JP2007177739A - 火花点火式直噴エンジン - Google Patents

火花点火式直噴エンジン Download PDF

Info

Publication number
JP2007177739A
JP2007177739A JP2005379035A JP2005379035A JP2007177739A JP 2007177739 A JP2007177739 A JP 2007177739A JP 2005379035 A JP2005379035 A JP 2005379035A JP 2005379035 A JP2005379035 A JP 2005379035A JP 2007177739 A JP2007177739 A JP 2007177739A
Authority
JP
Japan
Prior art keywords
fuel
intake
nozzle
valve
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005379035A
Other languages
English (en)
Other versions
JP4622852B2 (ja
Inventor
Hiroyuki Yamashita
洋幸 山下
Yasushi Murakami
康 村上
Suketoshi Seto
祐利 瀬戸
Keiji Araki
啓二 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2005379035A priority Critical patent/JP4622852B2/ja
Publication of JP2007177739A publication Critical patent/JP2007177739A/ja
Application granted granted Critical
Publication of JP4622852B2 publication Critical patent/JP4622852B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】燃料噴霧がシリンダ内壁面に多量に付着されるのを防止する。
【解決手段】燃焼室周縁部でかつ平面視において2つの吸気弁12の間において、燃料噴射弁18が配設される。燃焼室6内に突出している点火プラグ16の電極Eの近傍左右に、燃料噴射弁18の左側噴口(軸線L2)と右側噴口(軸線L3)とが指向される。吸気弁12が最大リフト量付近の基本噴射時期に燃料噴射が実行されて、燃料噴霧と吸気弁12との干渉(衝突)が防止される。エンジン冷機時には、吸気弁12を吸気遅開きに変更すると共に最大リフト量を小さくして、左右噴口からの燃料噴霧が吸気弁12と干渉するタイミングでもって燃料噴射が行われる。
【選択図】 図16

Description

本発明は、複数の噴口を有する燃料噴射弁を備えた火花点火式直噴エンジンに関するものである。
従来、特許文献1に開示されているように、点火プラグを備えるとともに、燃料を燃焼室内に直接供給する燃料噴射弁(インジェクタ)を備え、成層燃焼を行うことによって燃費改善を図るようにして火花点火式直噴エンジンが知られている。成層燃焼を行う場合、1つの気筒に2つの吸気弁を有する場合には、平面視において、2つの吸気弁間において燃焼室周縁部に燃料噴射弁を配設することも行われている。燃料噴射弁の噴口を直接電極に指向させた場合は、電極に燃料が液滴となって付着し易く、着火性が悪化するという問題がある。このため、特許文献1には、燃焼室周縁部に配設した燃料噴射弁を、例えば8つの噴口を有するマルチホール型として、そのうちの3つの噴口を、点火プラグの電極近傍の下方に指向された下側噴口(特定噴口)、電極近傍で左方に指向された左側噴口、電極近傍で右方に指向された右側噴口として、この3つの噴口からの燃料噴霧によって電極近傍に濃混合気層を形成する成層化を得るようにしたものが開示されている。
また、特許文献1には、上記3つの噴口以外の5つの噴口を、均一燃焼のために、電極から離れた部分となるピストン頂面に指向させたものが開示されている。そして、特許文献1のものでは、燃料噴射弁の軸心にもっとも近い軸線(軸心)を有する噴口が、ピストン側が噴口のうち下側噴口の真下方向に位置される噴口となるように設定されたものが開示されている。
また、特許文献1には、さらに次のような技術内容も開示されている。すなわち、エンジンの低回転・低負荷域となる所定運転領域において、成層燃焼のために、圧縮行程途中で燃料噴射を行って電極周りにリッチな混合気を生成する一方、その他の運転領域では吸気行程中に燃料噴射を行って均一燃焼を行うことが開示されている。また、複数の噴口から噴射された燃料噴霧同士の相互干渉効果を利用して、点火プラグの電極周りに効果的にリッチとすることも提案されている。なお、特許文献2にも、特許文献1と同様なマルチホール型の燃料噴射弁を燃焼室周縁部に設けたものが開示されている。
さらに、特許文献3には、マルチホール型燃料噴射弁を、点火プラグと同様に燃焼室の略中央部に設けたものが開示されている。この特許文献3のものは、燃料噴射弁からの燃料噴霧をピストン頂面に指向させて、ピストン頂面で反射されて上昇される燃料噴霧が電極近傍を通過するようにしたものとなっている。さらにまた、特許文献4には、吸気弁の開弁特性を変更するもの、特に位相変更機構とリフト量変更機構とを組み合わせて、開閉時期やリフト量等を変更できるようにしたものが開示されている。
特開2005−98119号公報 特開2005−273554号公報 特開2005−256791号公報 特開2004−301058号公報
前述のように、燃焼室周縁部でかつ平面視において2つの吸気弁の間に配設された燃料噴射弁が、電極近傍の左右側方に指向される左側噴口と右側噴口とを有する場合に、冷間時の低負荷域において吸気行程で燃料噴射を行うと、この左右の噴口からの燃料噴霧が、燃料噴射弁とは反対側に位置されるシリンダ内壁面(シリンダライナ)に多量に付着してしまい、この結果エンジンオイルを希釈してしまう等の問題を生じる。すなわち、冷間時にエンジンを始動して、エンジンが十分に暖機されていない状態では、左右の噴口から噴射された燃料噴霧は、低負荷域であることから筒内流動が弱いために途中で十分に気化、霧化されずに、燃料噴射弁とは反対側のシリンダ内壁面に多量に付着し、シリンダ内壁面そのものも冷えているいるために、付着した燃料噴霧の多くが気化、霧化されずに付着したままとなってしまうことになる。勿論、シリンダ内壁面に燃料噴霧が付着したままでは、エンジンオイルの希釈のみならず、未燃成分の発生原因ともなって好ましくないものとなる。
本発明は、以上のような事情を勘案してなされたもので、その目的は、燃料噴霧がシリンダ内壁面に多量に付着されたままとなってしまう事態を防止あるいは抑制できるようにした火花点火式直噴エンジンを提供することにある。
前記目的を達成するため、本発明における火花点火式直噴エンジンにあっては次のような解決手法を採択してある。すなわち、特許請求の範囲における請求項1に記載のように、
各気筒毎に、2つの吸気弁と、燃焼室の略中央部に電極が位置するように配設された点火プラグと、平面視において2つの吸気弁の間の燃焼室周縁部に配設されて燃焼室内に直接燃料噴射を行う複数の噴口を有するマルチホール型の燃料噴射弁とが設けられ、
前記複数の噴口として、少なくとも前記電極の左側近傍に指向された左側噴口と該電極の右側近傍に指向された右側噴口とを有するように設定された火花点火式直噴エンジンにおいて、
エンジン暖機前の状態での低負荷域となる所定運転領域において、吸気行程のうち前記左右の噴口からの燃料噴霧が吸気弁に対して衝突するタイミングで燃料噴射を実行するように設定されている、
ようにしてある。上記解決手法によれば、左右の噴口からの燃料噴霧は、途中で吸気弁に衝突されることよって、燃料噴射弁とは反対側のシリンダ内壁面に燃料噴霧が多量に付着されてしまう事態が防止あるいは抑制されることになる。また、燃料噴霧の吸気弁への衝突によって、燃料噴霧の気化、霧化が促進されることにもなる。
上記解決手法を前提とした好ましい態様は、特許請求の範囲における請求項2以下に記載のとおりである。すなわち、
前記所定運転領域のときに、吸気弁が、吸気行程のうち吸気上死点よりも大きく遅れた位置で開弁される吸気遅開きとされる、ようにしてある(請求項2対応)。この場合、吸気遅開きによって、ピストン速度が十分に上昇したタイミングでもって吸気が筒内に一気に導入されるので、筒内の吸気流動が高まり、燃料噴霧の気化、霧化が促進されると共に、燃料噴射弁とは反対側のシリンダ内壁面に燃料噴霧が付着する量も低減されることになる。勿論、吸気遅開きによって、ポンピグロス低減にもなる。
エンジン始動後に点火時期を大きくリタードさせて排気ガス温度を積極的に上昇させるための昇温制御後における前記所定運転領域において、前記左右の噴口からの燃料噴霧が吸気弁に対して衝突するタイミングでの燃料噴射が実行される、ようにしてある(請求項3対応)。この場合、点火時期の大幅なリタードによって排気ガス温度上昇ひいてはエンジンつまり吸気弁の温度をすみやかに上昇させて、吸気弁に衝突された燃料噴霧の気化、霧化促進の上でより一層好ましいものとなる。
前記所定運転領域において、吸気遅開きとされた吸気弁の閉弁時期が、略吸気
下死点位置となるように設定されている、ようにしてある(請求項4対応)。この場合、吸気弁の開弁期間を極力十分に確保、つまり吸気充・量を十分確保することができ、この分暖機促進ともなる。
前記所定運転領域において、吸気弁の開弁時期が、エンジン温度の上昇に応じて徐々に吸気上死点に近づいて開弁期間が拡大される、ようにしてある(請求項5対応)。この場合、エンジン温度の上昇に応じて開弁期間が十分に確保される状態へと変化されるので、吸気充・量を確保して暖機促進の上で好ましいものとなる。
前記所定運転領域において、少なくとも最大リフト位置にある吸気弁に対して前記左右の噴口からの燃料噴霧が衝突するように燃料噴射が行われる、ようにしてある(請求項6対応)。この場合、筒内の吸気流動が大きくなるタイミングでもって燃料噴射されるので、燃料噴霧の気化、霧化促進の上で好ましいものとなる。
前記電極近傍に指向される噴口として、該電極の先端近傍でその延長線付近に指向された下側噴口を有し、
前記下側噴口、左側噴口および右側噴口の各噴口から前記電極までの距離が20mm以上に設定され、
前記下側噴口と前記左側噴口とのなす開き角が15度〜25の度の範囲に設定されて、エンジンの低回転・低負荷域となる所定運転領域で該下側噴口からの燃料噴霧と該左側噴口からの燃料噴霧が相互干渉効果によって互いに連続したものとなるように設定され、
前記下側噴口と前記右側噴口とのなす開き角が15度〜25の度の範囲に設定されて、前記所定運転領域で該下側噴口からの燃料噴霧と該右側噴口からの燃料噴霧が相互干渉効果によって互いに連続したものとなるように設定されている、
ようにしてある(請求項7対応)。この場合、電極周りでの成層化状態が、燃料噴射弁から電極を見たとき、濃混合気が略V字状となって電極の下方および左右側方を囲んだ状態となって、成層化として極めて好ましい状態が得られる。
本発明によれば、燃料噴霧がシリンダ内壁面に多量に付着されたままとなってしまう事態を防止あるいは抑制することができる。
以下に、図面を参照しつつ本発明の実施形態について説明するが、まず全体の概要について説明し、その後、燃料噴射制御の詳細について説明する。
図1は、火花点火式直噴エンジン1を示し、このエンジン1は、紙面直角方向に直列に複数の気筒2を有する直列多気筒(実施形態では4気筒)エンジンとされている(図1では1つの気筒のみが示される)。各気筒2は、シリンダブロック3と、このシリンダブロック3上に配置されたシリンダヘッド4とを有しており、気筒2内にはピストン5が上下方向に往復動可能に嵌挿されている。このピストン5とシリンダヘッド4との間の気筒2内には燃焼室6が区画されている。燃焼室6は、気筒2の天井部における略中央部からシリンダヘッド4の下端面付近まで延びる2つの傾斜面を有するいわゆるペントルーフ型燃焼室とされている。
シリンダヘッド4には、図2に示すように、2つの吸気ポート10(2つの吸気ポートを区別するときは符合10A、10Bでもって示すこととする)と、2つの排気ポート11とが形成されている(図1ではいずれも1つのみ開示)。この2つの吸気ポート10は、その各一端が各気筒2天井部における傾斜面の一方から燃焼室6に開口され、その各他端側が燃焼室6から斜め上方に延びて、エンジン1の一側面(図1中右側面)に互いに独立して開口されている。各吸気ポート10の燃焼室6側の開口端には、それぞれ所定のタイミングで開閉作動される吸気弁12が配置されている(図1ではいずれも1つのみ開示)。2つの排気ポート11には、その各一端が各気筒2の天井部における傾斜面の他方から燃焼室6に開口され、その各他端側は、途中で1つに合流した後略水平に延びてエンジン1の他端面(図1中左側面)に開口されている。各排気ポート11の燃焼室6側の開口端には、それぞれ所定のタイミングで開閉作動される排気弁13が配置されている(図1ではいずれも1つのみ開示)。
各吸気ポート10は、吸気通路30に接続されている。この吸気通路30には、それぞれ図示を略すが、その上流側から下流側へ順次、エアクリーナ、吸入空気量センサ、スロットル弁、サージタンク等が配設されている。なお、上記スロットル弁は、実施形態では、アクセルペダルとは機械的な連係が遮断されて、アクセル開度に応じて電子的にその開度が変更制御されるようになっている。また、上記サージタンクは、各気筒毎に対して個々独立した独立分岐管によって接続されている(図2で示す吸気通路30はこの独立分岐管が示される)。
各排気ポート11は、排気通路31に接続されている。この排気通路31には、図14に示すように、その上流側から下流側へ順次、空燃比センサとしてのリニア酸素センサS6、第1三元触媒71、NOx吸収・還元触媒72、第2三元触媒73、リニア酸素センサS6Bが設けられている。なお、上記リニア酸素センサS6、S6Bは、排気中の酸素濃度に基づいて空燃比を検出するために用いられるもので、理論空燃比を含む所定範囲において酸素濃度に対してリニアな出力が得られるようになっている。ただし、空燃比制御用の空燃比センサとしては、上流側にあるリニア酸素センサS6が用いられる。そして、下流側のリニア酸素センサS6Bの検出値は、上流側のリニアセンサS6での検出値とも比較されて、排気ガス浄化の状態や各触媒の劣化状態等を検出するために用いられる。また、NOx吸収・還元触媒72は、排気中の酸素濃度の高い雰囲気でNOxを吸収する一方、酸素濃度の低下に伴い吸収したNOxを放出し、その放出NOxを排気中のHC、CO等により還元浄化するNOx吸収還元タイプのものとされている。なお、第1三元触媒71とNOx吸収・還元触媒72とは離間しているが、NOx吸収・還元触媒72と第2三元触媒73とは接近されていて、この第2三元触媒73は、もっぱら、NOx吸収・還元触媒72からのNOx放出、還元後の有害成分浄化用とされる。
図14において、吸気弁の位相変更用の可変位相機構が符合81で示され(クランクシャフトとカムシャフトとの位相変更)、また、吸気弁のリフト量変更機構用のアクチュエータが符合82で示される。なお、位相およびリフト量変更のための各機構は、前述した特許文献4に記載のものと同様のものを用いてあり、またこのような機構は従来から種々提案されているので(例えば、吸気弁を直接アクチュエータによって駆動制御するもの等)、この各機構の詳細な説明は省略する。
再び図1において、燃焼室6の上部には、4つの吸排気ポート10,11(4つの吸排気弁12、13)に囲まれた燃焼室6の略中心に、点火プラグ16が配設されている(図2をも参照)。この点火プラグ16の先端の電極Eは、燃焼室6の天井部から所定距離だけ突出した位置にある。また、燃焼室6の周縁部には、2つの吸気ポート10間で、その各吸気ポート10下方において、燃料噴射弁18が配設されている。この燃料噴射弁18は、複数の噴口、具体的には6つの噴口を備えたマルチホール型の燃料噴射弁とされている。各噴口は、当該各噴口から噴射される燃料噴霧が後述するよう点火プラグ16の電極E近傍及びピストン5上方側に指向するよう、その燃料噴射弁18の燃料噴射方向が設定されている。
図2において、一方の吸気ポート10Aに関連して、スワール弁40が設けられている。すなわち、2つの吸気ポート10Aと10Bとは、シリンダヘッド4内において隔壁4aによって互いに個々独立されている一方、吸気通路30の下流端部(独立分岐管の下流端部)には、隔壁4aに連なる隔壁30aが形成されて、2つの吸気ポート10Aと10Bとは、燃焼室6側から上流側に向けて所定距離だけ互いに独立した通路となるように構成されている。そして、隔壁30aには、一方の吸気ポート10Aの開度変更を行うスワール弁40が配設され、このスワール弁40の駆動が電磁式のアクチュエータ40aによって行われる。これにより、スワール弁40を全開としたときは、2つの吸気ポート10A、10Bからほど同量の吸気が導入されて、燃焼室6内でのスワールの生成は実質的に行われないことになる。スワール弁40を全閉とすることにより、他方の吸気ポート10Bからのみ燃焼室6内に吸気が供給されて、燃焼室6内には図2矢印で示すように吸気のスワールが生成されることになる。スワール弁40の開度を調整することにより、スワールの強さが変更される。
図3に示すように、燃料噴射弁18の基端部には、全気筒2に共通の燃料分配管19が接続されており、その燃料分配管19は、燃料供給系20から供給される高圧の燃料を各気筒2に分配供給するようになっている。この燃料供給系20は、燃料分配管19と燃料タンク21とを接続する燃料通路22を有し、この燃料通路22には、その上流側から下流側に向けて順次、低圧燃料ポンプ23、低圧レギュレータ24、燃料フィルタ25、高圧燃料ポンプ26及び燃圧を調節可能とされる高圧レギュレータ27が接続されている。高圧燃料ポンプ26及び高圧レギュレータ27は、リターン通路29により燃料タンク21側に接続されている。なお、符合28は、燃料タンク21側に戻す燃料の圧力状態を整える低圧レギュレータである。これにより、低圧燃料ポンプ23により燃料タンク21から吸い上げられた燃料は、低圧レギュレータ24により調圧された後、燃料フィルタ25を介して高圧燃料ポンプ26に圧送される。そして、高圧燃料ポンプ26によって昇圧した燃料の一部を高圧レギュレータ27により流量調節しながらリターン通路29によって燃料タンク21側に戻すことで、燃料分配管19へ供給する燃料の圧力状態を適正値、例えば、12MPa〜20MPaに調整する。
図4には、エンジン1を制御するための制御系統が示される。この図4において、50は、マイクロコンピュータを利用して構成されたコントローラ(制御ユニット)である。このコントローラ50によって、点火回路17(点火時期制御用)、燃料噴射弁18(燃料噴射量および燃料噴射タイミング制御用)、燃料供給系20の高圧レギュレータ27(燃圧調整用)、スワール弁40(のアクチュエータ40a)が制御される他、前述した吸気通路30に配設された電子制御式のスロットル弁、後述する吸気弁12用の位相変更機構81やリフト量変更用アクチュエータ82が制御される。このコントローラ50には、エンジン回転数センサS1からのエンジン回転数信号、アクセル開度センサS2からのアクセル開度信号、温度センサS3からのエンジン冷却水温度信号が、クランク角センサS4からのクランク角信号、外気温センサS5からの外気温度、空燃比センサS6からの空燃比信号が入力される。
次に、コントローラ50による制御の内容について説明する。
1.燃料噴射制御
燃料噴射制御は、エンジン温度に応じて燃料噴射制御マップが切換えられ、その切換えられたマップに従ってその制御が行われる。燃料噴射制御マップは、エンジン温度が所定値(例えば60度C)以上の温間時は、図5に示す温間時のマップが選択される。温間時のマップは、エンジンの運転状態が低負荷・低回転の所定運転領域にある時、成層燃焼領域とされ、その他の運転領域では均一燃焼領域とされる。また、冷間時の燃料噴射制御マップは、図示を略すが、全ての運転領域において均一燃焼領域とされる。
成層燃焼領域では、燃料噴射弁18による燃料噴射時期を圧縮行程の所定時期、例えば、一括噴射の場合、圧縮上死点前(BTDC)0°〜60°の範囲に燃料を噴射させて、点火プラグ16の近傍に混合気が層状に偏在する状態で燃焼させる成層燃焼が行われる。この成層燃焼領域では、混合気の空燃比が理論空燃比よりもリーン側になるように、燃料噴射量やスロットル開度が制御される。また、成層燃焼領域以外の領域は、均一燃焼領域とされており、吸気行程において燃料噴射弁18から燃料を噴射させて吸気と十分に混合し、燃焼室6内に均一な混合気を形成した上で燃焼させる均一燃焼が行われる。この均一燃焼領域では、大部分の運転領域で混合気の空燃比が略理論空燃比(A/F≒14.7)になるように、燃料噴射量やスロットル開度が制御されるが、全負荷運転状態では、空燃比を理論空燃比よりもリッチな空燃比(A/F=13程度)に制御して、高負荷に対応した大出力が得られるようになっている。なお、エンジン冷間時は、前述したように、全運転領域において均一燃焼が行われる(空燃比は理論空燃比あるいはそれよりもリッチ)。
また、上記低回転・低負荷域となる所定運転領域での高負荷域では、図7に示すように、例えば2段階での分割噴射が実行される。図7に示す分割噴射では、遅い時期に燃料噴射が行われる後段噴射の開始は、例えばBTDC30度〜40度の範囲に設定され、早い時期に燃料噴射が行われる前段噴射は、後段噴射時期よりも例えばクランク角で40度程度早い時期に噴射が開始される。上記所定運転領域での高負荷域において、要求される燃料噴射量のうち、後段噴射で噴射される燃料量はほぼ一定量とされて、燃料噴射量の変更は、前段噴射での燃料噴射量の変更によって行われる。なお、前段噴射の噴射時期を、吸気行程に設定することもできる。
2.燃圧制御
燃圧制御は、エンジン温度に応じて燃圧制御マップが切換えられ、その切換えられたマップに従ってその制御が行われる。燃圧制御マップは、エンジン温度が所定値(例えば、60度C)以上の温間時は、図6に示す温間時のマップが選択される。この図6のマップでは、成層燃焼領域では、エンジン回転数の増大に応じて燃圧が徐々に大きくなるように変化され(最低燃圧a1が例えば12MPaとされ、最高燃圧a2が例えば20MPaとされる)。また、均一燃焼領域では、常時、成層燃焼領域での最高燃圧a2という一定値とされて、エンジン回転数上昇に伴う燃圧上昇が抑制された状態となる。なお、エンジン温度が所定値よりも低い冷間時は、常時、成層燃焼領域での最高燃圧a2に相当する燃圧とされる。また、エンジン始動時の燃圧は、高圧燃料ポンプ26がカム軸によって駆動される関係で燃圧が十分に上がらないことから、例えば、0.5MPa程度になっている。
3.スワール制御
エンジン低回転・低負荷域となる所定運転領域では、スワール弁40が開かれて、燃焼室6内に吸気のスワールが生成される。この場合、スワール弁40の開度は、上記所定運転領域においては、エンジン負荷の大小にかかわらず例えば常に全閉としてもよいが、低負荷域では開度が大きくされ(全開に近い)、エンジン負荷の増大に伴って徐々に開度が小さくされ、高負荷域で全閉となるように設定することもできる。
次に、図8〜図11を参照しつつ、燃料噴射弁18の各噴口について詳述する。まず、図8〜図10は、燃料噴射弁18の各噴口から噴射された燃料噴霧の状態を互いに異なる方向から見た状態を示すものである。また、図11は、マルチホール型の燃料噴射弁18の軸線を中心に燃料噴射方向先端側を見た時の軸線に対する各噴口の軸線との三次元傾斜角を模式的に示した図である。
図11において、LBはマルチホール型の燃料噴射弁18の軸線、L1ないしL6は第1噴口〜第6噴口の各軸線、A1〜A6は第1噴口〜第6噴口から噴射された燃料の噴霧角、Eは点火プラグの電極を示している。全噴口の噴口径は同一とされており、例えば、0.15mmに設定されている。ピストン軸線方向から見たとき、点火プラグ16の電極Eを通る気筒2の直径方向延長線上に、燃料噴射弁18の軸線LBが位置するように、燃料噴射弁18が配設されている。図11において、軸線LBを中心とする径方向の目盛りは、1目盛りが5度の開き角を示しており、また、軸線LBを中心とする周方向の目盛りは、1目盛りが15度の開き角を示している。
各噴口の軸線の位置関係について説明すると、まず、点火プラグ16の電極E周りに濃混合気を成層化するための噴口が、第1噴口〜第3噴口とされている。この第1噴口は下側噴口となるもので、その軸線L1は、軸線LBから電極E近傍で下方の所定位置に指向するよう配置されている。なお、第1噴口の軸線L1、噴霧角A1は、2つの吸気弁12の最大リフト位置の間に位置、つまり、吸気弁の可動範囲外に位置されている。また、第2噴口は、左側噴口となるもので、その軸線L2は、軸線LBから電極E近傍で側方(図中左側)の所定位置に指向するよう配置されている。さらに、第3噴口は右側噴口となるもので、その軸線L3は、軸線LBから電極E近傍で側方(図中右側)の所定位置に指向するよう配置されている。なお、第2噴口の軸線L2、噴霧角A2、第3噴口の軸線L3、噴霧角A3は、ともに吸気弁12の最大リフト位置の可動範囲内に位置されている。このように、第1噴口と第2噴口と第3噴口との各軸線は、電極Eの近傍を指向しつつ、しかも下方および左右側方から電極Eを取り囲むように設定されている。
第4噴口〜第6噴口は、それぞれピストン側噴口となるもので、電極E近傍以外となるピストン頂面に向けて燃料噴射を行うものである。第4噴口の軸線L4は、軸線LBからピストン側(図中下方側)でピストン下死点位置よりも上方側の所定位置(図中左側)に指向するよう配置されている。第5噴口の軸線L5は、軸線LBからピストン側(図中下方側)で、ピストン下死点位置よりも上方側の所定位置(図中センター位置で、第1噴口の軸線L1の真下位置)に指向するよう配置されている。第6噴口の軸線L6は、軸線LBからピストン側(図中下方側)でピストン下死点位置よりも上方側の所定位置(図中右側)に指向するよう配置されている。なお、全噴口から噴射された全体の燃料噴霧は、軸線LBを中心とする70°以下の円錐空間内に収まるように設定されている。
電極E周りに燃料噴霧を噴射する3つの噴口、つまり下側噴口、左側噴口、右側噴口のうち、下側噴口の燃料噴霧のペネトレーションが左側噴口と右側噴口からのペネトレーションよりも大きくなるように、下側噴口の軸長が左側噴口の軸長および右側噴口の軸長よりも長く設定されている。なお、電極E周り以外に燃料噴霧を噴射する各ピストン側噴口の軸長は、左側噴口の軸長および右側噴口の軸長と同一に設定されている。以上に加えて、全噴口のうち下側噴口の軸線L1が、燃料噴射弁18の軸線LBにもっとも近い位置となるように設定されており、しかも軸線L1の軸線LBに対する開き角も、他の噴口における軸線L2〜L6の軸線LBに対する開き角よりも小さくなるように設定されている。
以上説明したように、点火プラグの電極Eの下方及び両側方に、第1噴口〜第3噴口の軸線L1〜L3が配置されているため、成層燃焼時、点火プラグの電極E近傍に微粒化された混合気を集めることができ、着火性を向上することができる。また、軸線LBよりもピストン側に第4噴口〜第6噴口の軸線L4〜L6が配置されているため、燃焼室6全体に混合気を存在させることができ、均一燃焼時における混合気の均質化を向上することができる。また、第1噴口と第4噴口〜第6噴口の各軸線L1、L4〜L6は、吸気弁12の可動範囲外に配置されるため、多噴口としながらも大半の噴口を吸気弁12の可動範囲外に配置でき、各噴口から噴射される燃料噴霧が吸気弁12に衝突することを抑制することができる。なお、左右の噴口からの燃料噴霧と吸気弁との積極的な干渉のための制御の点については後述する。
ここで、点火プラグの電極E近傍に配置される第1噴口〜第3噴口の各軸線L1〜L3とは、相互干渉効果を得るために、次のような関係に設定されている。すなわち、第1噴口〜第3噴口(第4噴口〜第6噴口についても同じ)は、電極Eに対して20mm以上離間した距離とされている。また、第1噴口の軸線L1と第2噴口の軸線L2との開き角が15度〜25度の範囲(実施形態では20度)となるように設定され、かつ、第1噴口の軸線L1と第3噴口の軸線L3との開き角が15度〜25度の範囲(実施形態では20度)となるように設定されている。これにより、第1噴口からの燃料噴霧と第2噴口からの燃料噴霧とが相互干渉効果によって電極E近傍で互いに連続したものとなり、同様に、第1噴口からの燃料噴霧と第3噴口からの燃料噴霧とが相互干渉効果によって電極E近傍で互いに連続したものとなる。この相互干渉効果が得られた状態では、図11において、電極E近傍において、軸線L1からL2に向けて伸びる連続した燃料噴霧が生成され、かつ軸線L1から軸線L3に向けて伸びる連続した燃料噴霧が生成されることになる(図11において連続した燃料噴霧の形状が略V字形状となる)。下側噴口からの燃料噴霧のペネトレーションが、左側噴口および右側噴口からの燃料噴霧のペネトレーションよりも大きくなるように設定することにより、相互干渉効果によって、軸線L1が電極Eに対して下方から接近する方向へと大きく移動されてしまう事態が防止あるいは抑制されることになる。
ここで、エンジン低回転・低負荷域での高負荷域では、筒内圧力が大きくなるため、各噴口から噴射された燃料噴霧のペネトレーションが小さくなる。このペネトレーションが小さくなるということは、特に成層化に関連した第1噴口〜第3噴口から噴射された燃料噴霧が、電極Eを通りすぎて反対側のシリンダ壁に向かう割合が減少して、電極E付近に留まる割合が大きくなることを意味する。したがって、成層化を行う所定運転領域において、特に所定運転領域の高負荷域において、スワールを生成することにより、電極E周りの濃混合気層が、気筒軸線方向から見たとき、電極Eを通って燃料噴射弁の軸線と直交する方向のうち、スワールに乗る側に移動、拡散されるので、この高負荷域において電極E周りが過度にリッチになりすぎるのを防止する上で好ましいものとなる。
上述した電極E周りでの過度なリッチ化防止のために、前述のように、スワール生成が行われると共に、圧縮行程中での分割噴射が実行される。スワール生成により、電極Eを取り囲んでいた濃混合気層はスワールの勢いによって、全体的に電極Eからシリンダ壁面方向へと移動されて、電極E周辺のうち、濃混合気層の移動方向とは反対側には濃混合気層が位置されない状態となる。これにより、初期燃焼割合が低減されて、燃費向上となる。とりわけ、エンジン低回転・低負荷域での低負荷域から、エンジン負荷の増大に伴って徐々にスワールの強さを強くする(スワール弁の開度をエンジン負荷の増大に応じて徐々に小さくする)ことにより、燃料噴射量の増大に応じた適切な強さのスワールとして、電極E周りに生成される濃混合気層を、着火性を確保しつつ燃費向上を図ることのできる最適な状態に設定することができる。
以上に加えて、前述した分割噴射を行うことによって、一括噴射(例えば図7後段噴射時期で全ての燃料噴射量を実行する噴射)を行う場合に比して、電極E周りの濃混合気層生成をより一層促進することができる。すなわち、同じ量の燃料噴射を行う場合であっても、分割噴射の場合は、前段噴射された分の燃料噴霧は、電極Eへの通電(点火)実行までの期間に燃焼室6内においてかなりの割合が拡散されてしまい、電極E周りでの濃混合気層生成には殆ど寄与しないこととなる(後段噴射された燃料噴霧のみが実質的に電極E周りでの濃混合気層生成に寄与する)。エンジン低回転・低負荷域となる所定運転領域での電極E周りの混合気濃度は、該所定運転領域での低負荷域での電極E周りの混合気濃度とほぼ同程度となるように設定するのが好ましいものである。
図12,図13は、燃料噴射弁18のシリンダヘッド4に対する取付例を示すものである。図中、45はシリンダヘッド4に形成された取付孔であり、図12では、取付孔45がシリンダヘッド4の外部への開口端面に開口されている様子が示される。シリンダヘッド4の外側端面には、取付孔45の周縁部において、2つの位置決め用の突起部4c、4dが形成されている。この2つの突起部4cと4dとの間の距離(相対向する面の間の距離)は、所定寸法となるように精度よく仕上げられている。
燃料噴射弁18は、前記取付孔45にがたつきなく挿入される筒部18cと、筒部18cの基端部からほぼ径方向に伸びる突起部18dとを有し、この突起部18dの先端部が、外部からの通電用のカプラが着脱自在に接続される接続端子部18eとされている。なお、実施形態では、筒部18cと突起部18dとが一体成形されているが(電気的接続部分は除く)、突起部18dを筒部18cとは別体に形成して、後に互いに周方向および筒部18cの軸線方向に移動しないように規制された状態で一体に組付するようにしてもよい。
燃料噴射弁18のシリンダヘッド4に対する取付けは、その筒部18cを所定深さまで取付孔45に挿入することにより行われる。このとき、燃料噴射弁18の突起部18cが、シリンダヘッド4に形成された一対の突起部4cと4dとの間に位置される(挟まれる)。燃料噴射弁18のc突起部18cの幅は、一対の突起部4cと4dとの間の寸法に対応して精度よく仕上げられて、突起部18cが、一対の突起部4cと4dとの間にがたつきなく挿入される状態とされる(この状態が図13の状態である)。そして、図13の取付状態においては、各噴口の電極Eに対する位置関係が図11の状態となるように設定されている。このように、燃料噴射弁18の突起部18cは、シリンダヘッド4に形成された一対の突起部4c、4dと共に、燃料噴射弁18を所定の取付角度(回動角度)でもってシリンダヘッド4に取付けるための位置決め(用の治具)の機能をも果たすようになっている。前述したように、下側噴口の軸線L1が燃料噴射弁18の軸線LBにもっとも近い位置にあるため、燃料噴射弁18をエンジンへの取付状態からその周方向に回動させたときに、軸線L1の電極Eに対する上下方向の距離の変動量が、他の軸線L2〜L6に比して軸線L1がもっとも小さいものとなる。すなわち、軸線L1と電極Eとの上下方向距離が極力一定値となるようにする上で好ましい設定となっている。
図15、図16は、吸気弁の開弁特性の変更例を示すものであり、図15は温間時用、図16は冷間時用のものが示される。温間時用となる図15において、開弁特性が、B1〜B6で示すように、温度に応じて段階的(連続可変式でもよい)に変化される。B6が基本特性となるもので、吸気上死点付近で開弁され、吸気下死点付近で閉弁される。温度が低くなるつれて吸気早閉じとされる(開弁時期はB1〜B6で同一時期となるように設定)。吸気弁12のリフト量がδ1とδ2との範囲にあるときに、電極Eの左右近傍に指向された左右の噴口からの燃料噴霧が吸気弁12に対して衝突されるタイミングとなる。温間時では、シリンダ内壁面への燃料噴霧の多量付着という問題を生じにくく、しかも筒内の温度も高くて途中で燃料噴霧の気化、霧化が促進されるので、燃料噴射は、極力吸気弁12と衝突しないタイミングとなるように行われる。なお、図15に示す燃料噴射のタイミングはあくまで一例であり、燃料噴霧と吸気弁12との衝突回避のために、開弁特性の変更に応じて燃料噴射時期を変更することもできる(分割噴射も可)。
冷間時用となる図16においては、外気温度が例えば0度C以下のときに用いられる。冷間時用の開弁特性は実線で示すC1〜C3であり、温度に応じて段階的(連続可変式でもよい)に変化されて、温度がある程度以上となると、温間時用の開弁特性へと移行される(図16では温間時用の開弁特性B4〜B6が破線で示される)。冷間時の開弁特性は、いずれも吸気上死点から大きく遅れた時期に開弁される吸気遅開きとされて、閉弁時期はいずれも吸気下死点付近の同一時点となるように設定されている。吸気弁12のリフト量がδ1とδ2との範囲にあるときに、電極Eの左右近傍に指向された左右の噴口からの燃料噴霧が吸気弁12に対して衝突されるタイミングとなる。冷間時での低負荷域、つまり外気温度が低い冷間時にエンジン始動した後、エンジンが暖機される前の状態(例えばエンジン冷却水温度が20度C以下のとき)で、しかも図5に示すような低負荷域のときは、左右の噴口からの燃料噴霧が吸気弁12と衝突するタイミング(クランク角)となったときに燃料噴射を行うように設定される。特に、極冷間時(例えば−20度C以下)に選択される開弁特性C1のときに、吸気弁12が最大リフト位置にあるときに燃料噴霧が吸気弁12と衝突するタイミングでもって燃料噴射を行うように設定されている。勿論、開弁特性の変更に応じて、吸気弁12に対して十分に長い期間衝突するように、燃料噴射時期を変更することもでき、このために燃料噴射時期を分割噴射とすることもできる(例えば開弁特性C3が選択されているときは、吸気弁12の開弁前期と開弁後期との分割噴射とする)。
次に、図17に示すフローチャートを参照しつつ、燃料噴霧を吸気弁12へ衝突させる場合の制御例について説明するが、このフローチャートは、エンジン冷機時でかつ外気温度が所定温度以下の冷間時でのエンジン始動によってスタートされる。なお、以下の説明でRはステップを示す。まず、R71において、エンジン始動操作(スタータモータによる駆動)によって、エンジンが完爆したか否かが判別される。このR71での判別は、例えばエンジン回転数が所定回転数(例えば500rpm)以上になったか否かをみることによって行われる。R71の判別でNOのときはR71の判別が繰り返され、R71の判別でYESとなったときに、R72において、昇温制御が行われる。この昇温制御は、吸気行程での燃料噴射となる均一燃焼とされるが、排気ガス浄化触媒の活性化を早期に行うために排気ガス温度を上昇させる制御であって、点火時期を大きくリタードさせる制御となる。この昇温制御は、所定期間(例えば10〜20秒)程度実行され、この昇温制御によって、エンジン(吸気弁12)も早期に昇温されることになる。
R72の後、R73において、図5に示す低負荷域であるか否かが判別される。このR73の判別でYESのときは、R74において、干渉制御が行われる。この干渉制御は、前述したように、左右の噴口からの燃料噴霧を吸気弁12に対して積極的に衝突させる制御である(吸気弁12の開弁特性は図16のC1〜C3)。R72での昇温制御の実行後であるので、吸気弁12もかなり昇温されており、この分、吸気弁12に衝突された燃料噴霧の気化、霧化が促進されることになる。上記R74の後は、R75において、エンジンが暖機状態となったか否かが判別される(例えばエンジン冷却水温度が30度C以上になったか否かが判別される)。このR75の判別でNOのときは、R73に戻る。そして、R75の判別でYESとなったときに、R76に移行して、図5について説明したように通常の制御が実行される(冷却水温度に応じて、全域均一燃焼が行われる場合と、図5のマップにしたがう場合とに区別される)。
前記R73の判別でNOのときは、R77において、均一燃焼が行われた後、R75に移行されるる。ただし、R77での処理は、エンジン暖機前なので、点火時期が若干リタードされて(R72でのリタード量よりは小さいリタード量とされる)、エンジンの暖機促進が図られる。
以上実施形態について説明したが、本発明はこれに限らず、特許請求の範囲に記載された範囲において種々の変更が可能であり、例えば次のような場合をも含むものである。燃料噴射弁18(18B)の噴口の数は、5あるいは7以上であってもよい。電極E周りの濃混合気層生成を抑制するために、スワール生成と圧縮行程での分割噴射との両方を行うことなく、いずれか一方のみを行うようにしてもよく、スワールを生成しないものであってもよい。4気筒エンジンに限らず、2気筒以上の多気筒エンジンに適用できるものである。各噴口の設定(径や長さ)は適宜設定できるものであり、全噴口共にその径および長さを同じ設定とすることもできる。成層燃焼域の全域において、圧縮行程後半のみに燃料噴射を行うものであってもよい。吸気弁12の開弁特性は、常におなじものに設定するようにしてもよい(基本開弁特性に固定)。高負荷域(特に均一燃焼領域での低負荷域以下の負荷域)でもR74での干渉制御を行うようにしてもよい。勿論、本発明の目的として、実質的に好ましいあるいは利点として表現された発明を提供することをも暗黙的に含むものである。
本発明が適用されたエンジンの一例を示す要部側面断面図。 スワール生成部分を含む燃焼室付近の簡略平面図。 燃料系統例を示す系統図。 制御系統例をブロック図的に示す図。 成層燃焼領域と均一燃焼領域との設定例を示す図。 エンジン回転数変化に応じた燃圧変化の設定例を示す図。 分割噴射の一例を示す図。 複数噴口から噴射される燃料噴霧の状態を示す斜視図。 複数噴口から噴射される燃料噴霧の状態を示す側方から見た図。 複数噴口から噴射される燃料噴霧の状態を示す燃料噴射弁の反対側から見た図。 複数噴口の設定例の詳細を示すもので、燃料噴射弁の軸線方向から見たときの図。 シリンダヘッドに対する燃料噴射弁の取付例を示すもので、取付直前の状態を示す斜視図。 シリンダヘッドに対する燃料噴射弁の取付例を示すもので、取付完了状態を示す斜視図。 排気通路の構成例と開弁特性変更機構を簡略的に示す図。 温間時での吸気弁の開弁特性変更例を示す図。 冷間時での吸気弁の開弁特性変更例を示す図。 本発明の制御例を示すフローチャート。
符号の説明
1:エンジン
3:シリンダブロック
4:シリンダヘッド
5:ピストン
6:燃焼室
10(10A、10B):吸気ポート
12:吸気弁
16:点火フプラグ
17:点火回路
18:燃料噴射弁
50:コントローラ(燃料噴射制御手段、開弁特性制御手段)
E:点火プラグの電極
LB:燃料噴射弁の軸線
L1:第1噴口(下側噴口)の軸線
A1:第1噴口(下側噴口)から噴射された燃料の噴霧角
L2:第2噴口(左側噴口)の軸線
A2:第2噴口(左側噴口)から噴射された燃料の噴霧角
L3:第3噴口(右側噴口)の軸線
A3:第3噴口(右側噴口)から噴射された燃料の噴霧角
81:吸気弁の位相変更機構(開弁特性変更手段)
82:吸気弁のリフト量変更用アクチュエータ(リフト量変更手段)

Claims (7)

  1. 各気筒毎に、2つの吸気弁と、燃焼室の略中央部に電極が位置するように配設された点火プラグと、平面視において2つの吸気弁の間の燃焼室周縁部に配設されて燃焼室内に直接燃料噴射を行う複数の噴口を有するマルチホール型の燃料噴射弁とが設けられ、
    前記複数の噴口として、少なくとも前記電極の左側近傍に指向された左側噴口と該電極の右側近傍に指向された右側噴口とを有するように設定された火花点火式直噴エンジンにおいて、
    エンジン暖機前の状態での低負荷域となる所定運転領域において、吸気行程のうち前記左右の噴口からの燃料噴霧が吸気弁に対して衝突するタイミングで燃料噴射を実行するように設定されている、
    ことを特徴とする火花点火式直噴エンジン。
  2. 請求項1において、
    前記所定運転領域のときに、吸気弁が、吸気行程のうち吸気上死点よりも大きく遅れた位置で開弁される吸気遅開きとされる、ことを特徴とする火花点火式直噴エンジン。
  3. 請求項1または請求項2において、
    エンジン始動後に点火時期を大きくリタードさせて排気ガス温度を積極的に上昇させるための昇温制御後における前記所定運転領域において、前記左右の噴口からの燃料噴霧が吸気弁に対して衝突するタイミングでの燃料噴射が実行される、ことを特徴とする火花点火式直噴エンジン。
  4. 請求項2において、
    前記所定運転領域において、吸気遅開きとされた吸気弁の閉弁時期が、略吸気
    下死点位置となるように設定されている、ことを特徴とする火花点火式直噴エンジン。
  5. 請求項4において、
    前記所定運転領域において、吸気弁の開弁時期が、エンジン温度の上昇に応じて徐々に吸気上死点に近づいて開弁期間が拡大される、ことを特徴とする火花点火式直噴エンジン。
  6. 請求項1において、
    前記所定運転領域において、少なくとも最大リフト位置にある吸気弁に対して前記左右の噴口からの燃料噴霧が衝突するように燃料噴射が行われる、ことを特徴とする火花点火式直噴エンジン。
  7. 請求項1ないし請求項6のいずれか1項において、
    前記電極近傍に指向される噴口として、該電極の先端近傍でその延長線付近に指向された下側噴口を有し、
    前記下側噴口、左側方口および右側噴口の各噴口から前記電極までの距離が20mm以上に設定され、
    前記下側噴口と前記左側噴口とのなす開き角が15度〜25の度の範囲に設定されて、エンジンの低回転・低負荷域となる所定運転領域で該下側噴口からの燃料噴霧と該左側噴口からの燃料噴霧が相互干渉効果によって互いに連続したものとなるように設定され、
    前記下側噴口と前記右側噴口とのなす開き角が15度〜25の度の範囲に設定されて、前記所定運転領域で該下側噴口からの燃料噴霧と該右側噴口からの燃料噴霧が相互干渉効果によって互いに連続したものとなるように設定されている、
    ことを特徴とする火花点火式直噴エンジン。
JP2005379035A 2005-12-28 2005-12-28 火花点火式直噴エンジン Expired - Fee Related JP4622852B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005379035A JP4622852B2 (ja) 2005-12-28 2005-12-28 火花点火式直噴エンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005379035A JP4622852B2 (ja) 2005-12-28 2005-12-28 火花点火式直噴エンジン

Publications (2)

Publication Number Publication Date
JP2007177739A true JP2007177739A (ja) 2007-07-12
JP4622852B2 JP4622852B2 (ja) 2011-02-02

Family

ID=38303162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005379035A Expired - Fee Related JP4622852B2 (ja) 2005-12-28 2005-12-28 火花点火式直噴エンジン

Country Status (1)

Country Link
JP (1) JP4622852B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077909A (ja) * 2008-09-26 2010-04-08 Mazda Motor Corp 火花点火式直噴エンジンの制御方法およびその装置
JP2010121567A (ja) * 2008-11-20 2010-06-03 Toyota Motor Corp 内燃機関の制御装置
JP2010185439A (ja) * 2009-02-13 2010-08-26 Toyota Motor Corp 内燃機関
JP2014047645A (ja) * 2012-08-29 2014-03-17 Mazda Motor Corp 火花点火式直噴エンジン

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968072A (ja) * 1995-08-30 1997-03-11 Toyota Motor Corp 筒内噴射式火花点火内燃機関
JPH11294208A (ja) * 1998-04-15 1999-10-26 Nissan Motor Co Ltd 筒内噴射式内燃機関
JP2005098118A (ja) * 2003-09-22 2005-04-14 Mazda Motor Corp 火花点火式直噴エンジン
JP2005201185A (ja) * 2004-01-16 2005-07-28 Nissan Motor Co Ltd エンジンの制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968072A (ja) * 1995-08-30 1997-03-11 Toyota Motor Corp 筒内噴射式火花点火内燃機関
JPH11294208A (ja) * 1998-04-15 1999-10-26 Nissan Motor Co Ltd 筒内噴射式内燃機関
JP2005098118A (ja) * 2003-09-22 2005-04-14 Mazda Motor Corp 火花点火式直噴エンジン
JP2005201185A (ja) * 2004-01-16 2005-07-28 Nissan Motor Co Ltd エンジンの制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077909A (ja) * 2008-09-26 2010-04-08 Mazda Motor Corp 火花点火式直噴エンジンの制御方法およびその装置
JP2010121567A (ja) * 2008-11-20 2010-06-03 Toyota Motor Corp 内燃機関の制御装置
JP2010185439A (ja) * 2009-02-13 2010-08-26 Toyota Motor Corp 内燃機関
JP2014047645A (ja) * 2012-08-29 2014-03-17 Mazda Motor Corp 火花点火式直噴エンジン

Also Published As

Publication number Publication date
JP4622852B2 (ja) 2011-02-02

Similar Documents

Publication Publication Date Title
US6668792B2 (en) Control system for in-cylinder direct injection engine
US6173690B1 (en) In-cylinder direct-injection spark-ignition engine
KR20030022040A (ko) 불꽃 점화식 직접 분사 엔진의 제어 장치
US7104249B2 (en) Direct fuel injection/spark ignition engine control device
US10968859B2 (en) Premixed compression ignition engine and method for controlling premixed compression ignition engine
US20100147261A1 (en) Gasoline engine
JP2007092633A (ja) 火花点火式直噴エンジン
JP6056895B2 (ja) 直噴エンジンの燃料噴射制御装置
JP2016223412A (ja) エンジンの制御装置
JP4787867B2 (ja) 燃料噴射弁、内燃機関の燃料噴射装置及び内燃機関の制御装置
JP4622852B2 (ja) 火花点火式直噴エンジン
US8904993B2 (en) Systems and methods for stabilizing torque during mode transition in direct injection engines
JP3921732B2 (ja) 筒内噴射型火花点火式エンジン
JP2003214235A (ja) 火花点火式直噴エンジンの制御装置
JP2006274945A (ja) 火花点火式直噴エンジン
JP4434119B2 (ja) 火花点火式直噴エンジン
JP2011190741A (ja) 車両用内燃機関の燃料噴射制御装置
JP2007177741A (ja) 火花点火式直噴エンジン
JP2004245204A (ja) 内燃機関の燃料噴射装置
JP2007177740A (ja) 火花点火式直噴エンジン
JP2003222049A (ja) 火花点火式直噴エンジン
JP2006132398A (ja) デュアル噴射型内燃機関の制御方法
JP4046055B2 (ja) 筒内噴射式内燃機関
JP2016135991A (ja) 直噴エンジンの燃料噴射制御装置
JP2016180328A (ja) 直噴エンジンの燃料噴射制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Ref document number: 4622852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees