板に形成される配線は、アルミニゥーム(Al)あるいはその合金、銅(Cu)あるいはその合金、クロム(Cr)あるいはその合金等、これらの積層(例えば、Cr-Al-Cr)が用いられる。特に、Cr-Al-Crは、Crがガラスとの濡れ性が良好であるため、接合領域に設ける配線材料として好適なものである。その他本発明では、AuやAgを含む配線に関しても考慮している。   The wiring formed on the rear substrate or the front substrate is made of aluminum (Al) or an alloy thereof, copper (Cu) or an alloy thereof, chromium (Cr) or an alloy thereof, and the like (for example, Cr—Al—Cr). Used. In particular, Cr—Al—Cr is suitable as a wiring material provided in the bonding region because Cr has good wettability with glass. In addition, in the present invention, wiring including Au and Ag is also considered.

従来、この接合ガラスとして用いられる低融点フリットガラスは鉛(PbO)を含むものである。そのため、配線材料と鉛とが反応して腐食を起こし、抵抗の増大や断線の発生などのダメージ、反応ガスによる真空度劣化等で信頼性の低下と寿命の短縮化をもたらす。なお、背面基板と前面基板の間隙を保持するために、ガラスやセラミックスなどからなる隔壁、所謂スペーサを真空容器内に設けたものでは、当該スペーサを走査電極などの金属薄膜の上に植立させて低融点フリットガラスで固定するものにおいても同様の問題が生じる。   Conventionally, the low melting point frit glass used as the bonding glass contains lead (PbO). For this reason, the wiring material and lead react with each other to cause corrosion, resulting in a decrease in reliability and a shortened life due to damage such as an increase in resistance and disconnection, and a deterioration in vacuum due to a reactive gas. In order to maintain the gap between the back substrate and the front substrate, a partition made of glass or ceramics, that is, a so-called spacer is provided in a vacuum vessel, and the spacer is planted on a metal thin film such as a scanning electrode. The same problem arises in the case of fixing with low melting point frit glass.

無鉛低融点ガラスフリットとして、特許文献5に開示のV25-TeO2系ガラスは封着作業温度での長時間保持により結晶化する傾向があり、封着機能が発現しないケースがある。また同ガラスの熱膨張係数は高く、低熱膨張化のためには高価な低膨張係数フィラーを多量に混合しなければならず、またこの際被封着物との濡れ性が損なわれる可能性がある。 As a lead-free low-melting glass frit, the V 2 O 5 —TeO 2 glass disclosed in Patent Document 5 tends to crystallize when held for a long time at the sealing operation temperature, and there is a case where the sealing function does not appear. In addition, the glass has a high thermal expansion coefficient, and in order to reduce the thermal expansion, it is necessary to mix a large amount of an expensive low expansion coefficient filler, and there is a possibility that the wettability with the object to be sealed may be impaired. .

本発明の目的は、ガラス構造体間を結合するための接合用ガラスとこの接合用ガラスを用いた平板型ディスプレイ装置を提供することにあり、特に、その背面基板と前面基板を直接または縁枠およびスペーサを介して一体化して真空容器を形成するための各種構造体ガラスを接合する際の配線のダメージを回避するための低融点かつ低熱膨張係数の接合用ガラスとして用いることで真空度劣化を回避し、高信頼性、かつ長寿命の平面型ディスプレイ装置を提供することにある。   An object of the present invention is to provide a bonding glass for bonding between glass structures and a flat panel display device using the bonding glass, and in particular, the back substrate and the front substrate are directly or edge-framed. Degradation of the degree of vacuum by using as a glass for bonding with a low melting point and a low thermal expansion coefficient to avoid damage to the wiring when bonding various structural glasses for forming a vacuum vessel integrated through spacers An object of the present invention is to provide a flat display device which avoids, has high reliability and has a long life.

上記目的を達成するために、本発明は、次のように調整した接合用ガラスを提供する。また、これを用いて配線を介在した背面基板と前面基板との封止あるいはスペーサとの接合を行うことで、高信頼性、かつ長寿命を実現した平面型ディスプレイ装置を構成する。   In order to achieve the above object, the present invention provides a glass for bonding adjusted as follows. In addition, the flat display device that achieves high reliability and a long life is configured by sealing the back substrate and the front substrate through which the wiring is interposed, or by joining the spacers.

すなわち、本発明の接合用ガラスは、酸化物換算で、V25:25〜50wt%、BaO:5〜30wt%、TeO2:20〜40wt%、WO3:1〜25wt%、P25:0〜20wt%に調製される。 That is, the bonding glass of the present invention, in terms of oxide, V 2 O 5: 25~50wt% , BaO: 5~30wt%, TeO 2: 20~40wt%, WO 3: 1~25wt%, P 2 O 5: is prepared in 0 to 20 wt%.

また、本発明の接合用ガラスは、酸化物換算で、V25:35〜45wt%、BaO:10〜20wt%、TeO2:20〜30wt%、WO3:5〜15wt%、P25:0〜5wt%に調整される。 Furthermore, the bonding glass of the present invention, in terms of oxide, V 2 O 5: 35~45wt% , BaO: 10~20wt%, TeO 2: 20~30wt%, WO 3: 5~15wt%, P 2 O5: adjusted to 0 to 5 wt%.

また、本発明の接合用ガラスは、酸化物換算で、V25:35〜45wt%、BaO:5〜20wt%、TeO2:20〜35wt%、WO3:1〜15wt%、ZnO:1〜10wt%、Sb23:1〜10wt%に調製される。 Furthermore, the bonding glass of the present invention, in terms of oxide, V 2 O 5: 35~45wt% , BaO: 5~20wt%, TeO 2: 20~35wt%, WO 3: 1~15wt%, ZnO: 1~10wt%, Sb 2 O 3: is prepared in 110 wt.%.

また、本発明の接合用ガラスは、さらに、SrO、GeO2、La23、Cr23、Nb25、Y23、MgO、CeO2、ErO2より選ばれた化合物を0.5〜10wt%添加してもよい。または上記のような接合用ガラスにセラミックスフィラー材を5〜30体積%添加することができる。このセラミックフィラーとしては、SiO2,ZrO2, Al23、ZrSiO4、リン酸ジルコニウム系化合物((ZrO)227、(ZrO)227Ca0.5Zr2(PO4)3、Zr2(WO4)(PO4)2)、コージェライト、ムライト、ユークリプタイトの何れかとすることができる。 Furthermore, the bonding glass of the present invention, furthermore, SrO, and GeO 2, La 2 O 3, Cr 2 O 3, Nb 2 O 5, Y 2 O 3, MgO, a compound selected from CeO 2, ErO 2 You may add 0.5-10 wt%. Or 5-30 volume% of ceramic filler materials can be added to the above glass for joining. Examples of the ceramic filler include SiO 2 , ZrO 2 , Al 2 O 3 , ZrSiO 4 , zirconium phosphate compound ((ZrO) 2 P 2 O 7 , (ZrO) 2 P 2 O 7 Ca 0.5 Zr 2 (PO 4 ) 3 , Zr 2 (WO 4 ) (PO 4 ) 2 ), cordierite, mullite, or eucryptite.

また、本発明の平板型ディスプレイ装置は、内面に電子源アレイを備えた背面基板と、内面に前記電子源アレイに対応した配列を有する蛍光体パターンと加速電極とを備えて、その外面を表示面とする前面基板とからなる。   The flat panel display device of the present invention includes a rear substrate having an electron source array on the inner surface, a phosphor pattern having an arrangement corresponding to the electron source array on the inner surface, and an acceleration electrode, and displays the outer surface. And a front substrate as a surface.

そして、背面基板と前面基板の各内面を対向させて両基板の周縁に有する封止部に接合用ガラス(フリットガラス)を介在させて封着してなる真空容器を構成する。   Then, a vacuum container is configured in which the inner surfaces of the back substrate and the front substrate are opposed to each other and sealed with a bonding glass (frit glass) interposed between sealing portions at the peripheral edges of both substrates.

少なくとも背面基板の1つの端面に、電子源アレイに接続して当該端縁に引き出された金属膜からなる配線を形成した配線領域を有する。   A wiring region is formed on at least one end surface of the back substrate, and is formed with a wiring made of a metal film connected to the electron source array and drawn to the edge.

封止部は、背面基板に有する配線領域を含み、その接合のためのフリットガラス(接合用ガラス)として、酸化物換算で、V25:25〜50wt%、BaO:5〜30wt%、TeO2:20〜40wt%、WO3:1〜25wt%、P25:0〜20wt%に調製されたものを用いることができる。 The sealing portion includes a wiring region on the back substrate, and as a frit glass (bonding glass) for bonding, in terms of oxide, V 2 O 5 : 25 to 50 wt%, BaO: 5 to 30 wt%, TeO 2: 20~40wt%, WO 3 : 1~25wt%, P 2 O 5: can be used those prepared in 0 to 20 wt%.

また、この接合用ガラスとして、V25:35〜45wt%、BaO:5〜20wt%、TeO2:20〜35wt%、WO3:1〜15wt%、ZnO:1〜10wt%、Sb23:1〜10wt%に調製された封着用ガラスを用いることができる。 Further, as the glass for the bonding, V 2 O 5: 35~45wt% , BaO: 5~20wt%, TeO 2: 20~35wt%, WO 3: 1~15wt%, ZnO: 1~10wt%, Sb 2 Glass for sealing prepared in O 3 : 1 to 10 wt% can be used.

上記接合ガラスには、SrO、GeO2、La23、Cr23、Nb25、Y23、MgO、CeO2、ErO2より選ばれた化合物を0.5〜10wt%添加することが好ましい。またこの接合ガラスにセラミックスフィラー材を5〜30体積%添加するとよい。該セラミックフィラーは、SiO2,ZrO2, Al23、ZrSiO4、リン酸ジルコニウム系化合物((ZrO)227、(ZrO)227Ca0.5Zr2(PO4)3、Zr2(WO4)(PO42)、コージェライト、ムライト、ユークリプタイトの何れかである無鉛ガラス組成物を用いることができる。 The bonding glass contains 0.5 to 10 wt% of a compound selected from SrO, GeO 2 , La 2 O 3 , Cr 2 O 3 , Nb 2 O 5 , Y 2 O 3 , MgO, CeO 2 and ErO 2. It is preferable to add. Moreover, it is good to add 5-30 volume% of ceramic filler materials to this joining glass. The ceramic filler includes SiO 2 , ZrO 2 , Al 2 O 3 , ZrSiO 4 , zirconium phosphate-based compound ((ZrO) 2 P 2 O 7 , (ZrO) 2 P 2 O 7 Ca 0.5 Zr 2 (PO 4 ) 3 , a lead-free glass composition that is any one of Zr 2 (WO 4 ) (PO 4 ) 2 ), cordierite, mullite, and eucryptite.

また、背面基板が平坦で、前面基板の周縁に縁枠を一体的に有する本発明の平板型ディスプレイ装置では、前記縁枠の端面と背面基板とを上記の接合ガラス(フリットガラス)で封止する。   Further, in the flat panel display device of the present invention in which the back substrate is flat and the edge frame is integrally formed on the periphery of the front substrate, the end surface of the edge frame and the back substrate are sealed with the above-mentioned bonding glass (frit glass). To do.

また、背面基板と前面基板の各周縁に、当該背面基板および前面基板とは別体の枠ガラスを有する本発明の平板型ディスプレイ装置では、背面基板と前面基板および枠ガラスとの間を上記の接合ガラスで封止する。   Further, in the flat panel display device of the present invention having a frame glass separate from the rear substrate and the front substrate on each peripheral edge of the rear substrate and the front substrate, the gap between the rear substrate, the front substrate and the frame glass is as described above. Seal with bonding glass.

また、 背面基板と前面基板を封止して形成された真空容器の内部に、当該背面基板と前面基板の間隙を保持するためのスペーサを有する本発明の平板型ディスプレイ装置では、前記スペーサと背面基板と前面基板とを上記の接合ガラスで封止する。   Further, in the flat panel display device of the present invention having a spacer for holding a gap between the rear substrate and the front substrate inside a vacuum vessel formed by sealing the rear substrate and the front substrate, the spacer and the rear substrate The substrate and the front substrate are sealed with the bonding glass.

本発明は、上記の構成および後述する実施の形態の欄で説明される技術内容に限定されるものではなく、本発明の技術思想を逸脱することなく、種々の変更が可能である。   The present invention is not limited to the technical contents described in the above-described configuration and embodiments described later, and various modifications can be made without departing from the technical idea of the present invention.

本発明の接合ガラスである無鉛低融点フリットガラスを用いることで、従来のような金属と接するような使い方を行う場合の鉛との反応による当該金属腐食や発ガスを抑制することができる。また、鉛による環境汚染を回避できる。   By using the lead-free low melting point frit glass that is the bonding glass of the present invention, it is possible to suppress the metal corrosion and gas generation due to the reaction with lead in the case of using in contact with a metal as in the prior art. Moreover, environmental pollution by lead can be avoided.

本発明の平板型ディスプレイ装置では、その背面基板と前面基板との封止、縁枠(封止枠)を介在させた背面基板と前面基板との封止、あるいは背面基板と前面基板との封止で構成した真空容器内にスペーサを設置したものでは、その接合に用いたフリットガラスに起因する配線の腐食や発ガスが抑制され、高信頼かつ長寿命化を達成できる。   In the flat panel display device of the present invention, sealing between the back substrate and the front substrate, sealing between the back substrate and the front substrate with an edge frame (sealing frame) interposed therebetween, or sealing between the back substrate and the front substrate. In the case where the spacer is installed in the vacuum vessel constituted by the stopper, the corrosion and gas generation of the wiring due to the frit glass used for the bonding is suppressed, and high reliability and long life can be achieved.

本発明は、平板型ディスプレイ装置用の接合や真空封止のためのみに限るものではなく、磁気ディスクの基板などの電子機器用ガラス構造部材、その他の各種技術分野における構造材などにも適用できる。   The present invention is not limited to bonding and vacuum sealing for flat panel display devices, but can also be applied to glass structural members for electronic devices such as magnetic disk substrates, and other structural materials in various technical fields. .

以下、本発明の最良の実施形態について実施例の図面を参照して詳細に説明する。以下の図面を参照した実施例の説明中、前面基板をパネルとも称する。なお、以下の実施例で説明する平板型ディスプレイ装置は、あくまで一例であって、本発明は、薄膜電子源を用いた電子放出型や電界放射型のディスプレイ装置、プラズマディスプレイ装置など、配線を形成したガラス板を用いた各種の平板型ディスプレイ装置にも同様に適用できることは前記のとおりである。   The best mode for carrying out the present invention will be described below in detail with reference to the drawings of the examples. In the description of the embodiments with reference to the following drawings, the front substrate is also referred to as a panel. Note that the flat panel display device described in the following embodiments is merely an example, and the present invention forms wiring such as an electron emission type or field emission type display device using a thin film electron source, or a plasma display device. As described above, the present invention can be similarly applied to various flat panel display devices using a glass plate.

図1は、本発明の平板型ディスプレイ装置の構成を主として説明する模式平面図である。また、図2は、図1に示した平板型ディスプレイ装置の全体構造例をより具体的に示す斜視図、図3は、図2のA−A'断面図を示す。図1、図2、図3において、背面基板SUB1の内面上には画像信号配線d(d1,d2,・・・dn)が形成され、その上に走査信号配線s(s1,s2,s3,・・・sm)が交差して形成されている。電子源ELSは、接続電極ELCで走査信号配線s(s1,s2,s3,・・・sm)から給電される。符号VSは垂直走査方向を示す。   FIG. 1 is a schematic plan view mainly illustrating the configuration of the flat panel display device of the present invention. 2 is a perspective view more specifically showing an example of the overall structure of the flat panel display device shown in FIG. 1, and FIG. 3 is a cross-sectional view taken along line AA ′ of FIG. 1, 2, and 3, image signal wiring d (d 1, d 2,... Dn) is formed on the inner surface of the back substrate SUB 1, and scanning signal wiring s (s 1, s 2, s 3) is formed thereon. ... sm) are formed to intersect. The electron source ELS is supplied with power from the scanning signal wiring s (s1, s2, s3,... Sm) through the connection electrode ELC. Reference VS indicates the vertical scanning direction.

前面基板SUB2は背面基板SUB1よりも若干小サイズであり、前面基板SUB2からはみ出した背面基板SUB1の端面には画像信号配線dの引き出し端子である配線dTおよび走査信号配線sの引き出し端子である配線sTが形成されている。また、前面基板SUB2の内面には3色の蛍光体層PH(PH(R)、PH(G)、PH(B))が形成されており、この上に陽極電極ADが形成されている。この構成では、蛍光体PH(PH(R)、PH(G)、PH(B))が遮光層(ブラックマトリクス)BMで区画されている。なお、陽極電極ADはベタ電極として示してあるが、走査信号配線s(s1,s2,s3,・・・sm)と交差して画素列ごとに分割されたストライプ状電極とすることもできる。電子源ELSから放射される電子を加速して対応する副画素を構成する蛍光体層PH(PH(R)、PH(G)、PH(B))に射突させる。これにより、該蛍光体層PHが所定の色光で発光し、他の副画素の蛍光体の発光色と混合されて所定の色のカラー画素を構成する。   The front substrate SUB2 is slightly smaller in size than the rear substrate SUB1, and wirings dT serving as lead terminals for the image signal wiring d and wirings serving as lead terminals for the scanning signal wiring s are provided on the end surface of the rear substrate SUB1 protruding from the front substrate SUB2. sT is formed. Further, phosphor layers PH (PH (R), PH (G), PH (B)) of three colors are formed on the inner surface of the front substrate SUB2, and an anode electrode AD is formed thereon. In this configuration, the phosphor PH (PH (R), PH (G), PH (B)) is partitioned by a light shielding layer (black matrix) BM. Although the anode electrode AD is shown as a solid electrode, the anode electrode AD may be a striped electrode that is divided for each pixel column by crossing the scanning signal wiring s (s1, s2, s3,... Sm). Electrons radiated from the electron source ELS are accelerated and collided with the phosphor layers PH (PH (R), PH (G), PH (B)) constituting the corresponding subpixel. As a result, the phosphor layer PH emits light of a predetermined color and is mixed with the light emission color of the phosphors of other subpixels to form a color pixel of a predetermined color.

図2、図3に示したように、背面基板SUB1と前面基板SUB2は表示領域を周回して設置される封止枠MFLで一体化される。これら背面基板SUB1と前面基板SUB2および封止枠MFLの一体化はフリットガラスすなわち本発明の接合ガラスFで接合される。図1で説明したように、背面基板SUB1の内面の封止領域より内側には画像信号配線d(d1,d2,d3,・・・・・dn)と、走査信号配線s(s1,s2,s3,・・・sm)のマトリクスで構成された表示領域内に多数の電子源を有する。配線dTおよび配線sTは、封止枠MFLの設置部分である封止領域を超えて外部に引き出される。   As shown in FIGS. 2 and 3, the back substrate SUB1 and the front substrate SUB2 are integrated by a sealing frame MFL installed around the display area. The back substrate SUB1, front substrate SUB2, and sealing frame MFL are integrated by frit glass, that is, the bonding glass F of the present invention. As described with reference to FIG. 1, the image signal wiring d (d1, d2, d3,... Dn) and the scanning signal wiring s (s1, s2, dn) are provided on the inner side of the sealing region on the inner surface of the back substrate SUB1. A plurality of electron sources are provided in a display area constituted by a matrix of s3,. The wiring dT and the wiring sT are drawn out beyond the sealing region where the sealing frame MFL is installed.

一方、前面基板SUB2の内面に陽極ADと蛍光体層PHが成膜されている。陽極ADにはアルミニウム層が用いられる。陽極ADの給電は図示しない基板間接続導体を通して背面基板SUB1側に至り、背面基板SUB1の適当な部分で引出端子(配線)として封止枠MFLの設置部分である封止領域を超えて外部に引き出される。   On the other hand, the anode AD and the phosphor layer PH are formed on the inner surface of the front substrate SUB2. An aluminum layer is used for the anode AD. The power supply of the anode AD reaches the rear substrate SUB1 side through an inter-substrate connecting conductor (not shown), and goes outside the sealing region which is the installation portion of the sealing frame MFL as an extraction terminal (wiring) at an appropriate portion of the rear substrate SUB1. Pulled out.

この前面基板SUB2と背面基板SUB1との各内面を対向させ、両基板に挟まれた内部空間が外部と隔絶された構造となるように上記した接合ガラスFを用いて周縁を固定する。この接合ガラスを用いた固着の際には、例えば約400℃での加熱を行う。その後、ディスプレイ装置内部を約1μPaまで排気管303を通して排気した後に封じ切る。動作の際には、前面基板の陽極ADに約2kV乃至10kVの電圧を印加する。   The inner surfaces of the front substrate SUB2 and the back substrate SUB1 are opposed to each other, and the peripheral edge is fixed using the above-described bonding glass F so that the internal space sandwiched between the two substrates is isolated from the outside. At the time of fixing using the bonding glass, for example, heating at about 400 ° C. is performed. Thereafter, the inside of the display device is exhausted to about 1 μPa through the exhaust pipe 303 and then sealed. In operation, a voltage of about 2 kV to 10 kV is applied to the anode AD of the front substrate.

このディスプレイ装置では、電子源にMIMを用いた構造を例としたが、本発明はこれに限定されるものではなく、前記した各種の電子源を用いた平板型のディスプレイ装置に対しても同様に適用できる。   In this display device, a structure using an MIM as an electron source is taken as an example, but the present invention is not limited to this, and the same applies to a flat panel display device using various electron sources described above. Applicable to.

なお、前面基板SUB2を、その周縁に背面基板SUB1側に屈曲して突出する縁を形成した有縁浅皿形として、当該縁と背面基板との当接部分にフリットガラスを塗布して両基板を封止する構成とすることもできる。この場合はフリットガラスの塗布は背面基板側のみとなる。   The front substrate SUB2 is formed as a fringed shallow dish having an edge that protrudes by being bent toward the back substrate SUB1 at the periphery thereof, and frit glass is applied to the contact portion between the edge and the back substrate to form both substrates. It can also be set as the structure which seals. In this case, the frit glass is applied only on the back substrate side.

また、封止された空間内に背面基板と前面基板の間の間隔を保持するためのスペーサSPCを設けた場合には、このスペーサSPCと当該スペーサSPCの植立部分に本発明の接合ガラスを塗布して固定する。通例、スペーサSPCは走査配線sの上に設置される。本実施例では、前面基板SUB2と背面基板SUB1との間で、配線が引き出されている封止領域に封止枠MFLを位置させて接合ガラスFで接着する形式を例とする。   In addition, when a spacer SPC is provided in the sealed space to maintain a distance between the back substrate and the front substrate, the bonding glass of the present invention is applied to the spacer SPC and the planted portion of the spacer SPC. Apply and fix. Usually, the spacer SPC is installed on the scanning wiring s. In this embodiment, an example is given in which the sealing frame MFL is positioned in the sealing region where the wiring is drawn out and bonded with the bonding glass F between the front substrate SUB2 and the rear substrate SUB1.

ここで、本発明のフリットガラスの実施例について説明する。   Here, examples of the frit glass of the present invention will be described.

図4は、本発明におけるV25系ガラスの成分を説明する図である。図4中、各成分の含有率の相違で複数のガラス名VTW01乃至VBW07を示した。各成分は酸化物換算の重量%(w%)で示してある。 FIG. 4 is a diagram illustrating components of the V 2 O 5 glass in the present invention. In FIG. 4, a plurality of glass names VTW01 to VBW07 are shown depending on the difference in the content of each component. Each component is shown in weight% (w%) in terms of oxide.

VTW01〜09は、V25:25〜50wt%、BaO:5〜30wt%、TeO2:20〜40wt%、WO3:1〜25wt%、P25:0〜20wt%に調製された無鉛ガラスサンプルである。各サンプルは以下のように作製した。 VTW01~09 is, V 2 O 5: 25~50wt% , BaO: 5~30wt%, TeO 2: 20~40wt%, WO 3: 1~25wt%, P 2 O 5: is prepared in the 0 to 20 wt% It is a lead-free glass sample. Each sample was produced as follows.

出発原料は、V25(高純度化学研究所製、純度99.9%)、BaO(和光試薬製、純度99.9%)、TeO2(高純度化学研究所製、純度99.9%)、WO3(和光試薬製、純度99.9%)、P25(高純度化学研究所製、純度99.9%)である。V系ガラス母材を作製するには、まず各原料を図4に示す重量比で混合する。原料にP25を含む場合は、P25を除く全ての原料をあらかじめ混合しておく。P25は吸湿性が高いため、長時間大気中に放置しないためである。P25以外の混合粉末をアルミナるつぼに入れ、アルミナるつぼごと秤に乗せ、P25を所定量秤量し、同時に金属製のスプーンで混合する。このとき、大気からの吸湿を避けるため、乳鉢やボールミルを用いた混合はしない。 Starting materials were V 2 O 5 (manufactured by High Purity Chemical Laboratory, purity 99.9%), BaO (manufactured by Wako Reagent, purity 99.9%), TeO 2 (manufactured by High Purity Chemical Laboratory, purity 99.9). %), WO 3 (manufactured by Wako Reagent, purity 99.9%), P 2 O 5 (manufactured by High Purity Chemical Laboratory, purity 99.9%). In order to produce the V-based glass base material, the respective raw materials are first mixed at a weight ratio shown in FIG. When the raw material contains P 2 O 5 , all the raw materials except P 2 O 5 are mixed in advance. This is because P 2 O 5 is highly hygroscopic and is not left in the atmosphere for a long time. A mixed powder other than P 2 O 5 is put in an alumina crucible, and the alumina crucible is put on a balance, and a predetermined amount of P 2 O 5 is weighed, and simultaneously mixed with a metal spoon. At this time, in order to avoid moisture absorption from the atmosphere, mixing using a mortar or ball mill is not performed.

上記の原料混合粉末が入ったアルミナるつぼを、ガラス溶解炉に設置し、加熱を開始する。昇温速度を5℃/minとし、目標温度に到達した時点から1時間保持する。本実施例では、目標温度を1000℃に固定している。溶解しているガラスを撹拌しながら1時間保持し、保持後はアルミナるつぼを溶解炉から取り出し、あらかじめ300℃に加熱していた黒鉛鋳型に鋳込む。黒鉛鋳型に鋳込んだガラスは、あらかじめ歪取り温度に加熱している歪取り炉に移動し、1時間保持により歪を除去した後、1℃/minの速度で室温まで冷却した。得られたガラスは30mm×40mm×80mmの大きさである。得られたガラスブロックを4mm×4mm×15mmの大きさに切断し、熱膨張係数、電気抵抗率、密度を評価した。ブロックを取り出した残りのガラスは粉砕し、ガラス特性温度評価のためのDTA分析(示唆熱分析)用、およびボタンフロー試験用の粉末サンプルとして用いた。   The alumina crucible containing the above raw material mixed powder is placed in a glass melting furnace and heating is started. The temperature increase rate is set to 5 ° C./min, and the temperature is maintained for 1 hour from the time when the target temperature is reached. In this embodiment, the target temperature is fixed at 1000 ° C. The molten glass is held for 1 hour with stirring. After the holding, the alumina crucible is taken out from the melting furnace and cast into a graphite mold heated to 300 ° C. in advance. The glass cast in the graphite mold was moved to a strain relief furnace that had been heated to a strain relief temperature in advance, and the strain was removed by holding for 1 hour, and then cooled to room temperature at a rate of 1 ° C./min. The obtained glass has a size of 30 mm × 40 mm × 80 mm. The obtained glass block was cut into a size of 4 mm × 4 mm × 15 mm, and the thermal expansion coefficient, electric resistivity, and density were evaluated. The remaining glass from which the block was removed was crushed and used as a powder sample for DTA analysis (suggested thermal analysis) for glass characteristic temperature evaluation and for button flow test.

図5は、所謂ボタンフロー試験の温度プロファイルの説明図である。ボタンフロー試験は、絶縁膜や金属膜(配線等)を形成したガラス基板の上にボタン状に成形したガラス粉末を載置し、これを加熱し、冷却して下層の絶縁膜や金属膜への濡れ性、反応性、クラック発生の有無、ガスによる気泡の多少等を観察する試験である。その温度プロファイルは図5に示したとおりである。すなわち、常温で絶縁膜や金属膜(配線等)を形成したガラス基板の上にボタン状のサンプルガラスを載置し、これを毎分5℃で昇温し、420℃で30分保持する。その後、毎分2℃で200℃まで降温し、放置して室温まで冷却する。   FIG. 5 is an explanatory diagram of a temperature profile of a so-called button flow test. In the button flow test, glass powder formed into a button shape is placed on a glass substrate on which an insulating film or metal film (wiring, etc.) has been formed, and this is heated and cooled to the underlying insulating film or metal film. This is a test for observing the wettability, reactivity, presence or absence of cracks, and the number of bubbles caused by gas. The temperature profile is as shown in FIG. That is, a button-like sample glass is placed on a glass substrate on which an insulating film or a metal film (wiring, etc.) is formed at room temperature, and this is heated at 5 ° C. per minute and held at 420 ° C. for 30 minutes. Thereafter, the temperature is lowered to 200 ° C. at 2 ° C. per minute and left to cool to room temperature.

本実施例では、直径10mm、高さ5mmの円柱状のガラス粉末成形体をソーダライムガラス上に置き、熱処理することにより試験を行った。本試験において、熱処理後のボタン径(流動径と称する)が15mm以上となれば、被封着材との濡れ性が良好と判断する。
このような試験の結果、420℃で封着を行う条件の場合、VTWシリーズのガラスの中では、VTW04が最も優れていることがわかった。更に詳細の検討の結果VTW04の周辺の組成、すなわち酸化物換算で、V25:35〜45wt%、BaO:10〜20wt%、TeO2:20〜30wt%、WO3:5〜15wt%、P25:0〜5wt%の範囲に調整したガラスの特性温度は低く、特に450℃以下の低温の封着用途に有効である。
次の試験について解説する。
In this example, the test was performed by placing a cylindrical glass powder compact having a diameter of 10 mm and a height of 5 mm on soda lime glass and heat-treating it. In this test, if the button diameter after heat treatment (referred to as the flow diameter) is 15 mm or more, it is determined that the wettability with the sealing material is good.
As a result of such a test, it was found that VTW04 was the best among the VTW series glass under the condition of sealing at 420 ° C. Moreover the composition of the surrounding Results VTW04 study details, namely in terms of oxide, V 2 O 5: 35~45wt% , BaO: 10~20wt%, TeO 2: 20~30wt%, WO 3: 5~15wt% , P 2 O 5 : The characteristic temperature of the glass adjusted to the range of 0 to 5 wt% is low, and is particularly effective for sealing applications at a low temperature of 450 ° C. or less.
Explain the next test.

図4に記載のVBWのシリーズガラスは、VTWシリーズのガラスの中で最も封着用途に優れた特性を有するVTW04の組成近傍を詳細に検討したシリーズである。VBW01〜07はV25:30〜45wt%、BaO:15〜30wt%、TeO2:20〜35wt%、WO3:5〜20wt%、ZnO:0〜10wt%に調製したガラスサンプルを意味する。上記と同様の検討の結果、VBWシリーズの中ではVBW03が最も優れていることが示された。 The VBW series glass described in FIG. 4 is a series in which the vicinity of the composition of VTW04, which has the most excellent properties for sealing applications among the VTW series glasses, is examined in detail. VBW01~07 the V 2 O 5: 30~45wt%, BaO: 15~30wt%, TeO 2: 20~35wt%, WO 3: 5~20wt%, ZnO: means glass sample prepared in 0-10 wt% To do. As a result of the examination similar to the above, it was shown that VBW03 is the best in the VBW series.

本実施例で用いた被封着材であるソーダライムガラスの熱膨張係数は約85×10-7/℃であるため、図4の接合ガラスの熱膨張係数を低下させなければならない。本実施例では、図4中のガラスの代表として、VBW03を用い、低膨張フィラーとして、Zr2(WO4)(PO4)2(以下、ZWPと称する)を用いた。ZWPの熱膨張係数は−32×10-7/℃である。 Since the thermal expansion coefficient of soda lime glass, which is the sealing material used in this example, is about 85 × 10 −7 / ° C., the thermal expansion coefficient of the bonding glass of FIG. 4 must be lowered. In this example, VBW03 was used as a representative glass in FIG. 4, and Zr 2 (WO 4 ) (PO 4 ) 2 (hereinafter referred to as ZWP) was used as a low expansion filler. The thermal expansion coefficient of ZWP is −32 × 10 −7 / ° C.

図6は、ZWPフィラー混合量と熱膨張係数の関係を示す図である。接合ガラス母材がVBW03の場合、ZWPフィラーは30wt%程度混合することで、接合用途に適した熱膨張係数に調整することができる。   FIG. 6 is a diagram showing the relationship between the ZWP filler mixing amount and the thermal expansion coefficient. When the bonding glass base material is VBW03, the thermal expansion coefficient suitable for the bonding application can be adjusted by mixing about 30 wt% of the ZWP filler.

また、V25- TeO2- WO3- P25系および、V25- TeO2- WO3-ZnO系無鉛ガラスを、失透させることなく、熱膨張係数や流動特性を調整するために推奨される添加物としては,MgO、La23、Nb23、Sb23が挙げられる。 In addition, the V 2 O 5 -TeO 2 -WO 3 -P 2 O 5 system and the V 2 O 5 -TeO 2 -WO 3 -ZnO system lead-free glass have the thermal expansion coefficient and flow characteristics without devitrification. Additives recommended for adjustment include MgO, La 2 O 3 , Nb 2 O 3 and Sb 2 O 3 .

様々な粒子径のフィラーを用い、VBW03に混合し、同様のボタンフロー試験を行った。図7は、混合したフィラーの合計表面積と、420℃における流動径の相関を示す図である。この結果は、フィラーの粒子径が大きく、混合量が少ないほど、フリットの流動性は良好であることを示す。   The same button flow test was conducted using VBW03 mixed with fillers having various particle sizes. FIG. 7 is a diagram showing the correlation between the total surface area of the mixed fillers and the flow diameter at 420 ° C. This result shows that the fluidity of the frit is better as the particle size of the filler is larger and the mixing amount is smaller.

このボタンフロー試験の結果、本実施例の平板型ディスプレイの真空容器封着形成のための接合には、VBW03+30wt%ZWPのフリットを用いた。   As a result of the button flow test, a VBW03 + 30 wt% ZWP frit was used for bonding for forming a vacuum vessel seal of the flat panel display of this example.

図8は、VBW03+30wt%ZWPのフリットを用いて接合した接合ガラス評価試験片の説明図である。また、図9は、図8の接合ガラス評価試験片を用いた強度評価の説明図である。図8に示したように、接合ガラス評価試験片は、図8に示したサイズ(幅w1,w2、高さh1,h2、厚みd1,d2)の第1の部品100と第2の部品200を本発明の接合ガラスFでT字形に接合して構成する。T字形の接合寸法は図示したとおりである。w1=25mm,w2=15mm、h1=50mm,h2=20mm、厚みd1=2.8mm,d2=2.8mmである。   FIG. 8 is an explanatory diagram of a bonded glass evaluation test piece bonded using a VBW03 + 30 wt% ZWP frit. Moreover, FIG. 9 is explanatory drawing of intensity | strength evaluation using the bonding glass evaluation test piece of FIG. As shown in FIG. 8, the bonded glass evaluation test piece includes the first part 100 and the second part 200 having the sizes (widths w1, w2, heights h1, h2, and thicknesses d1, d2) shown in FIG. Are formed in a T shape with the bonding glass F of the present invention. The T-shaped joint dimensions are as shown. w1 = 25 mm, w2 = 15 mm, h1 = 50 mm, h2 = 20 mm, thickness d1 = 2.8 mm, d2 = 2.8 mm.

図9に示したように、図8で説明した図9(a)の接合ガラス評価試験片の第1の部品100の一端を図9(b)の試料固定冶具300の溝350に挿入する。図9(c)に示したように、第1の部品100はねじ穴320にねじ310をねじ込んで固定する。試料固定冶具300を固定台400に固定する。図9(c)の(c−1)は上面図、図9(c)の(c−2)は側面図である。   As shown in FIG. 9, one end of the first component 100 of the bonded glass evaluation test piece of FIG. 9A described in FIG. 8 is inserted into the groove 350 of the sample fixing jig 300 of FIG. 9B. As shown in FIG. 9C, the first component 100 is fixed by screwing a screw 310 into the screw hole 320. The sample fixing jig 300 is fixed to the fixing table 400. 9C is a top view, and FIG. 9C is a side view.

このようにして冶具に固定した接合ガラス評価試験片に対し、図9(a)および図9(c)に示したように、第2の部品200に押圧具500を押し当て、荷重Wを加える。この荷重Wを徐々に増加して行き、VBW03+30wt%ZWP接合ガラスFによる接合部が破断した時点での荷重Wを計測する。   As shown in FIG. 9A and FIG. 9C, the pressing tool 500 is pressed against the second component 200 and the load W is applied to the bonded glass evaluation test piece fixed to the jig in this manner. . The load W is gradually increased, and the load W at the time when the bonded portion by the VBW03 + 30 wt% ZWP bonded glass F breaks is measured.

計測の結果、380℃〜450℃の接合温度で作製した試験片の接合強度は30〜60MPaとなり、以上の接合ガラス評価でVBW03+30wt%ZWP接合ガラスを用いたものでは、平板型ディスプレイ装置の真空容器を構成して長期間これを維持するのに十分な強度が得られた。また、無鉛ガラスであるため、接合ガラスの下層に配線があっても、当該配線を腐食させることがなく、また絶縁層や配線にクラックを発生させたり、気泡を生じさせることが少なく、極めて有効な封止材料である。   As a result of the measurement, the bonding strength of the test piece prepared at a bonding temperature of 380 ° C. to 450 ° C. is 30 to 60 MPa, and in the above bonding glass evaluation, the VBW03 + 30 wt% ZWP bonding glass is used. A sufficient strength to form and maintain this for a long time was obtained. In addition, because it is lead-free glass, even if there is a wiring in the lower layer of the bonding glass, it does not corrode the wiring, and it does not cause cracks or bubbles in the insulating layer or wiring and is extremely effective. It is a good sealing material.

その他のVTWシリーズ、VBWシリーズに関して同様の接合強度試験を行った結果、熱膨張係数を調整することにより、VBW03+30wt%ZWPと同等の接合強度値が得られた。   As a result of performing the same bonding strength test on the other VTW series and VBW series, a bonding strength value equivalent to VBW03 + 30 wt% ZWP was obtained by adjusting the thermal expansion coefficient.

この実施例では、電子源にMIMを用いた構造を例としたが、本発明はこれに限定され
るものではなく、前記した各種の電子源を用いた平面方ディスプレイ装置に対しても同様
に適用できる。
In this embodiment, the structure using the MIM as the electron source is taken as an example, but the present invention is not limited to this, and the same applies to the flat display device using the various electron sources described above. Applicable.

本発明の平板型ディスプレイ装置の構成を主として説明する模式平面図である。It is a schematic plan view which mainly demonstrates the structure of the flat type display apparatus of this invention. 図1に示した平板型ディスプレイ装置の全体構造例をより具体的に示す斜視図である。FIG. 2 is a perspective view more specifically showing an example of the overall structure of the flat panel display device shown in FIG. 1. 図2のA−A'断面図を示す図である。It is a figure which shows the AA 'cross section figure of FIG. 25- TeO2- WO3- P25系および、V25- TeO2- WO3-ZnO系封着用ガラスの組成及び特性表を説明する図である。 V 2 O 5 - TeO 2 - WO 3 - P 2 O 5 system and, V 2 O 5 - TeO 2 - is a diagram illustrating the composition and properties Table of WO 3 -ZnO system sealing glass. 所謂ボタンフロー試験の温度プロファイルの説明図である。It is explanatory drawing of the temperature profile of what is called a button flow test. VBW03にZWPフィラーを混合したフリットの特性表を説明する図である。It is a figure explaining the characteristic table of the frit which mixed ZWP filler with VBW03. フィラー表面積と流動径の関係を示す図である。It is a figure which shows the relationship between a filler surface area and a flow diameter. フリットガラスを用いて接合した接合ガラス評価試験片の説明図である。It is explanatory drawing of the joining glass evaluation test piece joined using frit glass. 図8の接合ガラス評価試験片を用いた強度評価の説明図である。It is explanatory drawing of intensity | strength evaluation using the joining glass evaluation test piece of FIG.

符号の説明Explanation of symbols

SUB1・・・背面基板、SUB2・・・前面基板、s(s1,s2,・・・sm)・・・走査信号配線、d(d1,d2,d3,・・・)・・・画像信号配線、ELS・・・電子源、ELC・・・接続電極、AD・・・陽極、BM・・・ブラックマトリクス、PH(PH(R), PH(G), PH(B))・・・蛍光体層、SDR・・・走査信号線駆動回路、DDR・・・画像信号線駆動回路。

SUB1... Rear substrate, SUB2... Front substrate, s (s1, s2,... Sm)... Scanning signal wiring, d (d1, d2, d3...). ELS: Electron source, ELC: Connection electrode, AD: Anode, BM: Black matrix, PH (PH (R), PH (G), PH (B)) ... Phosphor Layer, SDR... Scanning signal line drive circuit, DDR... Image signal line drive circuit.

Claims (14)

酸化物換算で、V25:25〜50wt%、BaO:5〜30wt%、TeO2:20〜40wt%、WO3:1〜25wt%、P25:0〜20wt%を含有する接合用ガラス。 In terms of oxide, V 2 O 5: 25~50wt% , BaO: 5~30wt%, TeO 2: 20~40wt%, WO 3: 1~25wt%, P 2 O 5: containing 0 to 20 wt% Bonding glass. 酸化物換算で、V25:35〜45wt%、BaO:10〜20wt%、TeO2:20〜30wt%、WO3:5〜15wt%、P25:0〜5wt%を含有する接合用ガラス。 In terms of oxide, V 2 O 5: 35~45wt% , BaO: 10~20wt%, TeO 2: 20~30wt%, WO 3: 5~15wt%, P 2 O 5: containing 0-5 wt% Bonding glass. 酸化物換算で、V25:35〜45wt%、BaO:5〜20wt%、TeO2:20〜35wt%、WO3:1〜15wt%、ZnO:1〜10wt%、Sb23:1〜10wt%を含有する接合用ガラス。 In terms of oxide, V 2 O 5: 35~45wt% , BaO: 5~20wt%, TeO 2: 20~35wt%, WO 3: 1~15wt%, ZnO: 1~10wt%, Sb 2 O 3: Bonding glass containing 1 to 10 wt%. 酸化物換算で、SrO、GeO2、La23、Cr23、Nb25、Y23、MgO、CeO2、ErO2より選ばれた化合物を0.5〜10wt%含有することを特徴とする請求項1乃至3の何れかに記載の接合用ガラス。 In terms of oxide, SrO, 0.5-10% containing GeO 2, La 2 O 3, Cr 2 O 3, Nb 2 O 5, Y 2 O 3, MgO, a compound selected from CeO 2, ErO 2 The bonding glass according to any one of claims 1 to 3, wherein セラミックスフィラー材を5〜30体積%含有することを特徴とする請求項1乃至4の何れかに記載の接合用ガラス。   The glass for bonding according to any one of claims 1 to 4, comprising 5 to 30% by volume of a ceramic filler material. 前記セラミックスフィラー材が、SiO2,ZrO2,Al23、ZrSiO4、リン酸ジルコニウム系化合物((ZrO)227、(ZrO)227 Ca0.5Zr2(PO4)3、Zr2(WO4)(PO4)2)、コージェライト、ムライト、ユークリプタイトの何れかまたはそれらの2以上の混合物であることを特徴とする請求項5に記載の接合用ガラス。 The ceramic filler material is SiO 2 , ZrO 2 , Al 2 O 3 , ZrSiO 4 , zirconium phosphate-based compound ((ZrO) 2 P 2 O 7 , (ZrO) 2 P 2 O 7 Ca 0.5 Zr 2 (PO 4 ) 3 , Zr 2 (WO 4 ) (PO 4 ) 2 ), cordierite, mullite, eucryptite, or a mixture of two or more thereof. . 内面に電子源アレイを備えた背面基板と、
内面に前記電子源アレイに対応した配列を有する蛍光体パターンと加速電極とを備えて、その外面を表示面とする前面基板とからなり、
前記背面基板と前記前面基板の各内面を対向させて両基板の周縁に有する封止部に接合用ガラスを介在させて封着してなる真空容器を有する平板型ディスプレイ装置であって、
少なくとも前記背面基板の1つの端面に、前記電子源アレイに接続して当該端縁に引き出された金属膜からなる配線を形成した配線領域を有し、
前記封止部は、前記背面基板に有する前記配線領域を含んでおり、
前記接合用ガラスが、酸化物換算で、V25:25〜50wt%、BaO:5〜30wt%、TeO2:20〜40wt%、WO3:1〜25wt%、P25:0〜20wt%を含有することを特徴とする平板型ディスプレイ装置。
A back substrate having an electron source array on its inner surface;
Comprising a phosphor pattern having an arrangement corresponding to the electron source array on the inner surface and an acceleration electrode, and a front substrate having the outer surface as a display surface;
A flat panel display device having a vacuum container that is formed by sealing each of the inner surfaces of the back substrate and the front substrate with a bonding glass interposed in a sealing portion at the periphery of both substrates,
At least one end surface of the back substrate has a wiring region formed with a wiring made of a metal film connected to the electron source array and drawn to the edge;
The sealing portion includes the wiring region included in the back substrate,
The bonding glass, in terms of oxide, V 2 O 5: 25~50wt% , BaO: 5~30wt%, TeO 2: 20~40wt%, WO 3: 1~25wt%, P 2 O 5: 0 A flat panel display device containing ˜20 wt%.
内面に電子源アレイを備えた背面基板と、
内面に前記電子源アレイに対応した配列を有する蛍光体パターンと加速電極とを備えて、その外面を表示面とする前面基板とからなり、
前記背面基板と前記前面基板の各内面を対向させて両基板の周縁に有する封止部に接合用ガラスを介在させて封着してなる真空容器を有する平板型ディスプレイ装置であって、
少なくとも前記背面基板の1つの端面に、前記電子源アレイに接続して当該端縁に引き出された金属膜からなる配線を形成した配線領域を有し、
前記封止部は、前記背面基板に有する前記配線領域を含んでおり、
前記接合用ガラスが、酸化物換算で、V25:35〜45wt%、BaO:5〜20wt%、TeO2:20〜35wt%、WO3:1〜15wt%、ZnO:1〜10wt%、Sb23:1〜10wt%を含有することを特徴とする平板型ディスプレイ装置。
A back substrate having an electron source array on its inner surface;
Comprising a phosphor pattern having an arrangement corresponding to the electron source array on the inner surface and an acceleration electrode, and a front substrate having the outer surface as a display surface;
A flat panel display device having a vacuum container that is formed by sealing each of the inner surfaces of the back substrate and the front substrate with a bonding glass interposed in a sealing portion at the periphery of both substrates,
At least one end surface of the back substrate has a wiring region formed with a wiring made of a metal film connected to the electron source array and drawn to the edge;
The sealing portion includes the wiring region included in the back substrate,
The bonding glass, in terms of oxide, V 2 O 5: 35~45wt% , BaO: 5~20wt%, TeO 2: 20~35wt%, WO 3: 1~15wt%, ZnO: 1~10wt% , Sb 2 O 3 : 1 to 10 wt%, A flat panel display device.
前記接合用ガラスに、酸化物換算で、SrO、GeO2、La2O3、Cr23、Nb25、Y23、MgO、CeO2、ErO2より選ばれた化合物を0.5〜10wt%含有することを特徴とする請求項7または8に記載の平板型ディスプレイ装置。 A compound selected from SrO, GeO 2 , La 2 O 3, Cr 2 O 3 , Nb 2 O 5 , Y 2 O 3 , MgO, CeO 2 and ErO 2 in terms of oxide is added to the bonding glass in an amount of 0.00. The flat display device according to claim 7 or 8, characterized by containing 5 to 10 wt%. 前記接合用ガラスに、セラミックスフィラー材を5〜30体積%含有することを特徴とする請求項7乃至9の何れかに記載の平板型ディスプレイ装置。   The flat panel display device according to claim 7, wherein the bonding glass contains a ceramic filler material in an amount of 5 to 30% by volume. 前記セラミックスフィラー材が、SiO2,ZrO2,Al23、ZrSiO4、リン酸ジルコニウム系化合物((ZrO)227、(ZrO)227 Ca0.5Zr2(PO4)3、Zr2(WO4)(PO4)2)、コージェライト、ムライト、ユークリプタイトの何れかまたはそれらの2以上の混合物であることを特徴とする請求項10に記載の平板型ディスプレイ装置。 The ceramic filler material is SiO 2 , ZrO 2 , Al 2 O 3 , ZrSiO 4 , zirconium phosphate-based compound ((ZrO) 2 P 2 O 7 , (ZrO) 2 P 2 O 7 Ca 0.5 Zr 2 (PO 4 11. The flat panel display according to claim 10, wherein the flat panel display is any one of a cordierite, a mullite, a eucryptite, or a mixture of two or more thereof, 3 , Zr 2 (WO 4 ) (PO 4 ) 2 ). apparatus. 前記背面基板が平坦で、前記前面基板の周縁に縁枠を一体的に有し、該縁枠の端面と前記背面基板とを前記接合用ガラスで封止されていることを特徴とする請求項7乃至10の何れかに記載の平板型ディスプレイ装置。   The back substrate is flat, has an edge frame integrally on a peripheral edge of the front substrate, and an end surface of the edge frame and the back substrate are sealed with the bonding glass. The flat panel display device according to any one of 7 to 10. 前記背面基板と前記前面基板の各周縁に、当該背面基板および前面基板とは別体の枠ガラスを有し、前記背面基板と前記前面基板および前記枠ガラスとの間を前記接合用ガラスで封止されていることを特徴とする請求項7乃至10の何れかに記載の平板型ディスプレイ装置。   A frame glass separate from the rear substrate and the front substrate is provided at each peripheral edge of the rear substrate and the front substrate, and the gap between the rear substrate, the front substrate and the frame glass is sealed with the bonding glass. 11. The flat panel display device according to claim 7, wherein the flat panel display device is stopped. 前記背面基板と前記前面基板を封止して形成された真空容器の内部に、当該背面基板と前面基板の間隙を保持するためのスペーサを有し、該スペーサと前記背面基板と前記前面基板とを前記接合用ガラスで封止することを特徴とする請求項7乃至10の何れかに記載の平板型ディスプレイ装置。

Inside the vacuum vessel formed by sealing the back substrate and the front substrate, there is a spacer for holding a gap between the back substrate and the front substrate, the spacer, the back substrate, and the front substrate, The flat panel display device according to claim 7, wherein the flat panel display device is sealed with the bonding glass.

JP2006001303A 2006-01-06 2006-01-06 Bonding glass and flat panel display device using the bonding glass Expired - Fee Related JP5011481B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006001303A JP5011481B2 (en) 2006-01-06 2006-01-06 Bonding glass and flat panel display device using the bonding glass
US11/620,107 US8022000B2 (en) 2006-01-06 2007-01-05 Display device and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006001303A JP5011481B2 (en) 2006-01-06 2006-01-06 Bonding glass and flat panel display device using the bonding glass

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012023644A Division JP5519715B2 (en) 2012-02-07 2012-02-07 Lead-free glass for bonding and flat panel display device using the lead-free glass for bonding

Publications (2)

Publication Number Publication Date
JP2007182347A true JP2007182347A (en) 2007-07-19
JP5011481B2 JP5011481B2 (en) 2012-08-29

Family

ID=38338743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006001303A Expired - Fee Related JP5011481B2 (en) 2006-01-06 2006-01-06 Bonding glass and flat panel display device using the bonding glass

Country Status (1)

Country Link
JP (1) JP5011481B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320822A (en) * 2006-06-02 2007-12-13 Hitachi Ltd Glass sealing material, frame glass for flat-panel type display device, and flat-panel type display device
JP2007320823A (en) * 2006-06-02 2007-12-13 Hitachi Ltd Conductive member and method for producing the same, image display device, and glass spacer
JP2009209032A (en) * 2008-02-08 2009-09-17 Hitachi Powdered Metals Co Ltd Glass composition
JP2009221047A (en) * 2008-03-17 2009-10-01 Nippon Electric Glass Co Ltd Vanadium-based glass composition and vanadium-based material
JP2009221048A (en) * 2008-03-17 2009-10-01 Nippon Electric Glass Co Ltd Vanadium-based glass composition and vanadium-based material
JP2009221049A (en) * 2008-03-17 2009-10-01 Nippon Electric Glass Co Ltd Sealing material
JP2010006638A (en) * 2008-06-27 2010-01-14 Hitachi Powdered Metals Co Ltd Lead-free low-temperature glass frit, lead-free low-temperature glass frit paste material using it, image display device, and ic ceramic package
JP2010184852A (en) * 2009-01-16 2010-08-26 Hitachi Powdered Metals Co Ltd Low melting point glass composition, low-temperature sealing material using the same, and electronic component
WO2011108115A1 (en) * 2010-03-05 2011-09-09 ヤマト電子株式会社 Lead-free glass material for organic-el sealing, organic el display formed using same, and process for producing the display
KR20120007497A (en) 2009-03-27 2012-01-20 히다치 훈마츠 야킨 가부시키가이샤 Glass composition and covering and sealing members using same
JP2012106891A (en) * 2010-11-18 2012-06-07 Asahi Glass Co Ltd Lead-free glass for sealing, sealing material and sealing material paste
JP2013155059A (en) * 2012-01-27 2013-08-15 Nippon Electric Glass Co Ltd Glass composition for dye-sensitized solar cell and material for the dye-sensitized solar cell
KR101298970B1 (en) 2013-03-12 2013-08-22 주식회사 파티클로지 Low melting temperature glass frit composition for laser sealing, low melting temperature glass frit using the same and sealing method of amoled using the low melting temperature glass frit
JP2014509295A (en) * 2011-02-22 2014-04-17 ガーディアン・インダストリーズ・コーポレーション Frit material mainly composed of vanadium and method for producing the same
JP2014156369A (en) * 2013-02-15 2014-08-28 Hitachi Ltd Glass and manufacturing method thereof
WO2015029792A1 (en) * 2013-08-29 2015-03-05 セントラル硝子株式会社 Lead-free glass and sealing material
JP2015525190A (en) * 2012-05-31 2015-09-03 ガーディアン・インダストリーズ・コーポレーション Vacuum insulating glass (VIG) window unit with reduced seal height variation and method for manufacturing the same
JP2015163587A (en) * 2015-04-23 2015-09-10 旭硝子株式会社 Lead-free glass for sealing, sealing material and sealing material paste
WO2016051577A1 (en) 2014-10-02 2016-04-07 ヤマト電子株式会社 Vanadate glass material for use in sealing by local heating, flat display manufactured using same, and method for manufacturing said display
KR20170063924A (en) * 2014-10-01 2017-06-08 페로 게엠베하 420 Tellurate joining glass having processing temperatures 420C
TWI586623B (en) * 2015-01-15 2017-06-11 Central Glass Co Ltd Lead free glass and sealing material
US10087676B2 (en) 2011-02-22 2018-10-02 Guardian Glass, LLC Vanadium-based frit materials, and/or methods of making the same
US10858880B2 (en) 2011-02-22 2020-12-08 Guardian Glass, LLC Vanadium-based frit materials, binders, and/or solvents and/or methods of making the same
KR20210010628A (en) * 2012-07-30 2021-01-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Sealing structure and organic electroluminescence device
WO2021038906A1 (en) * 2019-08-30 2021-03-04 昭和電工マテリアルズ株式会社 Lead-free low-melting-point glass composition, and lead-free glass composite, lead-free glass paste, and seal structure containing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263478A (en) * 1993-03-03 1994-09-20 Iwaki Glass Kk Lead-free low melting point glass
JP2004250276A (en) * 2003-02-19 2004-09-09 Yamato Denshi Kk Lead-free low melting point glass for sealing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263478A (en) * 1993-03-03 1994-09-20 Iwaki Glass Kk Lead-free low melting point glass
JP2004250276A (en) * 2003-02-19 2004-09-09 Yamato Denshi Kk Lead-free low melting point glass for sealing

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320822A (en) * 2006-06-02 2007-12-13 Hitachi Ltd Glass sealing material, frame glass for flat-panel type display device, and flat-panel type display device
JP2007320823A (en) * 2006-06-02 2007-12-13 Hitachi Ltd Conductive member and method for producing the same, image display device, and glass spacer
JP2009209032A (en) * 2008-02-08 2009-09-17 Hitachi Powdered Metals Co Ltd Glass composition
US8367573B2 (en) 2008-02-08 2013-02-05 Hitachi Powdered Metals Co., Ltd. Glass composition and its applications
JP2009221047A (en) * 2008-03-17 2009-10-01 Nippon Electric Glass Co Ltd Vanadium-based glass composition and vanadium-based material
JP2009221048A (en) * 2008-03-17 2009-10-01 Nippon Electric Glass Co Ltd Vanadium-based glass composition and vanadium-based material
JP2009221049A (en) * 2008-03-17 2009-10-01 Nippon Electric Glass Co Ltd Sealing material
JP2010006638A (en) * 2008-06-27 2010-01-14 Hitachi Powdered Metals Co Ltd Lead-free low-temperature glass frit, lead-free low-temperature glass frit paste material using it, image display device, and ic ceramic package
JP2010184852A (en) * 2009-01-16 2010-08-26 Hitachi Powdered Metals Co Ltd Low melting point glass composition, low-temperature sealing material using the same, and electronic component
US8470723B2 (en) 2009-01-16 2013-06-25 Hitachi Powdered Metals Co., Ltd. Low softening point glass composition, bonding material using same and electronic parts
US8685872B2 (en) 2009-01-16 2014-04-01 Hitachi Chemical Co., Ltd. Low softening point glass composition, bonding material using same and electronic parts
US9048056B2 (en) 2009-03-27 2015-06-02 Hitachi Powdered Metals Co., Ltd. Glass composition and covering and sealing members using same
KR20120007497A (en) 2009-03-27 2012-01-20 히다치 훈마츠 야킨 가부시키가이샤 Glass composition and covering and sealing members using same
JP5713993B2 (en) * 2010-03-05 2015-05-07 ヤマト電子株式会社 Lead-free glass material for sealing organic EL, organic EL display using the same, and method for manufacturing the display
KR101626840B1 (en) * 2010-03-05 2016-06-02 야마토 덴시 가부시키가이샤 Lead-free glass material for organic-el sealing, and organic el display formed using same
KR20130025362A (en) * 2010-03-05 2013-03-11 주식회사 앰브로 Lead-free glass material for organic-el sealing, organic el display formed using same, and process for producing the display
WO2011108115A1 (en) * 2010-03-05 2011-09-09 ヤマト電子株式会社 Lead-free glass material for organic-el sealing, organic el display formed using same, and process for producing the display
US8766524B2 (en) 2010-03-05 2014-07-01 Yamato Electronic Co., Ltd. Lead-free glass material for organic-EL sealing, organic EL display formed using the same
JP2012106891A (en) * 2010-11-18 2012-06-07 Asahi Glass Co Ltd Lead-free glass for sealing, sealing material and sealing material paste
US9776910B2 (en) 2011-02-22 2017-10-03 Guardian Glass, LLC Vanadium-based frit materials, and/or methods of making the same
JP2014509295A (en) * 2011-02-22 2014-04-17 ガーディアン・インダストリーズ・コーポレーション Frit material mainly composed of vanadium and method for producing the same
US10858880B2 (en) 2011-02-22 2020-12-08 Guardian Glass, LLC Vanadium-based frit materials, binders, and/or solvents and/or methods of making the same
US10196299B2 (en) 2011-02-22 2019-02-05 Guardian Glass, LLC Vanadium-based frit materials, and/or methods of making the same
US10087676B2 (en) 2011-02-22 2018-10-02 Guardian Glass, LLC Vanadium-based frit materials, and/or methods of making the same
US11014847B2 (en) 2011-02-22 2021-05-25 Guardian Glass, LLC Vanadium-based frit materials, and/or methods of making the same
JP2013155059A (en) * 2012-01-27 2013-08-15 Nippon Electric Glass Co Ltd Glass composition for dye-sensitized solar cell and material for the dye-sensitized solar cell
KR20200056485A (en) * 2012-05-31 2020-05-22 가디언 인더스트리즈, 엘엘씨 Vacuum insulated glass (vig) window unit with reduced seal height variation and method for making same
US10435938B2 (en) 2012-05-31 2019-10-08 Guardian Glass, LLC Vacuum insulated glass (VIG) window unit with reduced seal height variation and method for making same
JP2015525190A (en) * 2012-05-31 2015-09-03 ガーディアン・インダストリーズ・コーポレーション Vacuum insulating glass (VIG) window unit with reduced seal height variation and method for manufacturing the same
KR102290308B1 (en) 2012-05-31 2021-08-17 가디언 인더스트리즈, 엘엘씨 Vacuum insulated glass (vig) window unit with reduced seal height variation and method for making same
KR102340772B1 (en) * 2012-07-30 2021-12-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Sealing structure and organic electroluminescence device
KR20210010628A (en) * 2012-07-30 2021-01-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Sealing structure and organic electroluminescence device
JP2014156369A (en) * 2013-02-15 2014-08-28 Hitachi Ltd Glass and manufacturing method thereof
KR101298970B1 (en) 2013-03-12 2013-08-22 주식회사 파티클로지 Low melting temperature glass frit composition for laser sealing, low melting temperature glass frit using the same and sealing method of amoled using the low melting temperature glass frit
US9815735B2 (en) 2013-08-29 2017-11-14 Central Glass Company, Limited Lead-free glass and sealing material
WO2015029792A1 (en) * 2013-08-29 2015-03-05 セントラル硝子株式会社 Lead-free glass and sealing material
JP2015063445A (en) * 2013-08-29 2015-04-09 セントラル硝子株式会社 Lead free glass and sealing material
KR20170063924A (en) * 2014-10-01 2017-06-08 페로 게엠베하 420 Tellurate joining glass having processing temperatures 420C
US10153389B2 (en) * 2014-10-01 2018-12-11 Ferro Gmbh Tellurate joining glass having processing temperatures less than or equal to 420° C
KR102005286B1 (en) * 2014-10-01 2019-07-30 페로 게엠베하 Tellurate joining glass having processing temperatures ≤ 420 °C
WO2016051577A1 (en) 2014-10-02 2016-04-07 ヤマト電子株式会社 Vanadate glass material for use in sealing by local heating, flat display manufactured using same, and method for manufacturing said display
US9988301B2 (en) 2014-10-02 2018-06-05 Yej Glass Co., Ltd. Vanadium-based glass material for local heat sealing, flat display using the same, and method for manufacturing the display
US10118856B2 (en) 2015-01-15 2018-11-06 Central Glass Company, Limited Lead-free glass and sealing material
TWI586623B (en) * 2015-01-15 2017-06-11 Central Glass Co Ltd Lead free glass and sealing material
JP2015163587A (en) * 2015-04-23 2015-09-10 旭硝子株式会社 Lead-free glass for sealing, sealing material and sealing material paste
WO2021038906A1 (en) * 2019-08-30 2021-03-04 昭和電工マテリアルズ株式会社 Lead-free low-melting-point glass composition, and lead-free glass composite, lead-free glass paste, and seal structure containing same
JP2021035894A (en) * 2019-08-30 2021-03-04 昭和電工マテリアルズ株式会社 Lead-free low-melting glass composition, and lead-free glass composite material, lead-free glass paste, and sealing structure containing the same

Also Published As

Publication number Publication date
JP5011481B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5011481B2 (en) Bonding glass and flat panel display device using the bonding glass
US8071183B2 (en) Display apparatus
US20060290261A1 (en) Bonding material
JP2007022853A (en) Electrically conductive bonding member, image display device provided with spacer bonded by using the electrically conductive bonding member
US8022000B2 (en) Display device and production method thereof
JP2006298691A (en) Flat-panel type image display device
JP2006083045A (en) Glass member
JP5519715B2 (en) Lead-free glass for bonding and flat panel display device using the lead-free glass for bonding
JP2006347840A (en) Electroconductive joining member and image display device having spacer joined by using the electroconductive joining member
JP3331428B2 (en) Sealing glass
JP5171050B2 (en) Image display device and glass frit for sealing
US7755269B2 (en) Spacer and image display panel using the same
JP2006083044A (en) Glass member
US20080048552A1 (en) Image display device
JP2007001831A (en) Spacer for image display device and image display device
JP2006347839A (en) Glass, electroconductive joining material, image display device having spacer joined by using the electroconductive joining material
JP2006202553A (en) Image display device and its manufacturing method
JP4684894B2 (en) Spacer and image display panel configured using the spacer
JP2006083043A (en) Glass material and its production method
JP2566155B2 (en) Flat panel image display
JP2007184146A (en) Glass composite material, spacer, and picture display device
JP2006164679A (en) Image display device
JP2006179341A (en) Self-luminous flat display device and its manufacturing method
JP2000090829A (en) Manufacture for image display device
JP2006083019A (en) Spacer for image display device and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110419

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120208

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees