JP2007176758A - Solidified product of crushed stone fine powder and method for solidifying the same - Google Patents

Solidified product of crushed stone fine powder and method for solidifying the same Download PDF

Info

Publication number
JP2007176758A
JP2007176758A JP2005378380A JP2005378380A JP2007176758A JP 2007176758 A JP2007176758 A JP 2007176758A JP 2005378380 A JP2005378380 A JP 2005378380A JP 2005378380 A JP2005378380 A JP 2005378380A JP 2007176758 A JP2007176758 A JP 2007176758A
Authority
JP
Japan
Prior art keywords
crushed stone
powder
mixture
fine
solidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005378380A
Other languages
Japanese (ja)
Inventor
Kunio Kimura
邦夫 木村
Eiji Tani
英治 谷
Ichitaro Ogawa
一太郎 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005378380A priority Critical patent/JP2007176758A/en
Publication of JP2007176758A publication Critical patent/JP2007176758A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/10Lime cements or magnesium oxide cements
    • C04B28/105Magnesium oxide or magnesium carbonate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/12Waste materials; Refuse from quarries, mining or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for effectively utilizing unused crushed stone fine powders which are discharged in a large amount at a quarry and the like, and easily manufacturing various solidified products with low alkalinity. <P>SOLUTION: A method for solidifying a solidified product of crushed stone fine powders is provided in which normal portland cement and magnesium hydroxide or volcanic glass fine powders are added to the crushed stone fine powders, water is then added thereto and the resulting mixture is kneaded, and then molded and cured to solidify the crushed stone fine powders, or in which waste glass fine powders are added to the crushed stone fine powders, and the mixture is then fired at a temperature in a range of 800 to 1,000°C to solidify the crushed stone fine powders, wherein organic powders such as crushed bamboo fine powders, sawdusts and hull powders are mixed within a range of 2 to 5% by mass and solidified, and bentonite is further added thereto, water is then added and the resulting mixture is kneaded, molded, dried and then fired to solidify the crushed stone fine powders. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、砕石の採掘、破砕、建設・土木の廃材、粒度調整工程から排出される砕石微粉末を有効に活用するための砕石微粉末の固化体とその固化技術に関するものである。   The present invention relates to a solidified body of fine crushed stone powder and its solidification technology for effectively utilizing the fine powder of crushed stone discharged from the mining, crushing, construction and civil engineering waste materials, and the particle size adjustment process.

砕石の採掘、破砕、建設・土木の廃材、粒度調整工程から排出される砕石微粉の多くは、利用価値が少ないということで採掘跡に埋め立て処分されている。有効利用に関しては、その一部が道路の路盤材として利用されている場合もあるが、大半は発生量が多いこともあって廃棄処分されている。従って、現状はほとんど有効利用がなされていない。   Most of the crushed stone fine powder discharged from the mining and crushing of crushed stone, construction and civil engineering waste, and the particle size adjustment process are landfilled in the mining site because of their low utility value. In terms of effective use, some of them are used as roadbed materials, but most of them are discarded due to the large amount generated. Therefore, there is almost no effective use at present.

有効利用の一方法として、これら排出される破砕物等を固化して利用することが種々提案されている。固化方法として一般的には、普通ポルトランドセメントを用いる方法が知られている。骨材、セメント比は7:3が一般的である。この場合、固化体のpHは12程度の強アルカリとなっていて、利用する場合には制約されことが多く、有効活用という点では問題がある。pHを下げるためにセメント量を低くすると、従来の強度が低下し、この場合も前述同様に利用する場合には制約されことが多く、有効活用という点では問題がある。   Various methods for solidifying and using these discharged crushed materials and the like have been proposed as a method of effective use. Generally, a method using ordinary Portland cement is known as a solidification method. The aggregate / cement ratio is generally 7: 3. In this case, the pH of the solidified body is a strong alkali of about 12, and is often restricted when used, and there is a problem in terms of effective use. When the amount of cement is lowered to lower the pH, the conventional strength is lowered, and in this case as well, there are many restrictions in using the same as described above, and there is a problem in terms of effective utilization.

一方、砕石微粉末類似の化学組成を有する原料に発泡剤SiCを加えて焼成し、コンクリート用軽量骨材を製造する技術(例えば特許文献1参照)が知られている。また、焼却灰、砕石粉などにアルミニウムの強酸塩と石灰類とセメントよりなる無機固化剤を添加して固化した後、焼成し建材を製造する技術(例えば特許文献2参照)が知られている。   On the other hand, a technique for adding a foaming agent SiC to a raw material having a chemical composition similar to fine crushed stone powder and firing it to produce a lightweight aggregate for concrete (see, for example, Patent Document 1) is known. Further, a technique for manufacturing a building material by firing after adding an inorganic solidifying agent made of strong acid salt of aluminum, lime, and cement to incinerated ash, crushed stone powder, etc. is known (see, for example, Patent Document 2). .

他方、水酸化マグネシウムを含ませる技術においては、高炉スラグ微粉末とアルカリ性無機物質とを水中で混合し、固化反応させ、脱水させた後に、乾燥、粉砕して調湿性無機質粉末を得る技術が知られている(例えば特許文献3参照)。更に、砕石粉末又はスラッジ等の原料に発泡剤として、過酸化水素及び水を用い、セメントを用いて固化する技術、気孔助材に木粉末を用い、焼結助材にガラス微粉末あるいは、珪石粉末を加え高温焼成して固化する技術が発泡体の製造方法として知られている(例えば特許文献4参照)。   On the other hand, in the technology including magnesium hydroxide, a technology is known in which blast furnace slag fine powder and alkaline inorganic substance are mixed in water, solidified, dehydrated, dried and pulverized to obtain humidity-controlling inorganic powder. (See, for example, Patent Document 3). Furthermore, as a foaming agent for raw materials such as crushed stone powder or sludge, hydrogen peroxide and water are used, solidification using cement, wood powder is used as a pore aid, glass fine powder or silica as a sintering aid A technique of adding powder and baking at high temperature and solidifying is known as a method for producing a foam (see, for example, Patent Document 4).

特開2000−226242号公報JP 2000-226242 A 特開平08−318581号公報Japanese Patent Laid-Open No. 08-318581 特開2004−175601号公報JP 2004-175601 A 特開平08−318581号公報Japanese Patent Laid-Open No. 08-318581

砕石等の利用形態で骨材として、固形物についてはその利用方法が検討され、それなりの使用形態が種々開発され提案されている。しかし、固形物の除かれた粉末状のものにおいては、その処分を含めて利用方法が確立されていないのが現状である。本発明はその粉末状のものに注目し、固化することで従来の問題点を解決するようにした技術である。固化技術においては、従来からもその技術の一端は前述の例のように開示されている。   As an aggregate in the form of utilization such as crushed stone, the utilization method of solids has been studied, and various forms of use have been developed and proposed. However, in the present situation, the utilization method including the disposal is not established in the powder form from which the solid matter is removed. The present invention pays attention to the powdered material and is a technique for solving the conventional problems by solidifying. In the solidification technique, one end of the technique has been disclosed as in the above example.

しかしながら、従来の技術、また開示されている技術においては、完成されたものではなく、まだ種々問題点を多く有している。開示されている技術の例を説明すると、特許文献1に開示された技術は、高価な発泡剤SiCを添加する必要があることで経済的に問題がある上、焼成温度が1000℃以上必要であること等の問題点を有している。又、特許文献2に開示された技術は、無機固化材を添加するものであるが、流し込み、脱形後焼成する必要があり、用途が限られる等で問題がある。   However, the conventional technology and the disclosed technology are not completed and still have many problems. Explaining an example of the disclosed technology, the technology disclosed in Patent Document 1 is economically problematic because it is necessary to add an expensive foaming agent SiC, and a firing temperature of 1000 ° C. or more is necessary. It has some problems. Moreover, although the technique disclosed in Patent Document 2 is to add an inorganic solidifying material, there is a problem in that it needs to be poured and fired after demolding, and its application is limited.

特許文献3の技術は、水酸化マグネシウムをアルカリ無機物質として固化物質にしたことのみが開示されたもので、水酸化マグネシウムの効果を具現化するための手段を欠いている。特許文献4の技術は、ガラス微粉末を加えて成形物を高温焼成することが開示されているが、焼成助材として他の物質、発泡剤、過酸化水素、水、木と混合され使用されるもので、発泡体生成のためのものである。又流し込み成形から焼成するものであって養生だけで、目的の固化体を得るものでない。又、砕石微粉末に水酸化マグネシウムを混合させて使用される製法形態のものではない。   The technique of Patent Document 3 discloses only that magnesium hydroxide is solidified as an alkali inorganic substance, and lacks means for realizing the effect of magnesium hydroxide. The technology of Patent Document 4 discloses that a molded product is fired at a high temperature by adding fine glass powder, but is used as a firing aid mixed with other substances, foaming agent, hydrogen peroxide, water and wood. It is for foam production. Also, it is fired from casting and is not cured to obtain the desired solidified body. Further, it is not a manufacturing method used by mixing magnesium hydroxide with fine crushed stone powder.

以上のように、前述の技術はいずれも固化技術に関わるものであるが、特に微粉末のものを固化する点において、例えばアルカリ性の度合いを小さく、密度を高める等の技術では、満足すべき形態になっていない。本発明は、このような従来の技術背景の下になされたもので、特に未利用資源を組み合わせて多様な固化体を簡単に製造する技術であって、次の目的を達成する。   As described above, all of the above-mentioned techniques are related to the solidification technique. In particular, in terms of solidifying fine powders, for example, the degree of alkalinity is low and the density is increased. It is not. The present invention has been made under the background of such a conventional technique, and in particular, is a technique for easily producing various solidified bodies by combining unused resources, and achieves the following object.

本発明の目的は、圧縮強度を維持しつつアルカリ性を軽減し砕石微粉末の割合を多くして固化した砕石微粉末の固化体とその固化技術の提供にある。本発明の他の目的は、調湿性を持たせ密度の高い、また、吸水性をよくして固化した砕石微粉末の固化体とその固化技術の提供にある。本発明の更に他の目的は、簡素な製造形態で固化できる砕石微粉末の固化体とその固化技術の提供にある。   An object of the present invention is to provide a solidified body of fine crushed stone powder solidified by reducing the alkalinity and increasing the proportion of fine crushed stone powder while maintaining compressive strength, and a solidification technique thereof. Another object of the present invention is to provide a solidified body of fine crushed stone powder having high humidity control, high density, and solidified by improving water absorption, and solidification technology thereof. Still another object of the present invention is to provide a solidified powder of fine crushed stone powder that can be solidified in a simple production form and a solidification technique thereof.

本発明者らは、前記した従来技術の問題点を解決するために鋭意研究を重ねた結果、砕石微粉末に普通ポルトランドセメントと同時に水酸化マグネシウムあるいはガラス微粉末、特に火山ガラス微粉末を配合し固化することにより、その目的を達成した。また、砕石微粉末にガラス微粉末、特に廃ガラス微粉末を配合し、その後焼成して固化することにより、その目的を達成した。   As a result of intensive studies to solve the problems of the prior art described above, the present inventors have formulated magnesium hydroxide or glass fine powder, particularly volcanic glass fine powder, together with ordinary portland cement, in fine crushed stone powder. The object was achieved by solidification. Moreover, the objective was achieved by mix | blending glass fine powder, especially waste glass fine powder with crushed stone fine powder, and baking and solidifying after that.

必要に応じて、さらにベントナイトを配合し、水を加えて混練後、成形、乾燥し、その後焼成して固化することにより、その目的を達成した。さらに竹粉砕微粉、おが屑、籾殻粉末等の有機粉末を配合し、水を加えて混練後、成形、乾燥し、その後焼成して固化することにより、その目的を達成しうることを見出し、この知見に基づいて本発明を完成するに至った。本発明の対象とする砕石微粉末は、自然物、産業廃棄物等の人工物を問わず、原石は勿論のこと土壌、土砂、建設材等の産業廃棄物から発生するものの微粉末である。対象となる微粉末の粒度は1.2mm以下が好ましい。次に本発明の手段を説明する。   The purpose was achieved by blending bentonite as necessary, adding water, kneading, shaping, drying, and then baking to solidify. Furthermore, it was found that the purpose can be achieved by blending organic powders such as bamboo pulverized fine powder, sawdust, rice husk powder, etc., adding water, kneading, shaping, drying, then firing and solidifying. Based on this, the present invention has been completed. The crushed stone fine powder targeted by the present invention is a fine powder generated from industrial waste such as soil, earth and sand, construction materials, as well as raw stone, regardless of whether it is a natural product or an industrial product such as industrial waste. The particle size of the target fine powder is preferably 1.2 mm or less. Next, the means of the present invention will be described.

本発明1の砕石微粉末の固化体は、砕石微粉末に、質量比が各々1.0:1.0から1.0:0.5の範囲内で調整された普通ポルトランドセメント及び水酸化マグネシウムの混合物を加えて配合し、水を加えて混練し、成形し、養生して固化したものであることを特徴とし、養生のみで固化できることを特徴としている。   The solidified powder of fine crushed stone powder according to the first aspect of the present invention comprises ordinary Portland cement and magnesium hydroxide adjusted to have a mass ratio of 1.0: 1.0 to 1.0: 0.5, respectively. The mixture is added and blended, water is added and kneaded, molded, cured and solidified, and it can be solidified only by curing.

本発明2の砕石微粉末の固化体は、砕石微粉末に、質量比が各々1.0:1.0から1.0:0.5の範囲内で調整された普通ポルトランドセメント及び火山ガラス微粉末の混合物を加えて配合し、水を加えて混練し、成形、養生して固化したものであることを特徴とする。   The solidified powder of fine crushed stone powder according to the second aspect of the present invention comprises finely divided fine powder of ordinary Portland cement and fine volcanic glass whose mass ratio is adjusted within the range of 1.0: 1.0 to 1.0: 0.5. It is characterized by being added and blended with a powder mixture, kneaded with water, molded, cured and solidified.

本発明3の砕石微粉末の固化体は、本発明1及び2において、前記混合物は前記配合された配合物の全質量に対し5〜30質量%の範囲で調整されたものであることを特徴とする。   The solidified crushed stone powder of the present invention 3 is characterized in that, in the present inventions 1 and 2, the mixture is adjusted in a range of 5 to 30% by mass with respect to the total mass of the blended blend. And

本発明4の砕石微粉末の固化体は、本発明2において、前記ガラス微粉末の粒度は45μm以下であることを特徴とする。   The solidified powder of fine crushed stone powder according to the present invention 4 is characterized in that, in the present invention 2, the particle size of the glass fine powder is 45 μm or less.

本発明5の砕石微粉末の固化体は、砕石微粉末と廃ガラス微粉末の混合物において、前記砕石微粉末の量を前記混合物の10〜80質量%の範囲内に調整し、前記ガラス微粉末の量を前記混合物の20〜90質量%の範囲内に調整して混合し、この混合物を成形し、800〜1000℃の温度の範囲内で焼成して固化したものであることを特徴とする。   The solidified crushed stone fine powder of the present invention 5 is a mixture of crushed stone fine powder and waste glass fine powder, the amount of the crushed stone fine powder is adjusted within the range of 10 to 80% by mass of the mixture, and the glass fine powder The amount of is adjusted to be within the range of 20 to 90% by mass of the mixture and mixed, the mixture is molded, fired within the temperature range of 800 to 1000 ° C. and solidified. .

本発明6の砕石微粉末の固化方法は、砕石微粉末に、質量比が各々1.0:1.0から1.0:0.5の範囲内で調整された普通ポルトランドセメント及び水酸化マグネシウムの混合物を加えて配合し、この配合物に水を加えて混練し、この混練された配合物を成形し、この成形された配合物を養生して固化することを特徴とし、養生のみで固化できることを特徴としている。   The solidified crushed stone powder according to the sixth aspect of the present invention includes ordinary Portland cement and magnesium hydroxide, each of which is adjusted to have a mass ratio of 1.0: 1.0 to 1.0: 0.5. It is characterized by adding water to the mixture, kneading the mixture with water, molding the kneaded mixture, curing the molded composition, and solidifying only by curing. It is characterized by being able to do it.

本発明7の砕石微粉末の固化方法は、砕石微粉末に、質量比が各々1.0:1.0から1.0:0.5の範囲内で調整された普通ポルトランドセメント及び火山ガラス微粉末の混合物を加えて配合物とし、この配合物に水を加えて混練し、この混練された配合物を成形し、この成形された配合物を養生して固化することを特徴とする。   The solidification method of the crushed stone fine powder of the present invention 7 includes the ordinary Portland cement and the volcanic glass fine powder adjusted to the crushed stone fine powder within a mass ratio of 1.0: 1.0 to 1.0: 0.5, respectively. It is characterized in that a mixture of powders is added to form a blend, water is added to the blend and kneaded, the blended blend is molded, and the molded blend is cured and solidified.

本発明8の砕石微粉末の固化方法は、本発明6及び7において、前記混合物は前記配合された配合物の全質量に対し5〜30質量%の範囲で調整されたものであることを特徴とする。   The solidified crushed stone powder of the present invention 8 is characterized in that, in the present inventions 6 and 7, the mixture is adjusted in a range of 5 to 30% by mass with respect to the total mass of the blended blend. And

本発明9の砕石微粉末の固化方法は、本発明7において、前記火山ガラス微粉末の粒度は45μm以下であることを特徴とする。   The solidified crushed stone powder of the present invention 9 is characterized in that, in the present invention 7, the volcanic glass fine powder has a particle size of 45 μm or less.

本発明10の砕石微粉末の固化方法は、砕石微粉末と廃ガラス微粉末の混合物において、前記砕石微粉末の量を前記混合物の10〜80質量%の範囲内に調整し、前記ガラス微粉末の量を前記混合物の20〜90質量%の範囲内に調整して混合し、この混合物を成形し、この成形された混合物を800〜1000℃の温度の範囲内で焼成して固化することを特徴とする。   The solidification method of the crushed stone fine powder of this invention 10 adjusts the quantity of the said crushed stone fine powder in the range of 10-80 mass% of the said mixture in the mixture of the crushed stone fine powder and waste glass fine powder, The said glass fine powder Adjusting the amount of the mixture within the range of 20 to 90% by mass of the mixture, forming the mixture, firing the formed mixture within the temperature range of 800 to 1000 ° C., and solidifying the mixture. Features.

本発明11の砕石微粉末の固化方法は、本発明10において、前記混合物に竹粉砕微粉、おが屑、籾殻粉末から選択される1つ以上の有機粉末を2〜5質量%の範囲内で加え配合物とし固化することを特徴とする。   The solidified crushed stone powder according to the eleventh aspect of the present invention is the blended composition according to the tenth aspect of the present invention, wherein one or more organic powders selected from bamboo pulverized fine powder, sawdust and rice husk powder are added to the mixture within a range of 2 to 5% by mass. It is characterized by solidifying as a product.

本発明12の砕石微粉末の固化方法は、本発明10において、前記混合物にベントナイトを加え配合物とし、この配合物に水を加えて混練し、この混練された配合物を成形し、この成形された配合物を乾燥し、この乾燥された配合物を焼成して固化することを特徴とする。   The crushed stone fine powder solidification method of the present invention 12 is the method of the present invention 10, wherein bentonite is added to the mixture to form a blend, water is added to the blend and kneaded, and the blended blend is molded, and this molding is performed. The dried blend is dried, and the dried blend is baked to solidify.

本発明13の砕石微粉末の固化方法は、本発明12において、前記配合物に竹粉砕微粉、おが屑、籾殻粉末から選択される1つ以上の有機粉末を2〜5質量%の範囲内で加え配合物とし固化することを特徴とする。   The method for solidifying fine crushed stone powder according to the thirteenth aspect of the present invention is the method according to the twelfth aspect of the present invention, wherein one or more organic powders selected from finely ground bamboo powder, sawdust, and rice husk powder are added to the blend within a range of 2 to 5% by mass. It is characterized by solidifying as a blend.

次に本発明の好ましい手段について説明する。本発明1〜4、本発明6〜9で示した配合物の普通ポルトランドセメントの配合量は原料成分全質量に基づき5質量%を超える量以上30質量%以下の範囲内で調整するのが好ましい。本発明5、本発明10〜13で示した砕石微粉末の配合量は全質量に基づき10〜50質量%の範囲内で、廃ガラス微粉末の配合量は全質量に基づき50〜90質量%の範囲内で調整し、焼成温度を850〜950℃の範囲内で調整するのが好ましい。   Next, preferred means of the present invention will be described. It is preferable to adjust the blending amount of ordinary Portland cement in the blends shown in the present inventions 1 to 4 and 6 to 9 within a range of more than 5% by weight and 30% by weight based on the total mass of the raw material components. . The blending amount of the crushed stone fine powder shown in Invention 5 and Inventions 10 to 13 is in the range of 10 to 50% by mass based on the total mass, and the blending amount of the waste glass fine powder is 50 to 90% by mass based on the total mass. It is preferable to adjust within the range, and to adjust the firing temperature within the range of 850 to 950 ° C.

本発明により得られる砕石微粉末の固化体の原料は、砕石微粉末に対し、普通ポルトランドセメント、水酸化マグネシウム、火山ガラス微粉末、竹粉砕微粉末、おが屑、籾殻粉末等の有機粉末、ベントナイトから選択される少なくとも2種とからなるものである。   The raw material of the solidified powder of fine crushed stone obtained by the present invention is based on organic powder such as Portland cement, magnesium hydroxide, volcanic glass fine powder, finely ground bamboo powder, sawdust, rice husk powder, bentonite, etc. It consists of at least two selected.

砕石微粉末は、砕石の採掘、破砕、建設・土木現場、粒度調整工程等から大量に排出されるものであり、その粒度は2.5mm以下、中でも1.2mm以下であるものが好ましい。   The crushed stone fine powder is discharged in a large amount from crushed stone mining, crushing, construction / civil engineering site, particle size adjustment process, etc., and the particle size is preferably 2.5 mm or less, and more preferably 1.2 mm or less.

本発明においてガラス微粉末は、火山ガラス微粉末を用いるのが好ましく、その粒度は45μm以下が好ましい。火山ガラスは農薬のキャリアーとして用いられている。その微粉末は農薬散布時に飛散するため、粒度10μm以上のものが用いられており、工場において10μm以下のものが除かれている。ここで発生する微粉末は副産物として扱われ廃棄されていて、その有効利用が望まれている。本発明における火山ガラス微粉末はこの副産物でよいのである。   In the present invention, the glass fine powder is preferably a volcanic glass fine powder, and the particle size is preferably 45 μm or less. Volcanic glass is used as a pesticide carrier. Since the fine powder is scattered when agrochemicals are sprayed, those having a particle size of 10 μm or more are used, and those having a particle size of 10 μm or less are removed at the factory. The fine powder generated here is treated as a by-product and discarded, and its effective use is desired. The fine powder of volcanic glass in the present invention may be this by-product.

砕石微粉末に普通ポルトランドセメント及び水酸化マグネシウムを配合し、水を加えて混練後、成形、養生して砕石微粉を固化するに当り、普通ポルトランドセメントと水酸化マグネシウムの質量比を1.0:1.0〜1.0:0.5の範囲内で調整することを特徴とする砕石微粉の固化技術については、普通ポルトランドセメントの配合量を原料成分全質量に基づき5質量%を超える量以上30質量%以下とし、好ましくは5〜10質量%の範囲内で調整される。   When blending ordinary Portland cement and magnesium hydroxide into fine crushed stone powder, adding water and kneading, molding and curing to solidify the fine crushed stone powder, the mass ratio of ordinary Portland cement and magnesium hydroxide is 1.0: About solidification technology of crushed stone fine powder characterized by adjusting within the range of 1.0 to 1.0: 0.5, the amount of ordinary Portland cement is more than 5% by mass based on the total mass of raw material components It is 30 mass% or less, Preferably it adjusts within the range of 5-10 mass%.

水酸化マグネシウムは普通ポルトランドセメントの配合量が少なくても、固化体の強度低下を招かずpHを下げる効果がある。この配合量が5質量%未満であると、得られる固化体の機械的強度は十分ではなくなる。また、30質量%を越えると固化体のpHが12以上でアルカリ性が強くなり、利用する場合の制約が多くなる。   Magnesium hydroxide has the effect of lowering the pH without causing a decrease in strength of the solidified body even if the blending amount of ordinary Portland cement is small. When the blending amount is less than 5% by mass, the mechanical strength of the obtained solidified product is not sufficient. On the other hand, if it exceeds 30% by mass, the pH of the solidified body becomes 12 or more, the alkalinity becomes strong, and there are many restrictions in use.

砕石微粉末にガラス微粉、特に廃ガラス微粉末を配合する本発明5、本発明10〜13で示した配合量は、焼成して砕石微粉末を固化するに当り、砕石微粉末の配合量を全質量に基づき10〜80質量%の範囲内、廃ガラス微粉末の配合量を全質量に基づき20〜90質量%の範囲内で調整するとともに焼成温度を800〜1000℃の範囲内で調整することを特徴としているが、好ましくは砕石微粉末の配合量を全質量に基づき10〜50質量%の範囲内、廃ガラス微粉末の配合量を全質量に基づき50〜90質量%の範囲内で調整され、焼成温度を850〜950℃の範囲内で調整されるのがよい。   The blending amount shown in the present invention 5 and the present invention 10-13, in which glass fine powder, particularly waste glass fine powder is blended with the crushed fine powder, is the same as the blended amount of the crushed fine powder in solidifying the crushed fine powder by firing. The blending amount of the waste glass fine powder is adjusted within the range of 20 to 90% by mass based on the total mass within the range of 10 to 80% by mass based on the total mass, and the firing temperature is adjusted within the range of 800 to 1000 ° C. Preferably, the amount of fine crushed stone powder is within the range of 10 to 50% by mass based on the total mass, and the amount of waste glass fine powder is within the range of 50 to 90% by mass based on the total mass. It is preferable to adjust the firing temperature within a range of 850 to 950 ° C.

砕石微粉末の配合量が90質量%以上であると、得られる固化体の機械的強度は十分ではなくなる。又、焼成温度が800℃以下であると、得られる固化体の機械的強度も十分ではなくなる。更に、焼成温度が1000℃以上では融着が発生する。   When the blending amount of the fine crushed stone powder is 90% by mass or more, the mechanical strength of the obtained solidified product is not sufficient. Further, when the firing temperature is 800 ° C. or lower, the mechanical strength of the obtained solidified product is not sufficient. Further, fusion occurs when the firing temperature is 1000 ° C. or higher.

成形をしやすくするためには、適量のベントナイトと水を加えて成形するのがよい。ベントナイトの添加は、造粒物である固化体のハンドリングを向上させ固化体を保持したとき崩壊させない効果がある。この際添加される水の量は、原料混合物に対し外割で5〜30質量%、好ましくは10〜25質量%の範囲である。この質量が5質量%未満の場合は混合が困難となり均質な成形物を得にくい。また、30質量%を超えると乾燥に長時間を要し、製造効率が低下する。   In order to facilitate molding, it is preferable to mold by adding an appropriate amount of bentonite and water. The addition of bentonite has the effect of improving the handling of the solidified body as a granulated product and preventing it from collapsing when the solidified body is held. The amount of water added at this time is 5 to 30% by mass, preferably 10 to 25% by mass, based on the raw material mixture. When this mass is less than 5 mass%, mixing becomes difficult and it is difficult to obtain a homogeneous molded product. Moreover, when it exceeds 30 mass%, drying requires a long time and manufacturing efficiency falls.

押出成形では湿式法、例えば混合物全量当り15〜30質量%の水を加える方法が用いられる。加圧成形では半乾式法、例えば混合物全量当り15質量%までの水、中でも5〜10質量%の水を加える方法や、乾式法が用いられる。成形物は必要に応じ乾燥し、昇温させ、800〜1000℃、好ましくは850〜950℃の範囲内の温度で焼成する。昇温は5〜20℃/分程度で行えばよい。   In extrusion molding, a wet method, for example, a method of adding 15 to 30% by mass of water to the total amount of the mixture is used. In the pressure molding, a semi-dry method, for example, a method of adding water up to 15% by mass, particularly 5 to 10% by mass of water, or a dry method is used. The molded product is dried if necessary, heated, and fired at a temperature in the range of 800 to 1000 ° C, preferably 850 to 950 ° C. The temperature increase may be performed at about 5 to 20 ° C./min.

軽量の固化体を得るためには、砕石微粉末と廃ガラス微粉末の配合に、更に竹粉砕微粉末、おが屑、籾殻粉末等の有機粉末を配合し、その後焼成することにより得られる。   In order to obtain a lightweight solidified body, it can be obtained by blending organic powders such as finely ground bamboo powder, sawdust, rice husk powder and the like into the blended crushed stone powder and waste glass fine powder, and then firing.

本発明方法によれば、普通ポルトランドセメントを固化剤として用いる場合は、水酸化マグネシウムあるいは火山ガラス微粉末を配合することにより、pHの低い砕石微粉末の固化体、且つ固形物同様程度の強度を有する固化体を得ることができる。また、砕石微粉末に廃ガラス微粉末を配合し、その後焼成して砕石微粉末を固化する場合は、竹粉砕微粉末、おが屑、籾殻粉末等の有機粉末を配合する。更に、ベントナイトを配合することにより、軽量固化体あるいは砕石と同程度の高強度の固化体を得ることができる。   According to the method of the present invention, when ordinary Portland cement is used as a solidifying agent, by adding magnesium hydroxide or volcanic glass fine powder, a solidified powder of fine crushed stone powder having a low pH and a strength similar to that of a solid substance can be obtained. A solidified body can be obtained. Moreover, when waste glass fine powder is mix | blended with crushed stone fine powder and it bakes and solidifies crushed stone fine powder after that, organic powders, such as bamboo pulverized fine powder, sawdust, rice husk powder, are mix | blended. Furthermore, by blending bentonite, it is possible to obtain a light solidified body or a solidified body having the same strength as crushed stone.

この場合、通常の焼結温度よりも低温で焼成することができ、未利用資源や廃棄物の有効利用や環境保全と相俟って低コスト化を図ることができる。また、この固化体は、原料や製造条件を種々変えることにより、高強度や高吸水率等の物性を適宜変えることができるので、例えば高強度のものは砕石と同様の骨材として、また特に軽量高吸水率のものは、水質浄化資材、汚水浄化資材、ビル屋上緑化用混合資材、植栽用資材などといった種々の用途に供することができる。   In this case, firing can be performed at a temperature lower than the normal sintering temperature, and cost reduction can be achieved in combination with effective utilization of unused resources and waste and environmental conservation. In addition, since this solidified body can appropriately change physical properties such as high strength and high water absorption by changing raw materials and production conditions, for example, high strength materials are used as aggregates similar to crushed stones, and in particular. Lightweight and high water absorption products can be used for various purposes such as water purification materials, sewage purification materials, mixed materials for greening buildings, and planting materials.

本実施の形態は、実施例に代えて説明する。
<実施例>
次に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお、各実施例中の配合成分の割合は質量%で表す。
This embodiment will be described in place of the examples.
<Example>
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these Examples. In addition, the ratio of the compounding component in each Example is represented by the mass%.

<実施例1>
A砕石場の1.2mm以下の砕石微粉末90g、普通ポルトランドセメント5g、水酸化マグネシウム5gをニーダーにて均一になるまで混合し、その後水を12g添加し混練した。得られた混練物を加圧力10MPaで円柱状に成形した。得られた成形体を80℃、半日の蒸気養生後、80℃、1日の水中養生した。このようにして得られた固化体の物性は、圧縮強度が20.6MPa、吸水率が10.5重量%、比重が2.41、pHが10.9であった。なお、比重は吸水状態の固化体の比重で表し、pHは強度測定後の破片をその重量の10倍量の蒸留水に1日浸漬した後の水のpHで表した。
<Example 1>
90 g of crushed stone fine powder of 1.2 mm or less from A quarry, 5 g of ordinary Portland cement and 5 g of magnesium hydroxide were mixed with a kneader until uniform, and then 12 g of water was added and kneaded. The obtained kneaded material was molded into a columnar shape with a pressure of 10 MPa. The obtained molded body was cured at 80 ° C. for half a day and then at 80 ° C. for 1 day under water. The physical properties of the solidified product thus obtained were a compressive strength of 20.6 MPa, a water absorption of 10.5% by weight, a specific gravity of 2.41, and a pH of 10.9. In addition, specific gravity was represented by the specific gravity of the solidified body of a water absorption state, and pH was represented by the pH of the water after immersing the fragment | piece after an intensity | strength measurement in distilled water 10 times the weight for one day.

<実施例2〜8>
表1に示す組成及び配合比の原料を用いた以外は実施例1と同様にして各固化体を得た。各固化体の物性を表2に示す。
<比較例>
普通ポルトランドセメントだけを用いた。表1に示す組成及び配合比の原料を用いた以外は実施例1と同様にして固化体を得た。固化体の物性を表2に示す。
<Examples 2 to 8>
Each solidified body was obtained in the same manner as in Example 1 except that the raw materials having the composition and mixing ratio shown in Table 1 were used. Table 2 shows the physical properties of each solidified product.
<Comparative example>
Only ordinary Portland cement was used. A solidified body was obtained in the same manner as in Example 1 except that the raw materials having the composition and mixing ratio shown in Table 1 were used. Table 2 shows the physical properties of the solidified body.

Figure 2007176758
表1中の各符号は次のとおりである。
AP:A砕石場の1.2mm以下の砕石微粉末
BP:B砕石場の1.2mm以下の砕石微粉末
PS:普通ポルトランドセメント
HM:水酸化マグネシウム
VG:火山ガラス微粉末
Figure 2007176758
Each code | symbol in Table 1 is as follows.
AP: A crushed stone fine powder of 1.2 mm or less of A crushed yard BP: A crushed stone fine powder of 1.2 mm or less of B crushed stone PS: Ordinary Portland cement HM: Magnesium hydroxide VG: Fine powder of volcanic glass

Figure 2007176758
以上の結果から、少ないセメント量であっても、強度値を確保でき、pH値を低く抑えられることを確認した。
Figure 2007176758
From the above results, it was confirmed that the strength value could be secured and the pH value could be kept low even with a small amount of cement.

<実施例9>
A砕石場の1.2mm以下の砕石微粉末20g、廃ガラス微粉末80gをニーダーにて均一になるまで混合した混合物を耐熱容器に充填し、昇温速度10℃/分で900℃まで昇温し、その温度で30分間保持後冷却した。その結果、溶融発泡固化体を得た。得られた固化体からブロック状の試料を切り出し、その重量と容積から算出されるかさ密度は、0.731g/cmであった。得られた固化体を13.2mm以下に破砕し、9.50,4.75,2.36mmのふるいでふるい分けた。各粒度区分の密度を表3に示す。密度は、ガス置換密度測定器(Quantachrome社製、penta-pycnometer)で測定した。以下の実施例も同様である。
<Example 9>
Fill a heat-resistant container with a mixture of 20 g of crushed stone fine powder of 1.2 mm or less and 80 g of waste glass fine powder in a kneader until uniform, and raise the temperature to 900 ° C. at a rate of 10 ° C./min. And kept at that temperature for 30 minutes and then cooled. As a result, a melt-foamed solidified body was obtained. A block sample was cut out from the obtained solidified product, and the bulk density calculated from its weight and volume was 0.731 g / cm 3 . The obtained solidified body was crushed to 13.2 mm or less and sieved with 9.50, 4.75, 2.36 mm sieves. Table 3 shows the density of each particle size category. The density was measured with a gas displacement density measuring device (penta-pycnometer, manufactured by Quantachrome). The same applies to the following embodiments.

Figure 2007176758
以上の結果から、水持ちがよく、且つ水はけのよい固化体ができたことを確認した。
Figure 2007176758
From the above results, it was confirmed that a solidified body having good water retention and good drainage was obtained.

<実施例10>
A砕石場の1.2mm以下の砕石微粉末20g、廃ガラス微粉末80g、竹粉砕粉末2.5gをニーダーにて均一になるまで混合した混合物を耐熱容器に充填し、昇温速度10℃/分で900℃まで昇温し、その温度で30分間保持後冷却した。その結果、溶融発泡固化体を得た。得られた固化体からブロック状の試料を切り出し、その重量と容積から算出されるかさ密度は、0.631g/cmであった。得られた固化体を13.2mm以下に破砕し、9.50,4.75,2.36mmのふるいでふるい分けた。各粒度区分の密度を表4に示す。
<Example 10>
A mixture obtained by mixing 20 g of crushed stone fine powder of 1.2 mm or less from A crushed stone, 80 g of waste glass fine powder, and 2.5 g of bamboo crushed powder until uniform with a kneader was filled in a heat-resistant container, and the temperature rising rate was 10 ° C / The temperature was raised to 900 ° C. in minutes, held at that temperature for 30 minutes, and then cooled. As a result, a melt-foamed solidified body was obtained. A block sample was cut out from the obtained solidified product, and the bulk density calculated from its weight and volume was 0.631 g / cm 3 . The obtained solidified body was crushed to 13.2 mm or less and sieved with 9.50, 4.75, 2.36 mm sieves. Table 4 shows the density of each particle size category.

Figure 2007176758
Figure 2007176758

<実施例11〜22>
A砕石場の1.2mm以下の砕石微粉末15〜90g、廃ガラス微粉末5〜90g、ベントナイト5gをニーダーにて均一になるまで混合した後、パン型造粒機で水を添加しながら平均粒径10mmの粒状成形体を作成した。成形体を表5に示すように12種の実施例について作成した。乾燥後回転管状炉(内径42mm、長さ800mmのステンレススチール製)を用いて焼成した。
<Examples 11 to 22>
After mixing 15 to 90 g of crushed stone fine powder of 1.2 mm or less of A quarry, 5 to 90 g of waste glass fine powder and 5 g of bentonite until uniform, average while adding water with a bread granulator A granular molded body having a particle diameter of 10 mm was prepared. Molded bodies were prepared for 12 examples as shown in Table 5. After drying, it was fired using a rotating tubular furnace (made of stainless steel having an inner diameter of 42 mm and a length of 800 mm).

炉投入から排出までは約20分、回転数は3.01rpm、傾斜角度3°20′、炉内最高温度は880〜890℃で、その位置はほぼ炉の中央であった。得られた固化体の吸水率、圧壊強度、密度を図1に示す。なお、密度はヘリウムガス置換密度測定器で測定した。また、圧壊強度は、球状の粒を上下から加圧し、破壊時の加重を球の投影断面積で除した値とした。なお、砕石原岩石の圧縮強度は75〜100MPaであるが、圧壊強度は15〜22MPaである。砕石微粉末の割合が多くなるに従い、密度が高くなること等を確認した。   It took about 20 minutes from the introduction of the furnace to the discharge, the rotation speed was 3.01 rpm, the inclination angle was 3 ° 20 ′, the maximum temperature in the furnace was 880 to 890 ° C., and the position was almost in the center of the furnace. The water absorption, crushing strength, and density of the obtained solidified product are shown in FIG. The density was measured with a helium gas replacement density meter. The crushing strength was determined by pressing spherical particles from above and below, and dividing the weight at the time of fracture by the projected sectional area of the sphere. In addition, although the compressive strength of the crushed stone raw rock is 75-100 MPa, the crushing strength is 15-22 MPa. It was confirmed that the density increased as the proportion of fine crushed stone powder increased.

Figure 2007176758
表5中の符号は次のとおりである。
AP:A砕石場の1.2mm以下の砕石微粉末
Figure 2007176758
The symbols in Table 5 are as follows.
AP: A crushed stone fine powder of 1.2 mm or less in A quarry

<実施例23〜27>
A砕石場の1.2mm以下の砕石微粉末15g、廃ガラス微粉末80g、ベントナイト5g、竹粉砕粉末2.5gをニーダーにて均一になるまで混合した後、パン型造粒機で水を添加しながら平均粒径10mmの粒状成形体を作成した。成形体を表6に示すように5種の実施例について作成した。乾燥後、前記の回転管状炉を用いて焼成した。得られた固化体の吸水率、圧壊強度、密度を図2に示す。この実施例においては、竹粉を添加する方が竹粉を添加しない場合に比し低密度にすることができることを確認した。
<Examples 23 to 27>
After mixing 15 g of crushed stone powder of 1.2 mm or less, A waste glass fine powder of 80 g, bentonite of 5 g and bamboo crushed powder of 2.5 g in a kneader until uniform, add water with a bread granulator. A granular molded body having an average particle diameter of 10 mm was prepared. Molded bodies were prepared for five examples as shown in Table 6. After drying, it was fired using the rotary tubular furnace. The water absorption, crushing strength, and density of the obtained solidified product are shown in FIG. In this example, it was confirmed that the addition of bamboo powder can be made lower in density than the case where bamboo powder is not added.

Figure 2007176758
表6中の符号は次のとおりである。
AP:A砕石場の1.2mm以下の砕石微粉末
密度の比較例として、ガラス微粉末にSiCを添加して焼成・発泡させた泡ガラス(商品名:軽量土木材料「スーパーソル」)の気泡の大きさの異なる3種類の試料について、前述の密度測定器で密度を測定した。その結果を表7に示した。
Figure 2007176758
The symbols in Table 6 are as follows.
AP: A crushed stone powder of 1.2 mm or less at A quarry. As a comparative example of density, bubbles in bubble glass (trade name: lightweight civil engineering material “Supersol”) obtained by adding SiC to glass fine powder and firing and foaming. The density of three types of samples having different sizes was measured with the above-described density measuring device. The results are shown in Table 7.

Figure 2007176758
Figure 2007176758

かさ密度は密度よりやや小さい。差が小さいのは含まれている気泡の大半が独立気泡であることを示している。結果はいずれも1以下である。特に植栽用に利用するには水持ちが悪く閉気孔であるため、微生物等が定着し難い構造であり、水質浄化等には不適である。これに対し本実施例の場合は、密度はいずれの場合も1以上であり、水持ちのよい資材として利用できることを確認した。   The bulk density is slightly smaller than the density. A small difference indicates that most of the contained bubbles are closed cells. The results are all 1 or less. In particular, since it has poor water retention and closed pores when used for planting, it has a structure in which microorganisms and the like are difficult to settle, and is not suitable for water purification. On the other hand, in the case of the present Example, the density was 1 or more in any case, and it was confirmed that it could be used as a material with good water retention.

図1は、実施例11〜22における固化体の吸水率、圧壊強度、密度を示すデータ図である。FIG. 1 is a data diagram showing the water absorption rate, crushing strength, and density of solidified bodies in Examples 11 to 22. 図2は、実施例23〜27における固化体の吸水率、圧壊強度、密度を示すデータ図である。FIG. 2 is a data diagram showing the water absorption rate, crushing strength, and density of the solidified bodies in Examples 23 to 27.

Claims (13)

砕石微粉末に、質量比が各々1.0:1.0〜1.0:0.5の範囲内で調整された普通ポルトランドセメント及び水酸化マグネシウムの混合物を加えて配合し、水を加えて混練し、成形し、養生して固化した砕石微粉末の固化体。   Add a mixture of ordinary Portland cement and magnesium hydroxide adjusted to a mass ratio of 1.0: 1.0 to 1.0: 0.5, and add water. Solidified crushed stone powder that has been kneaded, molded, cured and solidified. 砕石微粉末に、質量比が各々1.0:1.0〜1.0:0.5の範囲内で調整された普通ポルトランドセメント及び火山ガラス微粉末の混合物を加えて配合し、水を加えて混練し、成形、養生して固化した砕石微粉末の固化体。   Add a mixture of ordinary Portland cement and volcanic glass fine powder adjusted to a mass ratio within the range of 1.0: 1.0 to 1.0: 0.5, and add water. Kneaded, molded, cured and solidified crushed stone fine powder. 請求項1及び2記載の砕石微粉末の固化体において、
前記混合物は前記配合された配合物の全質量に対し5〜30質量%の範囲で調整されたものであることを特徴とする砕石微粉末の固化体。
In the solidified body of fine crushed stone powder according to claim 1 and 2,
The said mixture is adjusted in the range of 5-30 mass% with respect to the total mass of the said mix | blended mixture, The solidified body of the crushed stone fine powder characterized by the above-mentioned.
請求項2記載の砕石微粉末の固化体において、
前記ガラス微粉末の粒度は45μm以下であることを特徴とする砕石微粉末の固化体。
In the solidified body of fine crushed stone powder according to claim 2,
A solidified powder of fine crushed stone powder, wherein the glass fine powder has a particle size of 45 μm or less.
砕石微粉末と廃ガラス微粉末の混合物において、
前記砕石微粉末の量を前記混合物の10〜80質量%の範囲内に調整し、前記ガラス微粉末の量を前記混合物の20〜90質量%の範囲内に調整して混合し、この混合物を成形し、800〜1000℃の温度の範囲内で焼成して固化した砕石微粉末の固化体。
In the mixture of crushed stone fine powder and waste glass fine powder,
The amount of the fine crushed stone powder is adjusted within the range of 10 to 80% by mass of the mixture, the amount of the fine glass powder is adjusted within the range of 20 to 90% by mass of the mixture, and the mixture is mixed. A solidified product of fine crushed stone powder that has been molded and fired and solidified within a temperature range of 800 to 1000 ° C.
砕石微粉末に、質量比が各々1.0:1.0〜1.0:0.5の範囲内で調整された普通ポルトランドセメント及び水酸化マグネシウムの混合物を加えて配合し、この配合物に水を加えて混練し、この混練された配合物を成形し、この成形された配合物を養生して固化することを特徴とする砕石微粉末の固化方法。   A mixture of ordinary Portland cement and magnesium hydroxide, each having a mass ratio adjusted within the range of 1.0: 1.0 to 1.0: 0.5, was added to the fine crushed stone powder, and this mixture was blended. A method for solidifying fine crushed stone powder, characterized in that water is added and kneaded, the kneaded mixture is molded, and the molded mixture is cured and solidified. 砕石微粉末に、質量比が各々1.0:1.0〜1.0:0.5の範囲内で調整された普通ポルトランドセメント及び火山ガラス微粉末の混合物を加えて配合物とし、この配合物に水を加えて混練し、この混練された配合物を成形し、この成形された配合物を養生して固化することを特徴とする砕石微粉末の固化方法。   A mixture of ordinary Portland cement and volcanic glass fine powder adjusted to a mass ratio within the range of 1.0: 1.0 to 1.0: 0.5, respectively, is added to the crushed stone fine powder to form a blend. A method for solidifying fine crushed stone powder, characterized in that water is added to a product and kneaded, the kneaded compound is molded, and the molded compound is cured and solidified. 請求項6及び7記載の砕石微粉末の固化方法において、
前記混合物は前記配合された配合物の全質量に対し5〜30質量%の範囲で調整されたものであることを特徴とする砕石微粉末の固化方法。
In the solidification method of the crushed stone fine powder of Claim 6 and 7,
The said mixture is what was adjusted in the range of 5-30 mass% with respect to the total mass of the said mix | blended mixture, The solidification method of the fine crushed stone powder characterized by the above-mentioned.
請求項7記載の砕石微粉末の固化方法において、
前記火山ガラス微粉末の粒度は45μm以下であることを特徴とする砕石微粉末の固化方法。
In the solidification method of the crushed stone fine powder of Claim 7,
The volcanic glass fine powder has a particle size of 45 μm or less.
砕石微粉末と廃ガラス微粉末の混合物において、
前記砕石微粉末の量を前記混合物の10〜80質量%の範囲内に調整し、前記ガラス微粉末の量を前記混合物の20〜90質量%の範囲内に調整して混合し、この混合物を成形し、この成形された混合物を800〜1000℃の温度の範囲内で焼成して固化することを特徴とする砕石微粉末の固化方法。
In the mixture of crushed stone fine powder and waste glass fine powder,
The amount of the fine crushed stone powder is adjusted within the range of 10 to 80% by mass of the mixture, the amount of the fine glass powder is adjusted within the range of 20 to 90% by mass of the mixture, and the mixture is mixed. A method for solidifying fine crushed stone powder, characterized by molding and solidifying the molded mixture by firing within a temperature range of 800 to 1000 ° C.
請求項10記載の砕石微粉末の固化方法において、
前記混合物に竹粉砕微粉、おが屑、籾殻粉末から選択される1つ以上の有機粉末を2〜5質量%の範囲内で加え配合物とし固化することを特徴とする砕石微粉末の固化方法。
In the solidification method of the crushed stone fine powder of Claim 10,
One or more organic powders selected from bamboo pulverized fine powder, sawdust, and rice husk powder are added to the mixture within a range of 2 to 5% by mass, and the mixture is solidified.
請求項10記載の砕石微粉末の固化方法において、
前記混合物にベントナイトを加え配合物とし、この配合物に水を加えて混練し、この混練された配合物を成形し、この成形された配合物を乾燥し、この乾燥された配合物を焼成して固化することを特徴とする砕石微粉末の固化方法。
In the solidification method of the crushed stone fine powder of Claim 10,
Bentonite is added to the mixture to form a blend, water is added to the blend and kneaded, the blended blend is molded, the molded blend is dried, and the dried blend is fired. And solidifying the crushed stone fine powder.
請求項12記載の砕石微粉末の固化方法において、
前記配合物に竹粉砕微粉、おが屑、籾殻粉末から選択される1つ以上の有機粉末を2〜5質量%の範囲内で加え配合物とし固化することを特徴とする砕石微粉末の固化方法。
In the solidification method of the crushed stone fine powder of Claim 12,
One or more organic powders selected from bamboo pulverized fine powder, sawdust, and rice husk powder are added to the blend within a range of 2 to 5% by mass and solidified as a blend.
JP2005378380A 2005-12-28 2005-12-28 Solidified product of crushed stone fine powder and method for solidifying the same Pending JP2007176758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005378380A JP2007176758A (en) 2005-12-28 2005-12-28 Solidified product of crushed stone fine powder and method for solidifying the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005378380A JP2007176758A (en) 2005-12-28 2005-12-28 Solidified product of crushed stone fine powder and method for solidifying the same

Publications (1)

Publication Number Publication Date
JP2007176758A true JP2007176758A (en) 2007-07-12

Family

ID=38302297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005378380A Pending JP2007176758A (en) 2005-12-28 2005-12-28 Solidified product of crushed stone fine powder and method for solidifying the same

Country Status (1)

Country Link
JP (1) JP2007176758A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101242123B1 (en) 2010-12-10 2013-03-11 주식회사 송이산업 Composition of reinforcing agent for concrete using Sasa borealis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101242123B1 (en) 2010-12-10 2013-03-11 주식회사 송이산업 Composition of reinforcing agent for concrete using Sasa borealis

Similar Documents

Publication Publication Date Title
JP4962915B2 (en) Manufacturing method of water retention block
JP4540656B2 (en) Composition for porous ceramics, porous ceramics using the same, and method for producing the same
JP5462199B2 (en) Manufacturing method of earth brick using construction surplus soil
JP6119278B2 (en) High water retention block and method for producing high water retention block
JP2006045048A (en) Solidified body of steel-making slag and method for producing the same
CN108249859A (en) A kind of alkali-activated carbonatite cementitious material pervious concrete and preparation method thereof
CN106946537B (en) A kind of titanium gypsum high performance concrete building materials and preparation method thereof
JP6005408B2 (en) Geopolymer composition manufacturing method, structure manufacturing method, and ground improvement method
CN108218348A (en) A kind of room temperature maintenance alkali-activated carbonatite cementitious material pervious concrete and preparation method thereof
JP2010143774A (en) Geopolymer hardened body which uses sewage sludge molten slag as activated filler
JP2011136864A (en) Admixture for porous concrete and porous concrete
JP3535862B2 (en) Water retention block
JP2007145704A (en) Porous ceramic and method for manufacturing the same
JP2010180094A (en) Method for manufacturing water-retentive block
JP2007063084A (en) Diatom earth solidified body and solidifying method
JP5282877B2 (en) Artificial aggregate manufacturing method and concrete manufacturing method
JP6316576B2 (en) Cement composition
JP4383386B2 (en) Method for producing coarse aggregate for porous concrete, method for producing porous concrete, and porous concrete
JP2007176758A (en) Solidified product of crushed stone fine powder and method for solidifying the same
JP4129695B2 (en) Method for producing porous water-absorbing ceramics
KR100804204B1 (en) Yellow soil aggregate and manufacturing method thereof
JP2010024118A (en) Composition for water-permeable/water-retentive concrete or mortar, material obtained by solidifying the same and method for producing the same
JP2005126964A (en) Pavement body
JP4070024B2 (en) Non-dust solidifying material and method for producing the same
JP2008001564A (en) Method for manufacturing porous ceramic fired body