JP2007180266A - 欠陥検査装置検査用の標準シリコンウェーハ、その製造方法および標準シリコンウェーハを用いた検査方法 - Google Patents

欠陥検査装置検査用の標準シリコンウェーハ、その製造方法および標準シリコンウェーハを用いた検査方法 Download PDF

Info

Publication number
JP2007180266A
JP2007180266A JP2005377020A JP2005377020A JP2007180266A JP 2007180266 A JP2007180266 A JP 2007180266A JP 2005377020 A JP2005377020 A JP 2005377020A JP 2005377020 A JP2005377020 A JP 2005377020A JP 2007180266 A JP2007180266 A JP 2007180266A
Authority
JP
Japan
Prior art keywords
silicon wafer
defect inspection
standard silicon
standard
inspection apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005377020A
Other languages
English (en)
Inventor
Maki Isogai
真希 磯貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2005377020A priority Critical patent/JP2007180266A/ja
Publication of JP2007180266A publication Critical patent/JP2007180266A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【目的】 シリコン表層中に存在する欠陥の測定を目的とする欠陥検査装置検査用として適した標準シリコンウェーハ、その製造方法およびこの標準シリコンウェーハを用いた検査方法を提供することを目的とする。
【構成】 シリコン基板1に、トレンチ形成後に減圧下の非酸化性雰囲気にて高温アニールすることによって、トレンチの開口部を閉ざし、任意の形状、サイズ、深さ、密度で2次元あるいは3次元的に配列された空洞2をシリコン表層中に形成する。このシリコン表層中に空洞2が形成されたシリコンウェーハを欠陥検査装置検査用の標準シリコンウェーハとする。
【選択図】 図1

Description

本発明は、欠陥検査装置検査用の標準シリコンウェーハ、その製造方法およびこの標準シリコンウェーハを用いた検査方法に関するものであり、特に、シリコン表層中にある欠陥の測定を目的とする欠陥検査装置検査用の標準シリコンウェーハ、その製造方法およびこの標準シリコンウェーハを用いた検査方法に関する。
近年、半導体デバイスプロセスの高集積化及び微細化が促進されている。現在、製造されている半導体デバイスのデザインルールは90nmが主流となりつつあり、65nmデザインルールの半導体デバイスプロセスの開発も精力的に行われている。このようなデザインルールの一層の微細化に伴い、半導体デバイスの基板となるシリコンウェーハにおいても、表層の半導体デバイス活性領域の完全性が求められている。すなわち、ウェーハ表面近傍から、LSTD(Laser Scattering Tomography Defects)、FPD(Flow Pattern Defects)、COP(Crystal Originated Particle)等のGrow−in欠陥とよばれる単結晶成長起因の欠陥をなくすこと等である。これらのGrown−in欠陥の存在は、半導体デバイスの酸化膜耐圧特性を劣化させることが明らかになっている。
そこで、従来、シリコンウェーハの表面及び表層部の欠陥を低減、あるいは除去するために、ウェーハ製造プロセスの最適化が図られている。また、作成されたシリコンウェーハの欠陥が低減、あるいは除去された事を確認するために、欠陥検査装置(例えば、レーザー散乱型表面異物検査装置、パーティクルカウンタなど)によるシリコン単結晶ウェーハの表面および表層欠陥の測定が行われている。
この欠陥検査装置においては、例えば、レーザー光などの強い光をウェーハ表面に照射し、ウェーハ表面上に存在する付着微粒子及びウェーハ表層部に存在する欠陥などからの散乱光を別角度から受光素子や光電子倍増管などで感知し、電気的なパルスとしてウェーハ表面上に存在する異物や微粒子及び表層部に存在する欠陥などの個数、密度分布、大きさなどを測定する測定法が用いられている。
上記の測定法では、従来、装置の検出限界、分解能等の評価や、同一装置あるいは異なる装置間の測定スケールの校正などの検査のための標準シリコンウェーハ(あるいは校正基準ウェーハ、ダスト粒子測定用標準ウェーハ)を作成するために、標準粒子として、PSL(Polystyrene Latex)粒子を用いていた。PSL粒子は極めて単散分に近い粒子で、各種粒子径のものが市販されている。例えば、各種粒子径のPSL粒子を平坦な試料ウェーハの表面に塗布し、その表面に対する散乱光の検出限界を調べることが可能である。
しかし、シリコンウェーハ表層中に欠陥があった場合には、この欠陥がノイズとなり、PSL粒子を用いた標準シリコンウェーハによる検査において検査精度が劣化するという問題が生ずる。この問題を回避するために、シリコン単結晶引き上げをコントロールし、欠陥を含まないシリコンウェーハ上にPSL粒子を塗布した標準シリコンウェーハが特許文献1に開示されている。
また、PSL粒子の塗布では、複数の標準シリコンウェーハを再現性よく製造することが困難である。そこで、ウェーハ上に形成した酸化膜をエッチングすることにより形成された微小ピットを用いる標準シリコンウェーハが特許文献2に開示されている。
しかし、上述の従来技術は、ウェーハ表面下の膜中にある欠陥を検査するための標準ウェーハとしては不向きであった。そこで、ウェーハ表面にエッチングにより形成した微小な突起物上に被膜形成をおこなった標準シリコンウェーハが特許文献3に開示されている。
もっとも、特許文献3に記載された標準シリコンウェーハでは、被膜を単結晶のシリコンとすることは出来ないため、シリコン表層中にあるGrow―in欠陥の測定を目的とする場合の欠陥検査装置検査用の標準シリコンウェーハとしては最適といえなかった。すなわち、従来技術の標準シリコンウェーハでは、シリコン単結晶表層部の欠陥について欠陥検査装置の有する検出限界及び分解能等について明らかにすることが出来なかった。
特開2000−306968号公報 特開平11−14534号公報 特開平10−173017号公報
本発明は、上記事情を考慮してなされたもので、その目的とするところは、シリコン表層中にある欠陥の測定を目的とする欠陥検査装置検査用として適した標準シリコンウェーハ、その製造方法およびこの標準シリコンウェーハを用いた検査方法を提供することにある。
本発明の一態様の欠陥検査装置検査用の標準シリコンウェーハは、
内部に空洞が設けられていることを特徴とする。
本発明の一態様の欠陥検査装置検査用の標準シリコンウェーハの製造方法は、
シリコンウェーハ表面にトレンチを形成する工程と、
前記トレンチを空洞に変形させる熱処理工程を有することを特徴とする。
本発明の一態様の欠陥検査装置の検査方法は、
シリコンウェーハの表層部に、規定した大きさ及び深さに空洞を形成して、欠陥検査装置検査用の標準シリコンウェーハを作成するステップと、
前記標準シリコンウェーハの測定結果に基づいて、前記欠陥検査装置を評価または校正するステップとを有することを特徴とする。
本発明によれば、シリコン表層中にある欠陥の測定を目的とする欠陥検査装置検査用として適した標準シリコンウェーハ、その製造方法およびこの標準シリコンウェーハを用いた検査方法を提供することが可能となる。
まず、初めに、欠陥検査装置の検査対象となるGrown−in欠陥について簡単に説明する。
Grown−in欠陥には、LSTD(Laser Scattering Tomography Defects)、FPD(Flow Pattern Defects)、COP(Crystal Originated Particle)等がある。これらの、LSTD、FPD、COPは、一つのシリコン原子がシリコン結晶格子で正常的な位置から離脱した点欠陥(ベーカンシー点欠陥)が、シリコン単結晶形成中に生成、合併してできたベーカンシー固まり(vacancy agglomerates)である。
すなわち、シリコン中に形成された3次元的な空洞と考えることができる。
以下、本発明に係わる欠陥検査装置検査用の標準シリコンウェーハおよびこれを用いた検査方法について、添付図面に基づき説明する。
[実施の形態1]
まず、本発明の実施の形態1として、内部に空洞(ESS:Empty Space in Silicon)が設けられていることを特徴とする欠陥検査装置検査用の標準シリコンウェーハについて説明する。
(標準シリコンウェーハ)
図1は、実施の形態1の欠陥検査装置検査用の標準シリコンウェーハの断面図である。
本実施の形態の標準シリコンウェーハには、シリコン基板1の表層部のシリコン中に空洞2が所定の形状、サイズ、深さ、密度に複数配列されている。
なお、図1では、空洞2の形状は球状であるが、必ずしも空洞2は球状でなくとも、球体に近い形状を取ることができ、例えば、楕円球状、涙状、立法体あるいは正八面体であってもかまわない。
また、空洞2のサイズ(d)も特に限定されるものではないが、シリコン単結晶引き上げ時に実際に発生するGrow−in欠陥に対応したサイズにするという観点から、0.05〜1μm程度であることが望ましい。
さらに、空洞の深さ(x)についても、特に限定されるものではないが、空洞が表面につながらないという観点から、0.5μm以上であることが望ましい。
そして、空洞2のシリコン表層中の密度に関しても、特に限定されるものでないが、欠陥検査装置による測定において、隣り合った空洞を同一欠陥として誤認識することを回避する観点から、シリコンウェーハ面内に0.1〜100個/cmの密度で設けられていることが望ましい。
(製造方法)
図2−8、図9および図10は、本実施の形態の標準シリコンウェーハの製造方法を説明する図である。製造方法については特開2001−144276号公報に開示されたシリコン表層への、空洞形成法を参考にする。
まず、Grow−in欠陥のサイズや密度を抑制するために、チョクラルスキー(CZ)法により窒素含有シリコン単結晶を育成する。そして、このシリコン単結晶を加工してシリコンウェーハを作成する。さらに、シリコン表層中のBMD(Bulk Micro Defect)やCOP(Crystal Originated Particle)を減少させ、かつ、ウェーハ表面の平坦性をあげるために、このシリコンウェーハを水素などの還元性雰囲気下で1150〜1300℃の熱処理を30分以上加える。
以上の処理は、シリコンウェーハ中あるいはシリコン表面に、最初から存在する欠陥の数や大きさを抑制する。よって、標準シリコンウェーハを用いた検査において、空洞2以外の欠陥を欠陥と誤認識することをさけるという観点から望ましいものでるが、省略あるいは別の方法によることも可能である。
次に、図2に示すように、単結晶のシリコン基板1上にシリコン酸化膜からなるマスク材3を形成し、その上にフォトレジストパターン4を形成する。
次に、図3に示すように、フォトレジストパターン4をマスクとして、異方性エッチング例えばRIEによりマスク材3をパターニングし、マスク材3にフォトレジストパターン4のパターンを転写する。
次に、図4に示すように、フォトレジストパターン4を炭化して剥離する。
次に、図5に示すように、マスク材3をマスクとして、異方性エッチング例えばRIEによりシリコン基板1をパターニングして、シリコン基板1の表面に複数のトレンチ5を2次元的に配列形成する。
次に、図6に示すように、マスク材3を除去して、シリコン基板1の表面を露出させる。
次に、シリコン基板1に熱処理を施す。すなわち、減圧下(大気圧よりも低い圧力)の非酸化性雰囲気、好ましくはSiOを還元する還元性雰囲気、例えば1100℃、1333Pa(10Torr)の100%水素雰囲気中にて高温アニールする。この高温アニールによって、トレンチ5の開口部が閉ざされて、図7に示すような、空洞2が形成される。
図9に、高温アニールによりトレンチ5の開口部が閉ざされて、空洞2が形成される過程の概念図を示す。図9に示す形状変化(変形)は、シリコン基板1の表面およびトレンチ5内面のシリコン酸化膜が除去された後、表面エネルギーを最小にするべく生ずるシリコンの表面マイグレーションによるものである。半径Rのトレンチ5が高温アニールにより半径Rの球状の空洞2に変化する。この時、R=1.88Rの関係が満たされことが知られている(特開2001−144276号公報)。したがって、例えば、直径0.3μm(半径0.15μm)の球状の空洞2を形成するにはトレンチ5の直径を0.16μmとすればよい。
ここで、球状の空洞2を作るためには、図10に示すように、最初のトレンチ5の半径をR、トレンチ5の間隔をDとした場合、D>4.5Rとなるように複数配列することが望ましい。なぜなら、D≦4.5Rの場合には隣接するトレンチ5が併合してしまい、球状の空洞2が形成されないおそれがあるためである(特開2001−144276号公報)。
図7に示すような空洞2が形成された後、空洞2のシリコン表面からの深さを所望の深さに調整するために、図8に示すように、ウェーハ表面にエピタキシャルシリコン層6を成膜する。
ここで、エピタキシャルシリコン成長法には、さまざまな方法があり、エピタキシャル成長用反応ガスは、モノシラン(SiH)、ジクロルシラン(SiHCl)、トリクロルシラン(SiHCl)、四塩化珪素(SiCl)が主である。反応ガスの反応は、Cl成分が多いほど還元反応の傾向が強く、反応温度も高温になり、逆にCl成分が少なくなると熱分解の傾向が強くなり、分解温度も低温になる。本実施の形態においては、形成される表層部の空洞2の形状に影響が少ないように、出来るだけ低温での処理が望まれる。したがって、エピタキシャル成長用反応ガスとしては、Cl成分を含まない、モノシラン(SiH)を用いることが好ましい。
なお、成膜するエピタキシャルシリコン層6の膜厚は、限定されるものではない。しかし、実用上、シリコンウェーハの欠陥検査をする領域の深さは、半導体素子として利用されるシリコン表面から10μm程度の領域に限られる。したがって、成膜するエピタキシャルシリコン層6の膜厚は10μm以下であることが望ましい。
また、高温アニールにより、空洞2を形成した時点で、空洞2が所望の深さに形成されている場合には、エピタキシャルシリコン層6を成膜する工程は不要である。
さらに、エピタキシャルシリコン膜6の成膜後、シリコン表面のヘイズ(haze)レベルが高い場合には、表面を研磨、洗浄する工程を加え、標準シリコンウェーハをヘイズフリーにすることが望ましい。なぜなら、ヘイズレベルが高くなると、標準シリコンウェーハを用いて欠陥検査装置を検査する場合、装置が空洞2のみならず、ヘイズをも欠陥と誤認識するおそれが高いからである。
(効果)
従来技術では、LSTD、FPD、COP等のGrown−in欠陥、すなわち、シリコン結晶中に存在する3次元的な空洞に相当する欠陥を、標準シリコンウェーハ上に人為的に実現することが不可能であった。本実施の形態によれば、シリコン基板の表層に3次元的な空洞が設けられているため、特に、これらのGrown−in欠陥を検査する欠陥検査装置検査用の標準シリコンウェーハとして最適な標準シリコンウェーハを提供が可能となる。さらに、本実施の形態によれば、さまざまな大きさの空洞を任意のサイズ、深さ、密度で作成した標準シリコンウェーハの供給が可能となる。したがって、各種欠陥検査装置の特性、性能に応じた、標準シリコンウェーハの提供が可能となる。加えて、空洞は確立された半導体デバイス製造プロセスによって作成されるため、再現性良く品質の安定した複数の同一仕様の標準シリコンウェーハの供給が可能となる。したがって、場の異なる欠陥検査装置間の評価、校正、あるいは場を変えての同一欠陥検査装置間の評価、校正に適した標準シリコンウェーハの提供が可能となる。
[実施の形態1の変形例]
次に、本発明の実施の形態1の変形例として、内部に複数の異なるサイズの空洞(ESS:Empty Space in Silicon)が設けられていることを特徴とする欠陥検査装置検査用の標準シリコンウェーハについて説明する。
図11は、実施の形態1の変形例の欠陥検査装置検査用の標準シリコンウェーハである。
本変形例の標準シリコンウェーハには、シリコンウェーハ10の表層部のシリコン中に空洞が領域ごとに異なるサイズに複数配列されている。例えば、第1の領域11には直径0.1μmの空洞、第2の領域12には直径0.3μmの空洞、第3の領域13には直径0.5μmの空洞が複数配列されている。
本変形例の標準シリコンウェーハの製造方法については、フォトレジストパターン形成の際に、サイズの異なるトレンチの配列された領域を設ける以外は実施の形態1と同様である。
このように、複数サイズの空洞を1枚の標準シリコンウェーハに設けることにより、1サイズの空洞を有する複数の標準シリコンウェーハを準備し、それぞれを測定する場合に比べ、効率的な欠陥検査装置の検査を行うことが可能となる。
なお、本変形例においては、領域ごとに空洞のサイズを変化させているが、必ずしも領域ごとに変化させるのは、空洞のサイズでなくとも、例えば、サイズ同一の空洞の密度を領域ごとに変化させてもかまわない。
[実施の形態2]
次に、本実施の形態2として、シリコン基板の内部に、深さ方向に複数の空洞を配列させることを特徴とする欠陥検査装置検査用の標準シリコンウェーハについて説明する。
(標準シリコンウェーハ)
図12は、実施の形態2の欠陥検査装置検査用の標準シリコンウェーハの断面図である。
本実施の形態の標準シリコンウェーハには、シリコン基板1の表層部に深さ方向に3個の球状の空洞2が配列され、かつ、3個の空洞が2次元方向にも規則的に配列されている。
なお、図12では、深さ方向に配列される空洞の数は3個であるが、この数は3個に限定されるものではなく、2個であっても3個より多い数であってもかまわない。
また、図12では、空洞2の形状は球状であるが、必ずしも空洞2は球状でなくとも、球体に近い形状を取ることができ、例えば、楕円球状、涙状、立方体あるいは正八面体であってもかまわないのは実施の形態1と同様である。
そして、空洞2のサイズ、深さ、密度に関する限定についても、実施の形態1と同様である。
(製造方法)
本実施の形態の製造方法は、形成するトレンチの半径と、トレンチ深さの関係以外については、実施の形態1と同様である。
深さ方向に複数個の空洞を配列させるためには、実施の形態1の場合よりも深いトレンチの形成が必要である。
例えば、トレンチの半径が0.15μmの場合、トレンチ深さが約2.5μmを超えると2個の空洞、約4μmを超えると3個の空洞、約5μmを超えると4個の空洞が形成されることが知られている(特開2001−144276号公報)。
(効果)
本実施の形態により、深さ方向にも広がりを持って分布する欠陥についての検出限界や分解能の評価および校正をすることが可能な欠陥検査装置検査用の標準シリコンウェーハを提供することが可能となる。
[実施の形態3]
次に、本実施の形態3として、内部に空洞(ESS:Empty Space in Silicon)が設けられており、かつ、表面に突起部を設けたことを特徴とする欠陥検査装置検査用の標準シリコンウェーハについて説明する。
(標準シリコンウェーハ)
図13は、実施の形態3の欠陥検査装置検査用の標準シリコンウェーハの断面図である。
本実施の形態の標準シリコンウェーハには、シリコン基板1の表層部のシリコン中に空洞2が所定の形状、サイズ、深さ、密度に複数配列されている。さらにシリコン基板表面には、例えば、シリコン酸化膜からなる突起部20が設けられ、突起部20は、例えば、シリコン窒化膜からなる被膜22によって被覆されている。
なお、空洞2の形状、サイズ、深さ、密度に関する限定については、実施の形態1と同様である。また、実施の形態1の変形例のように、空洞2に関し、複数の領域が設けられることも可能である。さらに、実施の形態2で示すように、深さ方向に複数の空洞が配列されてもかまわない。
また、突起物20は、必ずしもシリコン酸化膜ではなくとも、欠陥検査装置の検査対象に応じ、他の絶縁膜、導電膜であってもかまわない。そして、被膜22についても必ずしもシリコン窒化膜でなくとも、他の絶縁膜、導電膜であってもかまわないし、目的によっては省略してもかまわない。
(製造方法)
図14−17は、本実施の形態の標準シリコンウェーハの製造方法を説明する図である。
シリコン基板1の表層中に空洞2を設けるまでは、実施の形態1と同様であるので記載を省略する。
空洞2を形成した後、まず、図14に示すように、シリコン基板1上にシリコン酸化膜21を形成し、その上にフォトレジストパターン24を形成する。
次に、図15に示すように、フォトレジストパターン24をマスクとして、異方性エッチング例えばRIEによりシリコン酸化膜21をパターニングし、シリコン酸化膜21にフォトレジストパターン24のパターンを転写し突起部20を形成する。
次に、図16に示すように、フォトレジストパターン24を炭化して剥離する。
次に、図17に示すように、パターンニングされたシリコン酸化膜からなる突起物20上に、シリコン窒化膜からなる被膜22を形成する。
(効果)
シリコンウェーハの欠陥検査において、シリコン基板表層中のGrown−in欠陥と、半導体デバイス製造プロセスで発生するシリコン基板表面あるいは膜中の欠陥を分離して評価したいとする要請がある。本実施の形態により、このような要請を充足しようとする欠陥検査装置検査用に適した標準シリコンウェーハを提供することが可能となる。
なお、本実施の形態においては、半導体デバイス製造プロセスを用いて形成した突起部を、シリコン基板表面あるいは膜中の欠陥に対応する欠陥とみたてている。しかし、必ずしも、このような突起部である必要はなく、例えば、PSL粒子を塗布したものであってもかまわない。
[実施の形態4]
次に、本実施の形態4として、シリコンウェーハの表層部に、規定した大きさ及び深さに空洞を形成して、欠陥検査装置検査用の標準シリコンウェーハを作成するステップと、その標準シリコンウェーハの測定結果に基づいて、欠陥検査装置を評価または校正するステップとを有することを特徴とする欠陥検査装置の検査方法について説明する。
(検査方法)
シリコンウェーハの表層部に、規定した大きさ及び深さに空洞を形成して、欠陥検査装置を検査するための標準シリコンウェーハを作成するステップについては、実施の形態1,2および3に記載したとおりであるので省略する。
次に、標準シリコンウェーハを欠陥検査装置にセットする。欠陥検査装置として、例えば、波長680nmの半導体レーザー斜め入射を照射部に有し、受光部が入射光と反対側の一方にしかない集光系を待つレーザー散乱型表面異物検査装置を用いる。ウェーハ表面を照射部からのレーザー光で走査して、シリコンウェーハ表層中の空洞からの光散乱強度を集光系にて測定する。
既知の、形状、サイズ、深さ、密度の空洞を有する標準シリコンウェーハの測定結果より、検査対象である欠陥検査装置の、シリコン表層中の欠陥についての、欠陥サイズ検出に関する検出限界や分解能を評価する。
また、異なる欠陥検査装置間で、同一あるいは同一仕様の標準シリコンウェーハを測定した測定結果をもとに、シリコン表層中の欠陥についての測定スケールを校正する。
あるいは、同一の欠陥検査装置で定期的に、同一あるいは同一仕様の標準シリコンウェーハを測定した測定結果をもとに、装置の測定スケール変動を校正する。
(効果)
Grown−in欠陥に相当する任意の形状、サイズ、深さ、密度の空洞を安定してシリコン表層中に形成した標準シリコンウェーハを用いて検査することにより、評価、校正精度を格段に向上することが可能となる。
なお、本実施の形態においては、レーザー光を用いた欠陥検査装置の検査方法について記載したが、Grown−in欠陥を測定の対象とする欠陥検査装置であれば、レーザー光を用いる装置でなくとも、例えば、赤外線やX線等を用いる欠陥検査装置であっても同様の効果を得ることが可能である。
以上、具体例を参照しつつ本発明の実施の形態について説明した。実施の形態の説明においては、製造方法等で、本発明の説明に直接必要としない部分等については記載を省略したが、必要とされる製造方法等を適宜選択して用いることができる。
その他、本発明の要素を具備し、当業者が適宜設計変更しうる全ての欠陥検査装置検査用の標準シリコンウェーハおよびこれを用いた検査方法は、本発明の範囲に包含される。
(実施例1)
図2−8を参照して、本発明の実施例1を説明する。
φ200mm、窒素濃度1E14atoms/cmの窒素添加シリコン単結晶ウェーハを準備した。このシリコン単結晶ウェーハを、水素ガス雰囲気中1200℃の温度にて60分の熱処理を行い、アニールウェーハを製造した。
次に、図2に示すように、これらのウェーハ上にマスク材3として、4nmのシリコン酸化膜をCVD法により成膜した。そして、リソグラフィーにより、1枚のウェーハに、10個/cmの密度で、直径0.05μm、0.11μm、0.16μmのトレンチ開孔用フォトレジストパターン4を、それぞれ2次元的に形成した。
次に、図3に示すように、RIEにより、フォトレジストパターン4をシリコン酸化膜のマスク材3に転写した。
次に、図4に示すように、フォトレジストパターン4を炭化して剥離した。
次に、図5に示すように、シリコン酸化膜をマスクに、RIEにより、シリコン基板表面に深さ2μmのトレンチ5を2次元的に配列形成した。
次に、図6に示すように、ウェットエッチングにより、シリコン酸化膜のマスク材3を除去してシリコン表面を露出させた。
次に、1100℃、1333Pa(10Torr)の100%水素雰囲気中にてシリコン単結晶ウェーハを高温アニールした。これによって、トレンチ5の開口部が閉ざされて、図7に示すような、空洞2が表層深さ1μm、直径0.1μm、0.2μm、0.3μmで、それぞれのウェーハに形成された。
このように、表層深さ1μmに各種直径の空洞が設けられた欠陥検査装置検査用の標準シリコンウェーハを作成した。
レーザー波長532nmのレーザーをシリコンウェーハに入射させた場合、シリコンウェーハ表面から透過したレーザー光の侵入深さ(入射強度が1/eの強度になる深さ)は約1μmである。したがって、表層深さ1μmに各種直径の空洞が設けられた上記標準シリコンウェーハは、レーザー波長532nmのレーザーを使用する欠陥検査装置の検出下限等評価用および校正用として最適である。
(実施例2)
図8を参照して、本発明の実施例2を説明する。
表層深さ1μmに空洞2を形成するまでは、実施例1と同様の条件で行った。
次に、エピタキシャル成長用反応ガスとして、Cl成分を含まないモノシラン(SiH4)を用いて、1000℃にて、図8に示すように厚さ4μmのエピタキシャルシリコン層6を成膜した。
エピタキシャルシリコン層6成膜後に、空洞2の熱処理に起因する変形は観察されなかった。
このように、表層深さ5μmに各種直径の空洞が設けられた欠陥検査装置検査用の標準シリコンウェーハを作成した。
レーザー波長680nmのLDレーザーをシリコンウェーハに入射させた場合、シリコンウェーハ表面から透過したレーザー光の侵入深さ(入射強度が1/eの強度になる深さ)は約5μmである。したがって、表層深さ5μmに各種直径の空洞が設けられた上記標準シリコンウェーハは、レーザー波長680nmのLDレーザーを使用する欠陥検査装置の検出下限等評価用および校正用として最適である。
実施の形態1の欠陥検査装置検査用の標準シリコンウェーハの断面図である。 実施の形態1の標準シリコンウェーハの製造方法を説明する図である。 実施の形態1の標準シリコンウェーハの製造方法を説明する図である。 実施の形態1の標準シリコンウェーハの製造方法を説明する図である。 実施の形態1の標準シリコンウェーハの製造方法を説明する図である。 実施の形態1の標準シリコンウェーハの製造方法を説明する図である。 実施の形態1の標準シリコンウェーハの製造方法を説明する図である。 実施の形態1の標準シリコンウェーハの製造方法を説明する図である。 実施の形態1の標準シリコンウェーハの製造方法を説明する図である。 実施の形態1の標準シリコンウェーハの製造方法を説明する図である。 実施の形態1の変形例欠陥検査装置検査用の標準シリコンウェーハである。 実施の形態2の欠陥検査装置検査用の標準シリコンウェーハの断面図である。 実施の形態3の欠陥検査装置検査用の標準シリコンウェーハの断面図である。 実施の形態3の標準シリコンウェーハの製造方法を説明する図である。 実施の形態3の標準シリコンウェーハの製造方法を説明する図である。 実施の形態3の標準シリコンウェーハの製造方法を説明する図である。 実施の形態3の標準シリコンウェーハの製造方法を説明する図である。
符号の説明
1 シリコン基板
2 空洞
3 マスク材
4 フォトレジストパターン
5 トレンチ
6 エピタキシャルシリコン層
10 シリコンウェーハ
11 第1の領域
12 第2の領域
13 第3の領域
20 突起部
21 シリコン酸化膜
22 被膜
24 フォトレジストパターン

Claims (10)

  1. 内部に空洞が設けられていることを特徴とする欠陥検査装置検査用の標準シリコンウェーハ。
  2. 前記空洞は、球状であることを特徴とする請求項1記載の欠陥検査装置検査用の標準シリコンウェーハ。
  3. 前記空洞は、大きさが半径0.05〜1μm、シリコンウェーハ表面からの深さが0.5μm以上であることを特徴とする請求項1または2記載の欠陥検査装置検査用の標準シリコンウェーハ。
  4. 前記空洞は、シリコンウェーハ面内に0.1〜100個/cmの密度で設けられたことを特徴とする請求項1乃至3記載の欠陥検査装置検査用の標準シリコンウェーハ。
  5. シリコンウェーハ表面にトレンチを形成する工程と、
    前記トレンチを空洞に変形させる熱処理工程を有することを特徴とする欠陥検査装置検査用の標準シリコンウェーハの製造方法。
  6. 前記熱処理工程の後に、モノシラン(SiH)ガスを反応ガスとする気相成長により、10μm以下の膜厚のエピタキシャルシリコン層を形成する工程を有することを特徴とする請求項5記載の欠陥検査装置検査用の標準シリコンウェーハの製造方法。
  7. 前記エピタキシャルシリコン層を形成する工程の後に、前記エピタキシャルシリコン層表面を研磨、洗浄しヘイズフリーとする工程を有することを特徴とする請求項6記載の欠陥検査装置検査用の標準シリコンウェーハの製造方法。
  8. 前記トレンチを形成する工程において、前記トレンチは、トレンチ間隔をD、トレンチ開口面の面積とおなじ面積を有する円の半径をRとした場合に、D>4.5Rとなるように複数配列形成されていることを特徴とする請求項5乃至7記載の欠陥検査装置検査用の標準シリコンウェーハの製造方法。
  9. 前記シリコンウェーハは、チョクラルスキー(CZ)法により育成された窒素含有シリコン単結晶を加工し、還元性雰囲気下で1150〜1300℃の熱処理を30分以上加えることにより作成されたことを特徴とする請求項5乃至8記載の欠陥検査装置検査用の標準シリコンウェーハの製造方法。
  10. シリコンウェーハの表層部に、規定した大きさ及び深さに空洞を形成して、欠陥検査装置検査用の標準シリコンウェーハを作成するステップと、
    前記標準シリコンウェーハの測定結果に基づいて、前記欠陥検査装置を評価または校正するステップとを有することを特徴とする欠陥検査装置の検査方法。
JP2005377020A 2005-12-28 2005-12-28 欠陥検査装置検査用の標準シリコンウェーハ、その製造方法および標準シリコンウェーハを用いた検査方法 Withdrawn JP2007180266A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005377020A JP2007180266A (ja) 2005-12-28 2005-12-28 欠陥検査装置検査用の標準シリコンウェーハ、その製造方法および標準シリコンウェーハを用いた検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005377020A JP2007180266A (ja) 2005-12-28 2005-12-28 欠陥検査装置検査用の標準シリコンウェーハ、その製造方法および標準シリコンウェーハを用いた検査方法

Publications (1)

Publication Number Publication Date
JP2007180266A true JP2007180266A (ja) 2007-07-12

Family

ID=38305158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005377020A Withdrawn JP2007180266A (ja) 2005-12-28 2005-12-28 欠陥検査装置検査用の標準シリコンウェーハ、その製造方法および標準シリコンウェーハを用いた検査方法

Country Status (1)

Country Link
JP (1) JP2007180266A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243898A (ja) * 2011-05-18 2012-12-10 Fuji Electric Co Ltd 半導体基板または半導体装置の製造方法
JP2018006658A (ja) * 2016-07-06 2018-01-11 信越半導体株式会社 パーティクルカウンタ校正用ウェーハの作製方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243898A (ja) * 2011-05-18 2012-12-10 Fuji Electric Co Ltd 半導体基板または半導体装置の製造方法
JP2018006658A (ja) * 2016-07-06 2018-01-11 信越半導体株式会社 パーティクルカウンタ校正用ウェーハの作製方法

Similar Documents

Publication Publication Date Title
JP6048381B2 (ja) シリコン単結晶中の炭素濃度評価方法、及び、半導体デバイスの製造方法
JP3451955B2 (ja) 結晶欠陥の評価方法及び結晶欠陥評価装置
JP4385978B2 (ja) 半導体ウエーハの評価方法及び製造方法
JP2008088051A (ja) エピタキシャルウェーハおよびその製造方法
US5508800A (en) Semiconductor substrate, method of manufacturing semiconductor substrate and semiconductor device, and method of inspecting and evaluating semiconductor substrate
JP5090683B2 (ja) 絶縁薄膜上にナノ構造体を含むヘイズノイズ標準の製造方法
JP4784192B2 (ja) シリコンウエーハの評価方法
JP2007180266A (ja) 欠陥検査装置検査用の標準シリコンウェーハ、その製造方法および標準シリコンウェーハを用いた検査方法
JP5343721B2 (ja) シリコン基板の評価方法及び半導体デバイスの製造方法
US20020167661A1 (en) Inspection device for crystal defect of silicon wafer and method for detecting crystal defect of the same
JP2018163951A (ja) 半導体単結晶基板の結晶欠陥検出方法
JP2010278363A (ja) 結晶欠陥検出方法
JP6536502B2 (ja) パーティクルカウンタ校正用ウェーハの作製方法
JP5463884B2 (ja) 半導体単結晶基板の結晶欠陥評価方法
CN111279461B (zh) 由单晶硅组成的半导体晶片
JP6311542B2 (ja) 結晶欠陥の評価方法及びウェーハの製造方法
KR100384680B1 (ko) 반도체 웨이퍼 결함 검출 방법
JP7251517B2 (ja) エピタキシャル成長前処理条件の評価方法
JPH1174493A (ja) Soiウエーハの欠陥検査方法
JP4003943B2 (ja) シリコンウエハの八面体ボイドの評価方法
JP3994139B2 (ja) シリコンウエハのグローン・イン欠陥密度の評価方法
JP2003142544A (ja) シリコンウエハの微小欠陥の評価方法
KR20190116384A (ko) 반도체 구조들을 평가하기 위한 방법들
JP2022175082A (ja) 半導体単結晶基板の結晶欠陥評価方法
JP2005303094A (ja) シリコンウェーハのゲッタリング効率を評価する方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080929

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091106