JP2007180438A - Cooling medium, cooling apparatus, and electronic appliance - Google Patents
Cooling medium, cooling apparatus, and electronic appliance Download PDFInfo
- Publication number
- JP2007180438A JP2007180438A JP2005379824A JP2005379824A JP2007180438A JP 2007180438 A JP2007180438 A JP 2007180438A JP 2005379824 A JP2005379824 A JP 2005379824A JP 2005379824 A JP2005379824 A JP 2005379824A JP 2007180438 A JP2007180438 A JP 2007180438A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- cooling medium
- heat
- liquid
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
本発明は、電子部品などの発熱体を冷却するための冷却媒体、冷却媒体を循環させて発熱体を冷却する冷却装置、及び、冷却装置を使用した電子機器に関する。 The present invention relates to a cooling medium for cooling a heating element such as an electronic component, a cooling device for circulating the cooling medium to cool the heating element, and an electronic apparatus using the cooling apparatus.
デスクトップ型のコンピュータ、ノート型のコンピュータ、移動体通信機器などの電子機器は、CPU素子、コイル素子、コンデンサなどの複数の電子部品がプリント基板上に設けられている。近年、電子機器における処理の高速化、高機能化、高性能化に伴って、これらの電子部品の動作中の発熱量が増加する傾向にある。電子機器の安定した動作を持続させるためには、電子部品から発生した熱を迅速に外部へ放出して放熱性を高める必要がある。 In electronic devices such as desktop computers, notebook computers, and mobile communication devices, a plurality of electronic components such as CPU elements, coil elements, and capacitors are provided on a printed circuit board. In recent years, the amount of heat generated during the operation of these electronic components tends to increase with the increase in processing speed, functionality, and performance of electronic devices. In order to maintain a stable operation of the electronic device, it is necessary to quickly release the heat generated from the electronic component to the outside to improve heat dissipation.
そこで、空気に比べて高い比熱を有する水などの液体を冷却媒体として利用する液冷式の冷却装置が提案されている(例えば、特許文献1,2,3参照)。これらの冷却装置では、電子部品(発熱体)からの熱を受ける受熱板(受熱部)と、熱を外部へ放散する放熱板(放熱部)と、ポンプとを、配管にて環状に連結し、ポンプの作用によりこの配管内に冷却媒体を循環させて、発熱体から受熱部で受けた熱を、配管内を流れる冷却媒体を介して放熱部へ伝導させ、放熱部から熱を放散させて発熱体を冷却している。
上述したような従来の冷却装置では、循環する冷却媒体として、水、不凍液などの液体を使用しているが、電子部品の発熱量は、今後とも更に増加していくと考えられるため、より効率良く電子部品の冷却を行える技術の開発が望まれている。 In the conventional cooling device as described above, a liquid such as water or antifreeze is used as the circulating cooling medium. However, since the heat generation amount of the electronic components is expected to increase further in the future, it is more efficient. Development of technology that can cool electronic components well is desired.
本発明は斯かる事情に鑑みてなされたものであり、冷却性能を飛躍的に向上することができる冷却媒体、その冷却媒体を用いた冷却装置、及びその冷却装置を使用した電子機器を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a cooling medium capable of dramatically improving the cooling performance, a cooling device using the cooling medium, and an electronic apparatus using the cooling device. For the purpose.
本発明の他の目的は、冷却性能の向上に伴って大きさのコンパクト化を図れる冷却装置及び電子機器を提供することにある。 Another object of the present invention is to provide a cooling device and an electronic apparatus that can be downsized in size as the cooling performance is improved.
本発明に係る冷却媒体は、発熱体を冷却するための冷却媒体において、液体と、該液体より熱伝導率が高い固体との混合物であることを特徴とする。 The cooling medium according to the present invention is a cooling medium for cooling a heating element, which is a mixture of a liquid and a solid having a higher thermal conductivity than the liquid.
本発明の冷却媒体は、水、不凍液などの液体に、熱伝導率がこの液体より高い固体を混合させた流動性媒体である。よって、水または不凍液を用いた場合(従来例)に比べて、熱伝導率が高くなり、優れた冷却性能が期待される。 The cooling medium of the present invention is a fluid medium in which a liquid such as water or antifreeze is mixed with a solid having a higher thermal conductivity than this liquid. Therefore, compared with the case where water or antifreeze is used (conventional example), the thermal conductivity is increased, and excellent cooling performance is expected.
本発明に係る冷却媒体は、前記固体が、炭素繊維、Cu,Al,Ag,Au,Mgの中の何れかの金属、Cu,Al,Ag,Au,Mgの中の元素を1種類以上含む合金、または、Al2 O3 ,AlN,CuO,ZnO,BeO,MgO,ZrO2 ,SiCの中の何れかのセラミックであることを特徴とする。 In the cooling medium according to the present invention, the solid includes one or more elements selected from the group consisting of carbon fiber, Cu, Al, Ag, Au, and Mg, and Cu, Al, Ag, Au, and Mg. It is characterized by being an alloy or a ceramic selected from Al 2 O 3 , AlN, CuO, ZnO, BeO, MgO, ZrO 2 and SiC.
本発明の冷却媒体は、熱伝導率が高い固体として上述したような材料を含んでいる。これらの材料は熱伝導率が高いため、これらを1または複数種類含む冷却媒体は熱伝導率が高くなる。また、炭素繊維は比重が水に近いため、水への均一な分散が可能である。 The cooling medium of the present invention contains the material as described above as a solid having high thermal conductivity. Since these materials have high thermal conductivity, a cooling medium containing one or more of them has high thermal conductivity. Moreover, since carbon fiber has a specific gravity close to that of water, it can be uniformly dispersed in water.
本発明に係る冷却装置は、発熱体の熱を受ける受熱部と、外部へ熱を放散する放熱部とを配管にて接続させ、前記配管内に冷却媒体を循環させて前記発熱体を冷却する冷却装置において、前記冷却媒体は、液体と、該液体より熱伝導率が高い固体との混合物であることを特徴とする。 In the cooling device according to the present invention, a heat receiving part that receives heat from the heating element and a heat radiating part that dissipates heat to the outside are connected by a pipe, and a cooling medium is circulated in the pipe to cool the heating element. In the cooling device, the cooling medium is a mixture of a liquid and a solid having a higher thermal conductivity than the liquid.
本発明の冷却装置では、水、不凍液などの液体に熱伝導率がこの液体より高い固体を混合させた流動性媒体を冷却媒体として使用する。よって、水または不凍液を用いた場合(従来例)に比べて、冷却媒体の熱伝導率が高くなり、冷却性能が向上する。また、冷却性能が向上するために、受熱部、放熱部などのサイズを小さくしても十分な冷却効果が得られるようになり、装置構成の小型化を図れる。 In the cooling device of the present invention, a fluid medium in which a liquid having a higher thermal conductivity than that of a liquid such as water or an antifreeze is mixed as a cooling medium. Therefore, compared with the case where water or antifreeze is used (conventional example), the thermal conductivity of the cooling medium is increased and the cooling performance is improved. Further, since the cooling performance is improved, a sufficient cooling effect can be obtained even if the size of the heat receiving portion, the heat radiating portion, etc. is reduced, and the apparatus configuration can be reduced in size.
本発明に係る冷却装置は、前記固体が、炭素繊維、Cu,Al,Ag,Au,Mgの中の何れかの金属、Cu,Al,Ag,Au,Mgの中の元素を1種類以上含む合金、または、Al2 O3 ,AlN,CuO,ZnO,BeO,MgO,ZrO2 ,SiCの中の何れかのセラミックであることを特徴とする。 In the cooling device according to the present invention, the solid includes one or more elements selected from the group consisting of carbon fiber, Cu, Al, Ag, Au, and Mg, and Cu, Al, Ag, Au, and Mg. It is characterized by being an alloy or a ceramic selected from Al 2 O 3 , AlN, CuO, ZnO, BeO, MgO, ZrO 2 and SiC.
本発明の冷却装置では、冷却媒体に含まれる熱伝導率が高い固体として上述したような材料を使用する。これらの材料は熱伝導率が高いため、優れた冷却性能が得られる。また、炭素繊維は比重が水に近いため、水への均一な分散が可能である。 In the cooling device of the present invention, the material as described above is used as a solid having a high thermal conductivity contained in the cooling medium. Since these materials have high thermal conductivity, excellent cooling performance can be obtained. Moreover, since carbon fiber has a specific gravity close to that of water, it can be uniformly dispersed in water.
本発明に係る電子機器は、上記のような冷却装置を使用したことを特徴とする。 An electronic apparatus according to the present invention is characterized by using the cooling device as described above.
本発明の電子機器では、冷却性能が優れた冷却装置を使用しているため、電子部品から発生した熱が迅速に外部へ放出されて放熱性が向上し、安定した動作を行える。また、小型の冷却装置でも冷却性能が高いため、構成の小型化を図れる。 In the electronic apparatus of the present invention, since a cooling device with excellent cooling performance is used, heat generated from the electronic component is quickly released to the outside, heat dissipation is improved, and stable operation can be performed. In addition, since the cooling performance is high even with a small cooling device, the size of the configuration can be reduced.
本発明では、冷却媒体を、液体とこの液体より熱伝導率が高い固体との混合物にて構成するので、水または不凍液を用いる従来例に比べて、冷却媒体の熱伝導率を高めることができて、冷却性能を飛躍的に向上することが可能となる。 In the present invention, since the cooling medium is composed of a mixture of a liquid and a solid having a higher thermal conductivity than the liquid, the thermal conductivity of the cooling medium can be increased compared to the conventional example using water or antifreeze. Thus, the cooling performance can be dramatically improved.
また、本発明では、装置構成を大きくすることなく冷却性能を向上することができるため、受熱部、放熱部などのサイズを小さくして冷却装置の小型化を図ることができる。 Further, in the present invention, since the cooling performance can be improved without increasing the device configuration, it is possible to reduce the size of the cooling device by reducing the size of the heat receiving portion, the heat radiating portion, and the like.
以下、本発明について図面を参照して具体的に説明する。なお、本発明は以下の実施の形態に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to the drawings. Note that the present invention is not limited to the following embodiments.
図1は、本発明に係る冷却装置の構成を示す図である。図1において、冷却装置は、受熱部としての受熱板1と、放熱部としての放熱板2と、タンク3と、ポンプ4とを、配管5を介して環状に接続させた構成を有しており、ポンプ4の駆動により配管5内を冷却媒体6が矢符で示す方向に循環するようになっている。
FIG. 1 is a diagram showing a configuration of a cooling device according to the present invention. In FIG. 1, the cooling device has a configuration in which a
受熱板1は、発熱体としての電子部品21に接続されている。放熱板2には、熱を放散する放熱フィン7が取り付けられており、放熱フィン7の近傍には空気を放熱フィン7に向けて送出する送風ファン8が設けられている。タンク3は、配管5内を循環する冷却媒体6を貯留する。
The
冷却媒体6は、図1(a)または(b)に示すような組成を有している。図1(a)の例では、冷却媒体6が、ベース液となる液体11と炭素繊維(カーボンファイバ)12との混合物であって、流動性を有している。液体11として、水,不凍液,エチレングリコール,プロピレングリコールなどの液体を使用できる。炭素繊維12は、例えば直径:約10μm,長さ:50μm程度の円柱状をなしており、冷却媒体6内に10〜20重量%程度含有されている。炭素繊維12はその比重(約2.1)が水に近いため、液体11に均一に分散させることが可能である。
The cooling medium 6 has a composition as shown in FIG. 1 (a) or (b). In the example of FIG. 1A, the cooling medium 6 is a mixture of a liquid 11 serving as a base liquid and a carbon fiber (carbon fiber) 12, and has fluidity. As the liquid 11, liquids such as water, antifreeze, ethylene glycol, and propylene glycol can be used. The
一方、図1(b)の例では、冷却媒体6が、ベース液となる液体11と金属またはセラミックの粉末粒子13との混合物であって、流動性を有している。液体11として、水,不凍液,エチレングリコール,プロピレングリコールなどの液体を使用できる。粉末粒子13の金属としては、熱伝導率が高いCu,Al,Ag,Au,Mgなどの金属、または、Cu,Al,Ag,Au,Mgなどの元素を1種類以上含む合金を使用できる。これらの金属の粉末粒子13は、直径:3〜5μm程度の球状をなしており、冷却媒体6内に10〜20重量%程度含有されている。なお、凝縮を防いで液体11への分散性を高めるために、金属の粉末粒子13の表面にシリカ粉末を付着させておくことが好ましい。粉末粒子13のセラミックとしては、Al2 O3 ,AlN,CuO,ZnO,BeO,MgO,ZrO2 ,SiCなどのセラミックを使用できる。これらのセラミックの粉末粒子13は、直径:30〜50nm程度の球状をなしており、冷却媒体6内に10〜20重量%程度含有されている。 On the other hand, in the example of FIG. 1B, the cooling medium 6 is a mixture of a liquid 11 serving as a base liquid and metal or ceramic powder particles 13 and has fluidity. As the liquid 11, liquids such as water, antifreeze, ethylene glycol, and propylene glycol can be used. As the metal of the powder particles 13, a metal such as Cu, Al, Ag, Au, or Mg having a high thermal conductivity, or an alloy containing one or more elements such as Cu, Al, Ag, Au, or Mg can be used. These metal powder particles 13 have a spherical shape with a diameter of about 3 to 5 μm, and are contained in the cooling medium 6 at about 10 to 20% by weight. In order to prevent condensation and increase dispersibility in the liquid 11, it is preferable to attach silica powder to the surface of the metal powder particles 13. As the ceramic of the powder particles 13, ceramics such as Al 2 O 3 , AlN, CuO, ZnO, BeO, MgO, ZrO 2 , and SiC can be used. These ceramic powder particles 13 have a spherical shape with a diameter of about 30 to 50 nm, and are contained in the cooling medium 6 by about 10 to 20% by weight.
上述したような液体と固体との混合物スラリである冷却媒体6を冷却装置に用いた発熱体21の冷却処理について説明する。ポンプ4の駆動により、冷却媒体6を配管5内に循環させる。発熱体21からの熱が受熱板1内部の配管5内を流れる冷却媒体6に伝導され(図1の白抜矢符)、温度上昇した冷却媒体6は配管5内を流れて、冷却媒体6からの熱が放熱板2及び放熱フィン7を介して外部へ放散される。この際、送風ファン8から、放熱フィン7に向けて空気を送出して、より大きな放熱効果を得る。放熱して温度が下降した冷却媒体6は、タンク3を介して配管5内を流れて、再び受熱板1へと循環される。このようなことにより、発熱体21が冷却される。
A cooling process of the
以上のように、本発明では、液体と熱伝導率が高い固体との混合物であるスラリを冷却媒体6に用いているため、冷却媒体6の熱伝導率を高めることが可能であり、水または不凍液からなる冷却媒体を用いた従来例と比較して、冷却性能を飛躍的に高めることができる。また、冷却性能が向上するため、水または不凍液のみを用いた場合と同等レベルの冷却性能を保持するのであれば、本発明の冷却媒体6を使用することにより、受熱板1,放熱板2などの部材のサイズを小さくして、冷却装置をコンパクトに構成することが可能となる。また、上述したような冷却装置を使用した本発明の電子機器にあっては、使用する冷却装置の冷却性能が優れているので、機器内の電子部品から発生した熱を迅速に外部へ放散することができて高い放熱性を得ることができる。また、コンパクトな構成であっても冷却性能が高い冷却装置を使用した本発明の電子機器では、その構成の小型化を図ることができる。
As described above, in the present invention, the slurry, which is a mixture of a liquid and a solid having a high thermal conductivity, is used for the cooling medium 6, so that the thermal conductivity of the cooling medium 6 can be increased, Compared to the conventional example using a cooling medium made of antifreeze, the cooling performance can be dramatically improved. Further, since the cooling performance is improved, if the cooling performance of the same level as when only water or antifreeze is used is used, the
以下、本発明の冷却媒体6の具体的な実施例とその熱特性とについて説明する。三菱化学産資製の2種類の炭素繊維(CF1とCF2)をそれぞれ水に10重量%、20重量%ずつ含有させて冷却媒体を作成した。炭素繊維CF1及びCF2のサイズは、何れも直径:10μm,長さ:約50μmである。また、軸方向の熱伝導率は、CF1が140W/mK、CF2が400W/mKである。作成した4種類の冷却媒体と対照例としての水とについて熱伝達係数を計算した。その計算結果を他の物性と併せて下記表1に示す。 Hereinafter, specific examples of the cooling medium 6 of the present invention and its thermal characteristics will be described. Two kinds of carbon fibers (CF1 and CF2) manufactured by Mitsubishi Chemical Industries, Ltd. were respectively contained in water at 10 wt% and 20 wt% to prepare a cooling medium. The carbon fibers CF1 and CF2 each have a diameter of 10 μm and a length of about 50 μm. Further, the thermal conductivity in the axial direction is 140 W / mK for CF1 and 400 W / mK for CF2. The heat transfer coefficient was calculated for the four types of prepared cooling media and water as a reference. The calculation results are shown in Table 1 below together with other physical properties.
熱伝達係数hは、下記の数式に従って計算した。なお、図2は、冷却媒体が流れて熱伝達がなされる部分(図1の例では受熱板1、放熱板2に相当)の模式図である。
h=(Nuk)/L
実験式:Nu=3.66+[0.0668(d/L)RePr]
/{1+0.04[(d/L)RePr]2/3 }
RePr=(vdρCp)/k
但し、
h:熱伝達係数 Nu:ヌセルト数
k:冷却媒体の熱伝導率 L:流路の長さ(図2参照)
Re:レイノルズ数=(vdρ)/μ
Pr:プラントル数=(μCp)/k
d:流路の幅(図2参照) μ:流体温度における粘度
v:流速(図2参照) ρ:冷却媒体の密度
Cp:冷却媒体の比熱
なお、伝達される熱量Qは、比例定数をD、冷却媒体と接触する表面積をA、温度差をΔTとした場合に、Q=DAΔTで与えられる。
The heat transfer coefficient h was calculated according to the following formula. FIG. 2 is a schematic diagram of a portion (corresponding to the
h = (Nuk) / L
Experimental formula: Nu = 3.66 + [0.0668 (d / L) RePr]
/{1+0.04[(d/L)RePr] 2/3 }
RePr = (vdρCp) / k
However,
h: Heat transfer coefficient Nu: Nusselt number
k: thermal conductivity of cooling medium L: length of flow path (see FIG. 2)
Re: Reynolds number = (vdρ) / μ
Pr: Prandtl number = (μCp) / k
d: width of flow path (see FIG. 2) μ: viscosity at fluid temperature
v: Flow velocity (see Fig. 2) ρ: Density of cooling medium
Cp: Specific heat of the cooling medium The amount of heat Q to be transferred is given by Q = DAΔT, where D is the proportionality constant, A is the surface area in contact with the cooling medium, and ΔT is the temperature difference.
炭素繊維を10重量%、20重量%だけ水に含有させた冷却媒体では、熱伝導率が2.9〜13.9W/mKであり、水の熱伝導率に比べて4.5〜21倍になっている。また、熱伝達係数についても、3.8〜17.1倍と向上している。 In the cooling medium containing 10% by weight and 20% by weight of carbon fiber in water, the thermal conductivity is 2.9 to 13.9 W / mK, which is 4.5 to 21 times that of water. It has become. Also, the heat transfer coefficient is improved to 3.8 to 17.1 times.
このように、水と炭素繊維との混合物である冷却媒体は、高い熱伝達係数を呈し、優れた冷却性能を発揮できることが分かる。炭素繊維を水に添加することによって冷却媒体の見かけ上の粘度が上昇して流量及びレイノルズ数は低下するが、冷却媒体の熱伝導率が高くなるため、結果として熱伝達係数は向上する。 Thus, it can be seen that the cooling medium, which is a mixture of water and carbon fiber, exhibits a high heat transfer coefficient and can exhibit excellent cooling performance. By adding carbon fiber to water, the apparent viscosity of the cooling medium increases and the flow rate and Reynolds number decrease. However, the thermal conductivity of the cooling medium increases, and as a result, the heat transfer coefficient improves.
次に、上述した計算結果を確認するために、図1のような構成の冷却装置を用いて、複数種類の冷却媒体について熱抵抗を測定した。使用した冷却媒体は、対照例としての水、上述したような炭素繊維CF1、CF2をそれぞれ10重量%、20重量%ずつ水に添加した冷却媒体、Cu,Al,Agの粉末(粒径:3〜5μm)をそれぞれ20重量%ずつと凝縮防止用のシリカ粉末を約1重量%とを水に添加して作成した冷却媒体、NanoTek製のAl2 O3 ,CuO,ZnOの粉末(粒径:30〜50nm)をそれぞれ20重量%ずつ水に添加して作成した冷却媒体である。 Next, in order to confirm the above-described calculation results, the thermal resistance of a plurality of types of cooling media was measured using a cooling device having a configuration as shown in FIG. The cooling medium used was water as a control example, a cooling medium in which carbon fibers CF1 and CF2 as described above were added to water by 10 wt% and 20 wt%, respectively, Cu, Al, and Ag powder (particle size: 3 ˜5 μm), a cooling medium prepared by adding 20% by weight of silica powder and about 1% by weight of silica powder for preventing condensation to water, powder of Al 2 O 3 , CuO, ZnO made by NanoTek (particle size: 30 to 50 nm) is a cooling medium prepared by adding 20 wt% each to water.
また、熱抵抗を測定した冷却装置の稼動条件は以下の通りであった。
ポンプ:5V駆動 流量:150ミリリットル/分 流路径:5mm
流路長:500mm 発熱体の発熱量:50W
送風ファン:5V駆動、直径50mm、風量100リットル/分
Moreover, the operating conditions of the cooling device which measured thermal resistance were as follows.
Pump: 5V drive Flow rate: 150ml / min Flow path diameter: 5mm
Flow path length: 500mm Heat generation amount of heating element: 50W
Fan: 5V drive, diameter 50mm, air volume 100 liters / minute
上記の11種類の冷却媒体を用いた場合の室温(約25℃)と発熱体との熱抵抗を測定した結果を図3に示す。本発明の10種類の冷却媒体は何れも、水より熱抵抗が低下しており、本発明の冷却媒体を使用することによって、優れた冷却効果が実現可能であることが理解される。 FIG. 3 shows the results of measuring the thermal resistance between the room temperature (about 25 ° C.) and the heating element when the above 11 kinds of cooling media are used. It is understood that any of the ten types of cooling media of the present invention has a lower thermal resistance than water, and that an excellent cooling effect can be realized by using the cooling media of the present invention.
以上の実施の形態に関し、更に以下の付記を開示する。
(付記1) 発熱体を冷却するための冷却媒体において、液体と、該液体より熱伝導率が高い固体との混合物であることを特徴とする冷却媒体。
(付記2) 前記固体は、炭素繊維、Cu,Al,Ag,Au,Mgの中の何れかの金属、Cu,Al,Ag,Au,Mgの中の元素を1種類以上含む合金、または、Al2 O3 ,AlN,CuO,ZnO,BeO,MgO,ZrO2 ,SiCの中の何れかのセラミックであることを特徴とする付記1記載の冷却媒体。
(付記3) 前記液体は、水,不凍液,エチレングリコール,プロピレングリコールの中の何れかであることを特徴とする付記1または2記載の冷却媒体。
(付記4) 発熱体の熱を受ける受熱部と、外部へ熱を放散する放熱部とを配管にて接続させ、前記配管内に冷却媒体を循環させて前記発熱体を冷却する冷却装置において、前記冷却媒体は、液体と、該液体より熱伝導率が高い固体との混合物であることを特徴とする冷却装置。
(付記5) 前記固体は、炭素繊維、Cu,Al,Ag,Au,Mgの中の何れかの金属、Cu,Al,Ag,Au,Mgの中の元素を1種類以上含む合金、または、Al2 O3 ,AlN,CuO,ZnO,BeO,MgO,ZrO2 ,SiCの中の何れかのセラミックであることを特徴とする付記4記載の冷却装置。
(付記6) 前記液体は、水,不凍液,エチレングリコール,プロピレングリコールの中の何れかであることを特徴とする付記4または5記載の冷却装置。
(付記7) 付記4〜6の何れかに記載の冷却装置を使用したことを特徴とする電子機器。
Regarding the above embodiment, the following additional notes are disclosed.
(Supplementary note 1) A cooling medium for cooling a heating element, which is a mixture of a liquid and a solid having a higher thermal conductivity than the liquid.
(Supplementary note 2) The solid is carbon fiber, any metal in Cu, Al, Ag, Au, Mg, an alloy containing one or more elements in Cu, Al, Ag, Au, Mg, or The cooling medium according to
(Supplementary note 3) The cooling medium according to
(Additional remark 4) In the cooling device which connects the heat receiving part which receives the heat of a heat generating body, and the heat radiating part which dissipates heat outside by piping, circulates a cooling medium in the piping, and cools the heating element, The cooling device, wherein the cooling medium is a mixture of a liquid and a solid having a higher thermal conductivity than the liquid.
(Supplementary note 5) The solid is carbon fiber, any metal in Cu, Al, Ag, Au, Mg, an alloy containing one or more elements in Cu, Al, Ag, Au, Mg, or The cooling device according to appendix 4, wherein the cooling device is any one of Al 2 O 3 , AlN, CuO, ZnO, BeO, MgO, ZrO 2 , and SiC.
(Appendix 6) The cooling device according to appendix 4 or 5, wherein the liquid is any one of water, antifreeze, ethylene glycol, and propylene glycol.
(Additional remark 7) The electronic device characterized by using the cooling device in any one of Additional remark 4-6.
1 受熱板(受熱部)
2 放熱板(放熱部)
3 タンク
4 ポンプ
5 配管
6 冷却媒体
7 放熱フィン
8 送風ファン
11 液体
12 炭素繊維(固体)
13 粉末粒子(固体)
21 電子部品(発熱体)
1 Heat receiving plate (heat receiving part)
2 Heat sink (heat sink)
3 Tank 4 Pump 5 Piping 6 Cooling Medium 7 Radiating Fin 8 Blower Fan 11
13 Powder particles (solid)
21 Electronic components (heating elements)
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005379824A JP2007180438A (en) | 2005-12-28 | 2005-12-28 | Cooling medium, cooling apparatus, and electronic appliance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005379824A JP2007180438A (en) | 2005-12-28 | 2005-12-28 | Cooling medium, cooling apparatus, and electronic appliance |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007180438A true JP2007180438A (en) | 2007-07-12 |
Family
ID=38305297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005379824A Withdrawn JP2007180438A (en) | 2005-12-28 | 2005-12-28 | Cooling medium, cooling apparatus, and electronic appliance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007180438A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012004389A (en) * | 2010-06-17 | 2012-01-05 | Denso Corp | Device with fluid stirring function |
JP2012104604A (en) * | 2010-11-09 | 2012-05-31 | Denso Corp | Device for circulating heat transport fluid |
-
2005
- 2005-12-28 JP JP2005379824A patent/JP2007180438A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012004389A (en) * | 2010-06-17 | 2012-01-05 | Denso Corp | Device with fluid stirring function |
JP2012104604A (en) * | 2010-11-09 | 2012-05-31 | Denso Corp | Device for circulating heat transport fluid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jajja et al. | Multiwalled carbon nanotube nanofluid for thermal management of high heat generating computer processor | |
JP4939214B2 (en) | Heat spreader | |
Moita et al. | Nanofluids for the next generation thermal management of electronics: A review | |
US7385815B2 (en) | Dual impeller push-pull axial fan | |
Sivakumar et al. | Experimental investigation of forced convective heat transfer performance in nanofluids of Al 2 O 3/water and CuO/water in a serpentine shaped micro channel heat sink | |
JP2008051389A (en) | Heat pipe type heat transfer device | |
US20080159853A1 (en) | Heat transfer device in a rotating structure | |
US9022099B2 (en) | Heat transport fluid passage device with hydrophobic membrane | |
KR101926035B1 (en) | Fractal heat transfer device | |
JP2016178208A (en) | Heat sink, heat dissipation structure, cooling structure and device | |
JP2008004606A (en) | Cooling apparatus | |
JP2008063411A (en) | Heat-transporting fluid, heat-transporting structure and method for transporting heat | |
JP2008112874A (en) | Cooling system, and electronic apparatus | |
US8230901B2 (en) | Electronic device cooling apparatus | |
JP2007180438A (en) | Cooling medium, cooling apparatus, and electronic appliance | |
US7410597B2 (en) | Thermally conductive material | |
JPWO2017203847A1 (en) | Cooling device, projector, and heat receiving unit | |
JP4679475B2 (en) | Cooling device, electronic device and cooling medium | |
CN101029219B (en) | Heat-transferring solution containing nano-carbon ball | |
JP4679474B2 (en) | Cooling device, electronic device and cooling medium | |
Harun et al. | Experimental study of loop heat pipe performance with nanofluids | |
JP6724883B2 (en) | Heat transport fluid and heat transport device using the same | |
Sohel Murshed et al. | Nanoparticles-loaded fluids for cooling modern electronics | |
JP2015166667A (en) | Small-sized heat radiation cooling device | |
US20020046825A1 (en) | Cooling device using magnetizated thermal-conduction liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20090303 |