JP2007181821A - Sludge treatment method and apparatus in water purification plant - Google Patents

Sludge treatment method and apparatus in water purification plant Download PDF

Info

Publication number
JP2007181821A
JP2007181821A JP2006332844A JP2006332844A JP2007181821A JP 2007181821 A JP2007181821 A JP 2007181821A JP 2006332844 A JP2006332844 A JP 2006332844A JP 2006332844 A JP2006332844 A JP 2006332844A JP 2007181821 A JP2007181821 A JP 2007181821A
Authority
JP
Japan
Prior art keywords
water
sludge
water purification
partition plate
purification facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006332844A
Other languages
Japanese (ja)
Inventor
Masaki Makino
昌己 牧野
Yujiro Ogura
雄次郎 小倉
Kenichi Ishihama
謙一 石濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kato Construction Co Ltd
Original Assignee
Kato Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kato Construction Co Ltd filed Critical Kato Construction Co Ltd
Priority to JP2006332844A priority Critical patent/JP2007181821A/en
Publication of JP2007181821A publication Critical patent/JP2007181821A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sludge treatment technology in a water purification plant which basically comprises bagging dehydration which is simple and free from a risk of secondary pollution. <P>SOLUTION: In a water purification plant mainly comprising a treatment tank 1, a settling tank 3 at a starting end, an intermediate tank 4, and a plurality of filter tanks 5 charged with a contact filter medium 9 are installed sequentially from the upstream side, and polluted water is purified while it flows toward the downstream side. A dehydration and volume reduction facility 10 based on the bagging dehydration is installed above the settling tank 3. Sludge M accumulated in the settling tank 3 is fed under pressure by a pump 13 to the dehydration and volume reduction facility 10, and then bagged to be dehydrated and volume-reduced. Generated sewage is returned to the settling tank 3 to be repurified. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、河川や湖沼の汚濁水あるいは産業排水等の水質浄化を目的とした水質浄化施設における汚泥の処理方法および処理装置に関し、特に汚濁物質の浄化後に残される汚泥の減容化を目的とした処理方法および処理装置に関するものである。   The present invention relates to a method and an apparatus for treating sludge in a water purification facility for the purpose of purifying polluted water in rivers and lakes or industrial wastewater, and in particular, for the purpose of reducing the volume of sludge left after purification of pollutants. The present invention relates to a processing method and a processing apparatus.

水質浄化施設の代表的なものである下水道終末処理場においては、発生した汚泥の減容化対策として、凝集沈殿法(懸濁している微粒子を凝集剤を用いて分離・沈降させる方法)により凝集させた汚泥を大型脱水機にかけ、減容化する方法が広く採用されている。   In sewerage sewage treatment plants, which are typical water purification facilities, agglomeration is performed by a coagulation sedimentation method (a method in which suspended fine particles are separated and settled using a coagulant) as a measure to reduce the volume of sludge generated. A method of reducing the volume by applying sludge to the large dehydrator is widely adopted.

その一方、河川や湖沼における水質浄化施設では、希に下水道終末処理場等と同様の凝集沈殿法を用いることもあるが、一般的には単位処理水当たりの汚濁負荷が小さい(おおよそ下水道処理場への流入水の1/100程度)ために発生汚泥量が少なく、凝集沈殿法では無駄も多くコスト高となるために、残留汚泥を自然濃縮させた上で最終処分場にて産業廃棄物として処分することが多い。つまり、河川や湖沼における水質浄化施設では、発生した汚泥をピットに一旦貯留して自然濃縮させ、例えば定期的にバキューム車等にて最終処分場まで運搬して産業廃棄物として処分している。   On the other hand, water purification facilities in rivers and lakes rarely use the same coagulation sedimentation method as sewage treatment plants, but generally the pollution load per unit treated water is small (approximately sewerage treatment plants). Since the amount of sludge generated is small and the coagulation sedimentation method is wasteful and expensive, the residual sludge is naturally concentrated and used as industrial waste at the final disposal site. Often disposed of. In other words, in water purification facilities in rivers and lakes, the generated sludge is temporarily stored in pits and naturally concentrated, and then periodically transported to a final disposal site by a vacuum vehicle or the like and disposed as industrial waste.

なお、河川や湖沼における水質浄化施設の汚泥処理技術ではないが、類似技術として例えば海底底質の浄化技術として特許文献1に記載の技術が、またヘドロの処理方法として特許文献2に記載の技術がそれぞれ提案されている。
特開2005−262174号公報 特公平6−77759号公報
Although it is not a sludge treatment technology for water purification facilities in rivers and lakes, for example, the technology described in Patent Literature 1 as a technology for purifying seabed sediments, and the technology described in Patent Literature 2 as a treatment method for sludge. Each has been proposed.
JP 2005-262174 A Japanese Patent Publication No. 6-77759

しかしながら、河川や湖沼における水質浄化施設では、発生した汚泥と水の単位質量がほぼ同等であることから、例えば処理施設の底層部に堆積した濃縮汚泥をバキューム車等により吸引した場合に、その汚泥濃度としては1〜2%(この時の単位堆積重量は1.0t/m3である)程度である。したがって、濃縮汚泥とはいうものの自然濃縮のままではその濃度に自ずと限界があり、汚泥を大量の水とともにバキューム車にて吸引して産業廃棄物として処理していることとなり、必然的に無駄が多くコスト高なものとなっていることから、さらなる汚泥の減容化対策が望まれている。 However, in water purification facilities in rivers and lakes, the unit mass of generated sludge and water is almost the same.For example, when concentrated sludge accumulated in the bottom layer of a treatment facility is sucked with a vacuum vehicle, the sludge The concentration is about 1 to 2% (unit deposition weight at this time is about 1.0 t / m 3 ). Therefore, even though it is concentrated sludge, its concentration naturally has its limit, and the sludge is sucked together with a large amount of water with a vacuum car and processed as industrial waste, which is inevitably wasteful. Because of the high cost, there is a demand for further sludge volume reduction measures.

また、特許文献1,2に記載の技術は、いずれもいわゆる袋詰め脱水を基本とした汚泥の減容化に関する技術ではあるが、二次的発生が不可避である脱水処理後の水の処理に十分な配慮がなされておらず、二次汚染が発生する可能性があり、さらなる改善の余地を残している。   In addition, the technologies described in Patent Documents 1 and 2 are all technologies related to volume reduction of sludge based on so-called bagging dehydration, but in the treatment of water after dehydration treatment, in which secondary generation is unavoidable. Not enough attention has been given to the possibility of cross-contamination, leaving room for further improvement.

本発明はこのような課題に着目してなされたものであり、比較的汚濁負荷の小さな河川や湖沼における水質浄化施設に好適な袋詰め脱水を基本とした汚泥の減容化技術を提供しようとするものであり、より具体的には簡易で且つ二次汚染の心配のない汚泥の処理方法および処理装置を提供しようとするものである。   The present invention has been made paying attention to such problems, and intends to provide a sludge volume reduction technology based on bagging and dewatering suitable for water purification facilities in rivers and lakes with relatively small pollution loads. More specifically, an object of the present invention is to provide a sludge treatment method and a treatment apparatus that are simple and free from worries about secondary contamination.

請求項1に記載の発明は、接触濾材を用いて汚濁水の水質浄化を図る水質浄化施設にて発生する汚泥の処理方法において、水質浄化施設に堆積する汚泥を織布または不織布製の濾過袋に投入してその汚泥に含まれる水を濾過袋より透過せしめ、透過させた水を水質浄化施設に戻して再浄化するとともに、濾過袋に投入した余剰汚泥量に対して水透過後の汚泥量を体積で40〜90%減容化させることを特徴とする。   The invention according to claim 1 is a treatment method of sludge generated in a water purification facility that purifies the quality of polluted water using a contact filter medium, wherein the sludge accumulated in the water purification facility is made of a woven or non-woven filter bag. The water contained in the sludge is permeated through the filtration bag, and the permeated water is returned to the water purification facility for re-purification. The volume is reduced by 40 to 90% by volume.

なお、上記接触濾材としては広く一般的に使用されているもので良く、例えば礫や紐状のものあるいはプラスチック系のものを用いる。また、浄化対象となる汚濁物質としては、BOD、COD、SS、窒素、リン等を想定していて、浄化施設にて発生する汚泥は主として有機質となるが、砂や泥等の無機質の汚泥も含まれることは言うまでもない。   In addition, as the said contact filter medium, what is generally used widely may be used, for example, a gravel, a string-like thing, or a plastic type thing is used. In addition, BOD, COD, SS, nitrogen, phosphorus, etc. are assumed as the pollutants to be purified, and sludge generated at the purification facility is mainly organic, but inorganic sludge such as sand and mud is also used. Needless to say, it is included.

この場合、上記濾過袋に投入した汚泥に含まれる水を濾過袋より透過させるに際し、請求項2に記載のように、汚泥を投入した濾過袋を吊り下げて、濾過袋に汚泥の重量を濾過圧として作用させることが、例えば濾過袋を寝かして自然放置する場合に比べて濾過効率もしくは脱水効率を高める上で有効であり、特に濾過袋の長手方向を縦方向にして吊り下げる場合には、濾過袋の長さをその直径よりも大きくするとその傾向が一段と顕著となる。   In this case, when allowing the water contained in the sludge charged into the filter bag to permeate through the filter bag, the sludge-filtered bag is suspended and the weight of the sludge is filtered in the filter bag as described in claim 2. Acting as a pressure is effective in increasing the filtration efficiency or dewatering efficiency compared to, for example, laying the filter bag and leaving it naturally, especially when the longitudinal direction of the filter bag is suspended vertically, When the length of the filter bag is made larger than its diameter, the tendency becomes more remarkable.

また、請求項3に記載のように、汚泥を投入した濾過袋を水質浄化施設の水面レベルよりも上位側に配置し、濾過袋を透過した水を自然流下にて水質浄化施設に戻すことが設備の簡易化の上で望ましい。   In addition, as described in claim 3, the filter bag filled with sludge is disposed at a higher level than the water surface level of the water purification facility, and the water that has permeated the filter bag is returned to the water purification facility under natural flow. It is desirable for simplification of equipment.

一方、汚濁物質の自然沈降を一段と促進する上では、流れの表層部の流速よりも濾材との接触部での流速を小さくし、さらに濾材との接触部のうちでも濾材底部に近い部分の流速を小さくすることが望ましく、例えば請求項4に記載のように、汚濁水が取り込まれる水質浄化施設の流入側から浄化水を外部に放流する放流側に向かって水路を形成し、その水路には水の流れをせき止めつつ底層部でのみ水を通過させる下部浸透仕切り板と同じく水の流れをせき止めつつ表層部のみで水を越流させる上部越流仕切り板とを流れ方向に交互に配置するとともに、それらの下部浸透仕切り板と上部越流仕切り板とで区画された空間内に接触濾材を装填することで接触水路部とする。その上で、上部越流仕切り板を水が越流する際の越流速が、接触水路部内で接触濾材に接触しながら通過する接触流速よりも大きくなるように設定する。   On the other hand, in order to further promote the natural sedimentation of pollutants, the flow velocity at the contact portion with the filter medium is made smaller than the flow velocity at the surface layer portion of the flow, and the flow velocity at the portion near the bottom of the filter medium in the contact portion with the filter medium. For example, as described in claim 4, a water channel is formed from the inflow side of the water purification facility into which the polluted water is taken toward the discharge side from which the purified water is discharged to the outside. In addition to the lower permeation partition plate that allows water to flow only at the bottom layer while blocking the flow of water, the upper overflow partition plate that blocks water flow and flows only at the surface layer while blocking water flow is alternately arranged in the flow direction. A contact water channel is formed by loading a contact filter medium into a space defined by the lower permeation partition plate and the upper overflow partition plate. In addition, the overflow speed when water overflows the upper overflow partition plate is set to be larger than the contact flow speed that passes while contacting the contact filter medium in the contact water channel.

請求項5に記載の発明は、請求項1に記載の技術を処理装置として捉えたものであって、接触濾材を用いて汚濁水の水質浄化を図る水質浄化施設にて発生する汚泥を処理する装置において、水質浄化施設に堆積する汚泥を織布または不織布製の濾過袋に投入してその汚泥に含まれる水を濾過袋より透過せしめる脱水手段を備えていて、透過させた水を水質浄化施設に戻して再浄化する一方で、濾過袋に投入した汚泥量に対して水透過後の汚泥量を体積で40〜90%減容化させるようにしたことを特徴とする。   The invention according to claim 5 captures the technology according to claim 1 as a treatment device, and treats sludge generated in a water purification facility that purifies the quality of polluted water using a contact filter medium. The apparatus is equipped with a dewatering means for allowing the sludge accumulated in the water purification facility to enter a woven or non-woven filter bag and permeate the water contained in the sludge from the filter bag. On the other hand, the amount of sludge after water permeation is reduced by 40 to 90% by volume with respect to the amount of sludge charged into the filter bag.

この場合、請求項2に記載の発明と同様の理由から、請求項6に記載のように、上記脱水手段では、濾過袋に投入した汚泥に含まれる水を濾過袋より透過させるに際し、汚泥を投入した濾過袋を吊り下げて、濾過袋に汚泥の重量を濾過圧として作用させることが望ましい。   In this case, for the same reason as the invention described in claim 2, as described in claim 6, in the dehydrating means, when the water contained in the sludge charged into the filter bag is permeated through the filter bag, the sludge is removed. It is desirable to suspend the input filter bag so that the sludge weight acts as a filter pressure on the filter bag.

また、請求項7に記載のように、上記脱水手段では、汚泥を投入した濾過袋を水質浄化施設の水面レベルよりも上位側に配置し、濾過袋を透過した水を自然流下にて水質浄化施設に戻すようになっていることが設備の簡易化の上で望ましい。   In addition, as described in claim 7, in the dewatering means, the filter bag into which the sludge has been placed is disposed higher than the water surface level of the water purification facility, and the water that has permeated through the filter bag is purified under natural flow. Returning to the facility is desirable in terms of simplifying the facility.

さらに、請求項4に記載の発明と同様の理由から、請求項8に記載のように、汚濁水が取り込まれる水質浄化施設の流入側から浄化水を外部に放流する放流側に向かって水路を形成し、その水路には水の流れをせき止めつつ底層部でのみ水を通過させる下部浸透仕切り板と同じく水の流れをせき止めつつ表層部のみで水を越流させる上部越流仕切り板とを流れ方向に交互に配置するとともに、それらの下部浸透仕切り板と上部越流仕切り板とで区画された空間内に接触濾材を装填することで接触水路部とする。その上で、上部越流仕切り板を水が越流する際の越流速が、接触水路部内で接触濾材に接触しながら通過する接触流速よりも大きくなるように設定するものとする。   Furthermore, for the same reason as that of the invention described in claim 4, as described in claim 8, a water channel is provided from the inflow side of the water purification facility into which the polluted water is taken toward the discharge side where the purified water is discharged to the outside. In the water channel, the lower permeation partition plate that allows water to flow only at the bottom layer while blocking the flow of water, and the upper overflow partition plate that allows water to flow only at the surface layer while blocking the flow of water. While being alternately arranged in the direction, a contact water channel is formed by loading a contact filter medium in a space defined by the lower permeation partition plate and the upper overflow partition plate. In addition, it is assumed that the overflow speed when water overflows the upper overflow partition plate is set to be larger than the contact flow speed that passes while contacting the contact filter medium in the contact water channel.

ここで、水質浄化施設での汚泥の回収を容易にするためには、請求項9に記載のように、接触水路部の少なくとも一部が下方へ汚泥の透過を許容する中間底を備えていることで二重底構造となっていて、中間底の下方空間に堆積した汚泥をポンプ等にて吸い上げて濾過袋に投入するようにしてあることが望ましい。   Here, in order to facilitate the collection of sludge in the water purification facility, as described in claim 9, at least a part of the contact water channel portion is provided with an intermediate bottom that allows sludge to permeate downward. Thus, it is desirable that the structure has a double bottom structure, and the sludge accumulated in the lower space of the intermediate bottom is sucked up by a pump or the like and put into the filter bag.

その場合に、請求項10に記載のように、中間底の下方空間が可動式の仕切り壁をもって流れ方向で複数の領域に仕切られているとともに、仕切り壁を開操作することによりそれらの複数の領域が互いに連通可能となっていることが汚泥の回収効率向上の上で望ましい。   In that case, as described in claim 10, the lower space of the intermediate bottom is partitioned into a plurality of regions in the flow direction with a movable partition wall, and the partition wall is opened to operate the plurality of the plurality of regions. It is desirable to improve the sludge recovery efficiency that the areas can communicate with each other.

したがって、少なくとも請求項1に記載の発明では、河川あるいは湖沼等の汚濁水の水質浄化を図る施設において、例えば水質浄化施設の上部にいわゆる袋詰め脱水方式を基本とした脱水部を設置し、水質浄化施設の底部に沈降,堆積した汚泥をポンプ等にて吸い上げて脱水部に圧送する一方、その脱水部において織布または不織布製の濾過袋に投入して、所定期間だけ自然放置する。これにより、袋詰めされた汚泥に含まれる水が濾過袋を透過し、汚泥の脱水処理が施される。そして、放置期間にも依存することになるものの、濾過袋内の汚泥は、当初濾過袋に投入した余剰汚泥量に対して所定の割合、例えば体積で40〜90%、望ましくは70%以上の減容化がなされる。こうして減容化された汚泥は、最終処分場まで運搬して産業廃棄物として処分するか、例えば緑農地等にて有効利用する。   Therefore, in the invention according to at least claim 1, in a facility for purifying polluted water such as a river or a lake, for example, a dewatering unit based on a so-called bagging dewatering system is installed at the upper part of the water purification facility, The sludge that settles and accumulates at the bottom of the purification facility is sucked up by a pump or the like and pumped to the dewatering unit. In the dewatering unit, the sludge is put into a filter bag made of woven fabric or non-woven fabric and left naturally for a predetermined period. Thereby, the water contained in the bagged sludge permeate | transmits a filtration bag, and the dehydration process of sludge is performed. And although it will also depend on a leaving period, the sludge in a filter bag is a predetermined ratio with respect to the amount of excess sludge initially thrown into the filter bag, for example, 40 to 90% by volume, Desirably 70% or more. Volume reduction is made. The sludge thus reduced in volume is transported to the final disposal site and disposed as industrial waste, or is effectively used in, for example, green farmland.

請求項1,5に記載の発明によれば、より簡単な設備で汚泥の減容化を図ることができ、コスト的に有利となるほか、濾過袋を透過した水は再度水質浄化施設に戻されて再浄化されるので、透過水による二次汚染も全く発生しないという効果がある。   According to the first and fifth aspects of the invention, the volume of sludge can be reduced with simpler equipment, which is advantageous in terms of cost, and the water that has passed through the filter bag is returned to the water purification facility again. Since it is purified again, there is an effect that no secondary contamination by permeate occurs.

請求項2,6に記載の発明によれば、濾過袋を吊り下げて汚泥に含まれる水の透過もしくは脱水を行うことで、濾過袋からの水の透過効率または袋詰めされた汚泥の脱水効率を一段と向上させることができる。   According to the second and sixth aspects of the present invention, the permeation efficiency of water from the filtration bag or the dewatering efficiency of the sludge packed in the bag is performed by suspending the filtration bag and performing permeation or dehydration of the water contained in the sludge. Can be further improved.

請求項3,7に記載の発明によれば、濾過袋を透過した水が自然流下にて水質浄化施設に戻されるため、透過水による二次汚染の心配が全くないだけでなく、透過水を水質浄化施設に戻すための設備をきわめて簡易化できる利点がある。   According to the third and seventh aspects of the present invention, the water that has permeated through the filter bag is returned to the water purification facility under natural flow, so there is no concern about secondary contamination by the permeated water. There is an advantage that the equipment for returning to the water purification facility can be greatly simplified.

請求項4,8に記載の発明によれば、下部浸透仕切り板と上部越流仕切り板とを併用した接触水路部とする一方で、その接触水路部にて接触濾材と接触する水の流れを表層部での流速よりも小さくしてあるため、接触濾材による汚濁物質の捕集ひいては汚泥の沈降,堆積を一段と促進できる利点がある。   According to invention of Claim 4, 8, while making it the contact water channel part which used the lower osmosis | permeation partition plate and the upper overflow partition plate together, the flow of the water which contacts a contact filter medium in the contact water channel part Since it is smaller than the flow velocity at the surface layer part, there is an advantage that the collection of the pollutant by the contact filter medium and the sedimentation and deposition of sludge can be further promoted.

請求項9に記載の発明によれば、中間底をもって接触水路部をいわゆる二重底構造としたことより、接触濾材の下側に汚泥が堆積することになるため、堆積した汚泥の回収を容易に行える利点がある。   According to the ninth aspect of the present invention, since the contact water channel portion has a so-called double bottom structure with an intermediate bottom, the sludge is deposited on the lower side of the contact filter medium, so that the accumulated sludge can be easily recovered. There is an advantage that can be done.

請求項10に記載の発明によれば、中間底の下方空間が可動式の仕切り壁をもって流れ方向で複数の領域に仕切られてはいても、仕切り壁を開操作することによりそれらの複数の領域が互いに連通可能となっているため、上記と同様に堆積した汚泥の回収を容易に行える利点がある。   According to the invention described in claim 10, even if the lower space of the intermediate bottom is partitioned into a plurality of regions in the flow direction with a movable partition wall, the plurality of regions can be opened by opening the partition wall. Since they can communicate with each other, there is an advantage that the accumulated sludge can be easily recovered in the same manner as described above.

図1,2は本発明のより具体的な第1の実施の形態として、河川の汚濁水の浄化を目的とした処理施設の一例を示す図である。   1 and 2 are diagrams showing an example of a treatment facility for purifying polluted water of a river as a more specific first embodiment of the present invention.

この処理施設は、河川Rの近くもしくは河川R内の一部に設置された処理槽1を主要素とするもので、処理槽1はその上面が地面とほぼ面一状態となるように埋設され、河川Rの上流側R1の汚濁水がポンプ2等にて汲み上げられて処理槽1の始端部に取り込まれる一方、処理槽1を通過することによって浄化された水が処理槽1の終端部から河川の下流側R2に放流されることになる。なお、処理槽1自体は強度に優れたコンクリート構造物や鉄鋼構造物にて構築することが望ましいが、例えば所定の地盤を掘削して槽状の空間を作り、そのなかに不透水性のシートを貼り込んで処理槽1としても良い。   This processing facility has a processing tank 1 installed near the river R or in a part of the river R as a main element, and the processing tank 1 is embedded so that the upper surface thereof is substantially flush with the ground. The contaminated water on the upstream side R1 of the river R is pumped up by the pump 2 or the like and taken into the start end of the treatment tank 1, while the water purified by passing through the treatment tank 1 is discharged from the end of the treatment tank 1. It will be discharged to the downstream side R2 of the river. In addition, although it is desirable to construct the treatment tank 1 itself with a concrete structure or steel structure having excellent strength, for example, a predetermined space is excavated to create a tank-like space, and an impermeable sheet therein May be used as the treatment tank 1.

処理槽1の始終両端部には、前処理あるいは後処理を目的として始端沈殿槽3と終端沈殿槽6がそれぞれ用意されているとともに、始端沈殿槽3に隣接して中間槽4が用意されていて、さらにその中間槽4と終端沈殿槽6との間には接触濾材による接触水路部として機能することになる複数の濾過槽5,5‥が並設されている。   At both ends of the treatment tank 1, a start precipitation tank 3 and a termination precipitation tank 6 are prepared for the purpose of pretreatment or post treatment, and an intermediate tank 4 is provided adjacent to the start precipitation tank 3. Further, between the intermediate tank 4 and the terminal settling tank 6, a plurality of filtration tanks 5, 5.

そして、河川Rから取り込んだ汚濁水を始端沈殿槽3に一時的に滞留させることで汚濁水に含まれる比較的比重の大きな汚濁物質の沈降,分離とその堆積を促進させ、その始端沈殿槽3をオーバーフローした水が隣接する中間槽4に流入することになる。中間槽4とその隣の濾過槽5は仕切り板7にて完全に仕切られており、中間槽4からポンプ8にて吸い上げられた汚濁水が最初の濾過槽(接触槽とも称す)5に流入することになる。   Then, the polluted water taken from the river R is temporarily retained in the starting sedimentation tank 3 to promote the sedimentation, separation and deposition of pollutants with relatively large specific gravity contained in the polluted water, and the starting sedimentation tank 3 The water that overflows flows into the adjacent intermediate tank 4. The intermediate tank 4 and the adjacent filter tank 5 are completely partitioned by a partition plate 7, and the polluted water sucked up by the pump 8 from the intermediate tank 4 flows into the first filter tank (also referred to as a contact tank) 5. Will do.

なお、中間槽4からポンプ8にて吸い上げられた汚濁水は計量槽50を通じて常時一定の流量で最初の濾過槽5に流入するようになっている。   The contaminated water sucked up by the pump 8 from the intermediate tank 4 flows into the first filtration tank 5 at a constant flow rate through the measuring tank 50 at all times.

中間槽4から終端沈殿槽6までの間では、後述する第3の実施の形態と同様に(図5,6参照)、流れ方向に沿って下部浸透仕切り板17と上部越流仕切り板16とが交互に配置されていて、これにより複数の濾過槽5,5‥に仕切られている。また、各濾過槽5,5‥には、例えば繊維質の紐状またはレース状の接触濾材9が密集するようにして吊り下げ支持されており、上記複数の濾過槽5,5‥をもっていわゆる接触水路部が形成されている。   Between the intermediate tank 4 and the terminal settling tank 6, as in the third embodiment described later (see FIGS. 5 and 6), the lower permeation partition plate 17 and the upper overflow partition plate 16 are arranged along the flow direction. Are alternately arranged, and are thereby partitioned into a plurality of filtration tanks 5, 5. Each of the filtration tanks 5, 5... Is suspended and supported so that, for example, fibrous string-like or lace-like contact filter media 9 are densely packed. A water channel is formed.

したがって、最初の濾過槽5に流入した汚濁水は下部浸透仕切り板17の下側の空間を通過して隣の濾過槽5に流入する一方、その隣の濾過槽5に流入した汚濁水は上部越流仕切り板16の上側を越流してさらに隣の濾過槽5に流入し、このような複数の濾過槽5,5‥間での下部浸透と上部越流を何回か繰り返すことにより、複数の濾過槽5,5‥からなる接触水路部では上下方向での汚濁水の緩やかな流れが生成されながら同時に上流側から下流側に向かう流れが生成され、その過程において、汚濁水に含まれる水中浮遊物や汚泥が接触濾材9に接触することで捕集されるとともに、汚濁水に含まれる溶解性の汚れが接触濾材9間を通過することにより接触濾材9の表面に付着育成する微生物に分解され、汚濁水の浄化が促進される。   Therefore, the contaminated water that has flowed into the first filtration tank 5 passes through the space below the lower permeation partition plate 17 and flows into the adjacent filtration tank 5, while the contaminated water that has flowed into the adjacent filtration tank 5 By overflowing the upper side of the overflow partition plate 16 and flowing into the adjacent filtration tank 5 and repeating the lower permeation and the upper overflow between the plurality of filtration tanks 5, 5. In the contact water channel portion consisting of the filtration tanks 5, 5..., A gentle flow of polluted water in the vertical direction is generated, and simultaneously a flow from the upstream side to the downstream side is generated. Floating matter and sludge are collected by contacting the contact filter medium 9, and soluble dirt contained in the contaminated water is decomposed into microorganisms that adhere to and grow on the surface of the contact filter medium 9 by passing between the contact filter media 9. And purification of polluted water is promoted.

この後、最終の濾過槽5から終端沈殿槽6へはオーバーフローするかたちで汚濁水が流入し、この終端沈殿槽6では始端沈殿槽3と同様に汚濁水を一時的に滞留させることでさらなる汚濁物質の沈降,分離とその堆積を一層促進させる。   Thereafter, the polluted water flows from the final filtration tank 5 to the final settling tank 6 in an overflowing manner, and the final settling tank 6 temporarily retains the polluted water in the same manner as the start settling tank 3 for further pollution. Further promote sedimentation, separation and deposition of materials.

そして、沈降した汚濁物質を終端沈殿槽6に残し、終端沈殿層6に一時的に滞留した上澄部分の浄化水がその終端沈殿槽6からオーバーフローするかたちで河川Rの下流側R2に放流されることになる。   Then, the settled pollutant is left in the terminal sedimentation tank 6 and the purified water of the supernatant portion temporarily retained in the terminal sedimentation layer 6 is discharged to the downstream side R2 of the river R in the form of overflowing from the terminal sedimentation tank 6. Will be.

ここで、始端沈殿槽3および終端沈殿槽6に堆積した汚泥Mは定期的に、例えば数日〜数週間毎に汲み上げて処分する必要がある。   Here, the sludge M accumulated in the starting sedimentation tank 3 and the final sedimentation tank 6 needs to be pumped up and disposed of regularly, for example, every few days to several weeks.

そこで、本実施の形態では、始端沈殿槽3の上に脱水手段として脱水減容化施設10を設置し、汚泥の廃棄処分等に先立って脱水減容化施設10にて脱水減容化処理を施すようにしてある。   Therefore, in the present embodiment, the dehydration and volume reduction facility 10 is installed on the starting sedimentation tank 3 as a dehydration means, and the dehydration and volume reduction processing is performed in the dehydration and volume reduction facility 10 prior to disposal of sludge and the like. It is supposed to be applied.

この脱水減容化施設10では、透水性のある例えばメッシュ状の床材12(始端沈殿槽3の上蓋を兼ねる)を有する処理ブース11を始端沈殿槽3の上に設置し、始端沈殿槽3および終端沈殿槽6に堆積した汚泥Mをポンプ13,14にて汲み上げて処理ブース11に圧送する一方、処理ブース11ではその汚泥Mを織布または不織布製の濾過袋15に投入した上で、例えば同図に示すように平置き式にて積み上げて放置する。これにより、袋詰めされた汚泥Mに含まれる水が濾過袋15を透過して、いわゆる袋詰め脱水方式にて汚泥Mの脱水処理が施されて減容化が促進される。同時に、濾過袋15を透過した水はそのまま床材12を透過してその下方の始端沈殿槽3に戻されて、再度水質浄化処理が施されることになる。ここでは、最終的に濾過袋15の中に残される汚泥Mの量が、体積で当初投入した汚泥量に対して40%〜90%、望ましくは70%以上減容化されるまで放置して、いわゆる袋詰め脱水処理による減容化を図るものとする。つまり、減容化後の汚泥の体積が濾過袋15に投入した汚泥の体積の10〜60%、望ましくは30%以下となる。   In the dehydration and volume reduction facility 10, a treatment booth 11 having a water-permeable mesh-like flooring 12 (also serving as the upper lid of the start-end settling tank 3) is installed on the start-end settling tank 3. The sludge M accumulated in the final settling tank 6 is pumped up by the pumps 13 and 14 and pumped to the processing booth 11. In the processing booth 11, the sludge M is put into a filter bag 15 made of woven or non-woven fabric. For example, as shown in FIG. Thereby, the water contained in the sludge M packed in the bag passes through the filter bag 15, and the sludge M is dehydrated by a so-called bag-packed dehydration method, thereby promoting volume reduction. At the same time, the water that has passed through the filter bag 15 passes through the floor material 12 as it is, is returned to the starting sedimentation tank 3 below, and is subjected to water purification treatment again. Here, the amount of sludge M finally left in the filter bag 15 is left until the volume is reduced by 40% to 90%, preferably 70% or more, with respect to the amount of sludge initially charged in volume. Therefore, the volume should be reduced by so-called bagging dehydration. That is, the volume of sludge after volume reduction is 10 to 60%, preferably 30% or less of the volume of sludge charged into the filter bag 15.

この場合、図1,2に示すように、濾過袋15を平置き式にて複数段にわたり積み重ねることにより、少なくとも下方の濾過袋15には上方側の濾過袋15の重量が濾過圧として作用することより、水の透過効率もしくは脱水効率が向上することになる。さらに、最上段の濾過袋15の上に別のウエイトを載せるようにしても良い。   In this case, as shown in FIGS. 1 and 2, the weight of the upper filtration bag 15 acts as a filtration pressure on at least the lower filtration bag 15 by stacking the filtration bags 15 in a flat manner over a plurality of stages. As a result, the water permeation efficiency or dewatering efficiency is improved. Furthermore, another weight may be placed on the uppermost filter bag 15.

なお、濾過袋15に投入される汚泥Mは、主に接触濾材9の表面に付着育成する微生物により分解された有機物であるが、砂や泥等の無機物を含んでいることは言うまでもなく、特に大雨あるいは洪水の際には、河川Rの上流側R1の汚濁水に含まれる砂や泥等の無機物が急激に増加し、汚泥Mに無機物が多量に含まれることとなる。   In addition, although the sludge M thrown into the filtration bag 15 is an organic substance decomposed | disassembled by the microorganisms which mainly adhere and grow on the surface of the contact filter medium 9, it cannot be overemphasized that it contains inorganic substances, such as sand and mud. In heavy rain or flood, inorganic substances such as sand and mud contained in the polluted water on the upstream side R1 of the river R increase rapidly, and the sludge M contains a large amount of inorganic substances.

織布または不織布製の濾過袋15としては、例えばポリプロピレン、ポリエステル(テトロン=登録商標)、ナイロン(登録商標)、ビニロン、アクリル、サラン、綿等の濾過布を縫い合わせたものを用いる。濾過布の厚さは例えば0.15mm〜4.0mm程度とし、透水係数として1ラ10-1〜1ラ10-4cm/secの範囲となるものを使用する。この濾過布を筒状に縫製した上、筒体の一端を紐等にて結束することで濾過袋15とし、汚泥Mを袋容積の5〜8割程度まで投入したならばその袋の開口部をしっかりと結束する。結束する方法としては、強靱な紐等で縛る方法のほか、機械式なチャックあるいはクランプを用いても良い。 As the filter bag 15 made of woven fabric or non-woven fabric, for example, a filter fabric such as polypropylene, polyester (Tetron = registered trademark), nylon (registered trademark), vinylon, acrylic, saran, cotton or the like is used. The thickness of the filter cloth is, for example, about 0.15 mm to 4.0 mm, and a water permeability coefficient in the range of 1 ra 10 −1 to 1 ra 10 −4 cm / sec is used. When this filter cloth is sewn into a cylindrical shape, one end of the cylinder is bound with a string or the like to form a filter bag 15, and if sludge M is charged to about 50 to 80% of the bag volume, the opening of the bag Tighten firmly. As a method of binding, in addition to a method of binding with a tough string or the like, a mechanical chuck or clamp may be used.

十分な水の透過もしくは脱水処理に要する時間は、汚泥Mの濃さや含まれる粒子の性状、濾過布の透水係数、濾過能力(濾過袋15を通じて汚泥に加わる力)等によって異なるが、通常は6時間〜10日程度で必要な減容度合いまで減容化することが可能である。   The time required for sufficient water permeation or dehydration depends on the concentration of the sludge M, the properties of the contained particles, the water permeability of the filter cloth, the filtration capacity (force applied to the sludge through the filter bag 15), etc. The volume can be reduced to the required volume reduction in about 10 days.

なお、一般的には、濾過布の透水係数は濾過布の目開きと厚さで決まることになるが、入手が容易な多くの濾過布の透水係数が1ラ10-1cm/sec以下であることから、対象となる汚泥Mに含まれる水の性状に応じて上記のように透水係数が1ラ10-1〜1ラ10-4cm/secの範囲となる濾過布を使用する。しかし、濾過布を水が透過する過程において、その透過水に含まれる粒子が濾過布に付着して時間経過とともに目詰まりを起こし、透過水量の減少とともに透過水(浸透水)の浮遊物質(SS分)含有量も減少することになる。これらの理由により、上記条件の組み合わせによっては透過所要時間が大きく異なることとなる。 In general, the permeability coefficient of the filter cloth is determined by the opening and thickness of the filter cloth, but the permeability coefficient of many easily available filter cloths is 1 ra 10 -1 cm / sec or less. Therefore, a filter cloth having a water permeability of 1 ra 10 -1 to 1 ra 10 -4 cm / sec as described above is used according to the properties of water contained in the target sludge M. However, in the process of water permeating through the filter cloth, the particles contained in the permeate adhere to the filter cloth, causing clogging over time, and as the amount of permeate decreases, suspended matter (SS) Min) Content will also decrease. For these reasons, the transmission time varies greatly depending on the combination of the above conditions.

ここで、濾過袋15に使用する濾過布の一例を表1に示す。また、脱水に伴う汚泥量の変化、すなわち汚泥量と放置時間との関係を図3に示す。   Here, an example of the filter cloth used for the filter bag 15 is shown in Table 1. FIG. 3 shows the change in the amount of sludge accompanying dewatering, that is, the relationship between the amount of sludge and the standing time.

Figure 2007181821
Figure 2007181821

なお、上記脱水減容化施設10において濾過袋15に汚泥Mを投入する際に、濁りを伴う水が浸出して例えばBOD等の再溶出が懸念されるが、先にも述べたように脱水減容化施設10で発生した水はそのまま下方の始端沈殿槽3に戻された上で、原水とともに一連の水質浄化プロセスを経ることで再浄化されることになるので、何ら問題はない。   In addition, when the sludge M is introduced into the filtration bag 15 in the dehydration and volume reducing facility 10, water with turbidity is leached and there is a concern about re-elution of BOD or the like. However, as described above, dehydration is performed. Since the water generated in the volume reduction facility 10 is returned to the starting sedimentation tank 3 below as it is and repurified through a series of water purification processes together with the raw water, there is no problem.

上記のような脱水減容化処理によりクリーム状または脱水ケーキ状となった汚泥Mは、濾過袋15から取り出して例えばダンプトラック等にて搭載して搬出するか、一次貯留可能なピットやコンテナに移し替えて貯留し、一定量になり次第、上記と同様の搬出処理を行う。また、使用済みの濾過袋15は繰り返し使用する。   The sludge M that has become a cream or dehydrated cake by the dehydration and volume reduction process as described above is taken out from the filter bag 15 and mounted on, for example, a dump truck, or carried out in a pit or container capable of primary storage. Transfer and store, as soon as it reaches a certain amount, carry out the same unloading process. The used filter bag 15 is repeatedly used.

なお、搬出されたクリーム状または脱水ケーキ状の汚泥Mは、セメント処理等の固化処理や天日乾燥等を行った後に盛土や埋め戻し材等として流用したり、特に有機物を多く含む場合には有機肥料土としての流用も可能である。   In addition, the creamy or dehydrated cake-like sludge M that has been carried out is diverted as embankment or backfilling material after solidifying treatment such as cement treatment or drying in the sun, or when it contains a lot of organic matter. Diversion as organic fertilizer soil is also possible.

このように本実施の形態によれば、水質浄化施設で発生した汚泥Mを実質的にその場にてきわめて簡単な設備で濾過もしくは脱水して減容化することができるほか、脱水によって発生した濾過水は再度水質浄化施設に戻されることになるので、濾過水による二次汚染の問題も全く生じないばかりでなく、脱水後の水処理設備も特に必要としないことになる。   As described above, according to the present embodiment, the sludge M generated in the water purification facility can be reduced in volume by being filtered or dehydrated by a very simple facility on the spot, and generated by dehydration. Since the filtered water is returned again to the water purification facility, not only does the problem of secondary contamination by filtered water not occur at all, but also water treatment equipment after dehydration is not particularly required.

図4は本発明の第2の実施の形態を示す図であり、先の第1の実施の形態では汚泥Mを詰めた濾過袋15を寝かせたいわゆる平置き状態にて袋詰め脱水を行うものであるのに対して、この第2の実施の形態では汚泥Mを詰めた濾過袋25を上部から吊り下げていわゆる吊り下げ方式にて袋詰め脱水を行うようにしたものである。なお、先の第1の実施の形態と共通する部分には同一符号を付してある。   FIG. 4 is a diagram showing a second embodiment of the present invention. In the first embodiment, bagging and dewatering is performed in a so-called flat state in which a filtration bag 15 filled with sludge M is laid. On the other hand, in the second embodiment, the filtration bag 25 filled with the sludge M is suspended from the upper part and the bag is dewatered by a so-called suspension method. In addition, the same code | symbol is attached | subjected to the part which is common in previous 1st Embodiment.

この第2の実施の形態では、図4に示すように、脱水減容化施設20を始端沈殿槽3よりも上流側にオフセットさせて配置する一方、処理ブース21における不透水性の床板22を始端沈殿槽3側に向かって下り勾配となるように傾斜させてある。そして、汚泥Mを詰めた濾過袋25をその長手方向が縦方向となるように処理ブース21内において上方から吊り下げ支持させて複数個並べ、それぞれの濾過袋25内の汚泥Mに含まれる水の透過もしくは脱水を行うものである。   In the second embodiment, as shown in FIG. 4, the dehydration and volume reduction facility 20 is arranged offset to the upstream side from the starting sedimentation tank 3, while the impermeable floor plate 22 in the processing booth 21 is provided. It is made to incline so that it may become a downward slope toward the start end sedimentation tank 3 side. A plurality of filtration bags 25 packed with sludge M are suspended and supported from above in the processing booth 21 so that the longitudinal direction thereof is the vertical direction, and water contained in the sludge M in each filtration bag 25 is arranged. Permeation or dehydration.

この第2の実施の形態によれば、濾過袋25同士が重なっておらず、しかも濾過袋25内の汚泥重量が濾過圧として濾過袋25自体に作用することで、水の濾過効率もしくは脱水効率が向上することになる。また、濾過袋25を透過した水は傾斜した床板22を自然流下にて伝い落ちて、第1の実施の形態と同様に始端沈殿槽3に戻されることになる。   According to the second embodiment, the filtration bags 25 do not overlap with each other, and the sludge weight in the filtration bags 25 acts on the filtration bag 25 itself as the filtration pressure, so that the water filtration efficiency or dewatering efficiency is achieved. Will be improved. Moreover, the water which permeate | transmitted the filtration bag 25 will flow along the inclined floor board 22 under natural flow, and will be returned to the start end sedimentation tank 3 similarly to 1st Embodiment.

これら第1,第2の実施の形態で共通しているのは、共に脱水減容化施設10または20を水質浄化施設の水面レベルよりも上位側に配置していることであり、先にも述べたように脱水後の汚水が自然流下にて始端沈殿槽3に戻されることから、脱水後の水処理設備を特に配慮する必要がなくなる。   What is common to these first and second embodiments is that both the dehydration and volume reduction facility 10 or 20 are arranged above the water level of the water purification facility. As described above, since the dewatered sewage is returned to the starting sedimentation tank 3 under natural flow, it is not necessary to pay special attention to the water treatment facility after dewatering.

図5,6は本発明の第3の実施の形態を示す図で、先の第1の実施の形態と共通する部分には同一符号を付してある。   FIGS. 5 and 6 are views showing a third embodiment of the present invention, in which the same reference numerals are given to the parts common to the first embodiment.

この第3の実施の形態においては、図1に示した始端沈殿槽3および終端沈殿槽6を有していない代わりに、処理槽31自体をいわゆる二重底構造とした点に特徴がある。   The third embodiment is characterized in that the treatment tank 31 itself has a so-called double bottom structure instead of having the start-end settling tank 3 and the terminal settling tank 6 shown in FIG.

図5,6に示すように、処理槽31の内部に、上端の高さ位置が共に等しい複数の上部越流仕切り板16と下部の開口高さ位置が共に等しい複数の下部浸透仕切り板17とを流れ方向に沿って交互に配置してある。上部越流仕切り板16はその下端が処理槽31の底面に着底している一方で、上端が処理槽31内の水面レベルよりも低く処理水内に没するように設定してある。これに対して、下部浸透仕切り板17はその下端が処理槽31の底面から浮上している一方で、上端が処理槽31内の水面レベルよりも高い位置となるように設定してある。これにより、処理槽31の内部は少なくとも上部越流仕切り板16によって複数の領域に仕切られているとともに、処理槽31の内部、より具体的には後述する中底板19よりも上方空間には、例えば礫等の接触濾材18が装填されていていわゆる接触水路部を形成している。その上で、処理槽31の流入側となる始端部上方に図1,2と同様の脱水減容化施設10を配置してある。   As shown in FIGS. 5 and 6, a plurality of upper overflow partition plates 16 having the same upper end height position and a plurality of lower infiltration partition plates 17 having the same lower opening height position are disposed inside the treatment tank 31. Are alternately arranged along the flow direction. The upper overflow partition plate 16 is set so that the lower end thereof is settled on the bottom surface of the treatment tank 31 while the upper end is submerged in the treated water lower than the water level in the treatment tank 31. On the other hand, the lower permeation partition plate 17 is set so that the lower end of the lower permeation partition plate 17 is lifted from the bottom surface of the treatment tank 31 and the upper end is higher than the water level in the treatment tank 31. Thereby, the inside of the processing tank 31 is partitioned into a plurality of regions by at least the upper overflow partition plate 16, and more specifically in the inside of the processing tank 31, more specifically in the space above the mid-sole plate 19 described later, For example, a contact filter medium 18 such as gravel is loaded to form a so-called contact water channel. In addition, a dehydration-reducing facility 10 similar to that shown in FIGS. 1 and 2 is disposed above the starting end portion on the inflow side of the treatment tank 31.

ここで、上記のように汚濁水の流れ方向に沿って複数の上部越流仕切り板16と下部浸透仕切り板17とをそれぞれ交互に配置することで、汚濁水の上流側から下流側に向かう流れとともに垂直方向の流れ(いわゆる鉛直方向での浸透流)を積極的に生成するようにしてある。これにより、上部越流仕切り板16を水が越流する際の越流速が、接触水路部たる処理槽31内で接触濾材18に接触しながら通過する接触流速よりも十分に大きくなるように設定してある。   Here, the flow from the upstream side to the downstream side of the polluted water by alternately arranging the plurality of upper overflow partition plates 16 and the lower infiltration partition plates 17 along the flow direction of the polluted water as described above. At the same time, a vertical flow (so-called vertical osmotic flow) is actively generated. Thereby, the overflow speed when water overflows the upper overflow partition plate 16 is set to be sufficiently larger than the contact flow speed that passes while contacting the contact filter medium 18 in the treatment tank 31 as the contact water channel. It is.

また、処理槽31の底部には、下部浸透仕切り板17の下端位置と高さを同じくする例えばグレーチングあるいはパンチングメタル等の多孔状の板材等のように剛性とともに透水性のある板材からなる中間底としての中底板19が流れ方向に沿って敷設されていて、これにより処理槽31自体がいわゆる二重底構造となっている。そして、この中底板19は処理槽31の内部に装填される接触濾材18の通過を阻止しつつ底部に沈降してきた汚泥Mの通過を許容する機能を有していて、中底板19よりも下側には汚泥Mを沈殿,堆積させるための流れ方向で独立した空間として複数の汚泥貯留部26が形成されている。   Further, an intermediate bottom made of a rigid and water-permeable plate material such as a porous plate material such as grating or punching metal having the same height as the lower end position of the lower infiltration partition plate 17 is provided at the bottom of the treatment tank 31. The bottom plate 19 is laid along the flow direction, so that the treatment tank 31 itself has a so-called double bottom structure. The inner bottom plate 19 has a function of permitting the passage of the sludge M that has settled at the bottom while preventing the passage of the contact filter medium 18 loaded in the treatment tank 31. On the side, a plurality of sludge storage portions 26 are formed as independent spaces in the flow direction for depositing and depositing sludge M.

先に述べた各下部浸透仕切り板17に隣接して汚泥観測孔を兼ねた作業筒体27を設けてあり、この作業筒体27の上端は処理槽31内の水面レベルよりも上方に突出している一方、作業筒体27の下端は中底板19よりも下方の汚泥貯留部26に臨ませてある。つまり、汚泥貯留部26はそれぞれに上流側と下流側の上部越流仕切り板16によって独立した空間として仕切られていることから、各汚泥貯留部26にそれぞれに作業筒体27が少なくとも一つ臨んでいることになる。そして、汚泥貯留部26に沈殿,堆積した汚泥Mは汚泥吸引手段であるポンプ28にて汲み上げられて、脱水減容化施設10に圧送されるようになっている。   A work cylinder 27 that also serves as a sludge observation hole is provided adjacent to each of the lower permeation partition plates 17 described above, and the upper end of the work cylinder 27 protrudes above the water level in the treatment tank 31. On the other hand, the lower end of the working cylinder 27 faces the sludge storage part 26 below the middle bottom plate 19. That is, since each sludge storage section 26 is partitioned as an independent space by the upstream and downstream upper overflow partition plates 16, at least one work cylinder 27 faces each sludge storage section 26. It will be out. The sludge M deposited and deposited in the sludge storage section 26 is pumped up by a pump 28 which is a sludge suction means and is pumped to the dehydration and volume reducing facility 10.

したがって、この第3の実施の形態によれば、処理槽31に取り込まれた汚濁水が各上部越流仕切り板16の上端での越流と各下部浸透仕切り板17の下部を浸透する際のいわゆる鉛直浸透流とを何回か繰り返すことにより、全体として処理槽31の上流側(流入側)から下流側(放流側)に向かう緩やかな流れが生成される。そして、汚濁水が接触濾材18を通過することによりその汚濁水に含まれる水中浮遊物や汚泥が接触濾材18にて捕集されて、特に質量が大きな汚泥Mは下方の汚泥貯留部26に沈殿,堆積することになる。   Therefore, according to the third embodiment, the polluted water taken into the treatment tank 31 permeates the overflow at the upper end of each upper overflow partition plate 16 and the lower portion of each lower penetration partition plate 17. By repeating the so-called vertical osmotic flow several times, a gentle flow from the upstream side (inflow side) to the downstream side (discharge side) of the treatment tank 31 is generated as a whole. Then, when the polluted water passes through the contact filter medium 18, suspended matters and sludge contained in the polluted water are collected by the contact filter medium 18, and particularly sludge M having a large mass is precipitated in the lower sludge reservoir 26. , Will be deposited.

また、汚濁水に含まれる溶解性の汚れ、すなわち濾過作用では除去できない溶解性の汚れについても汚濁水が接触濾材18間を通過することにより接触濾材18の表面に付着した微生物による有機物の分解作用により接触浄化される。これらの浄化プロセスの複合作用により、処理槽31の下流側ほど処理水が浄化されて、最終的には河川Rの下流側R1へと放流されることになる。   In addition, the soluble dirt contained in the contaminated water, that is, the soluble dirt that cannot be removed by the filtering action, decomposes the organic matter by microorganisms adhering to the surface of the contact filter medium 18 when the contaminated water passes between the contact filter media 18. Is cleaned by contact. By the combined action of these purification processes, the treated water is purified toward the downstream side of the treatment tank 31 and finally discharged to the downstream side R1 of the river R.

その一方、各下部浸透仕切り板17に隣接配置した作業筒体27から汚泥貯留部26に対していわゆる棒状のゲージを差し込むことにより、その感触または引き抜きによる目視をもって各汚泥貯留部26での汚泥Mの堆積状況を確認することができる。そして、汚泥貯留部26での汚泥Mの堆積が確認されたならば、汚泥吸引手段であるポンプ28に付帯している吸入側ホースを作業筒体27から汚泥貯留部26に挿入した上でポンプ28を起動する。このような作業を各汚泥貯留部26ごとに繰り返し行う。こうすることにより、汚泥貯留部26に堆積している汚泥Mを汲み上げて、効率良く脱水減容化施設10側に圧送することができる。なお、脱水減容化施設10側での汚泥の処理方法は、図1,2に示した第1の実施の形態のものと全く同様である。   On the other hand, by inserting a so-called bar-like gauge into the sludge reservoir 26 from the work cylinder 27 arranged adjacent to each lower permeation partition plate 17, the sludge M in each sludge reservoir 26 is visually felt or pulled out. It is possible to confirm the deposition status of And if accumulation of the sludge M in the sludge storage part 26 is confirmed, after inserting the suction side hose attached to the pump 28 which is a sludge suction means from the work cylinder 27 to the sludge storage part 26, a pump 28 is started. Such an operation is repeated for each sludge storage unit 26. By doing so, the sludge M accumulated in the sludge reservoir 26 can be pumped up and efficiently pumped to the dehydration and volume reducing facility 10 side. The sludge treatment method on the dehydration and volume reduction facility 10 side is exactly the same as that of the first embodiment shown in FIGS.

図7は本発明の第4の実施の形態を示す図で、先の第3の実施の形態では、汚泥を詰めた濾過袋15を寝かせたいわゆる平置き状態にて袋詰め脱水を行うものであるのに対して、この第4の実施の形態では、先の第2の実施の形態と同様に、汚泥を詰めた濾過袋25を脱水減容化施設20にて上部から吊り下げていわゆる吊り下げ方式にて袋詰め脱水を行うようにしたものである。そして、濾過袋25にて濾過された水は床板22を経て処理槽31の始端部に自然流下することになる。なお、先の第2の実施の形態と共通する部分には同一符号を付してある。   FIG. 7 is a diagram showing a fourth embodiment of the present invention. In the third embodiment, bagging and dewatering is performed in a so-called flat state in which a filter bag 15 filled with sludge is laid. On the other hand, in the fourth embodiment, as in the second embodiment, the filter bag 25 filled with sludge is suspended from the upper part in the dehydration and volume reducing facility 20 so-called hanging. The bag is dewatered by the lowering method. Then, the water filtered by the filter bag 25 naturally flows down to the start end of the treatment tank 31 through the floor plate 22. In addition, the same code | symbol is attached | subjected to the part which is common in previous 2nd Embodiment.

図8,9は本発明の第5の実施の形態を示す図で、図5,6に示した先の第3の実施の形態と共通する部分には同一符号を付してある。   FIGS. 8 and 9 are views showing a fifth embodiment of the present invention, and the same reference numerals are given to the parts common to the third embodiment shown in FIGS.

この第5の実施の形態では、図8,9に示すように、複数の上部越流仕切り板36のうちその下半部、すなわち各上部越流仕切り板36のうち汚泥貯留部26に臨んでいる部分を可動式のものとして、必要に応じて上流側の上部越流仕切り板36と下流側の上部越流仕切り板36とで仕切られた各汚泥貯留部26の独立性を解除して、隣接する汚泥貯留部26,26同士を連通させることができるようにしたものである。   In the fifth embodiment, as shown in FIGS. 8 and 9, the lower half of the plurality of upper overflow partitions 36, that is, the sludge reservoir 26 of each upper overflow partition 36 is faced. The movable part is made movable, and if necessary, the independence of each sludge reservoir 26 partitioned by the upstream upper overflow partition plate 36 and the downstream upper overflow partition plate 36 is released, Adjacent sludge storage portions 26, 26 can be communicated with each other.

より詳しくは、図9のほか図10に示すように、各上部越流仕切り板36の下半部は可動仕切り板36bとしてヒンジピン29にて上部越流仕切り板本体36aの下端に揺動可能に連結されていて、通常状態では各可動仕切り板36bは鉛直状態を指向するようになっている。また、各可動仕切り板36bの下端部同士は、上部越流仕切り板本体36a,36a同士のなすスパンと同じスパンとなるようにリンケージロッド30にて相互に連結されているとともに、最も上流側に位置する上部越流仕切り板36の可動仕切り板36bと最も下流側に位置する上部越流仕切り板36の可動仕切り板36bは、巻き取り機である第1のウインチ32または第2のウインチ33から引き出されたワイヤ34にそれぞれ連結してある。なお、処理槽31の最上流部および最下流部には作業筒体27を設けてあり、この作業筒体27に上記ワイヤ34を挿通してある。また、いずれか一つの上部越流仕切り板36に隣接して上下動可能なストッパ治具35を設けてあり、図9から明らかなように通常状態ではストッパ治具35は最下降位置にあって且つ隣接する上部越流仕切り板36の可動仕切り板36bと重合状態となるようにその可動仕切り板36bをロックしている。   More specifically, as shown in FIG. 10 in addition to FIG. 9, the lower half of each upper overflow partition plate 36 is movable partition plate 36b so that it can swing to the lower end of upper overflow partition plate body 36a by hinge pin 29. In the normal state, each movable partition plate 36b is oriented in the vertical state. Further, the lower end portions of the movable partition plates 36b are connected to each other by the linkage rod 30 so as to have the same span as the span formed by the upper overflow partition plate bodies 36a, 36a, and at the most upstream side. The movable partition plate 36b of the upper overflow partition plate 36 located and the movable partition plate 36b of the upper overflow partition plate 36 located on the most downstream side are provided from the first winch 32 or the second winch 33 which is a winder. The wires 34 are connected to the drawn wires 34, respectively. A work cylinder 27 is provided at the most upstream part and the most downstream part of the processing tank 31, and the wire 34 is inserted through the work cylinder 27. Further, a stopper jig 35 that can move up and down is provided adjacent to any one of the upper overflow partition plates 36. As is clear from FIG. 9, the stopper jig 35 is in the lowest position in the normal state. In addition, the movable partition plate 36b is locked so as to be superposed with the movable partition plate 36b of the adjacent upper overflow partition plate 36.

したがって、第5の実施の形態によれば、図8,9に示す通常状態ではそれぞれの可動仕切り板36bが閉止位置にあるが故に、処理槽31の下部の汚泥貯留部26はそれぞれに独立している。   Therefore, according to the fifth embodiment, in the normal state shown in FIGS. 8 and 9, since each movable partition plate 36b is in the closed position, the sludge reservoirs 26 at the lower part of the treatment tank 31 are independent of each other. ing.

その一方、汚泥貯留部26に汚泥が堆積してその汚泥汲み取りの必要が生じた場合には、図9に示すストッパ治具35を上昇させてそれに隣接する可動仕切り板36bのロックを解除する。そして、第1のウインチ32を回転操作して該当するワイヤ34を牽引しつつ巻き上げると、各可動仕切り板36bが連動して一斉に揺動動作して開状態となる。なお、この時には第2のウインチ33は第1のウインチ32のワイヤ牽引動作に伴い該当するワイヤ34の繰り出しを容易に許容する状態としておく。これにより、それまでの各汚泥貯留部26の独立性が解除されて、それらの汚泥貯留部26,26同士が相互に連通して一つの大きな空間と化すことになる。   On the other hand, when the sludge accumulates in the sludge storage section 26 and the sludge needs to be pumped, the stopper jig 35 shown in FIG. 9 is raised to unlock the movable partition plate 36b adjacent thereto. Then, when the first winch 32 is rotated and pulled up while pulling the corresponding wire 34, the movable partition plates 36b are oscillated all at once and are opened. At this time, the second winch 33 is allowed to easily allow the corresponding wire 34 to be fed out in accordance with the wire pulling operation of the first winch 32. Thereby, the independence of each sludge storage part 26 until then is cancelled | released, and those sludge storage parts 26 and 26 mutually communicate, and it becomes one big space.

この状態で、図5,6の場合と同様に作業筒体27から汚泥貯留部26にポンプ28に付帯している吸入側ホースを挿入した上でポンプ28を起動して負圧吸引すれば、処理槽31の下部に堆積している汚泥Mを一回の作業で効率よく脱水減容化施設10側に圧送することができる。なお、吸入側ホースは常時作業筒体27に挿入しておいても良い。   In this state, if the suction side hose attached to the pump 28 is inserted from the work cylinder 27 to the sludge reservoir 26 from the work cylinder 27 as in the case of FIGS. The sludge M accumulated in the lower part of the treatment tank 31 can be efficiently pumped to the dehydration and volume reducing facility 10 side by a single operation. The suction side hose may be always inserted into the working cylinder 27.

汚泥汲み取り等の作業が完了したならば、ストッパ治具35を下降させて元の状態に戻した上で、第2のウインチ33を使って特定の可動仕切り板36bがストッパ治具35に当接してロック状態となるまで各々の可動仕切り板36bを元の閉止状態に戻す。なお、この時には第1のウインチ32は第2のウインチ33のワイヤ牽引動作に伴い該当するワイヤ34の繰り出しを容易に許容する状態としておく。   When the work such as the sludge removal is completed, the stopper jig 35 is lowered and returned to the original state, and then the specific movable partition plate 36b abuts against the stopper jig 35 using the second winch 33. Then, each movable partition plate 36b is returned to the original closed state until it is locked. At this time, the first winch 32 is allowed to easily allow the corresponding wire 34 to be fed out in accordance with the wire pulling operation of the second winch 33.

このように第5の実施の形態によれば、先の第3の実施の形態と異なり一回の操作で処理槽31の下部に堆積した汚泥Mを一気に汲み取ることが可能となる。   As described above, according to the fifth embodiment, unlike the third embodiment, the sludge M accumulated in the lower portion of the treatment tank 31 can be pumped at a stroke by a single operation.

図11は本発明の第6の実施の形態を示す図で、図7に示した先の第4の実施の形態および図9と共通する部分には同一符号を付してある。   FIG. 11 is a diagram showing a sixth embodiment of the present invention. The same reference numerals are given to the same parts as those of the fourth embodiment shown in FIG. 7 and FIG.

この第6の実施の形態では、図11に示すように、図7の設備構成と前提とした上で図9と同様の可動仕切り板36bを採用し、複数の上部越流仕切り板36のうちその下半部、すなわち各上部越流仕切り板36のうち汚泥貯留部26に臨んでいる部分を可動式のものとして、必要に応じて上流側の上部越流仕切り板36と下流側の上部越流仕切り板36とで仕切られた各汚泥貯留部26の独立性を解除して、隣接する汚泥貯留部26,26同士を連通させることができるようにしたものである。   In the sixth embodiment, as shown in FIG. 11, the same movable partition plate 36b as in FIG. 9 is adopted on the premise of the equipment configuration of FIG. The lower half, that is, the portion of each upper overflow partition plate 36 that faces the sludge reservoir 26 is made movable, and if necessary, the upstream upper overflow partition plate 36 and the downstream upper overflow plate The independence of each sludge storage part 26 partitioned by the flow partition plate 36 is canceled so that the adjacent sludge storage parts 26 and 26 can communicate with each other.

したがって、この第6の実施の形態においても先の第5の実施の形態と同様の作用効果が得られることになる。   Therefore, also in the sixth embodiment, the same effect as that of the fifth embodiment can be obtained.

なお、上述した第3〜6の実施の形態において、いわゆる袋詰め脱水処理を行うと、その初期段階で多量の水が濾過袋を透過し、時間の経過とともにその透過水量が減少することとなる。その水とポンプ2から汲み上げた水とが処理槽31に直接流入することとなるため、処理槽31に流入する水の流量を均一化すべく、ポンプ2により汲み上げた水といわゆる袋詰め脱水処理により生じた水とを処理層31に流入させる前に一旦合流させ、その合流した水を一定の流量で処理槽31に流入させるようにすることが望ましい。   In the above-described third to sixth embodiments, when so-called bagging and dewatering treatment is performed, a large amount of water permeates through the filter bag at the initial stage, and the amount of permeated water decreases with the passage of time. . Since the water and the water pumped up from the pump 2 directly flow into the treatment tank 31, the water pumped up by the pump 2 and the so-called bagging dehydration process are performed in order to equalize the flow rate of the water flowing into the treatment tank 31. It is desirable that the generated water is once merged before flowing into the treatment layer 31 and the merged water is caused to flow into the treatment tank 31 at a constant flow rate.

本発明のより具体的な実施の形態として汚泥処理機能を備えた水質浄化施設の概略構成を示す説明図。Explanatory drawing which shows schematic structure of the water quality purification facility provided with the sludge treatment function as more concrete embodiment of this invention. 図2の要部拡大図。The principal part enlarged view of FIG. 図1,2の設備での汚泥変化量を示す特性図。The characteristic view which shows the sludge variation | change_quantity in the installation of FIG. 本発明の第2の実施の形態として汚泥処理機能を備えた水質浄化施設の概略構成を示す説明図。Explanatory drawing which shows schematic structure of the water quality purification facility provided with the sludge process function as the 2nd Embodiment of this invention. 本発明の第3実施の形態として汚泥処理機能を備えた水質浄化施設の概略構成を示す説明図。Explanatory drawing which shows schematic structure of the water quality purification facility provided with the sludge process function as 3rd Embodiment of this invention. 図5の要部拡大図。The principal part enlarged view of FIG. 本発明の第4実施の形態として汚泥処理機能を備えた水質浄化施設の概略構成を示す説明図。Explanatory drawing which shows schematic structure of the water quality purification facility provided with the sludge process function as 4th Embodiment of this invention. 本発明の第5実施の形態として汚泥処理機能を備えた水質浄化施設の概略構成を示す説明図。Explanatory drawing which shows schematic structure of the water quality purification facility provided with the sludge process function as 5th Embodiment of this invention. 図8の要部拡大図。The principal part enlarged view of FIG. 図9の要部拡大説明図。The principal part expansion explanatory drawing of FIG. 本発明の第6実施の形態として汚泥処理機能を備えた水質浄化施設の概略構成を示す説明図。Explanatory drawing which shows schematic structure of the water quality purification facility provided with the sludge process function as 6th Embodiment of this invention.

符号の説明Explanation of symbols

1…処理槽
3…始端沈殿槽
5…濾過槽
6…終端沈殿槽
9…接触濾材
10…脱水減容化施設(脱水手段)
11…処理ブース
13…ポンプ
14…ポンプ
15…濾過袋
16…上部越流仕切り板
17…下部浸透仕切り板
18…接触濾材
19…中底板(中間底)
20…脱水減容化施設
21…処理ブース
22…床板
25…濾過袋
26…汚泥貯留部
28…ポンプ
31…処理槽
36…上部越流仕切り板
36b…可動仕切り板
DESCRIPTION OF SYMBOLS 1 ... Processing tank 3 ... Beginning settling tank 5 ... Filtration tank 6 ... Terminal settling tank 9 ... Contact filter medium 10 ... Dehydration volume reduction facility (dehydration means)
DESCRIPTION OF SYMBOLS 11 ... Processing booth 13 ... Pump 14 ... Pump 15 ... Filtration bag 16 ... Upper overflow partition plate 17 ... Lower osmosis partition plate 18 ... Contact filter medium 19 ... Middle bottom plate (intermediate bottom)
DESCRIPTION OF SYMBOLS 20 ... Dehydration volume reduction facility 21 ... Processing booth 22 ... Floor board 25 ... Filtration bag 26 ... Sludge storage part 28 ... Pump 31 ... Processing tank 36 ... Upper overflow partition plate 36b ... Movable partition plate

Claims (10)

接触濾材を用いて汚濁水の水質浄化を図る水質浄化施設にて発生する汚泥の処理方法において、
水質浄化施設に堆積する汚泥を織布または不織布製の濾過袋に投入してその汚泥に含まれる水を濾過袋より透過せしめ、
透過させた水を水質浄化施設に戻して再浄化するとともに、
濾過袋に投入した汚泥量に対して水透過後の汚泥量を体積で40〜90%減容化させることを特徴とする水質浄化施設における汚泥の処理方法。
In the treatment method of sludge generated in water purification facilities that purify the quality of polluted water using contact filter media,
Sludge accumulated in the water purification facility is put into a woven or non-woven filter bag to allow the water contained in the sludge to pass through the filter bag.
The permeated water is returned to the water purification facility and purified again.
A method for treating sludge in a water purification facility, wherein the volume of sludge after water permeation is reduced by 40 to 90% by volume with respect to the amount of sludge charged into a filtration bag.
上記濾過袋に投入した汚泥に含まれる水を濾過袋より透過させるに際し、
汚泥を投入した濾過袋を吊り下げて、濾過袋に汚泥の重量を濾過圧として作用させることを特徴とする請求項1に記載の水質浄化施設における汚泥の処理方法。
When permeating water contained in the sludge put into the filter bag from the filter bag,
2. The method for treating sludge in a water purification facility according to claim 1, wherein the sludge-filled filter bag is suspended so that the weight of the sludge acts on the filter bag as a filtration pressure.
汚泥を投入した濾過袋を水質浄化施設の水面レベルよりも上位側に配置し、濾過袋を透過した水を自然流下にて水質浄化施設に戻すことを特徴とする請求項1または2に記載の水質浄化施設における汚泥の処理方法。   The filter bag filled with sludge is disposed above the water level of the water purification facility, and the water that has passed through the filter bag is returned to the water purification facility under natural flow. A method for treating sludge in water purification facilities. 汚濁水が取り込まれる水質浄化施設の流入側から浄化水を外部に放流する放流側に向かって水路を形成し、
その水路には水の流れをせき止めつつ底層部でのみ水を通過させる下部浸透仕切り板と同じく水の流れをせき止めつつ表層部のみで水を越流させる上部越流仕切り板とを流れ方向に交互に配置するとともに、それらの下部浸透仕切り板と上部越流仕切り板とで区画された空間内に接触濾材を装填することで接触水路部としてあり、
上部越流仕切り板を水が越流する際の越流速が、接触水路部内で接触濾材に接触しながら通過する接触流速よりも大きくなるように設定してあることを特徴とする請求項1〜3のいずれかに記載の水質浄化施設における汚泥の処理方法。
A water channel is formed from the inflow side of the water purification facility where the polluted water is taken to the discharge side that discharges the purified water to the outside.
In the water channel, a lower permeation partition plate that allows water to flow only at the bottom layer while blocking the flow of water, and an upper overflow partition plate that blocks water flow and flows only at the surface layer portion alternately in the flow direction. And a contact water channel by loading the contact filter medium in the space defined by the lower permeation partition plate and the upper overflow partition plate,
The overflow speed when water overflows the upper overflow partition plate is set to be larger than the contact flow speed that passes while contacting the contact filter medium in the contact water channel portion. 4. A method for treating sludge in a water purification facility according to any one of 3 above.
接触濾材を用いて汚濁水の水質浄化を図る水質浄化施設にて発生する汚泥を処理する装置において、
水質浄化施設に堆積する汚泥を織布または不織布製の濾過袋に投入してその汚泥に含まれる水を濾過袋より透過せしめる脱水手段を備えていて、
透過させた水を水質浄化施設に戻して再浄化する一方で、
濾過袋に投入した汚泥量に対して水透過後の汚泥量を体積で40〜90%減容化させるようにしたことを特徴とする水質浄化施設における汚泥の処理装置。
In a device for treating sludge generated in a water purification facility that purifies the quality of polluted water using contact filter media,
It is equipped with a dewatering means that puts sludge accumulated in the water purification facility into a filter bag made of woven or non-woven fabric and allows the water contained in the sludge to permeate through the filter bag.
While the permeated water is returned to the water purification facility and repurified,
An apparatus for treating sludge in a water purification facility, wherein the volume of sludge after water permeation is reduced by 40 to 90% by volume with respect to the amount of sludge charged into a filtration bag.
上記脱水手段では、濾過袋に投入した汚泥に含まれる水を濾過袋より透過させるに際し、
汚泥を投入した濾過袋を吊り下げて、濾過袋に汚泥の重量を濾過圧として作用させるようになっていることを特徴とする請求項5に記載の水質浄化施設における汚泥の処理装置。
In the above dehydrating means, when the water contained in the sludge charged into the filter bag is allowed to permeate through the filter bag,
6. The apparatus for treating sludge in a water purification plant according to claim 5, wherein the sludge-filtering bag is suspended so that the sludge weight acts as a filtering pressure on the filtering bag.
上記脱水手段では、汚泥を投入した濾過袋を水質浄化施設の水面レベルよりも上位側に配置し、濾過袋を透過した水を自然流下にて水質浄化施設に戻すようになっていることを特徴とする請求項5または6に記載の水質浄化施設における汚泥の処理装置。   In the dewatering means, the filtration bag into which the sludge has been placed is arranged at a higher level than the water surface level of the water purification facility, and the water that has passed through the filtration bag is returned to the water purification facility under natural flow. An apparatus for treating sludge in a water purification facility according to claim 5 or 6. 汚濁水が取り込まれる水質浄化施設の流入側から浄化水を外部に放流する放流側に向かって水路を形成し、
その水路には水の流れをせき止めつつ底層部でのみ水を通過させる下部浸透仕切り板と同じく水の流れをせき止めつつ表層部のみで水を越流させる上部越流仕切り板とを流れ方向に交互に配置するとともに、それらの下部浸透仕切り板と上部越流仕切り板とで区画された空間内に接触濾材を装填することで接触水路部としてあり、
上部越流仕切り板を水が越流する際の越流速が、接触水路部内で接触濾材に接触しながら通過する接触流速よりも大きくなるように設定してあることを特徴とする請求項5〜7のいずれかに記載の水質浄化施設における汚泥の処理装置。
A water channel is formed from the inflow side of the water purification facility where the polluted water is taken to the discharge side that discharges the purified water to the outside.
In the water channel, a lower permeation partition plate that allows water to flow only at the bottom layer while blocking the flow of water, and an upper overflow partition plate that blocks water flow and flows only at the surface layer portion alternately in the flow direction. And a contact water channel by loading the contact filter medium in the space defined by the lower permeation partition plate and the upper overflow partition plate,
The overflow rate when water overflows the upper overflow partition plate is set to be larger than the contact flow rate that passes while contacting the contact filter medium in the contact water channel part. The sludge treatment apparatus in the water purification facility according to any one of 7.
接触水路部の少なくとも一部が汚泥の下方への透過を許容する中間底を備えていることで二重底構造となっていて、
中間底の下方空間に堆積した汚泥を濾過袋に投入するようにしたことを特徴とする請求項8に記載の水質浄化施設における汚泥の処理装置。
At least a part of the contact water channel part has a double bottom structure with an intermediate bottom allowing permeation of sludge downward,
The sludge treatment apparatus in a water purification facility according to claim 8, wherein the sludge accumulated in the lower space of the intermediate bottom is put into a filter bag.
中間底の下方空間が可動式の仕切り板をもって流れ方向で複数の領域に仕切られているとともに、可動式の仕切り板を開操作することによりそれらの複数の領域が互いに連通可能となっていることを特徴とする請求項9に記載の水質浄化施設における汚泥の処理装置。   The lower space of the intermediate bottom is partitioned into a plurality of regions in the flow direction with a movable partition plate, and the plurality of regions can communicate with each other by opening the movable partition plate. An apparatus for treating sludge in a water purification plant according to claim 9.
JP2006332844A 2005-12-09 2006-12-11 Sludge treatment method and apparatus in water purification plant Pending JP2007181821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006332844A JP2007181821A (en) 2005-12-09 2006-12-11 Sludge treatment method and apparatus in water purification plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005355662 2005-12-09
JP2006332844A JP2007181821A (en) 2005-12-09 2006-12-11 Sludge treatment method and apparatus in water purification plant

Publications (1)

Publication Number Publication Date
JP2007181821A true JP2007181821A (en) 2007-07-19

Family

ID=38338321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006332844A Pending JP2007181821A (en) 2005-12-09 2006-12-11 Sludge treatment method and apparatus in water purification plant

Country Status (1)

Country Link
JP (1) JP2007181821A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090215A (en) * 2007-10-09 2009-04-30 First Solution:Kk Mud treatment device
ITCE20090008A1 (en) * 2009-09-15 2011-03-16 Luigi Antonio Pezone COMBINED SEDIMENTATION SYSTEM DEHYDRATION CHEMICAL STABILIZATION OF SLUDGE WITH CALCIUM POWDERS.
JP2011115690A (en) * 2009-12-02 2011-06-16 Shinshu Univ Method and apparatus for dewatering and reducing volume of bagged sludge

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105213U (en) * 1990-02-16 1991-10-31
JPH0647398A (en) * 1992-07-31 1994-02-22 Ebara Infilco Co Ltd Treatment of organic sewage
JPH10109100A (en) * 1996-10-04 1998-04-28 Terunaito:Kk Volume reduction treatment of high water containing dreading bottom mud
JPH11158833A (en) * 1997-11-25 1999-06-15 Fujita Corp River purifying facility
JP2003170144A (en) * 2001-12-10 2003-06-17 Energy Support Corp Garbage disposal system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105213U (en) * 1990-02-16 1991-10-31
JPH0647398A (en) * 1992-07-31 1994-02-22 Ebara Infilco Co Ltd Treatment of organic sewage
JPH10109100A (en) * 1996-10-04 1998-04-28 Terunaito:Kk Volume reduction treatment of high water containing dreading bottom mud
JPH11158833A (en) * 1997-11-25 1999-06-15 Fujita Corp River purifying facility
JP2003170144A (en) * 2001-12-10 2003-06-17 Energy Support Corp Garbage disposal system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090215A (en) * 2007-10-09 2009-04-30 First Solution:Kk Mud treatment device
ITCE20090008A1 (en) * 2009-09-15 2011-03-16 Luigi Antonio Pezone COMBINED SEDIMENTATION SYSTEM DEHYDRATION CHEMICAL STABILIZATION OF SLUDGE WITH CALCIUM POWDERS.
JP2011115690A (en) * 2009-12-02 2011-06-16 Shinshu Univ Method and apparatus for dewatering and reducing volume of bagged sludge

Similar Documents

Publication Publication Date Title
JP2006150351A (en) Wetland type water purification system
KR100648794B1 (en) The Method and Device to Treat Rivers and Lakes through the Combination of Upflow Contact/Filtration Facility and Artificial Wetland with Rolls/Mats to Grow Vegetation
KR20090127385A (en) Eco panel(ep), eco box(eb), eco bioreactor(ebr), composite bioreactor(cbr) and clean up of water quality by them
KR101353280B1 (en) Modular infiltration trench combined with filter cartridges
JP2007181821A (en) Sludge treatment method and apparatus in water purification plant
JP2009000638A (en) Method for purifying muddy water
US20060102565A1 (en) System and method for dewatering sludge, slurry or sediment
CN111392964B (en) Method and device for treating sewage of rain and sewage combined pump station
JPH0999203A (en) Treatment of rain water and/or waste water
KR101060739B1 (en) Water-treating apparatus for water purification and sludge dehydration, water-treating method using the same
Mothersill et al. Biological filtration of stormwater: field operations and maintenance experiences
KR101543548B1 (en) Filtering apparatus and the use of total phosphorus filtering method
JP4683356B2 (en) Muddy water purification device
RU2605983C1 (en) Surface run-off cleaning plant
WO1999001385A1 (en) Waste water treatment system
CN217265393U (en) Sludge dewatering and drying treatment system
JP2014046307A (en) Sand filter and sand filtration processing method using the same
KR102441986B1 (en) A non-point source pollution treatment facility with swirling and filetring device
KR102066863B1 (en) Dewatering system for acid mine drainage sludge using gunny sack
CN210885749U (en) Drainage device, geotechnical pipe bag and sludge treatment system
JPH05185083A (en) Filter for water intake facility consisting of open cellular body for biotreatment and granular body for filtration
JPH06114219A (en) Method and device for treatment of mud or sand and soil-containing material
RU2080157C1 (en) Apparatus for deferrization of groundwater
CN100425542C (en) Reverse osmosis type living sewage treatment apparatus
CN201002992Y (en) Reverse osmosis type living sewage treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018