JP2007177447A - Removal method for existing underground structure - Google Patents

Removal method for existing underground structure Download PDF

Info

Publication number
JP2007177447A
JP2007177447A JP2005375342A JP2005375342A JP2007177447A JP 2007177447 A JP2007177447 A JP 2007177447A JP 2005375342 A JP2005375342 A JP 2005375342A JP 2005375342 A JP2005375342 A JP 2005375342A JP 2007177447 A JP2007177447 A JP 2007177447A
Authority
JP
Japan
Prior art keywords
underground structure
existing underground
ground
self
existing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005375342A
Other languages
Japanese (ja)
Inventor
Isao Motai
功 馬渡
Kazuya Yutsu
一八 遊津
Akira Imamura
晃 今村
Ryoichi Sakurai
良一 桜井
Akira Masuda
彰 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiraishi Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Shiraishi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Shiraishi Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2005375342A priority Critical patent/JP2007177447A/en
Publication of JP2007177447A publication Critical patent/JP2007177447A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a removal method for an existing underground structure, which enables an underground structure as a removal object to be demolished/removed under a stable behavior, without being associated with complicated construction management, on a small construction site, by using inexpensive materials and equipment, without the need for the installation of large-scale or special equipment and the like. <P>SOLUTION: After a peripheral friction reducing layer 10a is formed between the underground structure 2a and ground, a self-hardening fluid 12a is press-fitted into a section between the batholith 2c and the ground by using a boring machine 7d, so that a solidified layer 12b with a thickness HQ can be formed and so that the underground structure 2a can be pushed upward. After that, the self-hardening fluid 12a is hardened so that the attitude and behavior of the underground structure 2a can be stabilized, and an upper section of the underground structure 2a is demolished from the ground depending on the amount (lift amount) HL of the motion of pushing the underground structure 2a. The above steps are repeated a plurality times, so that the underground structure 2a can be sequentially demolished and removed in order from the upper section to the lower one. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、地下に存在する構造物を押し上げて撤去する既設地下構造物の撤去方法に関する。   The present invention relates to a method for removing an existing underground structure that pushes up and removes a structure existing underground.

基礎構造物及び容器構造物等の地中に設置されている地下構造物の解体・撤去工事は、地上に存在する構造物の工事に比べて、費用及び時間共にかかるという問題点がある。また、このような地下構造物の解体・撤去工事は、作業空間の自由度が制限されるため、施工性が極めて悪いという問題点もある。   The dismantling / removal work of underground structures installed in the ground such as foundation structures and container structures has a problem that it takes both cost and time compared to the work of structures existing on the ground. In addition, the dismantling / removal work of such an underground structure has a problem that the workability is extremely poor because the degree of freedom of the work space is limited.

図10(A)〜(C)は従来の地下構造物の撤去方法の代表例を示す断面図である。従来、既設地下構造物の撤去方法としては、地上から構造物を引き抜く方法がある。この技術は、構造物の規模が小さく、容易に引き抜くことができる杭等の柱状基礎には適用可能であるが、空間を利用する目的で建設された容器構造物及び橋梁等の大荷重の構造物を支持するために建設された基礎構造物は、必然的に構造物規模が大型化するため、地上から引き抜く方法での撤去は困難を極める。   10 (A) to 10 (C) are cross-sectional views showing a typical example of a conventional method for removing an underground structure. Conventionally, as a method of removing an existing underground structure, there is a method of pulling out the structure from the ground. This technology is applicable to columnar foundations such as piles that can be easily pulled out because of the small size of the structure. However, container structures and bridges and other heavy-duty structures constructed for the purpose of utilizing space. The foundation structure built to support an object inevitably increases the scale of the structure, so it is extremely difficult to remove it from the ground.

そこで、このような大型の地下構造物は、現行では、図10(A)〜(C)に示すような方法によって撤去作業が行われている。図10(A)に示す方法は、撤去を目的とする地下構造物2aの周囲の地盤面が法面1cとなるように、地下構造物2aの周域を地表面1aから法面掘削し、地下構造物2aの側壁2bを完全に露出させ、掘削面1b上に地下構造物の底盤2cが配置された状態にして解体及び撤去を行い、更に地下構造物2aを撤去した後、掘削土を埋め戻す方法である。   Therefore, at present, such a large underground structure is being removed by a method as shown in FIGS. The method shown in FIG. 10 (A) is a method of excavating the surrounding area of the underground structure 2a from the ground surface 1a so that the ground surface around the underground structure 2a intended for removal becomes the slope 1c. After the side wall 2b of the underground structure 2a is completely exposed and the bottom plate 2c of the underground structure is placed on the excavation surface 1b, dismantling and removal are performed, and after the underground structure 2a is further removed, the excavated soil is removed. It is a method of backfilling.

また、図10(B)に示す方法は、地下構造物2aを囲繞するように鋼矢板3等で土留め壁を仮設し、この鋼矢板3と地下構造物2aの側壁2bとの間を掘削することにより地下構造物2aを露出させて、地下構造物2aを解体及び撤去する方法である。更に、図10(C)に示す方法は、図10(B)における解体工程を発破及び膨張剤等を用いて化学的に処理することにより、作業の効率化を狙うものである。例えば、発破により解体する場合は、地下構造物2aを囲繞するように鋼矢板3を仮設すると共に、地下構造物2aの側壁2b及び底盤2cに破砕剤4を埋め込み、この破砕剤4により地下構造物2aを解体する。このような方法では、掘削工程が不要となるため、作業効率を向上させることができる。このような方法では、特に大型の構造物では解体工程を時短化できるため、作業効率の向上に繋がる。   Further, in the method shown in FIG. 10B, a retaining wall is temporarily installed with a steel sheet pile 3 or the like so as to surround the underground structure 2a, and the space between the steel sheet pile 3 and the side wall 2b of the underground structure 2a is excavated. By doing so, the underground structure 2a is exposed, and the underground structure 2a is dismantled and removed. Furthermore, the method shown in FIG. 10C aims to improve work efficiency by chemically treating the dismantling process in FIG. 10B with blasting and an expanding agent. For example, when dismantling by blasting, the steel sheet pile 3 is temporarily installed so as to surround the underground structure 2a, and the crushing agent 4 is embedded in the side wall 2b and the bottom board 2c of the underground structure 2a. Disassemble the object 2a. In such a method, since an excavation process becomes unnecessary, work efficiency can be improved. In such a method, since the dismantling process can be shortened particularly in a large structure, the working efficiency is improved.

一方、従来、小規模の基礎杭等を撤去する方法として、基礎杭の外周に杭長にわたって二重構造のケーシングを建て込み、このケーシングの内側管と基礎杭とを一緒に引き抜く方法が提案されている(例えば、特許文献1参照。)。また、基礎杭の周囲にその底盤よりも深い位置にまでケーシングを建て込んだ後、基礎杭に形成された削孔の上端部から下端部に向けて高圧水を注入し、この高圧水により生じる浮力により基礎杭を浮かせて引き抜く方法も提案されている(例えば、特許文献2参照)。更に、地中から基礎杭を持ち上げる方法としては、水を利用する方法以外に、基礎杭の下方に膨張可能な袋体を設置し、この袋体内に固結材を圧入する方法も提案されている(例えば、特許文献3参照。)。   On the other hand, conventionally, as a method for removing small foundation piles, etc., a method has been proposed in which a double-structure casing is built around the pile length on the outer periphery of the foundation pile, and the inner pipe and foundation pile of this casing are pulled out together. (For example, refer to Patent Document 1). In addition, after building the casing around the foundation pile to a position deeper than its bottom, high pressure water is injected from the upper end to the lower end of the drilling hole formed in the foundation pile, and this high pressure water causes There has also been proposed a method in which a foundation pile is lifted and pulled out by buoyancy (see, for example, Patent Document 2). Furthermore, as a method of lifting the foundation pile from the ground, besides the method of using water, a method of installing an inflatable bag body below the foundation pile and press-fitting the consolidated material into the bag body has been proposed. (For example, refer to Patent Document 3).

特開2003−64680号公報JP 2003-64680 A 特開2004−131923号公報JP 2004-131923 A 特開平9−158235号公報Japanese Patent Laid-Open No. 9-158235

しかしながら、図9(A)に示す撤去方法には、広大な施工用地が必要となるとなること、また、他の地中埋設物に対する影響が大きいこと等から、市街地において適用することが難しいという問題点がある。また、図9(B)に示す撤去方法には、土留め壁の施工規模が大きくなることから、支保工等を含む仮設資材費の負担が大きいという問題点がある。更に、図9(C)に示す撤去方法には、土留め壁が必要になること、爆圧による周辺の他の地中埋設物への影響を観測する必要があること、及び発生する粉塵等について環境対策を講じる必要があること等の問題点がある。   However, the removal method shown in FIG. 9 (A) requires a vast construction site and has a problem that it is difficult to apply in urban areas because it has a great influence on other underground objects. There is a point. Further, the removal method shown in FIG. 9 (B) has a problem that the scale of construction of the retaining wall becomes large, so that the burden of temporary material costs including support work is large. Furthermore, the removal method shown in FIG. 9 (C) requires a retaining wall, it is necessary to observe the influence of explosive pressure on other underground buried objects, and the generated dust, etc. There are problems such as the need to take environmental measures.

そこで、大型の地下構造物を解体及び撤去する方法にも、小規模の基礎杭等と同様に、地上から引き抜く方法の適用が期待されるが、大型の地下構造物を地上から引き抜くためには、地上設備として必要となる作業用機械の機体寸法の大型化が容易に想像される点、これら機械の設置にあたって予め相応の基礎工事が必要となる点、及び費用増加が必至となる点等をはじめとして現実的に解決困難な課題が多い。   Therefore, it is expected that the method of pulling out large underground structures from the ground will be applied to the method of dismantling and removing large underground structures as well as small foundation piles. The point that the size of the working machine required for ground equipment can be easily increased, the point that appropriate foundation work is required for the installation of these machines, and the point that the cost increase is inevitable. There are many problems that are difficult to solve in practice.

例えば、前述の特許文献1〜3に記載の方法を比較的大きな構造物に適用することは、引き抜き用のジャッキの能力及び本数、巨大化するケーシング、並びにこれら仮設機器類の設置に要する労力等を考え併せると現実性に乏しく、また撤去工事のような特に工費圧縮が要求される工種については相応しないものとなる。   For example, applying the methods described in Patent Documents 1 to 3 described above to a relatively large structure means that the capacity and number of jacks for pulling out, the casing that grows large, and the labor required to install these temporary devices, etc. Considering the above, it is not realistic, and it is not suitable for work types that require reduction of construction costs such as removal work.

本発明は上述した問題点に鑑みて案出されたものであり、大規模又は特殊な機器類の設置を必要とせず、安価な材料及び設備によって、少ない施工用地で複雑な施工管理を伴わずに、安定的挙動の下で撤去対象の地下構造物を解体・撤去できる既設地下構造物の撤去方法を提供することを目的とする。   The present invention has been devised in view of the above-mentioned problems, does not require the installation of large-scale or special equipment, and does not involve complicated construction management at a low construction site by inexpensive materials and equipment. Furthermore, it aims at providing the removal method of the existing underground structure which can dismantle and remove the underground structure to be removed under stable behavior.

上述した課題を解決し、目的を達成するために、本発明は次のように構成される。   In order to solve the above-described problems and achieve the object, the present invention is configured as follows.

本発明に係る既設地下構造物の撤去方法は、既設地下構造物の底盤とこの既設地下構造物の下方に位置する地盤との間に自硬性流体を圧入して、前記既設地下構造物を上方に押動させる工程と、前記自硬性流体を硬化させて、前記既設地下構造物の姿勢及び挙動を安定化する工程と、前記既設地下構造物の押動量に応じて、前記既設地下構造物の上部を地上から解体する工程とを有することを特徴とする。   In the method for removing an existing underground structure according to the present invention, a self-hardening fluid is press-fitted between the bottom of the existing underground structure and the ground located below the existing underground structure, and the existing underground structure is moved upward. In accordance with the amount of pushing of the existing underground structure, and the step of stabilizing the posture and behavior of the existing underground structure by curing the self-hardening fluid. And disassembling the upper part from the ground.

この既設地下構造物の撤去方法では、前記自硬性流体の圧入量を調節することにより前記既設地下構造物の押動量を制御し、前記既設地下構造物を押動させる工程、前記既設地下構造物を安定化する工程及び前記既設地下構造物を解体する工程を、この順に繰り返し行って、前記既設地下構造物を複数回に分けて解体することができる。   In this method of removing the existing underground structure, the step of controlling the amount of pushing of the existing underground structure by adjusting the amount of press-fitting of the self-hardening fluid to push the existing underground structure, the existing underground structure The step of stabilizing and the step of dismantling the existing underground structure can be repeated in this order, and the existing underground structure can be dismantled in multiple steps.

また、前記既設地下構造物を押動させる工程の前に、前記既設地下構造物と地盤との間に、これらの間に生じる摩擦抵抗を低減する周面摩擦低減材を注入してもよい。   In addition, before the step of pushing the existing underground structure, a peripheral friction reducing material that reduces frictional resistance generated between the existing underground structure and the ground may be injected.

更に、前記周面摩擦低減材を注入する前に、前記既設地下構造物の側壁と地盤との間に水を注入し、前記側壁の外面と地盤面との間に生じる摩擦抵抗を一時的に低減することもできる。その際、前記既設地下構造物の底盤と地盤との間にも水を注入し、前記底盤の外面と地盤面との間に生じる摩擦抵抗を一時的に低減してもよい。   Further, before injecting the peripheral surface friction reducing material, water is injected between the side wall of the existing underground structure and the ground, and the frictional resistance generated between the outer surface of the side wall and the ground surface is temporarily increased. It can also be reduced. At that time, water may be injected between the bottom and the ground of the existing underground structure to temporarily reduce the frictional resistance generated between the outer surface of the bottom and the ground.

本発明によれば、地下構造物の下方に自硬性流体を注入することにより地下構造物を上方に押動させ、自硬性流体が硬化した後で地下構造物の上部を解体撤去するため、大規模又は特殊な機器類の設置が不要となり、安価な材料及び設備により、少ない施工用地で複雑な施工管理を伴わずに、安定的挙動の下で撤去対象の地下構造物を解体・撤去することができる。   According to the present invention, the self-hardening fluid is injected below the underground structure to push the underground structure upward, and the upper part of the underground structure is dismantled and removed after the self-hardening fluid is hardened. No need for installation of scale or special equipment, and dismantling / removing the underground structure to be removed under stable behavior without complicated construction management at low construction sites with inexpensive materials and equipment. Can do.

以下、本発明を実施するための最良の形態として、比較的規模が大きい地下構造物を解体・撤去する場合を例にして、図面を参照しながら説明する。図1は本実施形態の既設地下構造物の撤去方法を示すフローチャート図である。図1に示すように、本実施形態の既設地下構造物の撤去方法においては、先ず、準備段階として、地下構造物に中空部(以下、中升という。)が形成され、その内部に荷重水が貯められている場合は、この荷重水を排水し(ステップS1)、更に、地下構造物の外面と地盤面との間に生じる摩擦を一時的に低減させる(ステップS2)。次に、地下構造物の底盤を穿孔し、摩擦低減材及び自硬性流体を注入するための注入管を建て込む(ステップS3)。そして、この注入管から地下構造物の外面と地盤面との間に摩擦低減材を注入した後(ステップS4)、注入管から地下構造物の下方に自硬性流体を圧入し、その注入圧力により地下構造物を上方に押し上げる(ステップS5)。次に、注入した自硬性流体が硬化した後、地下構造物の地上まで押し上げられた部分を解体する(ステップS6)。引き続き、ステップS5の自硬性流体圧入工程及びステップS6の解体工程を繰り返し施工し(ステップS7)、地下構造物の全ての解体・撤去が終了した後、整地する(ステップS8)。以下、上述した各工程について詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings, taking as an example the case of dismantling and removing a relatively large underground structure. FIG. 1 is a flowchart showing a method for removing an existing underground structure according to this embodiment. As shown in FIG. 1, in the method for removing an existing underground structure of the present embodiment, first, as a preparation stage, a hollow portion (hereinafter referred to as a middle wall) is formed in the underground structure, and load water is contained therein. Is stored (step S1), and the friction generated between the outer surface of the underground structure and the ground surface is temporarily reduced (step S2). Next, the bottom plate of the underground structure is drilled, and an injection pipe for injecting the friction reducing material and the self-hardening fluid is installed (step S3). And after injecting a friction reducing material between the outer surface of the underground structure and the ground surface from the injection pipe (step S4), a self-hardening fluid is injected into the lower part of the underground structure from the injection pipe. The underground structure is pushed upward (step S5). Next, after the injected self-hardening fluid is hardened, the portion pushed up to the ground of the underground structure is dismantled (step S6). Subsequently, the self-hardening fluid press-fitting process in step S5 and the dismantling process in step S6 are repeatedly performed (step S7), and after all the dismantling / removal of the underground structure is completed, the ground is leveled (step S8). Hereinafter, each process mentioned above is demonstrated in detail.

ステップS1:中升排水(準備)
図2は本発明の実施形態の既設地下構造物の撤去方法における中升排水工程(ステップS1)を示す断面図である。図2に示すように、地下構造物2aは、地下室のような容器を目的として築造された場合はもちろん、基礎として構築されたものであっても、規模がある程度大きくなると、その内部は中実ではなく中升2dが形成される。この中升2dは、地下構造物2aが容器の場合には当然ながら空洞であるが、地下構造物2aが基礎として利用されていた場合には、その内部に地下水5bの水位と同レベルまで荷重水5aが注水される設計となる構造が多い。そこで、本実施形態の既設地下構造物の撤去方法においては、撤去の準備工程として、地表面1a上に設置された排水ポンプ6aと、この排水ポンプ6aに連結された排水配管6bによって、中升2d内に貯溜されている荷重水5aを排水処理する。これにより、以降の工程において中升2dの内部からの作業が可能となると共に、地下構造物2aの全体重量を軽減することができる。
Step S1: Middle drainage (preparation)
FIG. 2 is a cross-sectional view illustrating a middle drainage step (step S1) in the method for removing an existing underground structure according to an embodiment of the present invention. As shown in FIG. 2, the underground structure 2a is not only constructed for the purpose of a container such as a basement, but it is constructed as a foundation. Instead, the intermediate collar 2d is formed. When the underground structure 2a is a container, the middle rod 2d is of course hollow. However, when the underground structure 2a is used as a foundation, a load up to the same level as the water level of the groundwater 5b is loaded inside. Many structures are designed to be filled with water 5a. Therefore, in the method for removing the existing underground structure of the present embodiment, as a preparation process for removal, the drainage pump 6a installed on the ground surface 1a and the drainage pipe 6b connected to the drainage pump 6a The load water 5a stored in 2d is drained. Thereby, in the subsequent processes, work from the inside of the intermediate roof 2d can be performed, and the entire weight of the underground structure 2a can be reduced.

ステップS2:周面摩擦低減(準備)
図3は本発明の実施形態の既設地下構造物の撤去方法における周面摩擦低減工程(ステップS2)を示す断面図である。図3に示すように、この周面摩擦低減工程においては、地下構造物2aにおける地盤面と接触する周面の摩擦力を一旦低減させて、ステップS4において摩擦低減材を注入するための準備を整える。
Step S2: Reduction of peripheral friction (preparation)
FIG. 3 is a cross-sectional view showing a peripheral friction reducing step (step S2) in the method for removing an existing underground structure according to the embodiment of the present invention. As shown in FIG. 3, in this peripheral surface friction reducing step, the frictional force of the peripheral surface in contact with the ground surface in the underground structure 2a is temporarily reduced, and preparation for injecting the friction reducing material in step S4 is performed. Arrange.

具体的には、地表面1a上に水7gが入れられた貯水タンク7eを設置し、この貯水タンク7eにバルブ8を介して導水配管7fの一方の端部を連結する。更に、導水配管7fの他方の端部には、高圧の発生を可能とする注入ポンプ7aを介して、先端にジェットノズル7cが取り付けられた注入配管7bを連結する。そして、バルブ8を開放し、注入ポンプ7aによって貯水タンク7e内の水7gを汲み上げ、導水配管7f及び注入配管7bを経由して、水7gをジェットノズル7cから地下構造物2aの側壁2bの全外面又はその一部の必要な面積に対して噴射する。これにより、側壁2bの外面と地盤面との周面摩擦を一時的に低減させることができる。   Specifically, a water storage tank 7e in which water 7g is placed on the ground surface 1a is installed, and one end of the water conduit 7f is connected to the water storage tank 7e through a valve 8. Furthermore, an injection pipe 7b having a jet nozzle 7c attached to the tip is connected to the other end of the water conduit 7f via an injection pump 7a capable of generating high pressure. Then, the valve 8 is opened, the water 7g in the water storage tank 7e is pumped up by the injection pump 7a, and the water 7g is discharged from the jet nozzle 7c to the entire side wall 2b of the underground structure 2a via the water conduit 7f and the injection pipe 7b. Spray onto the required area of the outer surface or part of it. Thereby, the surrounding surface friction of the outer surface of the side wall 2b and a ground surface can be reduced temporarily.

また、地盤と地下構造物2aとの付着力が極めて大きい場合、又は地下構造物2aの構築深度が大きいために地上からの作業が非効率的であるか若しくは困難である場合は、例えば、地下構造物2aの中升2d内に穿孔機7dを設置し、この穿孔機7dを注入機として使用して、地下構造物2aの内部から地盤に向けて水を噴射してもよい。その場合、作業者9によって穿孔機7dを操作し、地下構造物2aの側壁2bを穿孔した後、引き続き穿孔機7dを注入機として使用し、穿孔機7dの注入管の先端に取り付けられたジェットノズル7cから地盤に向けて水7gを噴射する。   In addition, when the adhesion between the ground and the underground structure 2a is extremely large, or when the work from the ground is inefficient or difficult due to the construction depth of the underground structure 2a, A drilling machine 7d may be installed in the middle rod 2d of the structure 2a, and this drilling machine 7d may be used as an injection machine to spray water from the inside of the underground structure 2a toward the ground. In this case, the operator 9 operates the drilling machine 7d to drill the side wall 2b of the underground structure 2a, and then continues to use the drilling machine 7d as an injection machine, and the jet attached to the tip of the injection pipe of the drilling machine 7d. Water 7g is sprayed from the nozzle 7c toward the ground.

更に、図3に示すように、地上からの作業と地下構造物2aの内部からの作業とを併用すると、施工時の効率及び精度をより高めることができる。なお、周面摩擦低減作業を地上から行うか、又は地下構造物2aの内部から行うかは、地下構造物2aの規模、地盤の性状、及び工期等から判断して適宜選択することができる。   Furthermore, as shown in FIG. 3, when the work from the ground and the work from the inside of the underground structure 2a are used in combination, the efficiency and accuracy during construction can be further increased. Whether the peripheral friction reduction operation is performed from the ground or from the inside of the underground structure 2a can be selected as appropriate based on the scale of the underground structure 2a, the properties of the ground, the construction period, and the like.

また、横断面の規模が大きい地下構造物2aの場合は、底盤2cの外面と地盤面との間についても同様に摩擦低減作業を行った方がよいこともある。その場合、例えば、図3に示す穿孔機7dにより、底盤2cをその表面に対して垂直方向に穿孔し(図示せず)、複数個所にわたって前述した方法と同様の方法で水7gの噴射作業を行う。一方、地上から作業する場合は、注入配管7bの先端に突設するジェットノズル7cの噴射方向を、予め鉛直下向きから水平方向に転換しておくことにより、効果的に作業を行うことができる。   Further, in the case of the underground structure 2a having a large cross-sectional scale, it may be better to perform the friction reduction work similarly between the outer surface of the bottom plate 2c and the ground surface. In that case, for example, the bottom plate 2c is drilled in a direction perpendicular to the surface thereof (not shown) by the drilling machine 7d shown in FIG. 3, and the water 7g is sprayed in the same manner as described above over a plurality of locations. Do. On the other hand, when working from the ground, the work can be effectively performed by changing the injection direction of the jet nozzle 7c protruding from the tip of the injection pipe 7b from a vertically downward direction to a horizontal direction in advance.

そして、この周面摩擦低減工程における作業終了時には、地下構造物2aの外面と地盤面との間に、一時的に周面摩擦低減層が形成される。ここで、「一時的に」としている理由は、この工程では、上述した一連の作業により地盤を水7gで攪拌し、地下構造物2aの周囲を高含水状態としているに過ぎず、長期的な摩擦低減効果の期待には乏しいためである。   And at the time of the completion | finish of the operation | work in this surrounding surface friction reduction process, a surrounding surface friction reduction layer is temporarily formed between the outer surface of the underground structure 2a, and a ground surface. Here, the reason for “temporarily” is that, in this process, the ground is stirred with 7 g of water by the above-described series of operations, and the surrounding of the underground structure 2 a is only in a high water content state, and is long-term. This is because the expectation of the friction reducing effect is poor.

ステップS3:注入管建て込み
図4は本発明の実施形態の既設地下構造物の撤去方法における注入管建て込み工程(ステップS3)を示す断面図である。摩擦低減材及び自硬性流体を地下構造物と地盤との間に注入するための注入機としては、例えば穿孔機7dを使用することができる。その場合、図4に示すように、地下構造物2aの底盤2c上に穿孔機7dを設置して、作業者9によって底盤2cを構造物2aが設置されている地盤面に対して垂直の方向に穿孔し、穿孔機7dの注入管を底盤2cに建て込む。なお、ステップS2において、地下構造物2aの底盤2cの下方に周摩擦低減層10を形成している場合は、その際に使用した穿孔機7d及び注入管をそのまま使用することができるため、この工程は省略することができる。
Step S3: Injection Pipe Construction FIG. 4 is a cross-sectional view showing an injection pipe construction process (step S3) in the method for removing an existing underground structure according to the embodiment of the present invention. As an injection machine for injecting the friction reducing material and the self-hardening fluid between the underground structure and the ground, for example, a drilling machine 7d can be used. In that case, as shown in FIG. 4, the drilling machine 7d is installed on the bottom board 2c of the underground structure 2a, and the operator 9 makes the bottom board 2c perpendicular to the ground surface on which the structure 2a is installed. And the injection pipe of the drilling machine 7d is built in the bottom plate 2c. In step S2, when the peripheral friction reducing layer 10 is formed below the bottom 2c of the underground structure 2a, the drilling machine 7d and the injection pipe used at that time can be used as they are. The process can be omitted.

ステップS4:摩擦低減材注入
図5は本発明の実施形態の既設地下構造物の撤去方法における摩擦低減材注入工程(ステップS4)を示す断面図である。摩擦低減材注入工程においては、図5に示すように、ステップS2で形成した周面摩擦低減層10を安定的に長寿命化すると共に高耐力化し、地下構造物2aを上方に押し上げるためのステップを踏む。
Step S4: Friction reducing material injection FIG. 5 is a cross-sectional view showing a friction reducing material injection step (step S4) in the method for removing an existing underground structure of the embodiment of the present invention. In the friction reducing material injecting step, as shown in FIG. 5, a step for stably extending the life of the peripheral surface friction reducing layer 10 formed in step S <b> 2 and increasing the strength and pushing up the underground structure 2 a upward. Step on.

具体的には、先ず、地上設備として地表面1a上に、摩擦低減材となる泥水11aの濃度を調整する調整タンク(図示せず)に配管接続され、この調整タンクにおいて地下構造物2aが接触する地盤と置換しても崩壊しない程度の濃度に調整された泥水11aを収容する貯泥タンク7hを設置する。そして、注入配管7bにより、貯泥タンク7hとステップS3において地下構造物2a内に建て込んだ穿孔機7aの注入管とを配管接続する。その際、注入配管7bの途中に、バルブ8及び高圧の発生を可能とする注入ポンプ7aを配設する。なお、ここで使用する泥水11aは、例えばベントナイト泥水をはじめとする非自硬性流体を指し、地下構造物2aの表面と地盤面との摩擦低減材(滑材)として機能する。   Specifically, first, as a ground facility, a pipe is connected to an adjustment tank (not shown) for adjusting the concentration of mud water 11a serving as a friction reducing material on the ground surface 1a, and the underground structure 2a contacts the adjustment tank. A mud storage tank 7h that contains mud water 11a adjusted to a concentration that does not collapse even when replaced with the ground to be installed is installed. And the mud storage tank 7h and the injection pipe of the drilling machine 7a built in the underground structure 2a in step S3 are pipe-connected by the injection pipe 7b. At that time, a valve 8 and an injection pump 7a capable of generating high pressure are disposed in the middle of the injection pipe 7b. The muddy water 11a used here refers to a non-self-hardening fluid such as bentonite muddy water, and functions as a friction reducing material (sliding material) between the surface of the underground structure 2a and the ground surface.

次に、バルブ8を開放し、注入ポンプ7aにより泥水11aを穿孔機7dに向けて圧送する。これにより、泥水11aが注入配管7b及び注入機7dを経由して、地下構造物2aの底盤2cの下方に送泥される。その後、送泥された泥水11aは、ステップS2において造成した周面摩擦低減層10を導水路として、地下構造物2aの底盤2cの下方から側壁2bの周囲に流入し、更に地下構造物2aの地盤と接触する全周面にわたって流動する。そして、最終的には地表面1aに余剰泥水11bの形で流出する。この地表面1aに流出した余剰泥水11bは、貯泥容量の不足が見込まれる場合には、別途ポンプを設備する等して調整タンクに戻し、再度所定の濃度に調整して泥水11aとして再利用することもでき、また、不要な場合には処分してもよい。   Next, the valve 8 is opened, and the muddy water 11a is pumped toward the drilling machine 7d by the injection pump 7a. Thereby, the muddy water 11a is sent to the lower part of the bottom board 2c of the underground structure 2a via the injection pipe 7b and the injection machine 7d. Thereafter, the muddy water 11a that has been fed mud flows into the periphery of the side wall 2b from below the bottom plate 2c of the underground structure 2a, using the peripheral friction reduction layer 10 formed in step S2 as a water conduit, and further the underground structure 2a. It flows over the entire circumferential surface in contact with the ground. And finally, it flows out to the ground surface 1a in the form of excess mud water 11b. If the excess mud water 11b that has flowed out to the ground surface 1a is expected to be insufficient in the mud storage capacity, it is returned to the adjustment tank by installing a separate pump, etc., adjusted again to a predetermined concentration, and reused as the mud water 11a It can also be disposed of when unnecessary.

上述した摩擦低減材注入工程における一連の作業が終了すると、ステップS2において造成した周面摩擦低減層10は、摩擦低減材として作用する泥水11aによって置換された状態(周面摩擦低減層10a)になり、送泥を停止した状況下においても周面摩擦の低減効果は長期化且つ高耐力化することとなる。   When a series of operations in the above-described friction reducing material injecting step is completed, the peripheral friction reducing layer 10 formed in step S2 is replaced with a mud water 11a acting as a friction reducing material (peripheral friction reducing layer 10a). Thus, even when the mud is stopped, the effect of reducing the peripheral friction is prolonged and increased in strength.

なお、図4及び図5においては、周面摩擦低減層10,10aをある一定の層厚が確保されているように記載しているが、これは書類表記上の都合によるものであり、以下の図においても同様である。実際の周面摩擦低減層10,10aは、地下構造物2aの側壁2b及び底盤2cの外面に密着して存在し、厚さが1〜数十mm程度の泥水膜である。この周面摩擦低減層10,10aの層厚(膜厚)を必要以上に厚くすると、周面摩擦低減層10,10aによって生じる地下構造物2aの側方変位量が大きくなり、地下構造物2aが不安定となるため、周面摩擦低減層10,10aの厚さは、安定的に存在し、且つ後述する自硬性流体の圧入工程において地下構造物2aを押動させることができる範囲内で、できるだけ薄くすることが望ましい。   In FIGS. 4 and 5, the circumferential friction reduction layers 10 and 10 a are described so as to ensure a certain layer thickness, but this is due to document notation, and is described below. This is the same in the figure. The actual peripheral friction reduction layers 10 and 10a are muddy water films that are in close contact with the outer surfaces of the side wall 2b and the bottom plate 2c of the underground structure 2a and have a thickness of about 1 to several tens of millimeters. When the layer thickness (film thickness) of the peripheral friction reduction layers 10 and 10a is increased more than necessary, the lateral displacement of the underground structure 2a caused by the peripheral friction reduction layers 10 and 10a increases, and the underground structure 2a. Therefore, the thickness of the peripheral surface friction reducing layers 10 and 10a is stable and within the range in which the underground structure 2a can be pushed in the press-fitting process of the self-hardening fluid described later. It is desirable to make it as thin as possible.

ステップS5:自硬性流体圧入
図6は本発明の実施形態の既設地下構造物の撤去方法における自硬性流体圧入工程(ステップS5)を示す断面図である。図6に示すように、自硬性流体圧入工程においては、ステップS4で造成された周面摩擦低減層10aの下部に自硬性流体12aを注入し、固化層12bを造成することにより、地下構造物2aの姿勢及び挙動を安定化する。
Step S5: Self-hardening fluid press-fitting FIG. 6 is a sectional view showing a self-hardening fluid press-fitting step (step S5) in the method for removing an existing underground structure according to the embodiment of the present invention. As shown in FIG. 6, in the self-hardening fluid press-fitting step, the self-hardening fluid 12a is injected into the lower part of the peripheral friction reduction layer 10a formed in step S4, and the solidified layer 12b is formed, thereby forming an underground structure. Stabilize the posture and behavior of 2a.

具体的には、先ず、地上に固化材として作用する自硬性流体12aを貯溜する固化材タンク7iを設置する。そして、注入配管7bにより、固化材タンク7iとステップS3において地下構造物2a内に建て込んだ穿孔機7aの注入管とを配管接続する。このとき、図6に示すように、固化材タンク7iに連結した注入配管7bを、バルブ8を介して、ステップS4で設置した貯泥タンク7hの配管に配設された注入ポンプ7aに接続することもできる。その場合、バルブ8を操作して配管系統を切り替えることにより、地下構造物2aの下方に形成された周面摩擦低減層10aの下部に自硬性流体12aが注入されるようにする。なお、図6には、泥水11aを注入する配管系統と自硬性流体12aを注入する配管系統とが、一部共通である場合を示しているが、本発明はこれに限定されるものではなく、もちろんこれらを完全に独立した単独注入ラインとして、全体で複数系統の注入設備を構築することもできる。   Specifically, first, a solidification material tank 7i for storing a self-hardening fluid 12a that acts as a solidification material is installed on the ground. And the solidification material tank 7i and the injection pipe of the drilling machine 7a built in the underground structure 2a in step S3 are pipe-connected by the injection pipe 7b. At this time, as shown in FIG. 6, the injection pipe 7b connected to the solidifying material tank 7i is connected to the injection pump 7a provided in the pipe of the mud storage tank 7h installed in step S4 via the valve 8. You can also. In that case, by operating the valve 8 and switching the piping system, the self-hardening fluid 12a is injected into the lower portion of the circumferential friction reduction layer 10a formed below the underground structure 2a. Although FIG. 6 shows a case where the piping system for injecting the muddy water 11a and the piping system for injecting the self-hardening fluid 12a are partially in common, the present invention is not limited to this. Of course, it is possible to construct a plurality of injection facilities as a whole by using these as completely independent single injection lines.

そして、自硬性流体12aを注入ポンプ7aにより圧送し、注入配管7b及び注入機7dの注入管を経由して、周面摩擦低減層10aの最下部に注入する。このとき、泥水膜である周面摩擦低減層10aに極力損傷を与えることなく注入作業を進めるため、自硬性流体12aは緩速注入することが望ましい。また、自硬性流体12aとしては、例えばソイルモルタル及び流動化処理土等のように、周面摩擦低減層10aを形成する泥水11aよりも比重が大きな材料を使用する。   Then, the self-hardening fluid 12a is pumped by the injection pump 7a and injected into the lowermost portion of the circumferential friction reduction layer 10a via the injection pipe 7b and the injection pipe of the injection machine 7d. At this time, it is desirable to inject the self-hardening fluid 12a at a low rate in order to proceed the injection operation without damaging the circumferential friction reduction layer 10a, which is a muddy water film, as much as possible. Further, as the self-hardening fluid 12a, a material having a specific gravity larger than that of the muddy water 11a forming the peripheral friction reduction layer 10a, such as soil mortar and fluidized soil, is used.

上述した方法で自硬性流体12aを注入するに従い、周面摩擦低減層10aによる地下構造物の底盤2cの表面及び側壁2bの表面と地盤面との摩擦低減効果、並びに自硬性流体12aの注入による押圧力の発生によって、地下構造物2aは鉛直上方に向かって徐々に押動すると共に、地下構造物2aの下方に固化層12bが造成される。このとき、地下構造物2aの外周面に泥膜を形成する周面摩擦低減層10aの泥水11aも同時に押動し、地表面1aから余剰泥水11bとなって流出するが、その場合、前述の摩擦低減材注入工程(ステップS4)と同様の方法で処理すればよい。また、作業者9が、自硬性流体12aの注入量に応じて注入機7dの注入管を操作し、順次ステップダウンすることにより、周面摩擦低減層10aをより一層保護することができる。   As the self-hardening fluid 12a is injected by the above-described method, the friction reducing effect between the surface of the base plate 2c of the underground structure and the surface of the side wall 2b and the ground surface by the peripheral friction reducing layer 10a, and the injection of the self-hardening fluid 12a. Due to the generation of the pressing force, the underground structure 2a is gradually pushed upward vertically, and a solidified layer 12b is formed below the underground structure 2a. At this time, the muddy water 11a of the peripheral surface friction reducing layer 10a that forms a mud film on the outer peripheral surface of the underground structure 2a is also pushed at the same time and flows out from the ground surface 1a as surplus muddy water 11b. What is necessary is just to process by the method similar to a friction reduction material injection | pouring process (step S4). In addition, the operator 9 can further protect the circumferential friction reduction layer 10a by operating the injection tube of the injector 7d according to the injection amount of the self-hardening fluid 12a and sequentially stepping down.

次に、地下構造物2aが上方に押動した距離、即ち、地下構造物リフト量HLが所定の値になった時点で、自硬性流体12aの注入を停止すると共に、バルブ8を操作して配管系統を泥水11aが収容された貯泥タンク7hに切り換える。そして、泥水11aにより、注入ポンプ7a、穿孔機(注入機)7dの注入管、及びこれらの間に配設された注入配管7b内に残留する自硬性流体12aを圧送し、固化層12bに注入する。その後、穿孔機(注入機)7dの注入管を地下構造物2aの内部まで引き上げることにより、機械設備内部の自硬性流体12aの全てを排出し、固着等による不具合を回避する。その際、一旦、地下構造物2a内から設備を撤去し、水等によりその内部を清掃することがより望ましい。また、自硬性流体12aの注入が完了した後で、泥水11aを再度地下構造物2aの周囲に形成された周面摩擦低減層10aに注入することにより、周面摩擦低減層10aの耐久性をより安定的且つ安全に確保することができる。   Next, when the underground structure 2a is pushed upward, that is, when the underground structure lift amount HL reaches a predetermined value, the injection of the self-hardening fluid 12a is stopped and the valve 8 is operated. The piping system is switched to the mud storage tank 7h in which the mud water 11a is accommodated. Then, the muddy water 11a pumps the self-hardening fluid 12a remaining in the injection pump 7a, the injection pipe of the punching machine (injection machine) 7d, and the injection pipe 7b disposed therebetween, and injects it into the solidified layer 12b. To do. Thereafter, by pulling up the injection pipe of the drilling machine (injector) 7d to the inside of the underground structure 2a, all of the self-hardening fluid 12a inside the mechanical equipment is discharged, and problems due to sticking or the like are avoided. In that case, it is more desirable to once remove the equipment from the underground structure 2a and clean the inside with water or the like. Further, after the injection of the self-hardening fluid 12a is completed, the muddy water 11a is injected again into the peripheral friction reduction layer 10a formed around the underground structure 2a, thereby improving the durability of the peripheral friction reduction layer 10a. It can be ensured more stably and safely.

上述した自硬性流体圧入工程における一連の作業の後、所定の時間が経過すると、固化層12bは地下構造物2aの支持地盤として充分な強度を発現し、地下構造物2aは極めて安定的な設置状態となる。このとき、地下構造物2aのリフト量と自硬性流体12aの注入量との関係は、地下構造物2aの周囲の地盤によって左右される部分もあるが、一般に、地下構造物リフト量HLと固化層12bの厚さ(固化層厚)HQとが略等しくなることから、自硬性流体12aの注入量を管理することにより、地下構造物リフト量HLも同時に管理することができ、その結果、施工管理面での省力化に繋がる。   After a series of operations in the above-described self-hardening fluid injection process, when a predetermined time has elapsed, the solidified layer 12b develops sufficient strength as a supporting ground for the underground structure 2a, and the underground structure 2a is installed extremely stably. It becomes a state. At this time, the relationship between the lift amount of the underground structure 2a and the injection amount of the self-hardening fluid 12a is partly influenced by the ground around the underground structure 2a. Since the thickness (solidified layer thickness) HQ of the layer 12b becomes substantially equal, by controlling the injection amount of the self-hardening fluid 12a, the underground structure lift amount HL can also be managed at the same time. This leads to labor saving in terms of management.

また、自硬性流体12aは、硬化後の固化層12bの強度が周辺地盤強度相当若しくはそれ以上となるように、予め配合の決定がなされており、これにより地盤崩壊を抑止することができる。更に、地下構造物2aの形状及び規模が主要因となって、後述する解体工程に要する時間が左右されるため、硬化時間についても自硬性流体12aの配合決定の要素として加味しておく必要がある。   In addition, the self-hardening fluid 12a is preliminarily determined so that the strength of the solidified layer 12b after curing is equivalent to or higher than the strength of the surrounding ground, thereby suppressing ground collapse. Furthermore, since the shape and scale of the underground structure 2a are the main factors and the time required for the dismantling process to be described later is affected, it is necessary to consider the curing time as an element for determining the formulation of the self-hardening fluid 12a is there.

ステップS6:解体
図7は本発明の実施形態の既設地下構造物の撤去方法における解体工程(ステップS6)を示す断面図である。なお、図7においては、前述した注入関連の設備については図示を省略している。図7に示すように、解体工程においては、地上の地盤面1a上に設置した破砕機13によって、地下構造物2aの側壁2bを地下構造物リフト量HL分だけ、解体破砕して撤去する。このとき、地下構造物2aは、ステップS5において底盤2cの下方に自硬性流体12aを注入して造成された固化層12bによって、極めて安定した状態に設置されているため、地上部に地下構造物2aを支持するための支保工等の設備を設置する必要がない。これにより、解体作業に頻用される大型重機等の施工性を著しく向上させることができると共に、安全性の向上及び作業工数の低減等の効果も得られる。
Step S6: Dismantling FIG. 7 is a cross-sectional view showing a dismantling step (step S6) in the method for removing an existing underground structure according to the embodiment of the present invention. In addition, in FIG. 7, illustration about the injection-related equipment mentioned above is omitted. As shown in FIG. 7, in the dismantling process, the side wall 2b of the underground structure 2a is dismantled and removed by the amount HL of the underground structure by the crusher 13 installed on the ground surface 1a on the ground. At this time, since the underground structure 2a is installed in an extremely stable state by the solidified layer 12b formed by injecting the self-hardening fluid 12a below the bottom plate 2c in step S5, the underground structure is formed on the ground. It is not necessary to install facilities such as a support for supporting 2a. As a result, the workability of a large heavy machine or the like frequently used in dismantling work can be remarkably improved, and effects such as improvement of safety and reduction of work man-hours can be obtained.

また、基本的には、解体破砕した解体殻は、その都度運搬・搬出することになるが、地下構造物2aの重量規模が比較的軽量である場合については、中升2dに設備した注入機7d及び配管設備等の養生(防護)を充分に行った上で、中升2dの内部に解体殻を集積しておき、全ての作業が終了した時点で一括搬出するといった方法も採用することができる。なお、図7においては、解体に使用する設備としてブレーカ型の破砕機13を示しているが、本発明はこれに限定されるものではなく、解体設備は、地下構造物2aの形状及び作業環境に合わせて適宜選択すればよく、破砕機13以外にも、例えば油圧式割岩機、発破及びワイヤソーイングマシン等を使用することができる。   Basically, the demolition shell that has been demolished and crushed will be transported and carried out each time. However, when the weight of the underground structure 2a is relatively light, the injection machine installed in the intermediate rod 2d. It is also possible to adopt a method in which the dismantled shells are accumulated inside the intermediate rod 2d after all the work is completed (protection) for 7d and piping facilities, etc., and all the work is completed. it can. In FIG. 7, the breaker type crusher 13 is shown as the equipment used for dismantling, but the present invention is not limited to this, and the dismantling equipment includes the shape of the underground structure 2 a and the working environment. In addition to the crusher 13, for example, a hydraulic split rocker, a blasting and wire sawing machine, or the like can be used.

ステップS7:繰り返し施工
図8は本発明の実施形態の既設地下構造物の撤去方法における繰り返し施工工程(ステップS7)を示す断面図である。本実施形態の既設地下構造物の撤去方法においては、自硬性流体12aを注入することにより固化層12bを造成し、地下構造物2aを上方に押動させる工程、及び地下構造物2aの地表面1aよりも高い位置において押し上げられた部分を解体する工程、即ち、ステップS5及びステップS6における一連の作業を繰り返し行う。
Step S7: Repetitive Construction FIG. 8 is a cross-sectional view showing a repeated construction process (step S7) in the method for removing an existing underground structure according to an embodiment of the present invention. In the removal method of the existing underground structure of this embodiment, the process of forming the solidified layer 12b by injecting the self-hardening fluid 12a and pushing the underground structure 2a upward, and the ground surface of the underground structure 2a The process of disassembling the portion pushed up at a position higher than 1a, that is, a series of operations in steps S5 and S6 is repeated.

具体的には、図8に示すように、先ず、第1回目の地下構造物2aの側壁2bの解体作業を終了した後、第1回目に造成した固化層12bの上に自硬性流体12aを注入し、第2回目の固化層12bを造成する。そして、第1回目と同様に地下構造物リフト量HLだけ地下構造物2aを上方に押動させる。その後、破砕機13によって、地下構造物2aの側壁2bの押し上げられた部分を解体撤去する。この第2回目の解体作業が終了した後、引き続き、第3回目の自硬性流体12aの注入・固化及び地下構造物2aの解体を行う。このように、ステップS5の自硬性流体圧入工程及びステップS6の解体工程を繰り返し施工することにより、地下構造物2aの側壁2bを解体撤去し、更に解体工程の最後の段階において底盤2cを解体撤去する。これにより、地下構造物2aが設置されていた部分に、厚さがHQの固化層12bが複数層積層形成される。   Specifically, as shown in FIG. 8, first, after the disassembly work of the side wall 2b of the first underground structure 2a is completed, the self-hardening fluid 12a is placed on the solidified layer 12b formed first. The second solidified layer 12b is formed by pouring. Then, similarly to the first time, the underground structure 2a is pushed upward by the underground structure lift amount HL. Then, the crusher 13 dismantles and removes the pushed-up portion of the side wall 2b of the underground structure 2a. After the second dismantling operation is completed, the third self-hardening fluid 12a is injected and solidified, and the underground structure 2a is disassembled. In this way, the side wall 2b of the underground structure 2a is dismantled and removed at the final stage of the dismantling process by repeatedly performing the self-hardening fluid injection process of step S5 and the dismantling process of step S6. To do. Thus, a plurality of solidified layers 12b having a thickness of HQ are formed and stacked on the portion where the underground structure 2a has been installed.

ステップS8:整地
図9は本発明の実施形態の既設地下構造物の撤去方法における固化層造成段階の最終状態及び施工完了時の整地状況を示す断面図である。図9に示すように、整地工程においては、地下構造物2aの撤去が完了した後、地下構造物2aが設置されていた部分が地表面1aと同じ高さになるように、表土1dを埋め戻して整地する。ステップS7の繰り返し工程の終了後には、複数の固化層12bが積層され、全体では地下に一体化された厚さがΣHQの固化材仕上層12cが造成されるが、予め撤去後の用地の再利用が明確な場合は、その目的に応じて、例えば固化材仕上層12cの厚さΣHQを減じて埋め戻し土量を増やすことにより、円滑に用地の引き渡しを行うことが可能となる。
Step S8: Leveling FIG. 9 is a cross-sectional view showing the final state of the solidified layer formation stage and the leveling condition at the completion of construction in the method for removing an existing underground structure according to the embodiment of the present invention. As shown in FIG. 9, in the leveling process, after the removal of the underground structure 2a is completed, the topsoil 1d is buried so that the portion where the underground structure 2a is installed is at the same height as the ground surface 1a. Return and level. After completion of the repeating step of step S7, a plurality of solidified layers 12b are laminated, and a solidified material finishing layer 12c having a thickness of ΣHQ integrated as a whole is created. When the use is clear, according to the purpose, for example, by reducing the thickness ΣHQ of the solidified material finishing layer 12c and increasing the amount of backfilling soil, the land can be delivered smoothly.

上述の如く、本実施形態の既設地下構造物の撤去方法においては、上部からの引き抜きによる方法に依存せず、地上に専用重機等の大型設備及び機材を設置する必要がないため、市街地等の施工用地の確保が困難な場所での施工が可能となる。また、対象となる既設地下構造物以外の埋設物等の地下施設の事前処理をする必要がなく、更に矢板等で土留め壁を仮設する必要もないことから、準備工程の費用、仮設資機材費及び仮設工事費の縮減が可能となる。加えて、本実施形態の既設地下構造物の撤去方法においては、特殊な資機材及び高価な材料を使用せずに施工が可能であるため、工費の縮減のみならず資機材の調達も容易となる。更に、既設地下構造物を上方に移動(押動)させる過程においては、常に構造物の最下面が支持されているため、地下構造物2aの側部又は上部を支持する施工法に比べて安全性が優れており、また低騒音作業が可能となることから環境保全の面においても優れている。   As described above, the removal method of the existing underground structure of this embodiment does not depend on the method of pulling out from the upper part, and it is not necessary to install large equipment and equipment such as dedicated heavy machinery on the ground. Construction in a place where it is difficult to secure a construction site is possible. In addition, it is not necessary to pre-process underground facilities such as buried objects other than the target existing underground structures, and it is not necessary to temporarily install earth retaining walls with sheet piles, etc. Costs and temporary construction costs can be reduced. In addition, in the method for removing the existing underground structure of the present embodiment, construction can be performed without using special materials and expensive materials, so that not only reduction of construction cost but also procurement of materials and equipment is easy. Become. Further, in the process of moving (pushing) the existing underground structure upward, the lowermost surface of the structure is always supported, so it is safer than the construction method that supports the side or upper part of the underground structure 2a. In addition, it is excellent in terms of environmental conservation because it can work with low noise.

更にまた、本実施形態の既設地下構造物の撤去方法においては、既設地下構造物の撤去と撤去後の地盤の埋め戻し工程とを同時に作業することが可能となるため、工数を低減することができ、施工管理が簡単化する他、施工中断等の不意の事象が発生しても、特別な措置を必要とすることなく作業環境を保全できる。更にまた、既設地下構造物の種類に依存することなく、基礎、容器、大型、小型、又は特殊形状の構造物を撤去することができ、適用可能範囲が広い。以上の効果により、本実施形態の既設地下構造物の撤去方法によれば、従来の技術以上に安全で且つ適用範囲が広い既設地下構造物の撤去作業が可能となる。   Furthermore, in the method for removing an existing underground structure according to the present embodiment, it becomes possible to simultaneously perform the removal of the existing underground structure and the backfilling process of the ground after the removal, thereby reducing the number of steps. In addition to simplifying the construction management, the work environment can be maintained without requiring any special measures even if unexpected events such as construction interruption occur. Furthermore, foundations, containers, large-sized, small-sized, or special-shaped structures can be removed without depending on the type of existing underground structure, and the applicable range is wide. Due to the above effects, according to the method for removing an existing underground structure of the present embodiment, it is possible to remove the existing underground structure that is safer and wider in application range than the conventional technology.

なお、地上部に充分な施工用地を確保でき、更に注入ポンプ7aの注入圧力が設計に満たない場合は、例えば地上部にクレーン等を設置し、補助的に上部からの引き抜きを併用することにより、地下構造物2aを容易に撤去可能となる。このように、上述した工法と引き抜き工法とを併用することにより、地下構造物2aの傾斜修正も可能になるため、地盤沈下等によって沈下及び/又は傾斜した既設地下構造物の撤去にも適用することができる。   In addition, when sufficient ground for construction can be secured on the ground part, and the injection pressure of the injection pump 7a is less than the design, for example, a crane or the like is installed on the ground part, and the drawing from the upper part is used as an auxiliary. The underground structure 2a can be easily removed. As described above, the combined use of the above-described construction method and the pulling-out construction method makes it possible to correct the inclination of the underground structure 2a, so that it can be applied to the removal of existing underground structures that have subsided and / or inclined due to ground subsidence or the like. be able to.

また、本実施形態においては、既設地下構造物の規模及び形状に依存せず解体撤去が可能となる旨を前記したが、例えばニューマチックケーソンのような躯体最下部に中埋めコンクリートが充填されており、本体構造物との付着力低下が見込まれる場合をはじめとして、構造物の側壁同士又は側壁部と底盤部との接合状態に強度不足が懸念される場合等、また地下構造物築造に際し矢板等による仮設の土留め壁を残置する物件等のように、基礎構造物又は基礎構造物とこの構造物の付帯構造物との間に一体性の欠如が想定される場合については、構造物の相互をアンカー締結する等の既往技術による方法をもって一体的な構造とすることにより、本技術の適用がより有効なものとなる。   Further, in the present embodiment, it has been described that dismantling and removal can be performed without depending on the scale and shape of the existing underground structure. However, for example, embedded concrete is filled in the lowermost part of a frame such as a pneumatic caisson. In addition, when there is a concern about insufficient strength in the bonding state between the side walls of the structure or between the side wall and the bottom board, such as when the adhesive strength with the main body structure is expected to be reduced, and when the underground structure is built, the sheet pile If there is a lack of unity between the foundation structure or the foundation structure and the incidental structure of this structure, such as a property that leaves a temporary earth retaining wall, etc. Application of the present technology becomes more effective by using an existing structure such as anchoring each other to form an integral structure.

なお、上述した中升排水工程(ステップS1)及び周面、摩擦低減工程(ステップS2)は、必要に応じて実施すればよく、また、本実施形態の既設地下構造物の撤去方法の構成を適宜設計変更して実施することは、本発明の範囲に属する。   In addition, what is necessary is just to implement the middle waste draining process (step S1) mentioned above, a surrounding surface, and a friction reduction process (step S2) as needed, and also the structure of the removal method of the existing underground structure of this embodiment. It is within the scope of the present invention to carry out design changes as appropriate.

本発明の実施形態の既設地下構造物の撤去方法を示すフローチャート図である。It is a flowchart figure which shows the removal method of the existing underground structure of embodiment of this invention. 本発明の実施形態の既設地下構造物の撤去方法における中升排水工程(ステップS1)を示す断面図である。It is sectional drawing which shows the middle drainage process (step S1) in the removal method of the existing underground structure of embodiment of this invention. 本発明の実施形態の既設地下構造物の撤去方法における周面摩擦低減工程(ステップS2)を示す断面図である。It is sectional drawing which shows the surrounding surface friction reduction process (step S2) in the removal method of the existing underground structure of embodiment of this invention. 本発明の実施形態の既設地下構造物の撤去方法における注入管建て込み工程(ステップS3)を示す断面図である。It is sectional drawing which shows the injection pipe erection process (step S3) in the removal method of the existing underground structure of embodiment of this invention. 本発明の実施形態の既設地下構造物の撤去方法における摩擦低減材注入工程(ステップS4)を示す断面図である。It is sectional drawing which shows the friction reduction material injection | pouring process (step S4) in the removal method of the existing underground structure of embodiment of this invention. 本発明の実施形態の既設地下構造物の撤去方法における自硬性流体圧入工程(ステップS5)を示す断面図である。It is sectional drawing which shows the self-hardening fluid injection | throwing-in process (step S5) in the removal method of the existing underground structure of embodiment of this invention. 本発明の実施形態の既設地下構造物の撤去方法における解体工程(ステップS6)を示す断面図である。It is sectional drawing which shows the dismantling process (step S6) in the removal method of the existing underground structure of embodiment of this invention. 本発明の実施形態の既設地下構造物の撤去方法における繰り返し施工工程(ステップS7)を示す断面図である。It is sectional drawing which shows the repeated construction process (step S7) in the removal method of the existing underground structure of embodiment of this invention. 本発明の実施形態の既設地下構造物の撤去方法における固化層造成段階の最終状態及び施工完了時の整地状況を示す断面図である。It is sectional drawing which shows the final state of the solidification layer formation stage in the removal method of the existing underground structure of embodiment of this invention, and the leveling condition at the time of completion of construction. (A)〜(C)は従来の地下構造物の撤去方法の代表例を示す断面図である。(A)-(C) are sectional drawings which show the typical example of the removal method of the conventional underground structure.

符号の説明Explanation of symbols

1a 地盤面(地表面)
1b 地盤面(掘削面)
1c 地盤面(法面)
1d 表土
2a 地下構造物
2b 地下構造物(側壁)
2c 地下構造物(底盤)
2d 中升
3 鋼矢板
4 破砕剤
5a 荷重水
5b 地下水位
6a 排水ポンプ
6b 排水配管
7a 注入ポンプ
7b 注入配管
7c ジェットノズル
7d 穿孔機(注入機)
7e 貯水タンク
7f 導水配管
7g 水
7h 貯泥タンク
7i 固化材タンク
8 バルブ
9 作業者
10,10a 周面摩擦低減層
11a 泥水
11b 余剰泥水
12a 自硬性流体
12b 固化層
12c 固化材仕上層
13 破砕機
HL 地下構造物リフト量
HQ 固化材層厚
ΣHQ 固化材仕上層厚
1a Ground surface (ground surface)
1b Ground surface (excavated surface)
1c Ground surface (slope)
1d Topsoil 2a Underground structure 2b Underground structure (side wall)
2c Underground structure (bottom)
2d Medium 3 Steel sheet pile 4 Fracturing agent 5a Loaded water 5b Groundwater level 6a Drain pump 6b Drain pipe 7a Injection pump 7b Injection pipe 7c Jet nozzle 7d Punching machine (injection machine)
7e Water storage tank 7f Water transfer pipe 7g Water 7h Mud storage tank 7i Solidified material tank 8 Valve 9 Worker 10, 10a Circumferential friction reducing layer 11a Mud water 11b Excess mud water 12a Self-hardening fluid 12b Solidified layer 12c Solidified material finishing layer 13 L Underground structure lift amount HQ solidified material layer thickness ΣHQ solidified material finishing layer thickness

Claims (5)

既設地下構造物の底盤とこの既設地下構造物の下方に位置する地盤との間に自硬性流体を圧入して、前記既設地下構造物を上方に押動させる工程と、
前記自硬性流体を硬化させて、前記既設地下構造物の姿勢及び挙動を安定化する工程と、
前記既設地下構造物の押動量に応じて、前記既設地下構造物の上部を地上から解体する工程とを有することを特徴とする既設地下構造物の撤去方法。
A step of press-fitting a self-hardening fluid between the bottom of the existing underground structure and the ground located below the existing underground structure to push the existing underground structure upward;
Curing the self-hardening fluid to stabilize the posture and behavior of the existing underground structure;
A step of dismantling the upper part of the existing underground structure from the ground according to the amount of pushing of the existing underground structure.
前記自硬性流体の圧入量を調節することにより前記既設地下構造物の押動量を制御し、前記既設地下構造物を押動させる工程、前記既設地下構造物を安定化する工程及び前記既設地下構造物を解体する工程を、この順に繰り返し行って、前記既設地下構造物を複数回に分けて解体することを特徴とする請求項1に記載の既設地下構造物の撤去方法。   The step of controlling the amount of pushing of the existing underground structure by adjusting the amount of press-fitting of the self-hardening fluid, the step of pushing the existing underground structure, the step of stabilizing the existing underground structure, and the existing underground structure The method for removing an existing underground structure according to claim 1, wherein the steps of dismantling the object are repeated in this order to disassemble the existing underground structure in a plurality of times. 前記既設地下構造物を押動させる工程の前に、前記既設地下構造物と地盤との間に、これらの間に生じる摩擦抵抗を低減する周面摩擦低減材を注入することを特徴とする請求項1又は2に記載の既設地下構造物の撤去方法。   Before the step of pushing the existing underground structure, a peripheral friction reducing material for reducing frictional resistance generated between the existing underground structure and the ground is injected. Item 3. A method for removing an existing underground structure according to item 1 or 2. 前記周面摩擦低減材を注入する前に、前記既設地下構造物の側壁と地盤との間に水を注入し、前記側壁の外面と地盤面との間に生じる摩擦抵抗を一時的に低減することを特徴とする請求項3に記載の既設地下構造物の撤去方法。   Before injecting the peripheral surface friction reducing material, water is injected between the side wall and the ground of the existing underground structure to temporarily reduce the frictional resistance generated between the outer surface of the side wall and the ground surface. The removal method of the existing underground structure of Claim 3 characterized by the above-mentioned. 更に、前記周面摩擦低減材を注入する前に、前記既設地下構造物の底盤と地盤との間にも水を注入し、前記底盤の外面と地盤面との間に生じる摩擦抵抗を一時的に低減することを特徴とする請求項4に記載の既設地下構造物の撤去方法。   Further, before injecting the peripheral surface friction reducing material, water is also injected between the bottom and the ground of the existing underground structure, and the frictional resistance generated between the outer surface of the bottom and the ground is temporarily increased. The method for removing an existing underground structure according to claim 4, wherein the existing underground structure is removed.
JP2005375342A 2005-12-27 2005-12-27 Removal method for existing underground structure Pending JP2007177447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005375342A JP2007177447A (en) 2005-12-27 2005-12-27 Removal method for existing underground structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005375342A JP2007177447A (en) 2005-12-27 2005-12-27 Removal method for existing underground structure

Publications (1)

Publication Number Publication Date
JP2007177447A true JP2007177447A (en) 2007-07-12

Family

ID=38302900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005375342A Pending JP2007177447A (en) 2005-12-27 2005-12-27 Removal method for existing underground structure

Country Status (1)

Country Link
JP (1) JP2007177447A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107740596A (en) * 2017-11-30 2018-02-27 中建三局第建设工程有限责任公司 A kind of non-open cut Demolition Construction method of underground structure being drilled into

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367904A (en) * 1976-11-30 1978-06-16 Ebine Gisuke Method of raising sunk ground
JPS6327628A (en) * 1986-07-18 1988-02-05 Takenaka Komuten Co Ltd Correcting work for settlement of foundation slab
JPH0351483A (en) * 1989-07-19 1991-03-05 Shimizu Corp Wrecking method of underground construction
JPH0960311A (en) * 1995-08-22 1997-03-04 Kajima Corp Lift-up demolition method
JP2005188118A (en) * 2003-12-25 2005-07-14 Sekkeishitsu Soil:Kk Height adjustment method for structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367904A (en) * 1976-11-30 1978-06-16 Ebine Gisuke Method of raising sunk ground
JPS6327628A (en) * 1986-07-18 1988-02-05 Takenaka Komuten Co Ltd Correcting work for settlement of foundation slab
JPH0351483A (en) * 1989-07-19 1991-03-05 Shimizu Corp Wrecking method of underground construction
JPH0960311A (en) * 1995-08-22 1997-03-04 Kajima Corp Lift-up demolition method
JP2005188118A (en) * 2003-12-25 2005-07-14 Sekkeishitsu Soil:Kk Height adjustment method for structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107740596A (en) * 2017-11-30 2018-02-27 中建三局第建设工程有限责任公司 A kind of non-open cut Demolition Construction method of underground structure being drilled into

Similar Documents

Publication Publication Date Title
US20220098817A1 (en) Method for constructing structure
KR101205783B1 (en) The complex execution method which dismantling work of existing underground structure and constructs of new building simultaneously
CN105714834B (en) A kind of construction technology of hardpan preexisting hole grouting behind shaft or drift lining H profile steel stake
CN104988948B (en) A kind of construction method of fin-plate type retaining wall
JP2008231810A (en) Underground structure construction method
JP5351125B2 (en) Open shield machine start method of open shield method
JP2000352296A (en) Method o constructing passage just under underground structure
JP2006194031A (en) Pillar construction method
JP2008031772A (en) Construction method of precast pile, and cover for use in the construction method
JP2007308951A (en) Method of constructing outer peripheral column by inverted construction method
JP2000008623A (en) Restoration method of structure
CN212656218U (en) Heavy pile machine load underpinning structure
JP2007177447A (en) Removal method for existing underground structure
JP4888293B2 (en) Earth retaining wall made of parent pile sheet pile, water stop structure of earth retaining wall made of parent pile side sheet pile, construction method of earth retaining wall made of parent pile side sheet pile, and retaining wall of earth retaining wall made of parent pile side sheet pile Water method
JP6259271B2 (en) Caisson installation method and underground column body group
JP4311676B2 (en) Construction method using casing
KR20050113450A (en) Downward reinforced-concrete underground structure using temporary assistant columns
JP5140515B2 (en) Installation method of underground floor pillar and construction method of underground structure
JP4905296B2 (en) Method for constructing retaining wall and retaining wall
JP4475116B2 (en) Vertical shaft structure and its construction method
EP1348812A1 (en) Building methods and apparatus
JP2008045367A (en) Ground consolidation construction method and ground-subsidence correction construction method
JP2007218072A (en) Manhole
JPH0776845A (en) Method of settling open caisson
JP3728659B2 (en) Basement extension method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071211

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A977 Report on retrieval

Effective date: 20101029

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308