JP2006150351A - Wetland type water purification system - Google Patents

Wetland type water purification system Download PDF

Info

Publication number
JP2006150351A
JP2006150351A JP2005321810A JP2005321810A JP2006150351A JP 2006150351 A JP2006150351 A JP 2006150351A JP 2005321810 A JP2005321810 A JP 2005321810A JP 2005321810 A JP2005321810 A JP 2005321810A JP 2006150351 A JP2006150351 A JP 2006150351A
Authority
JP
Japan
Prior art keywords
water
wetland
plate
permeation
upper overflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005321810A
Other languages
Japanese (ja)
Inventor
Masaki Makino
昌己 牧野
Yujiro Ogura
雄次郎 小倉
Kenichi Ishihama
謙一 石濱
Nobuo Narita
信男 成田
Teruaki Kaga
照明 加賀
Katsutoshi Mizutani
勝年 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kato Construction Co Ltd
Original Assignee
Kato Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kato Construction Co Ltd filed Critical Kato Construction Co Ltd
Priority to JP2005321810A priority Critical patent/JP2006150351A/en
Publication of JP2006150351A publication Critical patent/JP2006150351A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system for securing water infiltration while preventing clogging in order to always keep polluted water into good contact with microorganisms on the filter medium at any portion of the channel. <P>SOLUTION: The channel 6 is formed for the polluted water 5 flow from the inflow side of the artificial wetland from where the polluted water 5 is supplied to its effluent side. In the channel 6 a plurality of overflow weir boards 8a, 8b and a plurality of infiltration boards 7a, 7b are disposed alternatively. The polluted water 5 overflows the overflow weir boards 8a, 8b and passes the infiltration boards 7a, 7b through the passages 9 for the infiltration at the lower part of the infiltration boards, thereby flowing upward and downward one after the other and being purified by the filter medium 4 laid in the channel 6 while generating a vertical flow in the polluted water 5 and the plant on the artificial wetland. The overflow weir boards 8a, 8b are installed so that the line linking its upper ends thereof has a down grade of 1/80 or more. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、人工湿地(ウエットランド)を利用して河川水や湖沼水等の水質浄化を行う湿地型水質浄化処理システムに関し、特に汚泥による濾材の目詰まりを防止し、長期的な水質浄化性能の確保並びにメンテナンスを容易にしたものである。   TECHNICAL FIELD The present invention relates to a wetland type water purification system that uses artificial wetlands (wetlands) to purify water quality such as river water and lake water, and in particular, prevents clogging of filter media due to sludge, and provides long-term water purification performance. Securing and maintenance.

この種の湿地型水質浄化処理システムとして、汚濁水が供給される人工湿地の流入側から放流側に向かって汚濁水を流す水路を形成し、該水路に汚濁水の流れに対して略直交する方向に複数の上部越流板と下部浸透板を交互に配置し、前記上部越流板の位置においては汚濁水を前記上部越流板の上端を越流させ、前記下部浸透板の位置においては汚濁水を前記下部浸透板の下端の浸透用の流路を通して浸透(潜流)させて、前記上部越流板と下部浸透板により汚濁水に垂直方向の流れを作りながら汚濁水の処理を行う湿地型水質浄化処理システムが開発されている。このシステムにおいては、前記人工湿地の水生植物で汚濁水中の養分吸収や、有機分、窒素、りん分等の栄養塩類を前記水路内に敷設した濾材により捕捉、分解、吸収して汚濁水を浄化すると共に、水路上流部の底部に汚泥貯留部を設けることにより、該汚泥貯留部に溜まった汚泥の引抜きを可能にしている(例えば特許文献1)。
特開2004−209465号公報
As this type of wetland type water purification system, a water channel is formed to flow the polluted water from the inflow side to the discharge side of the constructed wetland to which the polluted water is supplied, and the water channel is substantially orthogonal to the flow of the polluted water. A plurality of upper overflow plates and lower permeation plates are alternately arranged in the direction, and polluted water is allowed to flow over the upper end of the upper overflow plate at the position of the upper overflow plate, and at the position of the lower permeation plate. A wetland where polluted water is permeated through the permeation flow path at the lower end of the lower permeation plate (latent flow), and the upper overflow plate and the lower permeation plate create a flow in the direction perpendicular to the contaminated water, thereby treating the contaminated water. Type water purification system has been developed. In this system, the aquatic plant in the constructed wetland absorbs nutrients in polluted water, and captures, decomposes and absorbs nutrients such as organic, nitrogen, and phosphorus in the water channel to purify the polluted water. At the same time, by providing a sludge reservoir at the bottom of the upstream of the water channel, the sludge accumulated in the sludge reservoir can be extracted (for example, Patent Document 1).
JP 2004-209465 A

上記従来のシステムでは、流入水中の浮遊成分等が多い場合には前記汚泥貯留部で汚泥を完全に処理することはできず、汚泥が前記汚泥貯留部よりも下流側に流れ出て濾材の目詰まりが発生する。   In the above conventional system, when there are a lot of floating components in the inflowing water, the sludge cannot be completely treated in the sludge reservoir, and the sludge flows downstream from the sludge reservoir and the filter medium is clogged. Occurs.

濾材の目詰まりが発生すると流れが悪くなるために前記目詰まり部分の上流側の水位が上昇し、最終的には水が浸透しなくなることによって下部浸透板の上部を越流して流れてしまい(いわゆる短絡流状態)、それに伴って汚泥が流出するほか、さらにその下流側の浸透部分に汚泥等が堆積しやすくなり、一段と目詰まりを助長することになる。この繰り返しのために濾材敷設領域に水が流れなくなることで濾過作用のほか濾材表面に付着した微生物と汚濁水が接触することができなくなり、水質浄化機能が低下するという問題点があった。   When clogging of the filter medium occurs, the flow becomes worse, so the water level on the upstream side of the clogged portion rises, and eventually the water does not permeate so that it flows over the upper part of the lower permeation plate ( A so-called short-circuit flow state), sludge flows out along with this, and sludge and the like are more likely to accumulate in the permeation portion on the downstream side, further promoting clogging. Due to this repetition, water no longer flows into the filter medium laying region, and in addition to the filtering action, the microorganisms adhering to the filter medium surface cannot contact with the polluted water, resulting in a problem that the water purification function is lowered.

本発明は以上のような課題に着目してなされたものであり、水の流れを制御することにより目詰まりを抑制し、もって濾材敷設領域の通水性を確保することで水路のどの部分においても常に適正な濾過作用が得られるようにするとともに、濾材表面に付着した微生物と汚濁水との接触を良好に保ち、さらには汚泥の回収や濾材の洗浄(逆洗)等のメンテナンスを容易に行うことで湿地型水質浄化処理システムの本来の浄化性能をより長期に安定維持することを目的になされたものである。   The present invention has been made paying attention to the problems as described above, and clogging is suppressed by controlling the flow of water, thereby ensuring water permeability in the filter medium laying region, and in any part of the water channel. Ensure proper filtration at all times, maintain good contact between the microorganisms adhering to the surface of the filter medium and contaminated water, and facilitate maintenance such as sludge collection and filter medium cleaning (backwash). Thus, the purpose is to stably maintain the original purification performance of the wetland type water purification system for a longer period of time.

請求項1に記載の発明は、汚濁水が供給される人工湿地の流入側から放流側に向かって汚濁水を流す水路を形成し、該水路に汚濁水の流れに対して略直交する方向に複数の上部越流板と下部浸透板を交互に配置し、前記上部越流板の位置においては汚濁水をその上部越流板の上端を越流させ、前記下部浸透板の位置においては汚濁水をその下部浸透板の下端の浸透用の流路を通して浸透させて、前記上部越流板と下部浸透板により汚濁水に垂直方向の流れを生成しながら前記水路内に敷設した濾材および前記人工湿地に植生する植物で汚濁水を浄化する湿地型水質浄化処理システムにおいて、前記複数の上部越流板の上端の高さ位置が上流側から下流に向かって0〜1/80のマイナス勾配となるようにそれぞれの上部越流板の設置高さを設定してあることを特徴とする。   The invention according to claim 1 forms a water channel through which the polluted water flows from the inflow side to the discharge side of the constructed wetland to which the polluted water is supplied, and the water channel has a direction substantially orthogonal to the flow of the polluted water. A plurality of upper overflow plates and lower permeation plates are alternately arranged, and polluted water is allowed to flow over the upper end of the upper overflow plate at the position of the upper overflow plate, and polluted water is disposed at the position of the lower permeation plate. And the artificial wetland laid in the water channel while allowing the upper overflow plate and the lower permeation plate to generate a vertical flow in the contaminated water. In the wetland type water purification system that purifies polluted water with plants that grow on the top, the height position of the upper ends of the plurality of upper overflow plates has a negative gradient of 0 to 1/80 from the upstream side toward the downstream side. Set the installation height of each upper overflow plate Characterized that you have.

請求項2に記載の発明は、請求項1の記載を前提とした上で、前記複数の上部越流板の上端の高さ位置が上流側から下流に向かって0〜1/80のマイナス勾配となるようにそれぞれの上部越流板の設置高さを設定するのに代えて、前記複数の下部浸透板の下端における浸透用の流路の相互関係として、下流側の下部浸透板の下端における浸透用の流路の開口断面積が、それよりも一つ上流側に位置する下部浸透板の下端における浸透用の流路の開口断面積と同等もしくはそれ以上の大きさに設定してあることを特徴とする。   The invention according to claim 2 is based on the premise of claim 1, and the height position of the upper ends of the plurality of upper overflow plates is a negative gradient of 0 to 1/80 from the upstream side toward the downstream side. Instead of setting the installation height of each upper overflow plate so as to be, as the interrelationship of the permeation flow paths at the lower ends of the plurality of lower permeation plates, at the lower end of the downstream lower permeation plate The opening cross-sectional area of the permeation channel is set to be equal to or larger than the opening cross-sectional area of the permeation channel at the lower end of the lower permeation plate located one upstream side of it. It is characterized by.

また、請求項3に記載の発明は、請求項1の記載を前提とした上で、前記複数の下部浸透板の下端における浸透用の流路の相互関係として、下流側の下部浸透板の下端における浸透用の流路の開口断面積が、それよりも一つ上流側に位置する下部浸透板の下端における浸透用の流路の開口断面積と同等もしくはそれ以上の大きさに設定してあることを特徴とする。   Further, the invention according to claim 3 is based on the premise of claim 1, and the lower end of the lower permeation plate on the downstream side is defined as the interrelation of the permeation flow paths at the lower end of the plurality of lower permeation plates. The opening cross-sectional area of the permeation flow channel in is set to be equal to or larger than the opening cross-sectional area of the permeation flow channel at the lower end of the lower permeation plate located one upstream side thereof. It is characterized by that.

さらに、請求項4に記載の発明は、同じく請求項1の記載を前提とした上で、前記複数の上部越流板の上端の高さ位置が上流側から下流に向かって0〜1/80のマイナス勾配となるようにそれぞれの上部越流板の設置高さを設定してあるのに代えて、前記人工湿地は、前記汚濁水の水面の一部を露出させる水面露出部を備えていて、この水面露出部の流れ方向での少なくとも一部の表面側流路幅が特定の上部越流板の位置においてそれよりも一つ上流側の下部浸透板の位置における流路幅よりも狭くなるように設定してあることを特徴とする。   Further, the invention according to claim 4 is based on the same assumption as in claim 1, and the height position of the upper ends of the plurality of upper overflow plates is 0 to 1/80 from the upstream side toward the downstream side. Instead of setting the installation height of each upper overflow plate so as to have a negative slope, the constructed wetland has a water surface exposed portion that exposes a part of the surface of the polluted water. In addition, at least a part of the surface-side channel width in the flow direction of the water surface exposed portion is narrower than the channel width at the position of the lower permeation plate on the upstream side at a specific upper overflow plate position. It is set as follows.

ここで、請求項1〜4のいずれかの記載を前提とした上で、請求項5に記載のように、前記濾材を敷設してある水路を、前記上部越流板および下部浸透板のうち少なくともいずれか一方をもって汚濁水の流れ方向で2個以上の区画に仕切り、それらの区画のうち一部または全部の区画における濾材敷設領域の下部に汚泥貯留部を設けて、水路のうち前記汚泥貯留部を設けた部分では二重底構造としてあることが汚泥の効率的回収の上で望ましい。   Here, on the premise of the description in any one of claims 1 to 4, as described in claim 5, the water channel in which the filter medium is laid is made of the upper overflow plate and the lower permeation plate. At least one of them is partitioned into two or more compartments in the direction of the flow of polluted water, and a sludge storage section is provided below the filter material laying area in some or all of the compartments. In order to efficiently collect sludge, it is desirable that the portion provided with the portion has a double bottom structure.

この場合、請求項6に記載のように、前記濾材を敷設した水路を、前記上部越流板をもって汚濁水の流れ方向で2個以上の区画に仕切り、それらの区画のうち一部または全部の区画における濾材敷設領域の下部に汚泥貯留部を設けて、水路のうち前記汚泥貯留部を設けた部分では二重底構造としてあるとともに、前記上部越流板のうち汚泥貯留部に臨んでいる部分を可動式のものとしてあっても良い。   In this case, as described in claim 6, the channel in which the filter medium is laid is partitioned into two or more sections in the flow direction of the polluted water with the upper overflow plate, and part or all of the sections are partitioned. The part which provided the sludge storage part in the lower part of the filter material installation area | region in a division, and provided the said sludge storage part among water channels, and is a part facing the sludge storage part among the said upper overflow plates May be movable.

さらに、請求項7に記載のように、前記人工湿地の湿地基盤は、基盤支持材を介して前記水路の水位よりも上位に配置してあっても良い。   Furthermore, as described in claim 7, the wetland base of the artificial wetland may be arranged higher than the water level of the water channel via a base support material.

請求項1に記載の湿地型水質浄化処理システムによれば、複数の上部越流板の上端の高さ位置に上流側から下流に向かって所定のマイナス勾配を持たせたことにより、上流側と下流側の水頭差により汚濁水の流れを円滑にして目詰まりを抑制し、常に濾材表面に付着した微生物と汚濁水が接触することで水質浄化性能を長期的に安定維持することができる。   According to the wetland type water purification system according to claim 1, by providing a predetermined negative gradient from the upstream side to the downstream side at the height position of the upper ends of the plurality of upper overflow plates, The flow of the polluted water is made smooth by the difference in the head of the downstream side to suppress clogging, and the water purification performance can be stably maintained for a long time by always contacting the polluted water with the microorganisms adhering to the filter medium surface.

請求項2に記載の湿地型水質浄化処理システムによれば、複数の下部浸透板の下端における浸透用の流路の相互関係として、下流側の下部浸透板の下端における浸透用の流路の開口断面積の方が大きめとなるように所定の勾配を、持たせたことにより、下流側にゆくに従って増大する水抵抗の増加分を相殺して汚濁水の流れを円滑にして目詰まりを抑制し、常に濾材表面に付着した微生物と汚濁水が接触することで水質浄化性能を長期的に安定維持することができる。   According to the wetland type water purification system according to claim 2, the permeation flow path opening at the lower end of the lower permeation plate on the downstream side is an interrelationship of the permeation flow paths at the lower end of the plurality of lower permeation plates. By providing a predetermined gradient so that the cross-sectional area becomes larger, the increase in water resistance that increases as it goes downstream is offset, and the flow of contaminated water is smoothed to prevent clogging. The water purification performance can be stably maintained for a long time by always contacting the microorganisms adhering to the surface of the filter medium with the polluted water.

請求項3に記載の湿地型水質浄化処理システムによれば、請求項1と請求項2に記載の発明の相乗効果により汚濁水の流れをより円滑にして目詰まりを抑制し、常に濾材表面に付着した微生物と汚濁水が接触することで水質浄化性能を長期的に安定維持することができる。   According to the wetland type water purification system described in claim 3, the synergistic effect of the invention according to claim 1 and claim 2 suppresses clogging by making the flow of contaminated water smoother, and always on the surface of the filter medium. The water purification performance can be stably maintained for a long time by the adhering microorganisms and the contaminated water coming into contact with each other.

請求項4に記載の湿地型水質浄化処理システムによれば、人工湿地における水面露出部の流れ方向での少なくとも一部の表面側流路幅が特定の上部越流板の位置においてそれよりも一つ上流側の下部浸透板の位置における流路幅よりも狭くなるように設定してあるため、特に汚濁水の流速に変化をもたせて濾材表面における汚泥の沈殿を防止して目詰まりを抑制することができるほか、上部越流板の部分において水の流れを速くして所謂せせらぎ状態にして水が流れていることを実感させることができる。   According to the wetland type water purification system described in claim 4, at least a part of the surface-side channel width in the flow direction of the water surface exposed portion in the constructed wetland is smaller than that at the specific upper overflow plate position. Since it is set to be narrower than the flow path width at the position of the lower permeation plate on the upstream side, especially the flow rate of the polluted water is changed to prevent sedimentation of sludge on the surface of the filter medium and suppress clogging In addition, it is possible to realize that the water is flowing in a so-called turbulent state by making the water flow faster in the upper overflow plate portion.

請求項5,6に記載の湿地型水質浄化処理システムによれば、いわゆる二重底構造としたことより、バキュームカー等のバキュームパイプを挿入して吸引することにより前記水路内に沈殿した汚泥等を外部に強制的に排出することができる。また、エアーコンプレッサーのパイプ等を挿入して、圧縮空気を吹き込むことにより前記濾材の洗浄を簡単に行うことができる。   According to the wetland type water purification system according to claims 5 and 6, sludge or the like settled in the water channel by inserting and sucking a vacuum pipe such as a vacuum car from a so-called double bottom structure. Can be forcibly discharged to the outside. Further, the filter medium can be easily cleaned by inserting a pipe of an air compressor or the like and blowing compressed air.

請求項7に記載の湿地型水質浄化処理システムによれば、人工湿地により水面に日光が当たるのを防止し、水中で藻や水草等が発生するのを防止することができる。また、枯れ死した藻や水草等により濾材が目詰まりを起こすのを未然に防止することができる。   According to the wetland type water purification system described in claim 7, it is possible to prevent sunlight from hitting the water surface by the artificial wetland and to prevent generation of algae, aquatic plants and the like in the water. Moreover, it is possible to prevent the filter medium from becoming clogged with dead algae and aquatic plants.

図1は本発明に係る湿地型水質浄化処理システムの基本概念を示す要部の断面図である。   FIG. 1 is a cross-sectional view of the main part showing the basic concept of a wetland type water purification system according to the present invention.

湿地型水質浄化処理システムは、所定の取水口2と放流口3とを有する処理槽1を主要素として構成されていて、処理槽1内には所定の濾材4を敷設してあるとともに、周知のようにそれらの取水口2と放流口3との間には放流口3側の方が低位となるように所定の水位差(水頭差)を持たせてある。そして、上記の水位差のために、取水口2から供給された汚濁水5が処理槽1の流入側から放流側に向かって流れるように水路6を形成している。   The wetland type water purification system includes a processing tank 1 having a predetermined water intake 2 and a discharge port 3 as a main element, and a predetermined filter medium 4 is laid in the processing tank 1 and is well known. As described above, a predetermined water level difference (water head difference) is provided between the intake port 2 and the discharge port 3 so that the discharge port 3 side becomes lower. And because of the difference in water level, the water channel 6 is formed so that the polluted water 5 supplied from the water intake 2 flows from the inflow side of the treatment tank 1 toward the discharge side.

水路6には汚濁水5の流れ方向に沿って複数の第1,第2‥第nまでの下部浸透板7a,7b‥7nと、第1,第2‥第nまでの上部越流板8a,8b‥8nをそれぞれ交互に配置してあり、実質的に処理槽1内を水の流れ方向で複数の上部越流板8a,8b‥8nをもって複数の領域に仕切ってある。各々の下部浸透板7a,7b‥7nの位置においては汚濁水5を当該下部浸透板7a,7b‥7nの下端の開口部である浸透用の流路9を通して浸透(潜流)させる一方、各々の上部越流板8a,8b‥8nの位置においては汚濁水5をこれら当該上部越流板8a,8b‥8nの上端を越流させて、これら複数の下部浸透板7a,7b‥7nと上部越流板8a,8b‥8nとにより汚濁水5に垂直方向の流れ(いわゆる鉛直方向での浸透流)を積極的に生成するようにしてある。そして、汚濁水5が処理槽1内を放流側(下流側)に向かって流れる過程で内部に敷設した濾材4で汚濁水5を浄化するようになっている。なお、この浄化作用については後述する。   A plurality of first, second... Nth lower permeation plates 7a, 7b... 7n and first, second. 8b... 8n are alternately arranged, and the inside of the treatment tank 1 is substantially divided into a plurality of regions with a plurality of upper overflow plates 8a, 8b. At the position of each of the lower permeation plates 7a, 7b... 7n, the polluted water 5 permeates (latently flows) through the permeation channel 9 which is an opening at the lower end of the lower permeation plates 7a, 7b. At the position of the upper overflow plates 8a, 8b... 8n, the polluted water 5 is allowed to flow over the upper ends of the upper overflow plates 8a, 8b. The flow plates 8a, 8b,..., 8n actively generate a vertical flow (so-called vertical flow) in the polluted water 5. And in the process in which the polluted water 5 flows in the processing tank 1 toward the discharge side (downstream side), the polluted water 5 is purified with the filter medium 4 laid inside. This purification action will be described later.

ここで、前記濾材4としては、流入する汚濁水5の汚濁度や性状、特に水中浮遊物(SS分)の状態によって使用するものが異なるが、特にコスト的に有利な砕石を使用する場合は、砕石の径として例えば単粒砕石4号(20〜30mm)のものや5号(13〜20mm)のもの、ぐり石(50〜150mm)および割ぐり石(150〜200mm)等を使い分けてもよい。また、濾材4は上記砕石に限定されるものではなく、浄化条件(例えば脱色、COD除去、窒素・りん除去など)に応じて例えば活性炭、木炭、竹炭などの吸着性炭化物質のほか、ゼオライトなどの吸着性鉱物に代表される吸着性多孔質物質などを使い分けても良い。また、汚濁負荷が高い場合のほか、目詰まりが懸念される場合等においては、プラスチック濾材(中空ボール状、ハニカム状など)、ひも状、糸状、布状等の空隙率の大きい濾材を使用しても良い。   Here, the filter medium 4 differs depending on the pollution degree and properties of the inflowing polluted water 5, particularly the state of the suspended matter in water (SS content), but when using crushed stone that is particularly advantageous in terms of cost. As the diameter of the crushed stone, for example, those of single grain crushed stone No. 4 (20-30 mm), those of No. 5 (13-20 mm), quarry stone (50-150 mm), quarry stone (150-200 mm), etc. Good. Further, the filter medium 4 is not limited to the above-mentioned crushed stone, but may be an adsorbent carbon material such as activated carbon, charcoal, bamboo charcoal, zeolite, etc., depending on the purification conditions (for example, decolorization, COD removal, nitrogen / phosphorus removal, etc.) Alternatively, an adsorbent porous material represented by an adsorbable mineral may be used. Also, when there is a concern about clogging in addition to high pollution load, use filter media with a large porosity such as plastic filter media (hollow ball shape, honeycomb shape, etc.), string shape, thread shape, cloth shape, etc. May be.

一方、処理槽1自体は強度に優れたコンクリート構造物や鋼構造物等にて構築することが望ましいが、例えば所定の地盤を掘削して槽状の空間をつくり、その中に不透水製のシートを貼り込んだ上で濾材4を敷設するようにしても良い。また、下部浸透板7a,7b‥7nの下端の浸透用の流路9は当該下部浸透板7a,7b‥7nの全幅にわたって形成されているものであるが、流路9は下部浸透板7a,7b‥7nの幅方向において少なくともその一部に形成されていても良い。   On the other hand, it is desirable that the treatment tank 1 itself is constructed of a concrete structure or steel structure having excellent strength. For example, a predetermined ground is excavated to create a tank-like space, and a water-impervious product is formed therein. You may make it lay the filter medium 4 after sticking a sheet | seat. Further, the infiltration flow path 9 at the lower end of the lower permeation plates 7a, 7b... 7n is formed over the entire width of the lower permeation plates 7a, 7b. 7b... 7n may be formed at least partially in the width direction.

図1において、各上部越流板8a,8b‥8nの上端の高さ位置は流入側(上流側)から放流側(下流側)に向かって漸次もしくは段階的に低くなるように設定してあり、同時にそれらの各上部越流板8a,8b‥8nの上端の高さ位置を結んだ線10が水平な基準線11に対して所定角度θをもって下り勾配となるように設定してある。ここで、処理槽1の側壁1aのうち線10と基準線11との交点に相当する位置を基準越流位置Qとしたとき、ΔH1は上記基準越流位置Qと第1の上部越流板8aをそれぞれ水が乗り越える際の水頭差(単位はmmまたはmである。以下、同じ。)を示す。同様に、ΔH2は第1の上部越流板8aと第2の上部越流板8bをそれぞれ水が乗り越える際の水頭差を示す。さらに、ΔHnは上記基準越流位置Qと第nの上部越流板8nをそれぞれ水が乗り越える際の水頭差を示す。そして、基準越流位置Qおよび各上部越流板8a,8b‥8nの上端の高さ位置を結んだ線10の傾斜角度(勾配)θは例えば1/80以上のマイナス勾配に設定されている。   In FIG. 1, the height position of the upper end of each upper overflow plate 8a, 8b,..., 8n is set so as to decrease gradually or stepwise from the inflow side (upstream side) to the discharge side (downstream side). At the same time, the line 10 connecting the height positions of the upper ends of the upper overflow plates 8a, 8b,..., 8n is set to have a downward slope with a predetermined angle θ with respect to the horizontal reference line 11. Here, when the position corresponding to the intersection of the line 10 and the reference line 11 in the side wall 1a of the processing tank 1 is set as the reference overflow position Q, ΔH1 is the reference overflow position Q and the first upper overflow plate. The water head difference (unit is mm or m. The same applies hereinafter) when water gets over 8a. Similarly, ΔH2 indicates a water head difference when water passes over the first upper overflow plate 8a and the second upper overflow plate 8b. Further, ΔHn indicates a water head difference when water gets over the reference overflow position Q and the nth upper overflow plate 8n. The inclination angle (gradient) θ of the line 10 connecting the reference overflow position Q and the height positions of the upper ends of the upper overflow plates 8a, 8b,..., 8n is set to a minus gradient of 1/80 or more, for example. .

なお、上記取水口2と放流口3との間に所定の水位差(水頭差)を設定してあれば、仮に上記の傾斜角度θ=0であっても取水側から放流側に向かう汚濁水5の流れは生成される。なお、この構造については後述する。   In addition, if a predetermined water level difference (water head difference) is set between the intake port 2 and the discharge port 3, the contaminated water heading from the intake side to the discharge side even if the inclination angle θ = 0. Five streams are generated. This structure will be described later.

また、上記ΔH1,ΔH2‥ΔHnの設定にあたっては、汚濁水5の流れに先に述べたような鉛直浸透流を利用しているがために濾材4等による流通抵抗を考慮する必要があり、上記ΔH1は、処理槽1の側壁1aと第1の下部浸透板7aの間の水の流通抵抗値(この流通抵抗値は水頭損失にほかならず、その単位はmmH2OまたはmH2Oである。以下、同じ。)ΔP1−1に上記第1の下部浸透板7aと第1の上部越流板8aの間の水の流通抵抗値ΔP2−1を加えた値と同等またはそれよりも大きくなるように設定してある(ΔH1≧ΔP1−1+ΔP2−1)。 Further, in setting the above ΔH1, ΔH2,... ΔHn, since the vertical osmotic flow as described above is used for the flow of the polluted water 5, it is necessary to consider the flow resistance due to the filter medium 4 and the like. ΔH1 is a water flow resistance value between the side wall 1a of the treatment tank 1 and the first lower permeation plate 7a (this flow resistance value is nothing but a head loss, and its unit is mmH 2 O or mH 2 O. The same applies hereinafter.) To be equal to or larger than the value obtained by adding ΔP1-1 to the water flow resistance value ΔP2-1 between the first lower permeation plate 7a and the first upper overflow plate 8a. (ΔH1 ≧ ΔP1-1 + ΔP2-1).

同様に、上記ΔH2は、第1の上部越流板8aと第2の下部浸透板7bの間の水の流通抵抗値ΔP1−2に第2の下部浸透板7bと第2の上部越流板8bの間の水の流通抵抗値ΔP2−2を加えた値と同等またはそれよりも大きくなるように設定してある(ΔH2≧ΔP1−2+ΔP2−2)。   Similarly, ΔH2 is equal to the flow resistance value ΔP1-2 of water between the first upper overflow plate 8a and the second lower penetration plate 7b, and the second lower penetration plate 7b and the second upper overflow plate. It is set to be equal to or greater than the value obtained by adding the water flow resistance value ΔP2-2 between 8b (ΔH2 ≧ ΔP1-2 + ΔP2-2).

さらに、上記ΔHnは、処理槽1の側壁1aから第nの下部浸透板7nの間までの水の流通抵抗値の総和と同等またはそれより大きくなるように設定してある(ΔHn≧ΔP1−1+ΔP2−1+ΔP1−2+ΔP2−2‥ΔP1−n+ΔP2−n)。   Further, ΔHn is set to be equal to or greater than the sum of the flow resistance values of water from the side wall 1a of the treatment tank 1 to the nth lower permeation plate 7n (ΔHn ≧ ΔP1-1 + ΔP2). -1 + ΔP1-2 + ΔP2-2... ΔP1-n + ΔP2-n).

一方、第1,第2‥第nまでの下部浸透板7a,7b‥7nの下端での浸透用の流路9について、下流側のものほどその開口面積が漸次もしくは段階的に大きくなるように、それらの流路9の開口度合いには、上記基準越流位置Qおよび各上部越流板8a,8b‥8nの上端の高さ位置を結んだ線10の勾配とは逆のいわゆるプラスの勾配を予め持たせてある。すなわち、上記第1,第2‥第nまでの下部浸透板7a,7b‥7nの下端での浸透用の流路9についての開口幅がいずれも処理槽1内の水路6の幅と同じであると仮定した場合に、その開口高さである流路9上端の高さh1,h2‥hnが下流側のものほど漸次もしくは段階的に高くなるように設定してある。これにより、流路9の下流になるに従って増加する水の流通抵抗をキャンセル(相殺)できるようになっている。   On the other hand, with respect to the infiltration flow path 9 at the lower ends of the first, second... Nth lower infiltration plates 7a, 7b. The degree of opening of these flow paths 9 is a so-called positive gradient opposite to the gradient of the line 10 connecting the reference overflow position Q and the height positions of the upper ends of the upper overflow plates 8a, 8b,. Is given in advance. That is, the opening widths of the infiltration flow passages 9 at the lower ends of the first, second,..., N lower permeation plates 7a, 7b... 7n are all the same as the width of the water channel 6 in the treatment tank 1. Assuming that there is a height, the heights h1, h2,... Hn of the upper end of the flow path 9, which is the height of the opening, are set so as to increase gradually or stepwise toward the downstream side. Thereby, it is possible to cancel (offset) the flow resistance of water that increases as it goes downstream of the flow path 9.

ここで、図1の例では、例えば上流側の下部浸透板7aとそれよりも下流側の下部浸透板7bとの間にそれぞれ一枚の上部越流板8aを介在させた場合について示したが、例えば上流側の下部浸透板7aと下流側の下部浸透板7bとの間に上端の高さ位置が共に等しい二枚以上の上部越流板8a,8aを介在させるようにしても良く、同様に例えば上流側の上部越流板8aと下流側の上部越流板8bとの間に上流路の開口高さ位置が共に等しい二枚以上の下部浸透板7b,7bを介在させるようにしても良い。   Here, in the example of FIG. 1, for example, a case where one upper overflow plate 8 a is interposed between the lower permeation plate 7 a on the upstream side and the lower permeation plate 7 b on the downstream side is shown. For example, two or more upper overflow plates 8a and 8a having the same height at the upper end may be interposed between the lower permeation plate 7a on the upstream side and the lower permeation plate 7b on the downstream side. For example, two or more lower permeation plates 7b and 7b having the same opening height position of the upper flow path may be interposed between the upstream upper overflow plate 8a and the downstream upper overflow plate 8b. good.

図2は、図1のシステムを前提とした上で、植栽として水性植物13を植え込んだ人工湿地12に前記水路6を流れる汚濁水5の水面の一部を露出させる水面露出部14を設けた湿地型水質浄化処理システムの平面図を、図3は図2のX−X線に沿う断面図を、図4は図2のY−Y線に沿う断面図をそれぞれ示している。なお、図2,3では濾材4を、図3では人工湿地12をそれぞれ図示省略してある。   FIG. 2 is based on the system of FIG. 1 and is provided with a water surface exposure portion 14 for exposing a part of the water surface of the polluted water 5 flowing through the water channel 6 to an artificial wetland 12 in which an aqueous plant 13 is planted. 3 is a plan view of the wetland type water purification system, FIG. 3 is a sectional view taken along line XX in FIG. 2, and FIG. 4 is a sectional view taken along line YY in FIG. 2 and 3, the filter medium 4 is omitted, and the artificial wetland 12 is not shown in FIG.

図2に示すように、人工湿地12における水性植物13の植え込み領域以外の領域が流れ方向において流路幅の広狭を繰り返しながら蛇行していて、その部分が前記水面露出部14として非直線的に形成されている。具体的には、水性植物13の植え込み領域を除いた水面露出部14の流路幅は流れ方向で大きく変化していて、その水面露出部14の一部では特に前記第1,第2‥第nの上部越流板8a,8b‥8nの部分での幅W1はそれよりも一段上流側に位置する下部浸透板7a,7b‥7n相当部の幅W2よりも小さくなるように設定してある。   As shown in FIG. 2, regions other than the planting region of the aqueous plant 13 in the constructed wetland 12 meander while repeating the width of the flow path in the flow direction, and that portion is non-linearly serving as the water surface exposed portion 14. Is formed. Specifically, the channel width of the water surface exposed portion 14 excluding the planting region of the aqueous plant 13 varies greatly in the flow direction, and the first, second,. The width W1 of the upper overflow plates 8a, 8b... 8n is set to be smaller than the width W2 of the lower permeation plates 7a, 7b. .

また、図4に示すように、前記水面露出部14において濾材4の一部が除去されて溝状部15が形成されている。この溝状部15の幅は汚濁水5の流れ方向において変化していて、例えばこの溝状部15の幅寸法はおおよそ水面露出部14の幅と一致させてある。このように水面露出部14や溝状部15の幅寸法をその流れ方向で積極的に変化させることで、汚濁水5の表層部に流れを生成するべくその流速を高めて、特に表層部での浸透に有効な部分に汚泥が堆積しないように配慮してある。   Further, as shown in FIG. 4, a part of the filter medium 4 is removed in the water surface exposed portion 14 to form a groove-like portion 15. The width of the groove-like portion 15 changes in the flow direction of the polluted water 5. For example, the width dimension of the groove-like portion 15 is approximately matched with the width of the water surface exposed portion 14. Thus, by actively changing the width dimension of the water surface exposed portion 14 and the groove-like portion 15 in the flow direction, the flow velocity is increased to generate a flow in the surface layer portion of the polluted water 5, particularly in the surface layer portion. Consideration is made so that sludge does not accumulate on the part that is effective for infiltration.

図4において、前記水路6の底部には例えばグレーチングあるいはパンチングメタル等の多孔状の板材等のように剛性とともに透水性のある板材からなる中底板16が流れ方向に沿って敷設されていて、これにより処理槽1自体がいわゆる二重底構造となっている。そして、この中底板16は前記濾材4の通過を阻止しつつ水路6の底部に沈下してきた汚泥の通過を許容する機能を有していて、中底板16よりも下側には汚泥を沈殿,堆積させるための流れ方向で独立した空間として複数の汚泥貯留部17が形成されている。   In FIG. 4, an intermediate bottom plate 16 made of a rigid and water-permeable plate material, such as a porous plate material such as grating or punching metal, is laid along the flow direction at the bottom of the water channel 6. Therefore, the treatment tank 1 itself has a so-called double bottom structure. The inner bottom plate 16 has a function of allowing the passage of sludge that has settled to the bottom of the water channel 6 while preventing the passage of the filter medium 4, and deposits sludge below the intermediate bottom plate 16. A plurality of sludge storage portions 17 are formed as independent spaces in the flow direction for deposition.

この汚泥貯留部17の幅方向の一端部は図5に示すように濾材4が入り込まないように例えば筒状に仕切られた作業筒体18として水面上に突出していて、同図に示すようにその作業筒体18から汚泥貯留部17内にバキューム車19のホース20を挿入したり、あるいは図6に示すようにコンプレッサ21のエアーホース22を挿入することができるようになっている。なお、作業筒体18に対しバキューム車19のホース20の挿入が可能であることは、汚泥貯留部17内に沈殿,堆積した汚泥の汲み上げを可能にすることを意味し、また作業筒体18に対しコンプレッサ21のエアーホース22の挿入が可能であることは、いわゆるエア噴射をもって特に濾材4の洗浄が可能であることを意味する。   As shown in FIG. 5, one end portion in the width direction of the sludge storage portion 17 protrudes on the water surface as a work cylinder 18 partitioned in a cylindrical shape so that the filter medium 4 does not enter as shown in FIG. The hose 20 of the vacuum wheel 19 can be inserted into the sludge storage part 17 from the working cylinder 18, or the air hose 22 of the compressor 21 can be inserted as shown in FIG. The fact that the hose 20 of the vacuum wheel 19 can be inserted into the work cylinder 18 means that the sludge that has settled and accumulated in the sludge reservoir 17 can be pumped up. On the other hand, the fact that the air hose 22 of the compressor 21 can be inserted means that the filter medium 4 can be cleaned particularly by so-called air injection.

なお、必要に応じて上記水性植物13の一部または全部を陸生植物に置き換えることももちろん可能である。   Of course, part or all of the aqueous plant 13 may be replaced with a terrestrial plant as necessary.

したがって、このように構成された湿地型水質浄化処理システムによれば、取水口2から供給された汚濁水5が各上部越流板8a,8b‥8nの上端での越流と各下部浸透板7a,7b‥7nの下部の流路9を浸透する際のいわゆる鉛直浸透流とを何回か繰り返すことにより、全体として処理槽1の上流側から下流側に向かう緩やかな流れが生成される。そして、汚濁水5が濾材4を通過することによりその汚濁水5に含まれる水中浮遊物や汚泥が濾材4にて捕集されて、特に質量が大きな汚泥は下方の汚泥貯留部17に沈殿,堆積することになる。   Therefore, according to the wetland type water purification system configured as described above, the polluted water 5 supplied from the intake port 2 is overflowed at the upper ends of the upper overflow plates 8a, 8b,. By repeating the so-called vertical osmotic flow when permeating the lower flow path 9 of 7a, 7b... 7n several times, a gentle flow from the upstream side to the downstream side of the processing tank 1 is generated as a whole. Then, when the polluted water 5 passes through the filter medium 4, the suspended matter and sludge contained in the polluted water 5 are collected by the filter medium 4, and particularly sludge having a large mass is precipitated in the lower sludge storage part 17. Will be deposited.

また、汚濁水5に含まれる溶解性の汚れ、すなわち濾過作用では除去できない溶解性の汚れについても汚濁水5が濾材間を通過することにより濾材4の表面に付着した微生物による有機物の分解作用により接触浄化される。さらに、人工湿地12に植栽した水生植物13の成長に伴う栄養吸収作用のために水中のりん及び窒素といった栄養塩類の除去が行われるとともに、水生植物13の根の部分に付着している微生物による有機物の分解作用も同時に行われる。これらの浄化プロセスの複合作用により、処理槽1の下流側ほど処理水が浄化されて、放流口3から放流されることになる。   Further, the soluble dirt contained in the contaminated water 5, that is, the soluble dirt that cannot be removed by the filtering action, is caused by the decomposition action of organic substances by microorganisms adhering to the surface of the filter medium 4 when the contaminated water 5 passes between the filter media. Purified by contact. In addition, nutrients such as phosphorus and nitrogen in the water are removed to absorb nutrients accompanying the growth of the aquatic plant 13 planted in the constructed wetland 12, and the microorganisms attached to the root portion of the aquatic plant 13 At the same time, organic substances are decomposed by the above. By the combined action of these purification processes, the treated water is purified toward the downstream side of the treatment tank 1 and discharged from the outlet 3.

その上、前記人工湿地12に前記水路6を流れる水面の一部を露出させる水面露出部14を設け、この水面露出部14の幅を流れ方向で積極的に変化させて、流れが広い部分と狭い部分とを併存させてあることから、特に流れが狭い部分では水の流れが速くなって、汚泥の沈降防止だけでなくいわゆるせせらぎのような外観を呈し、水が流れていることを実感させることができる。   In addition, the artificial wetland 12 is provided with a water surface exposure portion 14 that exposes a part of the water surface flowing through the water channel 6, and the width of the water surface exposure portion 14 is actively changed in the flow direction, Since the narrow part coexists, the flow of water becomes fast especially in the narrow part, not only preventing the sludge from settling, but also showing the appearance of so-called murmur, making you realize that the water is flowing be able to.

そして、前記水路6の下部に汚泥が堆積したならば、図5に示すように、前記汚泥貯留部17の幅方向の一端部に設けた作業筒体18からバキューム車19のホース20を挿入して負圧吸引すれば、水路6の下部に堆積している汚泥を効率よく排出することができる。さらに、図6に示すように、前記作業筒体18からコンプレッサ21のエアーホース22を挿入して前記汚泥貯留部17内に洗浄媒体として圧縮空気を吹き込むことにより濾材4の洗浄を行うことができる。   And if sludge accumulates in the lower part of the water channel 6, as shown in FIG. 5, the hose 20 of the vacuum wheel 19 is inserted from the work cylinder 18 provided at one end in the width direction of the sludge reservoir 17. If the negative pressure is sucked, the sludge accumulated in the lower part of the water channel 6 can be discharged efficiently. Further, as shown in FIG. 6, the filter medium 4 can be cleaned by inserting an air hose 22 of the compressor 21 from the working cylinder 18 and blowing compressed air as a cleaning medium into the sludge storage part 17. .

ここで、図7〜9には上記処理槽1におけるいわゆる二重底構造の変形例を示す。   Here, FIGS. 7 to 9 show modified examples of the so-called double bottom structure in the processing tank 1.

図7では、水路6を形成している処理槽1の内底部に、濾材4の進入を阻止しつつ水路6の底部に沈下してきた汚泥の浸入を許容する多数の孔23を有する汚泥貯留部としての管状体24を水路6の長さ方向に沿って配置したものである。上記管状体24としては、周面に多数の孔を有するヒューム管、塩化ビニール管、鋼管等の有孔管が用いられる。   In FIG. 7, the sludge storage part which has many holes 23 which accept | permit the infiltration of the sludge which settled in the bottom part of the water channel 6 in the inner bottom part of the processing tank 1 which forms the water channel 6 while preventing the filter medium 4 from approaching. The tubular body 24 is arranged along the length direction of the water channel 6. As the tubular body 24, a perforated pipe such as a fume pipe, a vinyl chloride pipe, or a steel pipe having a large number of holes on its peripheral surface is used.

図8では、処理槽1の内底部に一段低い管状体収容部25を予め形成した上でこの管状体収容部25に上記と同様に汚泥貯留部としての管状体24を埋設したものである。   In FIG. 8, a tubular body accommodating portion 25 that is one step lower is formed in advance on the inner bottom portion of the processing tank 1, and a tubular body 24 as a sludge storage portion is embedded in the tubular body accommodating portion 25 in the same manner as described above.

また、図9では、管状体収容部26にいわゆるコンクリート製のU字溝27を配置した上でその開口部にグレーチング28を載せて蓋をすることにより、これらのU字溝27とグレーチング28とにより汚泥貯留部としての管状体29を形成したものである。   Further, in FIG. 9, a so-called concrete U-shaped groove 27 is arranged in the tubular body housing portion 26, and a grating 28 is placed on the opening to cover the U-shaped groove 27 and the grating 28. Thus, a tubular body 29 is formed as a sludge storage section.

これらの図7〜9に示す変形例では、例えば処理槽1自体を先に述べた不透水性のシート等をもって形成する場合に汚泥貯留部としての管状体24または29を容易に設置することが可能であり、コスト的に著しく有利となる。   7 to 9, for example, when the treatment tank 1 itself is formed with the above-described impervious sheet or the like, the tubular body 24 or 29 as the sludge reservoir can be easily installed. This is possible and has a significant cost advantage.

図10は別の変形例を示し、図3と比較すると明らかなように、複数の上部越流板8a,8b‥8nの上端の高さ位置を全て同じ高さ位置に揃える一方、各下部浸透板7a,7b‥7nの下端の流路9の開口高さを同じ高さに揃えたものである。この場合にも図3のものと同様の作用効果が得られる。   FIG. 10 shows another modification, and as is clear from comparison with FIG. 3, the height positions of the upper ends of the plurality of upper overflow plates 8a, 8b,. The opening height of the flow path 9 at the lower end of the plates 7a, 7b,. In this case, the same effect as that of FIG. 3 can be obtained.

図11〜13には本発明に係る湿地型水質浄化処理システムの第2の実施の形態を示す。すなわち、図11は、人工湿地12を、水路6を流れる汚濁水5の水面よりも上位に配置し、汚濁水5の水面を人工湿地12で覆い隠した湿地型水質浄化処理システムの平面図を、図12は図11のX1−X1線に沿う断面図を、図13は図11のY1−Y1線に沿う断面図をそれぞれ示している。なお、これらの図において先の実施の形態と共通する部分には同一符号を付してある。   11 to 13 show a second embodiment of the wetland type water purification system according to the present invention. That is, FIG. 11 is a plan view of a wetland type water purification system in which the constructed wetland 12 is arranged higher than the surface of the polluted water 5 flowing through the water channel 6 and the surface of the polluted water 5 is covered with the constructed wetland 12. 12 is a sectional view taken along line X1-X1 in FIG. 11, and FIG. 13 is a sectional view taken along line Y1-Y1 in FIG. In these drawings, the same reference numerals are given to the portions common to the previous embodiment.

人工湿地12の土壌等の湿地基盤30は、基盤支持材31により水路6の水位よりも上位に配置されている。基盤支持材31は、人工湿地12の土壌等の湿地基盤30を支持し、かつ人工湿地12に植えられた例えば水性植物13の根が通過するのを許容する無数の小孔を有するグレーチングや金属網、非金属製ネット、土木用吸出し防水シート、不織布等の単体あるいは複合体により形成されている。また、人工湿地12の湿地基盤30は、基盤支持材31により水中に落下することのないように支持されている一方、人工湿地12上に植生している水性植物13の根は、基盤支持材31の小孔や網目等を通して水面まで伸びることができる構成になっている。   The wetland base 30 such as the soil of the constructed wetland 12 is arranged higher than the water level of the water channel 6 by the base support material 31. The base support material 31 supports a wetland base 30 such as soil of the artificial wetland 12 and has a myriad of small holes that allow the roots of, for example, the aqueous plant 13 planted in the artificial wetland 12 to pass therethrough. It is formed of a single body or a composite such as a net, a non-metallic net, a suction waterproofing sheet for civil engineering, and a nonwoven fabric. Further, the wetland base 30 of the constructed wetland 12 is supported by the base support material 31 so as not to fall into the water, while the roots of the aqueous plants 13 vegetated on the artificial wetland 12 are the base support material. It is configured to be able to extend to the water surface through 31 small holes or meshes.

このような湿地型水質浄化処理システムによれば、人工湿地12を、水路6を流れる汚濁水5の水面よりも上位に配置したので、前記水面は前記人工湿地12で覆われた状態になって直射日光が届かないので、水中では光合成ができず、従って水中ではアオミドロなどの藻類や水草等の繁殖がしないので、これら藻類や水草等が枯れて濾材4の目詰まりの原因になるのを未然に防止することができる。   According to such a wetland type water purification system, since the artificial wetland 12 is arranged above the surface of the polluted water 5 flowing through the water channel 6, the water surface is covered with the artificial wetland 12. Since direct sunlight does not reach, photosynthesis is not possible in water, and therefore algae such as Aoumilo and aquatic plants do not breed in water. Can be prevented.

また、人工湿地12に水生植物13以外の陸生植物を植えることもできる。さらに、本発明のシステムを河川敷に設置した場合に降雨による増水等によりシステムが冠水した場合でも、システムの最上部(表面)が人工湿地12となっていて且つ土壌等の湿地基盤30で水面は覆われた状態になっているので、浸入した泥水等は土壌等の湿地基盤30で濾過された上でシステム内に浸入することになるので、冠水によりシステムの受けるダメージを最小限に押さえることができる。   In addition, terrestrial plants other than the aquatic plant 13 can be planted in the artificial wetland 12. Furthermore, even when the system of the present invention is installed on a riverbed, even when the system is submerged due to water increase due to rain, the uppermost part (surface) of the system is an artificial wetland 12 and the water surface is wetland base 30 such as soil. Since it is in a covered state, the infiltrated muddy water and the like is filtered through the wetland base 30 such as the soil and then enters the system, so that damage to the system due to flooding can be minimized. it can.

図14は本発明に係る湿地型水質浄化処理システムの第3の実施の形態を示し、先に説明した図10と共通する部分には同一符号を付してある。   FIG. 14 shows a third embodiment of the wetland type water purification system according to the present invention, and the same reference numerals are given to the parts common to FIG. 10 described above.

この第3の実施の形態では、図示を省略した取水口および放流口(図10参照)を有する処理槽1の内部に、上端の高さ位置が共に等しい複数の上部越流板8a,8b‥8nと下部の開口高さ位置が共に等しい複数の下部浸透置板7a,7b‥7nとを流れ方向に沿って交互に配置してある。これにより、処理槽1の内部は少なくとも上部越流板8a,8b‥8nによって複数の領域に仕切られている。また、各下部浸透板7a,7b‥7nに隣接して汚泥観測孔を兼ねた作業筒体33を設けてあり、この作業筒体33の上端は処理槽1内の水位よりも上方に突出している一方、作業筒体33の下端は中底板16よりも下方の汚泥貯留部17に臨ませてある。つまり、汚泥貯留部17はそれぞれに上流側と下流側の上部越流板8a,8b‥8nによって独立した空間として仕切られていることから、各汚泥貯留部17にそれぞれに作業筒体33が少なくとも一つ臨んでいることになる。   In the third embodiment, a plurality of upper overflow plates 8a, 8b,... Having the same height at the upper end are disposed inside the treatment tank 1 having a water intake and a discharge port (see FIG. 10) (not shown). .. 8n and a plurality of lower permeation placing plates 7a, 7b... 7n having the same opening height at the lower portion are alternately arranged along the flow direction. Thereby, the inside of the processing tank 1 is partitioned into a plurality of regions by at least the upper overflow plates 8a, 8b,. Further, a work cylinder 33 that also serves as a sludge observation hole is provided adjacent to each of the lower permeation plates 7a, 7b,... 7n, and the upper end of the work cylinder 33 protrudes above the water level in the treatment tank 1. On the other hand, the lower end of the working cylinder 33 faces the sludge storage part 17 below the middle bottom plate 16. That is, each sludge storage section 17 is partitioned as an independent space by the upstream and downstream upper overflow plates 8a, 8b,..., 8n, so that each sludge storage section 17 has at least a work cylinder 33. One will be there.

この第3の実施の形態によれば、作業筒体33から汚泥貯留部17に対していわゆる棒状のゲージを差し込むことにより、その感触または引き抜きによる目視をもって各汚泥貯留部17での汚泥34の堆積状況を確認することができる。そして、汚泥34の堆積が確認されたならば、図5と同様に、作業筒体33から汚泥貯留部17にバキューム車19のホース20を挿入して負圧吸引すれば、汚泥貯留部17に堆積している汚泥34を効率よく排出することができる。さらに、図6と同様にして作業筒体33からコンプレッサ21のエアーホース22を挿入して汚泥貯留部17から上方に向けて洗浄媒体として圧縮空気を吹き込むことにより濾材4の洗浄をも行うことができる。   According to the third embodiment, by inserting a so-called rod-shaped gauge from the work cylinder 33 into the sludge reservoir 17, the accumulation of the sludge 34 in each sludge reservoir 17 can be visually confirmed or pulled out. You can check the situation. And if accumulation of the sludge 34 is confirmed, if the hose 20 of the vacuum wheel 19 is inserted into the sludge storage part 17 from the work cylinder 33 and sucked under a negative pressure, the sludge storage part 17 is restored. The accumulated sludge 34 can be discharged efficiently. Further, the filter medium 4 can also be cleaned by inserting the air hose 22 of the compressor 21 from the work cylinder 33 and blowing compressed air as a cleaning medium upward from the sludge reservoir 17 in the same manner as in FIG. it can.

図16〜18は本発明に係る湿地型水質浄化処理システムの第4の実施の形態を示し、図14と共通する部分には同一符号を付してある。   16 to 18 show a fourth embodiment of the wetland type water purification system according to the present invention, and the same reference numerals are given to portions common to FIG.

この第4の実施の形態では、図16に示すように、複数の上部越流板8a,8b‥8nのうちその下半部、すなわち各上部越流板8a,8b‥8nのうち汚泥貯留部17に臨んでいる部分を可動式のものとして、必要に応じて上流側の上部越流板8a,8b‥8nと下流側の上部越流板8a,8b‥8nとで仕切られた各汚泥貯留部17の独立性を解除して、隣接する汚泥貯留部17,17同士を連通させることができるようにしたものである。   In the fourth embodiment, as shown in FIG. 16, the lower half of the plurality of upper overflow plates 8a, 8b... 8n, that is, the sludge storage portion of each of the upper overflow plates 8a, 8b. The part facing 17 is movable, and each sludge reservoir partitioned by upstream upper overflow plates 8a, 8b... 8n and downstream upper overflow plates 8a, 8b. The independence of the part 17 is canceled so that the adjacent sludge storage parts 17 and 17 can communicate with each other.

より詳しくは、図16のほか図17に示すように、各上部越流板8a,8b‥8nの下半部は可動仕切り板35としてヒンジピン36にて越流板本体37の下端に揺動可能に連結されていて、通常状態では各可動仕切り板35は鉛直状態を指向するようになっている。また、各可動仕切り板35の下端部同士は、越流板本体37同士のなすスパンと同じスパンとなるようにリンケージロッド38にて相互に連結されているとともに、最も上流側に位置する上部越流板8aの可動仕切り板35と最も下流側に位置する上部越流板8nの可動仕切り板35は、巻き取り機である第1のウインチ39または第2のウインチ40から引き出されたワイヤ41にそれぞれ連結してある。なお、処理槽1の最上流部および最下流部には作業筒体33を設けてあり、この作業筒体33に上記ワイヤ41を挿通してある。また、いずれか一つの上部越流板8aに隣接して上下動可能なストッパ治具42を設けてあり、図16から明らかなように通常状態ではストッパ治具42は最下降位置にあって且つ隣接する上部越流板8aの可動仕切り板35と重合状態となるようにその可動仕切り板35をロックしている。   More specifically, as shown in FIG. 17 in addition to FIG. 16, the lower half of each upper overflow plate 8a, 8b,..., 8n can swing as a movable partition plate 35 to the lower end of the overflow plate body 37 with a hinge pin 36. In the normal state, each movable partition plate 35 is oriented in the vertical state. Further, the lower end portions of the movable partition plates 35 are connected to each other by a linkage rod 38 so as to have the same span as that of the overflow plate bodies 37, and the upper overflow portion located at the most upstream side. The movable partition plate 35 of the flow plate 8a and the movable partition plate 35 of the upper overflow plate 8n located on the most downstream side are connected to the wire 41 drawn from the first winch 39 or the second winch 40 which is a winder. Each is connected. A work cylinder 33 is provided in the most upstream part and the most downstream part of the processing tank 1, and the wire 41 is inserted through the work cylinder 33. Further, a stopper jig 42 that can move up and down is provided adjacent to any one of the upper overflow plates 8a. As is clear from FIG. 16, the stopper jig 42 is in the lowest position in the normal state, and The movable partition plate 35 is locked so as to be superposed with the movable partition plate 35 of the adjacent upper overflow plate 8a.

したがって、第4の実施の形態によれば、図16に示す通常状態ではそれぞれの可動仕切り板35が閉止位置にあるが故に、処理槽1の下部の汚泥貯留部17はそれぞれに独立している。   Therefore, according to the fourth embodiment, since each movable partition plate 35 is in the closed position in the normal state shown in FIG. 16, the sludge storage portions 17 at the lower part of the processing tank 1 are independent of each other. .

その一方、汚泥貯留部17に汚泥が堆積してその汚泥汲み取りの必要が生じた場合には、図18に示すようにストッパ治具42を上昇させてそれに隣接する可動仕切り板8aのロックを解除する。そして、第2のウインチを回転操作して該当するワイヤ41を牽引しつつ巻き上げると、各可動仕切り板35が連動して一斉に揺動動作して開状態となる。なお、この時には第1のウインチ39は第2のウインチ40のワイヤ牽引動作に伴い該当するワイヤ41の繰り出しを容易に許容する状態としておく。これにより、それまでの各汚泥貯留部17の独立性が解除されて、それらの汚泥貯留部17,17同士が相互に連通して一つの大きな空間と化すことになる。   On the other hand, when the sludge accumulates in the sludge storage part 17 and it becomes necessary to remove the sludge, the stopper jig 42 is raised as shown in FIG. 18 to unlock the movable partition plate 8a adjacent thereto. To do. When the second winch is rotated and wound up while pulling the corresponding wire 41, the movable partition plates 35 are oscillated all at once to be in an open state. At this time, the first winch 39 is allowed to easily allow the corresponding wire 41 to be fed out in accordance with the wire pulling operation of the second winch 40. Thereby, the independence of each sludge storage part 17 until then is cancelled | released, and those sludge storage parts 17 and 17 mutually communicate, and it becomes one big space.

この状態で、図15の場合と同様に作業筒体33から汚泥貯留部17にバキューム車19のホース20を挿入して負圧吸引すれば、処理槽1の下部に堆積している汚泥を一回の作業で効率よく排出することができる。さらに、図6と同様にして作業筒体33からコンプレッサ21のエアーホース22を挿入して汚泥貯留部17から上方に向けて洗浄媒体として圧縮空気を吹き込むことにより濾材4の洗浄をも行うことができる。   In this state, if the hose 20 of the vacuum wheel 19 is inserted from the work cylinder 33 into the sludge reservoir 17 and sucked with negative pressure in the same manner as in FIG. 15, sludge accumulated in the lower portion of the treatment tank 1 is reduced. It is possible to discharge efficiently in one operation. Further, the filter medium 4 can also be cleaned by inserting the air hose 22 of the compressor 21 from the work cylinder 33 and blowing compressed air as a cleaning medium upward from the sludge reservoir 17 in the same manner as in FIG. it can.

汚泥汲み取り等の作業が完了したならば、ストッパ治具42を下降させて元の状態に戻した上で、第1のウインチ39を使って特定の可動仕切り板35がストッパ治具42に当接してロック状態となるまで各々の可動仕切り板35を元の閉止状態に戻す。なお、この時には第2のウインチ40は第1のウインチ39のワイヤ牽引動作に伴い該当するワイヤ41の繰り出しを容易に許容する状態としておく。   When the work such as the sludge pumping is completed, the stopper jig 42 is lowered and returned to the original state, and the specific movable partition plate 35 comes into contact with the stopper jig 42 using the first winch 39. Then, each movable partition plate 35 is returned to the original closed state until it is locked. At this time, the second winch 40 is allowed to easily allow the corresponding wire 41 to be fed out in accordance with the wire pulling operation of the first winch 39.

このように第4の実施の形態によれば、先の第3の実施の形態と異なり一回の操作で処理槽1の下部に堆積した汚泥を一気に汲み取ることが可能となる。   As described above, according to the fourth embodiment, unlike the third embodiment, sludge accumulated in the lower portion of the treatment tank 1 can be pumped at a stroke by a single operation.

本発明に係るシステムの基本概念を示す要部の断面説明図。Cross-sectional explanatory drawing of the principal part which shows the basic concept of the system concerning this invention. 本発明の第1の実施の形態として人工湿地に水面露出部を設けた湿地型水質浄化処理システムの平面説明図。BRIEF DESCRIPTION OF THE DRAWINGS Plan explanatory drawing of the wetland type | system | group water purification process system which provided the water surface exposure part in the artificial wetland as the 1st Embodiment of this invention. 図2のX−X線に沿う断面説明図。Cross-sectional explanatory drawing which follows the XX line of FIG. 図2のY−Y線に沿う断面説明図。Cross-sectional explanatory drawing which follows the YY line | wire of FIG. 汚泥排出作業時の説明図。Explanatory drawing at the time of sludge discharge work. 濾材洗浄作業時の説明図。Explanatory drawing at the time of a filter medium washing | cleaning operation | work. 汚泥貯留部の他の例を示す断面説明図。Cross-sectional explanatory drawing which shows the other example of a sludge storage part. 同じく汚泥貯留部の他の例を示す断面説明図。Cross-sectional explanatory drawing which shows the other example of a sludge storage part similarly. 汚泥貯留部のさらに他の例を示す断面説明図。Cross-sectional explanatory drawing which shows the further another example of a sludge storage part. 図3の変形例を示す断面説明図。Cross-sectional explanatory drawing which shows the modification of FIG. 本発明の第2の実施の形態として人工湿地で水面を覆い隠した状態の平面説明図。Plane | planar explanatory drawing of the state which covered and concealed the water surface with the artificial wetland as the 2nd Embodiment of this invention. 図11のX1−X1線に沿う断面説明図。Cross-sectional explanatory drawing which follows the X1-X1 line | wire of FIG. 図11のY1−Y1線に沿う断面説明図。Cross-sectional explanatory drawing which follows the Y1-Y1 line | wire of FIG. 本発明の第3の実施の形態を示す湿地型水質浄化処理システムの断面説明図。Cross-sectional explanatory drawing of the wetland type | system | group water purification processing system which shows the 3rd Embodiment of this invention. 図14のシステムでの汚泥排出作業を示す説明図。Explanatory drawing which shows the sludge discharge | emission work in the system of FIG. 本発明の第4の実施の形態を示す湿地型水質浄化処理システムの断面説明図。Cross-sectional explanatory drawing of the wetland type | system | group water purification process system which shows the 4th Embodiment of this invention. 図16の要部の拡大説明図。FIG. 17 is an enlarged explanatory diagram of a main part of FIG. 16. 図16の作動状態を示す断面説明図。Cross-sectional explanatory drawing which shows the operation state of FIG.

符号の説明Explanation of symbols

1…処理槽
2…取水口
3…放流口
4…濾材
5…汚濁水
6…水路
7a,7b‥7n…第1,第2‥第nの下部浸透板
8a,8b〜8n…第1,第2‥第nの上部越流板
9…下部浸透板の下部の浸透用の流路
12…人工湿地
13…水性植物
14…水面露出部
16…中底板
17…汚泥貯留部
24…管状体(汚泥貯留部)
29…管状体(汚泥貯留部)
30…湿地基盤
31…基盤支持材
35…可動仕切り板
DESCRIPTION OF SYMBOLS 1 ... Treatment tank 2 ... Water intake 3 ... Discharge port 4 ... Filter medium 5 ... Polluted water 6 ... Water channel 7a, 7b ... 7n ... 1st, 2nd ... nth lower osmosis | permeation board 8a, 8b-8n ... 1st, 1st 2 ... n-th upper overflow plate 9 ... lower infiltration plate lower infiltration channel 12 ... artificial wetland 13 ... aqueous plant 14 ... water surface exposed portion 16 ... midsole plate 17 ... sludge reservoir 24 ... tubular body (sludge Reservoir)
29 ... Tubular body (sludge storage part)
30 ... Wetland base 31 ... Base support material 35 ... Movable partition plate

Claims (7)

汚濁水が供給される人工湿地の流入側から放流側に向かって汚濁水を流す水路を形成し、該水路に汚濁水の流れに対して略直交する方向に複数の上部越流板と下部浸透板を交互に配置し、前記上部越流板の位置においては汚濁水をその上部越流板の上端を越流させ、前記下部浸透板の位置においては汚濁水をその下部浸透板の下端の浸透用の流路を通して浸透させて、前記上部越流板と下部浸透板により汚濁水に垂直方向の流れを生成しながら前記水路内に敷設した濾材および前記人工湿地に植生する植物で汚濁水を浄化する湿地型水質浄化処理システムにおいて、
前記複数の上部越流板の上端の高さ位置が上流側から下流に向かって0〜1/80のマイナス勾配となるようにそれぞれの上部越流板の設置高さを設定してあることを特徴とする湿地型水質浄化処理システム。
A water channel is formed to flow the polluted water from the inflow side to the discharge side of the constructed wetland to which the polluted water is supplied, and a plurality of upper overflow plates and lower infiltration are formed in the water channel in a direction substantially orthogonal to the flow of the polluted water. The plates are arranged alternately, and at the position of the upper overflow plate, polluted water is allowed to flow over the upper end of the upper overflow plate, and at the position of the lower seepage plate, the polluted water is permeated at the lower end of the lower seepage plate. The polluted water is purified by the filter medium laid in the water channel and the plant vegetated in the constructed wetland while infiltrating through the flow path for the water and generating a vertical flow in the contaminated water by the upper overflow plate and the lower permeation plate In the wetland type water purification system
The installation height of each upper overflow plate is set so that the height position of the upper ends of the plurality of upper overflow plates has a negative gradient of 0 to 1/80 from the upstream side toward the downstream side. A characteristic wetland water purification system.
前記複数の上部越流板の上端の高さ位置が上流側から下流に向かって0〜1/80のマイナス勾配となるようにそれぞれの上部越流板の設置高さを設定するのに代えて、
前記複数の下部浸透板の下端における浸透用の流路の相互関係として、下流側の下部浸透板の下端における浸透用の流路の開口断面積が、それよりも一つ上流側に位置する下部浸透板の下端における浸透用の流路の開口断面積と同等もしくはそれ以上の大きさに設定してあることを特徴とする請求項1に記載の湿地型水質浄化処理システム。
Instead of setting the installation height of each upper overflow plate so that the height position of the upper ends of the plurality of upper overflow plates has a negative gradient of 0 to 1/80 from the upstream side toward the downstream side. ,
As the interrelationship of the permeation flow paths at the lower ends of the plurality of lower permeation plates, the lower cross section where the opening cross-sectional area of the permeation flow path at the lower end of the lower permeation plate on the downstream side is one upstream side The wetland water purification system according to claim 1, wherein the wetland type water purification system is set to have a size equal to or larger than an opening cross-sectional area of a flow path for permeation at a lower end of the permeation plate.
前記複数の下部浸透板の下端における浸透用の流路の相互関係として、下流側の下部浸透板の下端における浸透用の流路の開口断面積が、それよりも一つ上流側に位置する下部浸透板の下端における浸透用の流路の開口断面積と同等もしくはそれ以上の大きさに設定してあることを特徴とする請求項1に記載の湿地型水質浄化処理システム。   As the interrelationship of the permeation flow paths at the lower ends of the plurality of lower permeation plates, the lower cross section where the opening cross-sectional area of the permeation flow path at the lower end of the lower permeation plate on the downstream side is one upstream side The wetland water purification system according to claim 1, wherein the wetland type water purification system is set to have a size equal to or larger than an opening cross-sectional area of a flow path for permeation at a lower end of the permeation plate. 前記複数の上部越流板の上端の高さ位置が上流側から下流に向かって0〜1/80のマイナス勾配となるようにそれぞれの上部越流板の設置高さを設定してあるのに代えて、
前記人工湿地は、前記汚濁水の水面の一部を露出させる水面露出部を備えていて、この水面露出部の流れ方向での少なくとも一部の表面側流路幅が特定の上部越流板の位置においてそれよりも一つ上流側の下部浸透板の位置における流路幅よりも狭くなるように設定してあることを特徴とする請求項1に記載の湿地型水質浄化処理システム。
The installation height of each upper overflow plate is set so that the height position of the upper ends of the plurality of upper overflow plates has a negative gradient of 0 to 1/80 from the upstream side toward the downstream side. Instead to,
The constructed wetland has a water surface exposed portion that exposes a part of the water surface of the polluted water, and at least a part of the surface side channel width in the flow direction of the water surface exposed portion is a specific upper overflow plate. 2. The wetland type water purification system according to claim 1, wherein the wetland type water purification system is set to be narrower than the flow path width at the position of the lower permeation plate on the upstream side at one position.
前記濾材を敷設してある水路を、前記上部越流板および下部浸透板のうち少なくともいずれか一方をもって汚濁水の流れ方向で2個以上の区画に仕切り、それらの区画のうち一部または全部の区画における濾材敷設領域の下部に汚泥貯留部を設けて、水路のうち前記汚泥貯留部を設けた部分では二重底構造としてあることを特徴とする請求項1〜4のいずれかに記載の湿地型水質浄化処理システム。   The water channel in which the filter medium is laid is partitioned into at least one of the upper overflow plate and the lower permeation plate in two or more compartments in the flow direction of the polluted water, and some or all of the compartments The wetland according to any one of claims 1 to 4, wherein a sludge storage section is provided at a lower portion of a filter medium laying area in the section, and a portion of the water channel provided with the sludge storage section has a double bottom structure. Type water purification system. 前記濾材を敷設した水路を、前記上部越流板をもって汚濁水の流れ方向で2個以上の区画に仕切り、それらの区画のうち一部または全部の区画における濾材敷設領域の下部に汚泥貯留部を設けて、水路のうち前記汚泥貯留部を設けた部分では二重底構造としてあるとともに、
前記上部越流板のうち汚泥貯留部に臨んでいる部分を可動式のものとしたことを特徴とする請求項1〜4のいずれかに記載の湿地型水質浄化処理システム。
The water channel in which the filter medium is laid is divided into two or more sections in the flow direction of the polluted water with the upper overflow plate, and a sludge storage section is provided below the filter medium laying area in some or all of the sections. In the part where the sludge storage part is provided in the water channel, it has a double bottom structure,
The wetland type water purification system according to any one of claims 1 to 4, wherein a portion of the upper overflow plate that faces the sludge storage portion is movable.
前記人工湿地の湿地基盤は、基盤支持材を介して前記水路の水位よりも上位に配置してあることを特徴とする請求項1〜6のいずれかに記載の湿地型水質浄化処理システム。   The wetland type water purification system according to any one of claims 1 to 6, wherein the wetland base of the artificial wetland is disposed higher than the water level of the water channel via a base support material.
JP2005321810A 2004-11-05 2005-11-07 Wetland type water purification system Pending JP2006150351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005321810A JP2006150351A (en) 2004-11-05 2005-11-07 Wetland type water purification system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004321507 2004-11-05
JP2005321810A JP2006150351A (en) 2004-11-05 2005-11-07 Wetland type water purification system

Publications (1)

Publication Number Publication Date
JP2006150351A true JP2006150351A (en) 2006-06-15

Family

ID=36629255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005321810A Pending JP2006150351A (en) 2004-11-05 2005-11-07 Wetland type water purification system

Country Status (1)

Country Link
JP (1) JP2006150351A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068211A (en) * 2006-09-14 2008-03-27 National Agriculture & Food Research Organization Underflow-type constructed wetland system
KR100820863B1 (en) 2007-08-24 2008-04-11 주식회사 에코탑 Constructed wetland system for sewage treatment
KR100936943B1 (en) 2009-05-26 2010-01-13 공주대학교 산학협력단 Prefabrication type block for constructed wetland, constructed wetland using the block, and manufacturing method of the constructed wetland
CN102153234A (en) * 2011-03-04 2011-08-17 南昌大学 Serial drop water composite wetland system for treating non-point pollution
KR101179198B1 (en) * 2012-04-24 2012-09-07 주식회사 이케이 Continuous flowing type wetland improving nitrogen treatment
WO2012161392A1 (en) * 2011-05-24 2012-11-29 주식회사 성일엔텍 Hybrid artificial wetland water purification system, sewage treatment device using same, and natural nonpoint purification device capable of simultaneously purifying river and lake water
CN103739084A (en) * 2014-01-23 2014-04-23 华中科技大学 Anti-blocking method for artificial wetland
CN104386823A (en) * 2014-11-11 2015-03-04 重庆文理学院 Application of linearstripe rabdosia herb to purification of rural domestic wastewater
CN104386822A (en) * 2014-11-12 2015-03-04 重庆文理学院 Application of kousa dogwood to treatment of rural domestic wastewater in combined system
CN104548685A (en) * 2014-12-16 2015-04-29 苏州市诚品精密机械有限公司 Sewage purifying tank
CN105198092A (en) * 2015-10-29 2015-12-30 湖北文理学院 Sloping bottom type integrated vertical-flow constructed wetland system
CN106115924A (en) * 2016-08-15 2016-11-16 四川省环境保护科学研究院 Vertical current constructed wetland decentralized type sewage processing equipment
GB2540678A (en) * 2015-07-22 2017-01-25 Attwell Moorhead David Bioremediation system
CN106745782A (en) * 2017-01-23 2017-05-31 岭南新科生态科技研究院(北京)有限公司 A kind of artificial wetland effluent adjusts canal
CN107364972A (en) * 2017-08-28 2017-11-21 河北省水利水电勘测设计研究院 A kind of computational methods of nonclogging artificial wet land system and its sludge-drainage time
CN107381976A (en) * 2017-09-18 2017-11-24 葛洲坝中固科技股份有限公司 A kind of small watershed high-effective cleansing denitrification system and method
CN107724333A (en) * 2017-11-28 2018-02-23 郑州大学 A kind of anti-blocking ecology filter dam of river enhancing denitrification effect
CN110422974A (en) * 2019-09-10 2019-11-08 佛山科学技术学院 A kind of artificial wet land treating method of farmland sewage
CN113371936A (en) * 2021-06-16 2021-09-10 中国水利水电科学研究院 Improved anti-blocking constructed wetland and use method thereof
CN114508162A (en) * 2020-11-17 2022-05-17 北京市水利规划设计研究院 Drainage ditch assembly
CN114508072A (en) * 2022-01-26 2022-05-17 安徽新华学院 Seepage-proofing drainage structure based on artificial wetland water ecology
KR102439961B1 (en) * 2021-08-12 2022-09-07 아쿠아셀 주식회사 Device for composing artificial wet lands

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068211A (en) * 2006-09-14 2008-03-27 National Agriculture & Food Research Organization Underflow-type constructed wetland system
KR100820863B1 (en) 2007-08-24 2008-04-11 주식회사 에코탑 Constructed wetland system for sewage treatment
KR100936943B1 (en) 2009-05-26 2010-01-13 공주대학교 산학협력단 Prefabrication type block for constructed wetland, constructed wetland using the block, and manufacturing method of the constructed wetland
CN102153234A (en) * 2011-03-04 2011-08-17 南昌大学 Serial drop water composite wetland system for treating non-point pollution
US9221698B2 (en) 2011-05-24 2015-12-29 Sung Il En-Tech Co., Ltd. Hybrid artificial wetland water purification system, sewage treatment device using same, and natural nonpoint purification device capable of simultaneously purifying river and lake water
WO2012161392A1 (en) * 2011-05-24 2012-11-29 주식회사 성일엔텍 Hybrid artificial wetland water purification system, sewage treatment device using same, and natural nonpoint purification device capable of simultaneously purifying river and lake water
KR101179198B1 (en) * 2012-04-24 2012-09-07 주식회사 이케이 Continuous flowing type wetland improving nitrogen treatment
CN103739084A (en) * 2014-01-23 2014-04-23 华中科技大学 Anti-blocking method for artificial wetland
CN104386823A (en) * 2014-11-11 2015-03-04 重庆文理学院 Application of linearstripe rabdosia herb to purification of rural domestic wastewater
CN104386822A (en) * 2014-11-12 2015-03-04 重庆文理学院 Application of kousa dogwood to treatment of rural domestic wastewater in combined system
CN104548685A (en) * 2014-12-16 2015-04-29 苏州市诚品精密机械有限公司 Sewage purifying tank
GB2540678A (en) * 2015-07-22 2017-01-25 Attwell Moorhead David Bioremediation system
GB2540678B (en) * 2015-07-22 2022-06-08 Atwell Moorhead David Bioremediation system
CN105198092A (en) * 2015-10-29 2015-12-30 湖北文理学院 Sloping bottom type integrated vertical-flow constructed wetland system
CN105198092B (en) * 2015-10-29 2017-11-10 湖北文理学院 A kind of Sloping Hearth composite vertical current artificial wetland system
CN106115924A (en) * 2016-08-15 2016-11-16 四川省环境保护科学研究院 Vertical current constructed wetland decentralized type sewage processing equipment
CN106115924B (en) * 2016-08-15 2023-04-14 四川省环境保护科学研究院 Vertical-flow artificial wetland distributed sewage treatment equipment
CN106745782A (en) * 2017-01-23 2017-05-31 岭南新科生态科技研究院(北京)有限公司 A kind of artificial wetland effluent adjusts canal
CN107364972A (en) * 2017-08-28 2017-11-21 河北省水利水电勘测设计研究院 A kind of computational methods of nonclogging artificial wet land system and its sludge-drainage time
CN107381976A (en) * 2017-09-18 2017-11-24 葛洲坝中固科技股份有限公司 A kind of small watershed high-effective cleansing denitrification system and method
CN107724333A (en) * 2017-11-28 2018-02-23 郑州大学 A kind of anti-blocking ecology filter dam of river enhancing denitrification effect
CN107724333B (en) * 2017-11-28 2023-10-03 郑州大学 Anti-blocking ecological filtering dam with river enhanced denitrification effect
CN110422974A (en) * 2019-09-10 2019-11-08 佛山科学技术学院 A kind of artificial wet land treating method of farmland sewage
CN110422974B (en) * 2019-09-10 2022-01-28 佛山科学技术学院 Artificial wetland treatment method for farmland sewage
CN114508162A (en) * 2020-11-17 2022-05-17 北京市水利规划设计研究院 Drainage ditch assembly
CN113371936A (en) * 2021-06-16 2021-09-10 中国水利水电科学研究院 Improved anti-blocking constructed wetland and use method thereof
KR102439961B1 (en) * 2021-08-12 2022-09-07 아쿠아셀 주식회사 Device for composing artificial wet lands
CN114508072A (en) * 2022-01-26 2022-05-17 安徽新华学院 Seepage-proofing drainage structure based on artificial wetland water ecology
CN114508072B (en) * 2022-01-26 2023-07-28 安徽新华学院 Seepage-proofing drainage structure based on constructed wetland water ecology

Similar Documents

Publication Publication Date Title
JP2006150351A (en) Wetland type water purification system
KR101323288B1 (en) Penetration type rain water treatment and reusing apparatus
KR100977996B1 (en) Constructed wetland for sewage treatment
KR100945046B1 (en) A water purifier of a pollution source for ecological river and marshy land formation
KR101556670B1 (en) Light filter type terraced artificial wetland
JP6621653B2 (en) Storage and purification system
KR20160148950A (en) First rainwater treatment aparatus
KR101560289B1 (en) Non-Point Pollution Purifying System
KR101353280B1 (en) Modular infiltration trench combined with filter cartridges
JP2000186351A (en) Penetration-type water intake method
CN203877995U (en) Water taking and water purification integrated device for surface water source
KR100917400B1 (en) Washing type nature friendly channel for artificial wetland
JP2008144525A (en) Seawater infiltration intake system and seawater infiltration intake method
JP2007144265A (en) Rainwater filtering and regulating system
KR100419959B1 (en) Process and System for Waste water treatment contacting micorbes and Plants in the Swampy land
JP2000210505A (en) Intake apparatus by filter device utilizing riverbed
JP4181586B2 (en) Water purification treatment facility
KR102195887B1 (en) Advanced water purification system with vegetation channel type
KR101451348B1 (en) Filtration system
KR20160148949A (en) Facilities for decreasing non-point source
KR101753901B1 (en) Filter combined with small filtering bag, apparatus therefor and facitility thereof
JP4858142B2 (en) Seawater purification system and seawater purification method
KR20220032148A (en) Apparatus for river water treatment using gravity flow type gabion dam and multi-stage vegetation waterway
CN109748456B (en) Water treatment system for landscape balcony washing wastewater and roof rainwater
CN110981102B (en) Landscape pool for restoring water body polluted ecological environment and use method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311