JP2010024118A - Composition for water-permeable/water-retentive concrete or mortar, material obtained by solidifying the same and method for producing the same - Google Patents
Composition for water-permeable/water-retentive concrete or mortar, material obtained by solidifying the same and method for producing the same Download PDFInfo
- Publication number
- JP2010024118A JP2010024118A JP2008190223A JP2008190223A JP2010024118A JP 2010024118 A JP2010024118 A JP 2010024118A JP 2008190223 A JP2008190223 A JP 2008190223A JP 2008190223 A JP2008190223 A JP 2008190223A JP 2010024118 A JP2010024118 A JP 2010024118A
- Authority
- JP
- Japan
- Prior art keywords
- water
- permeable
- mortar
- aggregate
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 39
- 239000004567 concrete Substances 0.000 title claims abstract description 34
- 239000004570 mortar (masonry) Substances 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 239000000463 material Substances 0.000 title description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 54
- 239000007864 aqueous solution Substances 0.000 claims abstract description 25
- 239000004568 cement Substances 0.000 claims abstract description 11
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 28
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 28
- 238000010521 absorption reaction Methods 0.000 claims description 27
- 238000000227 grinding Methods 0.000 claims description 13
- 239000002893 slag Substances 0.000 claims description 11
- 239000010419 fine particle Substances 0.000 claims description 9
- 238000010276 construction Methods 0.000 claims description 5
- 239000011362 coarse particle Substances 0.000 claims description 4
- 239000011148 porous material Substances 0.000 claims description 4
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 3
- 238000009628 steelmaking Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 230000035699 permeability Effects 0.000 abstract description 8
- 239000002994 raw material Substances 0.000 abstract description 3
- 239000000243 solution Substances 0.000 abstract description 2
- 238000003801 milling Methods 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 42
- 230000000694 effects Effects 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 14
- 238000012790 confirmation Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- 239000011398 Portland cement Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000002657 fibrous material Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229920003169 water-soluble polymer Polymers 0.000 description 5
- QMGYPNKICQJHLN-UHFFFAOYSA-M Carboxymethylcellulose cellulose carboxymethyl ether Chemical compound [Na+].CC([O-])=O.OCC(O)C(O)C(O)C(O)C=O QMGYPNKICQJHLN-UHFFFAOYSA-M 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 239000011324 bead Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011400 blast furnace cement Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/46—Water-loss or fluid-loss reducers, hygroscopic or hydrophilic agents, water retention agents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00241—Physical properties of the materials not provided for elsewhere in C04B2111/00
- C04B2111/00284—Materials permeable to liquids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Road Paving Structures (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は、優れた透水性及び保水性を有し、舗装材料等に利用できる透水・保水性コンクリート又はモルタル組成物、該組成物を固化した透水・保水性コンクリート又はモルタル及びその製造方法に関する。 The present invention relates to a water-permeable / water-retaining concrete or mortar composition that has excellent water permeability and water retention and can be used for pavement materials and the like, a water-permeable / water-retaining concrete or mortar obtained by solidifying the composition, and a method for producing the same.
従来からヒートアイランド現象を緩和するために、歩道や建築物の屋上等に、透水・保水性コンクリート又はモルタル(以下、単に透水・保水性コンクリートということがある)が利用されている。また、地下水の保持等にも利用されている。このような透水・保水性コンクリートとしては、例えば、特許文献1に、多孔質材料である水砕スラグ等の吸水率の高い骨材及びポルトランドセメント等を用いた舗装材料としての透水・保水性コンクリートが提案されている。
しかし、このような透水・保水性コンクリートは、セメント水和物により多孔質材料が被覆されてしまうため、吸水率が低下するという問題がある。
また、特許文献2には、水砕スラグ、ゼオライト、火山岩等の多孔質の骨材と、水溶性ポリマー等の吸水性樹脂と、高分子材料等の繊維質物質と、ポルトランドセメント等の硬化材料を、0スランプ又は低スランプの状態で硬く練り混ぜて成型ないし施工してなる透水・保水性コンクリート体が提案されている。
このような透水・保水性コンクリート体は、繊維質物質の配合により、曲げ強度を改善しているが、透水・保水性については必ずしも満足できるとは言えない。
However, such a water-permeable / water-retaining concrete has a problem that the water absorption rate is lowered because the porous material is covered with cement hydrate.
Patent Document 2 discloses porous aggregates such as granulated slag, zeolite, and volcanic rocks, water-absorbing resins such as water-soluble polymers, fibrous materials such as polymer materials, and hardened materials such as Portland cement. A water-permeable / water-retaining concrete body has been proposed which is molded or constructed by kneading and solidifying in a state of 0 slump or low slump.
Such a water-permeable / water-retaining concrete body has improved bending strength due to the blending of the fibrous material, but it cannot be said that the water-permeable / water-retentive body is necessarily satisfactory.
本発明の課題は、透水性と保水性に優れ、特に、乾湿繰返しによっても優れた保水性を維持し、且つ散水による温度低下に優れ、その持続時間が長い透水・保水性コンクリート又はモルタル、その製造方法、並びにその原料となる透水・保水性コンクリート又はモルタル用組成物を提供することにある。 An object of the present invention is excellent in water permeability and water retention, in particular, water permeability / water retention concrete or mortar, which maintains excellent water retention even by repeated wet and dry cycles, is excellent in temperature reduction due to watering, and has a long duration. It is in providing the manufacturing method and the composition for water-permeable and water-retaining concrete or mortar used as the raw material.
本発明者らは、上記課題を解決するために鋭意検討した結果、溶融スラグ等の非多孔質骨材を磨砕処理した、粒度及び粒径が整えられた微粒の細骨材と、カルボキシメチルセルロースを溶解した特定粘度以上の水溶性ポリマー水溶液とを組合わせて用いることにより、当該細骨材がセメントにより被覆され、細骨材粒子同士の間隙による毛細管現象によって、優れた吸水率の確保と維持が可能となり、硬化体の強度も確保され、上記課題が解決しうることを見出し、本発明を完成した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have crushed non-porous aggregates such as molten slag, and fine fine aggregates with adjusted particle sizes and particle diameters, and carboxymethyl cellulose. By using in combination with a water-soluble polymer aqueous solution with a specific viscosity or higher dissolved in water, the fine aggregate is covered with cement, and capillarity due to the gap between fine aggregate particles ensures and maintains an excellent water absorption rate. As a result, it was found that the strength of the cured body was ensured and the above problems could be solved, and the present invention was completed.
即ち、本発明によれば、骨材を磨砕処理した細骨材と、セメントと、粘度100mPa・s以上のカルボキシメチルセルロース(以下、CMCと略す)ポリマー水溶液とを含む透水・保水性コンクリート又はモルタル用組成物が提供される。
また本発明によれば、上記組成物を固化した透水・保水性コンクリート又はモルタルが提供される。
更に本発明によれば、上記組成物を、成型又は施工現場で打ち込んだ後、加振及び/又は加圧し、養生固化することを特徴とする透水・保水性コンクリート又はモルタルの製造方法が提供される。
That is, according to the present invention, water-permeable / water-retaining concrete or mortar containing fine aggregate obtained by grinding aggregate, cement, and a carboxymethylcellulose (hereinafter abbreviated as CMC) polymer aqueous solution having a viscosity of 100 mPa · s or more. Compositions are provided.
Moreover, according to this invention, the water-permeable and water-retentive concrete or mortar which solidified the said composition is provided.
Furthermore, according to the present invention, there is provided a method for producing water-permeable / water-retaining concrete or mortar, which is characterized in that after the composition is driven into a molding or construction site, it is subjected to vibration and / or pressurization to cure and solidify. The
本発明の透水・保水性コンクリート又はモルタルは、特に、骨材を磨砕処理した、粒度及び粒径が整えられた微粒の細骨材と、CMCを溶解した特定粘度以上の水溶性ポリマー水溶液とを組合わせて含むので、透水性と保水性に優れ、特に、乾湿を繰返し施しても優れた保水性を維持し、且つ散水による温度低下に優れ、その持続時間が長いという効果を奏する。従って、本発明の透水・保水性コンクリート又はモルタルは、ヒートアイランド現象等を緩和する舗装材料や建築物の屋上材料等に有用である。
本発明の製造方法は、本発明の透水・保水性コンクリート又はモルタルを、効率よく得ることができる。
The water-permeable / water-retaining concrete or mortar of the present invention is, in particular, a fine-grained fine aggregate whose particle size and particle diameter are adjusted by grinding the aggregate, and a water-soluble polymer aqueous solution having a specific viscosity or higher in which CMC is dissolved. In combination, it is excellent in water permeability and water retention, in particular, it maintains excellent water retention even when it is repeatedly subjected to dry and wet, and is excellent in temperature drop due to watering and has a long duration. Therefore, the water-permeable / water-retaining concrete or mortar of the present invention is useful as a pavement material or a rooftop material of a building that alleviates the heat island phenomenon or the like.
The production method of the present invention can efficiently obtain the water-permeable / water-retaining concrete or mortar of the present invention.
以下本発明を更に詳細に説明する。
本発明の組成物は、骨材を磨砕処理した細骨材と、セメントと、特定粘度のCMCポリマー水溶液を含む。
骨材としては、例えば、溶融スラグ、高炉スラグ又は製鋼スラグ等の非多孔質材料の骨材が挙げられる。これらは単独もしくは2種以上の混合物として用いることができる。
骨材の磨砕処理は、例えば、有底円筒体の上部を開口し、中心部が上方に突出した形状の回転ドラムにより、多孔質骨材同士を摩擦させることにより微粒化し、粒度及び粒径を整える処理であり、市販の磨砕機、具体的には、日本鋳造株式会社製の磨砕機を用いて行うことができる。
The present invention will be described in detail below.
The composition of the present invention comprises fine aggregate obtained by grinding aggregate, cement, and a CMC polymer aqueous solution having a specific viscosity.
Examples of the aggregate include aggregates of non-porous materials such as molten slag, blast furnace slag, and steelmaking slag. These can be used alone or as a mixture of two or more.
The aggregate grinding process is performed by, for example, atomizing the porous aggregate by rubbing it with a rotating drum having a shape in which the upper part of the bottomed cylindrical body is opened and the central part protrudes upward. It can be performed using a commercially available grinder, specifically, a grinder manufactured by Nippon Casting Co., Ltd.
磨砕処理の条件は適宜選択することができるが、本発明の所望の効果を精度良く得るために、得られる細骨材の粗粒率が3.00以下、好ましくは2.70以下、実積率が55%以上、好ましくは65%以上、且つ微粒分量が5〜10%となる条件を選択することが好ましい。
ここで、粗粒率は、JIS A 1102「骨材のふるい分け試験方法」により測定することができ、実積率は、JIS A 1104「骨材の単位容積重量試験方法」により測定することができ、微粒分量は、JIS A 1103「骨材の微粒分量試験方法」により測定することができる。
上記細骨材は、通常、10mmふるいを全部通り、5mmふるいを質量で85%以上通る粒径を有する骨材をいう。
本発明の組成物において、上記細骨材の含有割合は、組成物全量基準で通常30〜50質量%、好ましくは35〜45質量%である。上記範囲外の場合には、所望の透水性及び保水性が得られない恐れがある。
The conditions for the grinding treatment can be appropriately selected. In order to obtain the desired effect of the present invention with high accuracy, the coarse aggregate ratio of the obtained fine aggregate is 3.00 or less, preferably 2.70 or less. It is preferable to select conditions under which the volume ratio is 55% or more, preferably 65% or more, and the fine particle amount is 5 to 10%.
Here, the coarse grain ratio can be measured by JIS A 1102 “Aggregate Screening Test Method”, and the actual volume fraction can be measured by JIS A 1104 “Aggregate Unit Volume Weight Test Method”. The fine particle amount can be measured by JIS A 1103 “Aggregate fine particle amount test method”.
The above-mentioned fine aggregate generally refers to an aggregate having a particle diameter that passes through all of the 10 mm sieve and passes through the 5 mm sieve by 85% or more.
In the composition of the present invention, the content of the fine aggregate is usually 30 to 50% by mass, preferably 35 to 45% by mass based on the total amount of the composition. If it is outside the above range, the desired water permeability and water retention may not be obtained.
上記セメントは特に限定されず、例えば、普通ポルトランドセメント、高炉セメント、早強セメントが挙げられる。
本発明の組成物において、セメントの含有割合は、組成物全量基準で通常10〜30質量%、好ましくは15〜25質量%である。
The cement is not particularly limited, and examples thereof include ordinary Portland cement, blast furnace cement, and early strength cement.
In the composition of the present invention, the content of cement is usually 10 to 30% by mass, preferably 15 to 25% by mass, based on the total amount of the composition.
上記CMCポリマー水溶液は、CMCを溶解した水溶液であって、その粘度が100mPa・s以上、好ましくは100〜5000mPa・sのポリマー水溶液である。該粘度が100mPa・s未満の場合には保水性が低下する恐れがある。CMCポリマー水溶液の濃度は、CMCポリマーの分子量を鑑み、上記粘度となるように適宜決定することができる。
CMCポリマー水溶液の粘度測定は以下の方法により行うことができる。
CMC約10gを精秤し、蒸留水900mlを加え、撹拌機(約600rpm)で撹拌溶解させる。溶解水量=試料摂取量×(99−水分%)になるよう補正し、3時間撹拌して、粘度測定液を調整する。次に、25℃±0.2℃の恒温水槽に粘度測定液を入れて25℃とし、粘度をBM型回転粘度計で測定する。ローターの回転開始から3分後の目盛を読み取り、ローターNo.、回転数によって表1の係数を乗じて粘度値を求めることができる。
The CMC polymer aqueous solution is an aqueous solution in which CMC is dissolved, and the viscosity thereof is 100 mPa · s or more, preferably 100 to 5000 mPa · s. If the viscosity is less than 100 mPa · s, water retention may be reduced. The concentration of the CMC polymer aqueous solution can be appropriately determined so as to achieve the above viscosity in view of the molecular weight of the CMC polymer.
The viscosity of the CMC polymer aqueous solution can be measured by the following method.
About 10 g of CMC is precisely weighed, 900 ml of distilled water is added, and it is stirred and dissolved with a stirrer (about 600 rpm). The amount of dissolved water is corrected so that the amount of sample intake x (99-water%), and the mixture is stirred for 3 hours to adjust the viscosity measurement solution. Next, the viscosity measurement liquid is put in a constant temperature water bath at 25 ° C. ± 0.2 ° C. to 25 ° C., and the viscosity is measured with a BM type rotational viscometer. Read the scale 3 minutes after the start of rotation of the rotor. The viscosity value can be obtained by multiplying the coefficient of Table 1 by the number of revolutions.
CMCの重量平均分子量は、通常25000〜500000、好ましくは50000〜400000である。分子量が小さいと、所定以上の粘度を有する水溶性ポリマー水溶液の調製が困難で、所望の効果が得られないおそれがある。
本発明の組成物において、水溶性ポリマー水溶液の含有割合は、組成物全量基準で通常5〜20質量%、好ましくは5〜10質量%である。上記範囲外の場合には、所望の透水性及び保水性が得られないおそれがある。
The weight average molecular weight of CMC is usually 25,000 to 500,000, preferably 50,000 to 400,000. When the molecular weight is small, it is difficult to prepare a water-soluble polymer aqueous solution having a predetermined viscosity or more, and the desired effect may not be obtained.
In the composition of the present invention, the content of the water-soluble polymer aqueous solution is usually 5 to 20% by mass, preferably 5 to 10% by mass, based on the total amount of the composition. If it is out of the above range, the desired water permeability and water retention may not be obtained.
本発明の組成物においては、上記必須の材料以外に、本発明の作用効果を損なうことが無く、他の所望の効果を得るためにその他の材料を含有させることができる。例えば、強度増加及びコンクリートとするために、粗骨材を配合することができる。また、保水性を更に向上させるために、セルロース等の吸水性を有する高分子繊維状物質を含有させることもできる。該高分子繊維状物質としては、例えば、バッカイ社製の「ウルトラファイバー500」(登録商標)が挙げられる。
これらその他の材料を含有させる場合の含有割合は、その目的に応じて適宜決定することができる。
In the composition of the present invention, in addition to the essential materials described above, other materials can be contained in order to obtain other desired effects without impairing the effects of the present invention. For example, coarse aggregate can be blended to increase strength and to make concrete. Further, in order to further improve the water retention, a polymeric fibrous substance having a water absorption property such as cellulose can be contained. Examples of the polymer fibrous material include “Ultrafiber 500” (registered trademark) manufactured by Bakay.
The content ratio in the case of containing these other materials can be appropriately determined according to the purpose.
本発明の透水・保水性コンクリートは、上記本発明の組成物を固化したものであって、後述する実施例にも示されるように、優れた透水性と保水性を示し、特に、乾湿を繰返し施しても優れた保水性を維持し、且つ散水による温度低下に優れ、その持続時間が長いという作用を示す。 The water-permeable / water-retaining concrete of the present invention is obtained by solidifying the above-described composition of the present invention, and exhibits excellent water permeability and water-retaining properties, as shown in the examples described later. Even if it is applied, it has excellent water retention, is excellent in temperature drop due to watering, and has a long duration.
本発明の透水・保水性コンクリートを製造するには、例えば、上記本発明の組成物を、所望の型枠に導入して成型するか、施工現場に打ち込んだ後、加振及び/又は加圧し、養生固化することにより得ることができる。
本発明の組成物の混合は、通常、上記組成物においてセメント以外の成分を練り混ぜた後、セメントを加えて再度練り混ぜる方法等により行うことができる。
加振及び加圧は、コンクリートの製造に使用される公知の装置を用いて常法により行うことができる。
In order to produce the water-permeable / water-retaining concrete of the present invention, for example, the composition of the present invention is introduced into a desired mold and molded, or after being driven into a construction site, it is subjected to vibration and / or pressurization. It can be obtained by curing and curing.
The composition of the present invention can be usually mixed by a method in which components other than cement are kneaded in the above composition, and then cement is added and kneaded again.
Excitation and pressurization can be performed by a conventional method using a known apparatus used for the production of concrete.
本発明の透水・保水性コンクリートは、舗装ブロック、路面ブロック、多孔質コンクリート又はモルタル製品に使用することができる。
本発明の組成物は、上記製品の原料として使用でき、また、道路の舗装やグランド、公園の舗装工事において現場施工に利用することができる。
The water-permeable / water-retaining concrete of the present invention can be used for pavement blocks, road surface blocks, porous concrete or mortar products.
The composition of the present invention can be used as a raw material for the above products, and can also be used for construction on the road in road pavement, ground and park pavement construction.
以下、本発明を実施例により更に詳細に説明するが、本発明はこれらに限定されない。
実施例1
吸水率0.67%、粗粒率3.30、実積率54.0%、微粒分量0.9%の溶融スラグを、日本鋳造株式会社製の磨砕機(商品名「スラグ磨砕機」)を用いて磨砕処理し、吸水率0.67%、粗粒率2.49、実積率70.5%、微粒分量8.96%の非多孔質細骨材を調製した。また、平均重合度1400、重量平均分子量330000のCMCを水に溶解し、粘度3000mPa・sのCMC水溶液を調製した。
得られた磨砕処理した非多孔質細骨材400質量部及びCMC水溶液80質量部を混合し、更に、普通ポルトランドセメント200質量部を混練りして、モルタル組成物を調製した。次いで、該モルタル組成物を、所定の型枠に導入し、加振及び加圧することにより成型し、養生固化して、4×4×16cmの試験用ブロックを調製した。
得られた試験用ブロックの吸水率Qを、試験用ブロックの絶乾状態の質量を(WD)、試験用ブロックを24時間吸水させた際の質量を(WW)とし、Q=((WW)−(WD))/(WD)×100により算出した。その結果、吸水率は21.5%であった。
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to these.
Example 1
A molten slag having a water absorption rate of 0.67%, a coarse particle ratio of 3.30, an actual volume ratio of 54.0%, and a fine particle amount of 0.9% is used as a grinding machine manufactured by Nippon Casting Co., Ltd. Was used to prepare a non-porous fine aggregate having a water absorption of 0.67%, a coarse particle ratio of 2.49, an actual volume ratio of 70.5%, and a fine particle amount of 8.96%. Further, CMC having an average degree of polymerization of 1400 and a weight average molecular weight of 330000 was dissolved in water to prepare a CMC aqueous solution having a viscosity of 3000 mPa · s.
The obtained pulverized non-porous fine aggregate (400 parts by mass) and CMC aqueous solution (80 parts by mass) were mixed, and 200 parts by mass of ordinary Portland cement was further kneaded to prepare a mortar composition. Next, the mortar composition was introduced into a predetermined mold, molded by vibration and pressurization, and cured and solidified to prepare a 4 × 4 × 16 cm test block.
The water absorption rate Q of the obtained test block is defined as the mass of the test block in an absolutely dry state (W D ), the mass when the test block is absorbed for 24 hours (W W ), and Q = (( It was calculated by (W W ) − (W D )) / (W D ) × 100. As a result, the water absorption was 21.5%.
比較例1及び参考例1
磨砕処理した非多孔質細骨材の代わりに、比較例1では磨砕処理していない吸水率0.67%、粗粒率3.30、実積率54.0%、微粒分量0.9%の溶融スラグを用い、参考例1では粒度0.99〜1.40mmの球状ガラスビーズ(微粒分量0%)を用いた以外は、実施例1と同様に試験用ブロックを調製し、吸水率を算出した。
その結果、比較例1の試験用ブロックの吸水率は9.0%であり、実施例1よりかなり低いものであった。また、参考例1の試験用ブロックの吸水率は、粒度が整った球状のガラスビーズを用いたにもかかわらず、実施例1より低い14.8%であった。
Comparative Example 1 and Reference Example 1
In place of the non-porous fine aggregate subjected to the grinding treatment, in Comparative Example 1, the water absorption ratio of 0.67%, the coarse grain ratio 3.30, the actual volume ratio 54.0%, and the
As a result, the water absorption of the test block of Comparative Example 1 was 9.0%, which was considerably lower than that of Example 1. Further, the water absorption of the test block of Reference Example 1 was 14.8%, which was lower than that of Example 1, despite using spherical glass beads having a uniform particle size.
比較例2
CMC水溶液の代わりに、粘度3000mPa・sのポリアクリル酸水溶液を用いた以外は、実施例1と同様に試験用ブロックを調製し、吸水率を算出した。その結果、吸水率は実施例1よりかなり低い9.3%であった。
比較例1及び比較例2の結果より、実施例1における優れた吸収率は、磨砕処理した多孔質細骨材と、特定粘度のCMC水溶液との組合わせにより得られることがわかった。
Comparative Example 2
A test block was prepared in the same manner as in Example 1 except that a polyacrylic acid aqueous solution having a viscosity of 3000 mPa · s was used instead of the CMC aqueous solution, and the water absorption was calculated. As a result, the water absorption was 9.3% which was considerably lower than that of Example 1.
From the results of Comparative Example 1 and Comparative Example 2, it was found that the excellent absorptance in Example 1 was obtained by a combination of a ground fine porous aggregate and a CMC aqueous solution having a specific viscosity.
比較例3
実施例1で用いたCMC水溶液の代わりに、平均重合度100、重量平均分子量17000のCMCを水に溶解した、粘度80mPa・sのCMC水溶液を用いた以外は、実施例1と同様に、試験用ブロックを調製し、吸水率を算出した。その結果、吸水率は実施例1より低い11.8%であった。
Comparative Example 3
The test was conducted in the same manner as in Example 1 except that instead of the CMC aqueous solution used in Example 1, a CMC aqueous solution having an average degree of polymerization of 100 and a weight average molecular weight of 17000 dissolved in water and having a viscosity of 80 mPa · s was used. A block was prepared and the water absorption was calculated. As a result, the water absorption was 11.8%, which was lower than that in Example 1.
実施例2
実施例1で用いたCMC水溶液の代わりに、平均重合度800、重量平均分子量174000のCMCを水に溶解した、粘度500mPa・sのCMC水溶液を用いた以外は、実施例1と同様に、試験用ブロックを調製し、吸水率を算出した。その結果、吸水率は実施例1より低い14.8%であったが、粒度が整った球状のガラスビーズを用いた参考例1と同程度の高い吸水率が得られた。
Example 2
The test was conducted in the same manner as in Example 1 except that a CMC aqueous solution having a viscosity of 500 mPa · s, in which CMC having an average degree of polymerization of 800 and a weight average molecular weight of 174,000 was dissolved in water, was used instead of the CMC aqueous solution used in Example 1. A block was prepared and the water absorption was calculated. As a result, the water absorption was 14.8%, which was lower than that of Example 1, but a high water absorption comparable to that of Reference Example 1 using spherical glass beads having a uniform particle size was obtained.
実施例3
実施例1で調製した磨砕処理した非多孔質細骨材6000質量部と、平均重合度800、重量平均分子量174000のCMC粉末40質量部に水760質量部を混合して調製した、粘度300mPa・sのCMC水溶液800質量部とを混合し、更に普通ポルトランドセメント2000質量部を混練りして、モルタル組成物を調製した。次いで、該モルタル組成物を、所定の型枠に導入し、加振及び加圧することにより成型し、養生固化して、4×4×16cmの試験用ブロックを調製した。
(保水効果の確認試験)
試験用ブロックの絶乾状態の質量を(WD)、試験用ブロックを24時間吸水させた際の質量を(WW)とし、得られた試験用ブロックの吸水率Qを、Q=((WW)−(WD))/(WD)×100により算出した。その後、温度20℃、湿度60%の恒温恒湿室内に放置して、24時間ごとに質量を計測した。その質量を(Wn)とし、Q=((Wn)−(WD))/(WD)×100により、合計25日間、試験用ブロックの吸水率を求め、グラフにプロットした。結果を図1に示す。
(乾湿繰り返し効果の確認試験)
試験用ブロックの絶乾状態の質量を(WD)、試験用ブロックを24時間吸水させた際の質量を(WW)とし、得られた試験用ブロックの吸水率Qを、Q=((WW)−(WD))/(WD)×100により算出した。その後、温度20℃、湿度60%の恒温恒湿室内に放置して、24時間ごとに質量を計測した。その質量を(Wn)とし、Q=((Wn)−(WD))/(WD)×100により、合計25日間、試験用ブロックの吸水率を求めた。但し、試験用ブロックの24時間吸水後、上記恒温恒湿室内で5日間乾燥状態にした後、2日間吸水する工程を繰返し、乾燥及び加湿(吸水)状態を繰返しながら吸水率を測定した。結果を図2に示す。
Example 3
Viscosity of 300 mPa prepared by mixing 6000 parts by mass of non-porous fine aggregate subjected to grinding treatment prepared in Example 1, 40 parts by mass of CMC powder having an average degree of polymerization of 800 and a weight average molecular weight of 174,000, and 760 parts by mass of water. -800 mass parts of CMC aqueous solution of s was mixed, and 2000 mass parts of normal Portland cement was further kneaded to prepare a mortar composition. Next, the mortar composition was introduced into a predetermined mold, molded by vibration and pressurization, and cured and solidified to prepare a 4 × 4 × 16 cm test block.
(Confirmation test of water retention effect)
The absolute dry mass of the test block is (W D ), the mass when the test block is absorbed for 24 hours is (W W ), and the water absorption Q of the obtained test block is Q = ((( It was calculated by (W W ) − (W D )) / (W D ) × 100. Then, it was left in a constant temperature and humidity room at a temperature of 20 ° C. and a humidity of 60%, and the mass was measured every 24 hours. The mass was (Wn), and the water absorption of the test block was determined for a total of 25 days from Q = ((Wn) − (W D )) / (W D ) × 100, and plotted on a graph. The results are shown in FIG.
(Confirmation test of repeated wet and dry effects)
The absolute dry mass of the test block is (W D ), the mass when the test block is absorbed for 24 hours is (W W ), and the water absorption Q of the obtained test block is Q = ((( It was calculated by (W W ) − (W D )) / (W D ) × 100. Then, it was left in a constant temperature and humidity room at a temperature of 20 ° C. and a humidity of 60%, and the mass was measured every 24 hours. The mass was (Wn), and the water absorption rate of the test block was determined for a total of 25 days by Q = ((Wn) − (W D )) / (W D ) × 100. However, after absorbing water for 24 hours in the test block, the process was allowed to dry for 5 days in the constant temperature and humidity chamber, and then the process of absorbing water for 2 days was repeated, and the water absorption was measured while repeating the dry and humidified (water absorption) state. The results are shown in FIG.
実施例4
モルタル組成物に、吸水性を有する高分子繊維状物質として、セルロース(「ウルトラファイバー500」(登録商標)、バッカイ社製)4質量部を更に加えた以外は、実施例3と同様に試験用ブロックを製造した。得られた試験用ブロックを用いて実施例3と同様に保水効果の確認試験及び乾湿繰り返し効果の確認試験を行った。結果を図1及び図2に示す。
Example 4
For testing as in Example 3, except that 4 parts by mass of cellulose ("Ultrafiber 500" (registered trademark), manufactured by Baccai)) was further added to the mortar composition as a polymeric fibrous material having water absorption A block was manufactured. Using the obtained test block, a water retention effect confirmation test and a wet and dry repetition effect confirmation test were conducted in the same manner as in Example 3. The results are shown in FIGS.
比較例4
実施例1で調製した磨砕処理した非多孔質細骨材の代わりに、吸水率1.37%、粗粒率2.79、実積率64.3%、微粒分量1.7%の大井川産細骨材(天然骨材)を用いた以外は、実施例3と同様に試験用ブロックを製造した。得られた試験用ブロックを用いて実施例3と同様に保水効果の確認試験及び乾湿繰り返し効果の確認試験を行った。結果を図1及び図2に示す。
Comparative Example 4
Instead of the ground non-porous fine aggregate prepared in Example 1, Oikawa has a water absorption rate of 1.37%, a coarse particle ratio of 2.79, an actual volume ratio of 64.3%, and a fine particle amount of 1.7%. A test block was produced in the same manner as in Example 3 except that the fine aggregate (natural aggregate) was used. Using the obtained test block, a water retention effect confirmation test and a wet and dry repetition effect confirmation test were conducted in the same manner as in Example 3. The results are shown in FIGS.
比較例5
実施例1で調製した磨砕処理した非多孔質細骨材6000質量部と、実施例3で調製したCMC水溶液の調製に用いたCMC粉末40質量部と、水760質量部とを混合し、更に普通ポルトランドセメント2000質量部を混練りして、モルタル組成物を調製した。次いで、実施例3と同様に試験用ブロックを製造した。得られた試験用ブロックを用いて実施例3と同様に保水効果の確認試験及び乾湿繰り返し効果の確認試験を行った。結果を図1及び図2に示す。
Comparative Example 5
6000 parts by mass of the non-porous fine aggregate subjected to grinding treatment prepared in Example 1, 40 parts by mass of CMC powder used for preparing the CMC aqueous solution prepared in Example 3, and 760 parts by mass of water were mixed. Further, 2000 parts by mass of ordinary Portland cement was kneaded to prepare a mortar composition. Next, a test block was produced in the same manner as in Example 3. Using the obtained test block, a water retention effect confirmation test and a wet and dry repetition effect confirmation test were conducted in the same manner as in Example 3. The results are shown in FIGS.
図1より、磨砕処理した骨材及び特定粘度のCMC水溶液を含む実施例3及び4の試験用ブロックは、初期の保水効果が大きく、3日間程度保水効果があることが分かった。この際、セルロースを含む実施例4は、実施例3に比して更に保水効果が高いことが分かった。
一方、細骨材として天然骨材を用いた比較例4では、ほとんど保水効果が得られなかった。また、用いた材料の成分は実施例3と同じである比較例5は、CMCを粉体の状態で混合しているので、実施例のような優れた保水性は得られなかった。
図2より、実施例3及び4では、乾燥により水分を失っても、水分補給を行えば保水効果が初期と同程度に回復することが分かった。CMC粉末を混合した比較例5においても保水効果の回復は見られたが、保水効果自体が小さいものであった。
From FIG. 1, it was found that the test blocks of Examples 3 and 4 containing the aggregate subjected to grinding treatment and the CMC aqueous solution having a specific viscosity had a large initial water retention effect and a water retention effect for about 3 days. At this time, it was found that Example 4 containing cellulose had a higher water retention effect than Example 3.
On the other hand, in Comparative Example 4 in which natural aggregate was used as the fine aggregate, the water retention effect was hardly obtained. Moreover, since the component of the used material was the same as that of Example 3, Comparative Example 5 was mixed with CMC in a powder state, so that excellent water retention as in Example was not obtained.
From FIG. 2, it was found that in Examples 3 and 4, even if water was lost due to drying, the water retention effect recovered to the same level as in the initial stage if water was replenished. In Comparative Example 5 in which CMC powder was mixed, the water retention effect was recovered, but the water retention effect itself was small.
実施例5
実施例1で調製した磨砕処理した非多孔質細骨材14000質量部と、CMC粉末120質量部に水2280質量部を混合して調製した、粘度300mPa・sのCMC水溶液2400質量部と、吸水性を有する高分子繊維状物質として、セルロース(「ウルトラファイバー500」(登録商標)、バッカイ社製)60質量部とを混合し、更に、秩父産粗骨材14000質量部及び普通ポルトランドセメント6000質量部を混練りして、コンクリート組成物を調製した。次いで、該コンクリート組成物を、所定の型枠に導入し、加振及び加圧することにより成型し、養生固化して、50×50×6cmの試験用ブロックを調製した。
得られた試験用ブロックを日中の外気温度が30℃以上の室外に設置し、その後、10リットル/m2の散水を行った。散水前後の試験用ブロックの温度を計測し、散水温度挙動を観察した。結果を図3に示す。
また、比較として、上記と同じ条件で、市販の透水・保水性コンクリートブロック、芝生、自然土及びアスファルトについても同様に散水前後の温度を計測し、散水温度挙動を観察した。結果を図3に示す。
図3より、実施例5の試験用ブロックは、散水前の温度は市販の透水・保水性コンクリートブロックより高かったが、散水後の温度は急激に低下し、その持続時間が長いことが分かった。
Example 5
14000 parts by mass of the non-porous fine aggregate subjected to grinding prepared in Example 1 and 2400 parts by mass of a CMC aqueous solution having a viscosity of 300 mPa · s prepared by mixing 120 parts by mass of CMC powder with water, As a polymeric fibrous material having water absorbency, 60 parts by mass of cellulose ("Ultrafiber 500" (registered trademark), manufactured by Bakay) is mixed, and further, 14,000 parts by mass of Chichibu coarse aggregate and ordinary Portland cement 6000 are mixed. A mass composition was kneaded to prepare a concrete composition. Next, the concrete composition was introduced into a predetermined mold, molded by vibration and pressure, and cured and solidified to prepare a 50 × 50 × 6 cm test block.
The obtained test block was installed outside a room where the outdoor air temperature during the day was 30 ° C. or higher, and then watering of 10 liter / m 2 was performed. The temperature of the test block before and after watering was measured and the behavior of watering temperature was observed. The results are shown in FIG.
Moreover, as a comparison, the temperature before and after watering was measured similarly about the commercially available water-permeable / water-retaining concrete block, lawn, natural soil, and asphalt, and the watering temperature behavior was observed. The results are shown in FIG.
From FIG. 3, it was found that the test block of Example 5 had a higher temperature before watering than a commercially available water-permeable / water-retaining concrete block, but the temperature after watering dropped sharply and its duration was long. .
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008190223A JP5313578B2 (en) | 2008-07-23 | 2008-07-23 | Water-permeable / water-retaining concrete or mortar composition, solidified product and production method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008190223A JP5313578B2 (en) | 2008-07-23 | 2008-07-23 | Water-permeable / water-retaining concrete or mortar composition, solidified product and production method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010024118A true JP2010024118A (en) | 2010-02-04 |
JP5313578B2 JP5313578B2 (en) | 2013-10-09 |
Family
ID=41730273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008190223A Active JP5313578B2 (en) | 2008-07-23 | 2008-07-23 | Water-permeable / water-retaining concrete or mortar composition, solidified product and production method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5313578B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019156710A (en) * | 2018-03-06 | 2019-09-19 | 株式会社デイ・シイ | Cement composition, and neutralization suppression method of cement cured article using the cement composition |
CN111763038A (en) * | 2019-04-02 | 2020-10-13 | 北京恒泰岩磊科技有限公司 | Ecological colorful permeable pavement material and preparation method thereof |
CN113702221A (en) * | 2021-09-10 | 2021-11-26 | 长业建设集团有限公司 | Device and method for testing soaking-circulating traffic load of construction waste sponge pavement |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11323018A (en) * | 1998-05-08 | 1999-11-26 | Daicel Chem Ind Ltd | Liquid cellulose ether composition and its production |
JP2001048621A (en) * | 1999-08-12 | 2001-02-20 | Sumitomo Seika Chem Co Ltd | Additive for water permeable concrete |
JP2004083336A (en) * | 2002-08-27 | 2004-03-18 | Tetra Co Ltd | Fresh concrete, its producing method, and concrete formed article formed from the fresh concrete |
-
2008
- 2008-07-23 JP JP2008190223A patent/JP5313578B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11323018A (en) * | 1998-05-08 | 1999-11-26 | Daicel Chem Ind Ltd | Liquid cellulose ether composition and its production |
JP2001048621A (en) * | 1999-08-12 | 2001-02-20 | Sumitomo Seika Chem Co Ltd | Additive for water permeable concrete |
JP2004083336A (en) * | 2002-08-27 | 2004-03-18 | Tetra Co Ltd | Fresh concrete, its producing method, and concrete formed article formed from the fresh concrete |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019156710A (en) * | 2018-03-06 | 2019-09-19 | 株式会社デイ・シイ | Cement composition, and neutralization suppression method of cement cured article using the cement composition |
CN111763038A (en) * | 2019-04-02 | 2020-10-13 | 北京恒泰岩磊科技有限公司 | Ecological colorful permeable pavement material and preparation method thereof |
CN113702221A (en) * | 2021-09-10 | 2021-11-26 | 长业建设集团有限公司 | Device and method for testing soaking-circulating traffic load of construction waste sponge pavement |
CN113702221B (en) * | 2021-09-10 | 2023-11-07 | 长业建设集团有限公司 | Device and method for testing water immersion-circulation traffic load of construction waste sponge pavement |
Also Published As
Publication number | Publication date |
---|---|
JP5313578B2 (en) | 2013-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200540135A (en) | High-strength concrete prefabricated piece having both water permeability and water-retaining property | |
CN109503208A (en) | High-intensitive pervious concrete and preparation method thereof | |
CN108484069A (en) | A kind of enhancing concrete for plant growth and preparation method thereof | |
JP6119278B2 (en) | High water retention block and method for producing high water retention block | |
JP5313578B2 (en) | Water-permeable / water-retaining concrete or mortar composition, solidified product and production method thereof | |
JP2005042439A (en) | Surface covering aggregate for permeable pavement utilizing tile waste material, permeable paving material and paving body utilizing permeable paving material and these manufacturing method | |
WO1996017900A1 (en) | Inorganic material for greening and soil stabilization, and thick-layer base concrete/grass seed spraying and soil stabilizing techniques using the same | |
CN106810150A (en) | A kind of EVA resin cooperates with the wear-resisting enhanced cement base water-permeable brick of slag micro powder | |
JP2011136864A (en) | Admixture for porous concrete and porous concrete | |
JP4138398B2 (en) | Concrete pavement and concrete block with water retention function | |
KR20110049403A (en) | Concrete water-permeable block using pore generator and manufacturing method thereof | |
JP4383386B2 (en) | Method for producing coarse aggregate for porous concrete, method for producing porous concrete, and porous concrete | |
JP2003252673A (en) | Water-retentive block | |
JP2004299965A (en) | Water-retentive porous concrete formed body and method of manufacturing the same | |
JP2008223385A (en) | Porous concrete and its manufacturing process | |
JP2014218860A (en) | Soil improvement method using sludge powder | |
JP4140228B2 (en) | Hydraulic material for water retentive solidified body and water retentive solidified body | |
CN108529932A (en) | Pumpable light aggregate concrete and preparation method thereof | |
JP2008001868A (en) | Modifier of soil material for pavement, clay pavement material, its preparation process and paving process | |
JP2011052442A (en) | Pavement structure and construction method of paving | |
JP2008222518A (en) | Shrinkage-reduced porous concrete and its manufacturing method | |
TWI263624B (en) | Method for modifying reservoir sludge and construction material containing modified reservoir sludge | |
JP2002180410A (en) | Paving material and method of manufacturing its mold | |
JP2002274975A (en) | Hardened porous concrete and method of manufacturing the same | |
CN107840630A (en) | A kind of environment friendly and pollution-free concrete dew stone agent and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110722 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120731 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120912 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20121120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20121120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20121120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130611 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130704 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5313578 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |