JP2007171826A - Conductive member for electrophotographic device - Google Patents

Conductive member for electrophotographic device Download PDF

Info

Publication number
JP2007171826A
JP2007171826A JP2005372599A JP2005372599A JP2007171826A JP 2007171826 A JP2007171826 A JP 2007171826A JP 2005372599 A JP2005372599 A JP 2005372599A JP 2005372599 A JP2005372599 A JP 2005372599A JP 2007171826 A JP2007171826 A JP 2007171826A
Authority
JP
Japan
Prior art keywords
electrophotographic apparatus
particles
conductive
coating layer
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005372599A
Other languages
Japanese (ja)
Inventor
Hisao Kato
久雄 加藤
Atsushi Murata
淳 村田
Noriaki Kuroda
紀明 黒田
Yukinori Nagata
之則 永田
Masaki Ozawa
雅基 小澤
Kazuyuki Shishizuka
和之 宍塚
Toshiro Suzuki
敏郎 鈴木
Michitaka Kitahara
道隆 北原
Yoko Kuruma
洋子 来摩
Takumi Furukawa
匠 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005372599A priority Critical patent/JP2007171826A/en
Publication of JP2007171826A publication Critical patent/JP2007171826A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive member for an electrophotographic device, which has uniform electric characteristics to have a sufficient charging capability and has a low resistance so as to be applicable to a high-speed electrophotographic device and has uniform electric characteristics even after being used for a long period and is superior in resistance stability and is capable of suppressing pollution of an image carrying member like a photoreceptor. <P>SOLUTION: The conductive member for an electrophotographic device includes a conductive support member and a coating layer formed on the outside of the conductive support member, and the coating layer includes composite particles having metallic particles stuck to surfaces of inorganic oxide particles, and a resistance value Y of the conductive member to a voltage of 50 to 200V is within a range satisfying an expression (1): Y(Ω)=A*e(Bx) wherein 0<A<1.0E+10, -0.0001≥B≥-0.010, and 50≥x(V)≥200 are satisfied. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子写真装置に設けられる現像部材、帯電部材、転写部材等に用いられる電子写真装置用導電性部材に関する。   The present invention relates to a conductive member for an electrophotographic apparatus used for a developing member, a charging member, a transfer member and the like provided in the electrophotographic apparatus.

複写機や光プリンタ等の電子写真装置、静電記録装置等の画像形成装置において、感光体や誘電体等の像担持体面を帯電処理する手段として、従来よりコロナ放電装置が利用されてきた。しかしながら、コロナ放電装置は像担持体等の感光体の表面を所定の電位に均一に帯電処理する手段として有効であるものの、高価な高圧電源を必要とする。また、装置が大型になることに加え、放電の際にオゾン等のコロナ生成物の発生が多く、異常放電により被帯電体面が破壊されるおそれがあった。   In image forming apparatuses such as electrophotographic apparatuses such as copying machines and optical printers and electrostatic recording apparatuses, corona discharge apparatuses have been conventionally used as means for charging an image carrier surface such as a photosensitive member or a dielectric. However, the corona discharge device is effective as means for uniformly charging the surface of a photoconductor such as an image carrier to a predetermined potential, but requires an expensive high-voltage power supply. In addition to the increase in size of the apparatus, corona products such as ozone are often generated during discharge, and the surface of the charged body may be destroyed due to abnormal discharge.

このようなコロナ放電装置に対して、近年では接触帯電方式が採用されている。接触帯電方式においては、電圧を印加した帯電部材を感光体表面に近接又は接触させて、被帯電体面の帯電処理を行なっている。接触帯電方式においては、オゾン等のコロナ生成物の発生が少ない、異常放電による被帯電体面の破壊が少ない、構造が簡単で低コスト化や装置の小型化を図ることができる等の利点がある。接触帯電方式には、金属製芯金等の導電性支持体上に半導電性の弾性体の被覆層が形成されたゴムローラー型の帯電部材が使用されている。   In recent years, a contact charging method has been adopted for such a corona discharge device. In the contact charging method, a charged member surface is charged by bringing a charging member to which a voltage is applied close to or in contact with the surface of the photoreceptor. In the contact charging method, there are advantages such as less generation of corona products such as ozone, less destruction of the surface of the object to be charged due to abnormal discharge, simple structure, low cost and downsizing of the apparatus. . In the contact charging method, a rubber roller type charging member in which a semiconductive elastic coating layer is formed on a conductive support such as a metal core is used.

上記帯電部材の弾性体からなる被覆層は、感光体等の被帯電体表面のピンホールや傷等により生じるリークを防止するために、適度な半導電性を有することが必要である。更に、感光体を均一に帯電させるためには、帯電部材の電気抵抗値が体積固有抵抗率で1×103〜1×109Ω・cm程度の均一な半導電性であることが好ましい。このような電気特性を弾性体層に付与するために、カーボンブラック等の導電粒子を配合し半導電化した電子導電系ゴム組成物を用いて弾性体層が作製されている。 The coating layer made of an elastic body of the charging member needs to have an appropriate semiconductivity in order to prevent leakage caused by pinholes or scratches on the surface of a charged body such as a photoreceptor. Further, in order to uniformly charge the photosensitive member, it is preferable that the electric resistance value of the charging member is uniform semiconductivity having a volume resistivity of about 1 × 10 3 to 1 × 10 9 Ω · cm. In order to impart such electrical characteristics to the elastic layer, an elastic layer is produced using an electronic conductive rubber composition that is semiconductive by blending conductive particles such as carbon black.

かかる電子導電系ゴム組成物は原料ゴムに配合するカーボンブラック等の導電粒子の添加量によって、電気抵抗を調整することができる。しかし、体積固有抵抗率が1×103〜1×109Ω・cmの半導電領域においては、導電粒子の配合量の僅かな変化により、電気抵抗が大きく変化する場合がある。このような半導電領域において均質な所望の電気抵抗値を示す弾性体層を作製することは困難であり、電子導電系ゴム組成物は帯電部材内及び帯電部材間での電気抵抗のバラツキの発生の要因となる。 In such an electronic conductive rubber composition, the electric resistance can be adjusted by the amount of conductive particles such as carbon black blended in the raw rubber. However, in the semiconductive region having a volume resistivity of 1 × 10 3 to 1 × 10 9 Ω · cm, the electrical resistance may change greatly due to a slight change in the blending amount of the conductive particles. It is difficult to produce an elastic body layer that exhibits a uniform desired electric resistance value in such a semiconductive region, and the electronic conductive rubber composition causes variations in electric resistance within and between charging members. It becomes a factor of.

電気抵抗が均一なゴム組成物として、エピクロルヒドリンゴムやNBR等のそれ自身が半導電性を有する極性ゴム組成物、或いは原料ゴムにイオン性導電剤を添加して半導電性を付与したイオン導電系ゴム組成物が知られている。   A rubber composition with uniform electrical resistance, such as epichlorohydrin rubber, NBR, or the like, a polar rubber composition that itself has semiconductivity, or an ion conductive system that imparts semiconductivity by adding an ionic conductive agent to raw rubber Rubber compositions are known.

一方、帯電部材には感光体などの像担持体を汚染しないことも要求される。接触帯電方式においては帯電部材が感光体などに接触して使用されるため、長期間の使用において、帯電部材中のイオン性導電剤や軟化剤等の低分子成分が析出し、感光体を汚染して感光体に機能障害が生じ、画像不良が発生する場合がある。   On the other hand, the charging member is also required not to contaminate an image carrier such as a photoreceptor. In the contact charging method, the charging member is used in contact with the photoconductor, etc., so that, for a long period of use, low molecular components such as ionic conductive agent and softening agent in the charging member are deposited and contaminate the photoconductor. As a result, a functional failure may occur in the photosensitive member, and an image defect may occur.

低分子成分による感光体汚染を抑制する方法として、帯電部材に使用されるゴム材料に層状有機珪酸塩や多孔質充填材を混入する例がある。(例えば、特許文献1、2参照)。   As a method for suppressing photoconductor contamination due to low molecular components, there is an example in which a layered organic silicate or a porous filler is mixed in a rubber material used for a charging member. (For example, refer to Patent Documents 1 and 2).

さらに、イオン性導電剤の中でも揮発性の小さいイオン性液体を用いたり、ポリマーとの親和性の高いイオン性導電剤を用いることで、感光体汚染を軽減する例がある。(例えば、特許文献3、4参照)。
特開2003−223038号公報 特開2001−109233号公報 特開2003−202722号公報 特開2004−272209号公報
Furthermore, there are examples in which the contamination of the photoconductor is reduced by using an ionic liquid having low volatility among ionic conductive agents or using an ionic conductive agent having a high affinity with a polymer. (For example, refer to Patent Documents 3 and 4).
JP 2003-223038 A JP 2001-109233 A JP 2003-202722 A JP 2004-272209 A

本発明の課題は、電気的特性が均一で充分な帯電能力を有し、高速電子写真装置に適用可能な低抵抗を有し、長期の使用後でも均一な電気特性を有し抵抗安定性にも優れ、感光体等の像担持部材の汚染を抑制できる電子写真装置用導電性部材を提供することにある。   An object of the present invention is to have uniform electrical characteristics, sufficient charging ability, low resistance applicable to high-speed electrophotographic apparatus, uniform electrical characteristics even after long-term use, and resistance stability. Another object of the present invention is to provide a conductive member for an electrophotographic apparatus that is excellent in that it can suppress contamination of an image bearing member such as a photoreceptor.

本発明者らは、電子写真装置における画像形成プロセスに対するより一層の高速化への要求の下で、電子写真感光体を安定に帯電等させるために、帯電部材等の低抵抗化について検討した。イオン性液体やイオン性導電剤(以下、これらを纏めてイオン性導電剤等という。)を用いた被覆層を有する帯電部材等において、被覆層中のイオン性導電剤等の添加量を増加することにより、帯電部材等の低抵抗化を図ることができる。しかし、イオン性導電剤等の添加量の増加に伴ない、イオン性導電剤等の被覆層からの析出量も増加し、析出したイオン導電剤等の移行による感光体の汚染や破損の従来からの問題に加え、被覆層中における多量のイオン性導電剤等に起因する問題があることが分かった。被覆層中における多量のイオン性導電剤等に起因する問題として、被覆層内において経時的にイオン性導電剤等の偏在が生じることを挙げることができる。イオン性導電剤等の偏在により帯電部材の抵抗値に不均一が生じ、それによって帯電能が経時的に変化してしまう場合があることが分かった。鋭意研究の結果、被覆層に、金属粒子が無機酸化物粒子の表面に付着した複合粒子を含み、50〜200Vの電圧に対して特定の範囲の抵抗値を有することにより、経時に伴って生じる被覆層中のイオン性導電剤等の析出、偏在を抑制することができることを見い出した。これにより、帯電部材等において、高速電子写真装置に適用可能な低抵抗を有し、長期の使用後においても抵抗安定性を得ることができ、感光体の汚染を抑制し、安定した帯電を行うことができることの知見を得て、かかる知見に基づき、本発明を完成するに至った。   The inventors of the present invention have studied the reduction in resistance of charging members and the like in order to stably charge the electrophotographic photosensitive member under the demand for further speeding up the image forming process in the electrophotographic apparatus. In a charging member having a coating layer using an ionic liquid or an ionic conductive agent (hereinafter collectively referred to as an ionic conductive agent), the amount of addition of the ionic conductive agent or the like in the coating layer is increased. As a result, the resistance of the charging member or the like can be reduced. However, as the amount of the ionic conductive agent added increases, the amount of the ionic conductive agent deposited from the coating layer also increases. In addition to the above problem, it has been found that there is a problem caused by a large amount of the ionic conductive agent in the coating layer. A problem caused by a large amount of the ionic conductive agent or the like in the coating layer can be that uneven distribution of the ionic conductive agent or the like occurs with time in the coating layer. It has been found that uneven distribution of the ionic conductive agent or the like causes non-uniformity in the resistance value of the charging member, which may change the charging ability over time. As a result of intensive studies, the coating layer includes composite particles in which metal particles adhere to the surface of the inorganic oxide particles, and has a resistance value in a specific range with respect to a voltage of 50 to 200 V, which occurs with time. It has been found that precipitation and uneven distribution of ionic conductive agent and the like in the coating layer can be suppressed. As a result, the charging member has a low resistance applicable to a high-speed electrophotographic apparatus, can obtain resistance stability even after long-term use, suppresses contamination of the photoreceptor, and performs stable charging. Based on this knowledge, the present invention has been completed.

すなわち、本発明は、導電性支持体と、その外側に形成された被覆層とを有し、該被覆層が、金属粒子が無機酸化物粒子表面に付着した複合粒子を含有する電子写真装置用導電性部材であって、50〜200Vにおける電圧に対して抵抗値Yが式(1)
Y(Ω)=A・e(Bx) (1)
(式中、0<A<1.0E+10、−0.0001≧B≧−0.010、50≦x(V)≦200を満たす。)を満たす範囲であることを特徴とする電子写真装置用導電性部材に関する。
That is, the present invention has an electroconductive support and a coating layer formed on the outside thereof, and the coating layer contains composite particles in which metal particles adhere to the surface of inorganic oxide particles. A conductive member having a resistance value Y of a formula (1) with respect to a voltage of 50 to 200V
Y (Ω) = A · e (Bx) (1)
For an electrophotographic apparatus characterized by satisfying the following conditions (where 0 <A <1.0E + 10, −0.0001 ≧ B ≧ −0.010, 50 ≦ x (V) ≦ 200). The present invention relates to a conductive member.

本発明の電子写真装置用導電性部材は、電気的特性が均一で充分な帯電能力を有し、高速電子写真装置に適用可能な低抵抗を有し、長期の使用においても均一な電気特性を有し抵抗安定性にも優れ、感光体等の像担持部材の汚染を抑制できる。   The conductive member for an electrophotographic apparatus of the present invention has uniform electric characteristics, sufficient charging ability, low resistance applicable to a high-speed electrophotographic apparatus, and uniform electric characteristics even in long-term use. It has excellent resistance stability and can suppress contamination of an image bearing member such as a photoreceptor.

本発明の電子写真装置用導電性部材は、導電性支持体と、その外側に形成された被覆層とを有し、該被覆層が、金属粒子が無機酸化物粒子表面に付着した複合粒子を含有する電子写真装置用導電性部材である。そして、50〜200Vにおける電圧に対して抵抗が式(1)
Y(Ω)=A・e(Bx) (1)
(式中、0<A<1.0E+10、−0.0001≧B≧−0.010、50≦x(V)≦200を満たす。)を満たす範囲であることを特徴とする。
The electroconductive member for an electrophotographic apparatus of the present invention has a conductive support and a coating layer formed on the outside thereof, and the coating layer comprises composite particles in which metal particles adhere to the surface of inorganic oxide particles. It is the electroconductive member for electrophotographic apparatuses to contain. And the resistance is the expression (1) with respect to the voltage at 50 to 200V
Y (Ω) = A · e (Bx) (1)
(Where, 0 <A <1.0E + 10, −0.0001 ≧ B ≧ −0.010, and 50 ≦ x (V) ≦ 200).

本発明の電子写真装置用導電性部材に設けられる導電性支持体は、ローラー状、ブレード状などいずれの形状であってもよい。その材質としては、金属製であるならば何れでもよいが、例えば、SUSやアルミニウム製を挙げることができる。   The conductive support provided on the conductive member for an electrophotographic apparatus of the present invention may have any shape such as a roller shape or a blade shape. Any material can be used as long as it is made of metal, and examples thereof include SUS and aluminum.

本発明の電子写真装置用導電性部材に設けられる被覆層は、金属粒子が無機酸化物粒子表面に付着した複合粒子を含有する。   The coating layer provided on the conductive member for an electrophotographic apparatus of the present invention contains composite particles in which metal particles adhere to the surface of inorganic oxide particles.

複合粒子における金属粒子としては、その材質として金属であればいずれでもよいが、金、白金、銀、コバルト、銅のいずれか一種または二種以上を含むことが好ましい。その平均粒径としては、1〜20nmであることが好ましい。平均粒径がこの範囲であれば、後述する粒径を有する無機酸化物粒子表面に所望量の金属粒子を容易に付着させることができる。   The metal particles in the composite particles may be any metal as long as they are made of metal, but preferably contain one or more of gold, platinum, silver, cobalt, and copper. The average particle size is preferably 1 to 20 nm. When the average particle diameter is within this range, a desired amount of metal particles can be easily attached to the surface of inorganic oxide particles having a particle diameter described later.

ここで平均粒径としては、走査型電子顕微鏡又は透過型電子顕微鏡により任意の複合粒子50個について画像を取り込み、画像解析によって平均粒径を算出することができる。試料は被覆層をミクロトーム(もしくはクライオミクロトーム)を用いて、切削し、走査型電子顕微鏡で観察する場合は面だしを、透過型電子顕微鏡で観察する場合厚さ50nm程度の超薄切片を作成する。本発明において用いる他の粒子の粒径についても、同様の測定法による測定値とすることができる。   Here, as the average particle diameter, an image of 50 arbitrary composite particles can be captured by a scanning electron microscope or a transmission electron microscope, and the average particle diameter can be calculated by image analysis. For the sample, the coating layer is cut using a microtome (or cryomicrotome), and when the surface is observed with a scanning electron microscope, the surface is formed, and when the surface is observed with a transmission electron microscope, an ultrathin section having a thickness of about 50 nm is prepared. . The particle size of other particles used in the present invention can also be measured by the same measurement method.

また、複合粒子における無機酸化物粒子としては、その材質として無機酸化物であればいずれでもよいが、酸化すず、酸化アルミニウム、酸化チタンのいずれか一種または二種以上を含むことが好ましい。その粒径としては、20nm〜1μmであることが好ましい。粒径が20nm以上であれば、上記粒径を有する金属粒子の所望量をその表面に均一に容易に付着させることができる。粒径が1μm以下であれば、被覆層中に容易に均一に分散させることができる。   In addition, the inorganic oxide particles in the composite particles may be any material as long as the material is an inorganic oxide, but it is preferable to include one or more of tin oxide, aluminum oxide, and titanium oxide. The particle size is preferably 20 nm to 1 μm. If the particle size is 20 nm or more, a desired amount of metal particles having the above particle size can be uniformly and easily attached to the surface. If the particle size is 1 μm or less, it can be easily and uniformly dispersed in the coating layer.

更に、金属粒子が無機酸化物粒子表面に均一に付着した複合粒子とするために、金属粒子の粒径をd、無機酸化物粒子の粒径をDとした場合、式(2)
D/1000<d<D/10 (2)
の関係を満たすことが好ましい。複合粒子において、金属粒子と無機酸化物粒子とがこの関係を満たす粒子径を有することにより、被覆層において導電性を向上させることができる。
Furthermore, in order to obtain composite particles in which the metal particles are uniformly attached to the surface of the inorganic oxide particles, when the particle size of the metal particles is d and the particle size of the inorganic oxide particles is D, the formula (2)
D / 1000 <d <D / 10 (2)
It is preferable to satisfy the relationship. In the composite particles, the metal particles and the inorganic oxide particles have a particle diameter satisfying this relationship, whereby the conductivity in the coating layer can be improved.

複合粒子における金属粒子と無機酸化物粒子の質量比としては、金属粒子が無機酸化物に対して5〜90質量%であることが好ましい。複合粒子において無機酸化物に対する金属粒子の質量が5質量%以上であれば、所望の導電性を有し、90質量%以下であれば容易に複合粒子を被覆層中へ均一に分散することができる。   The mass ratio of the metal particles to the inorganic oxide particles in the composite particles is preferably 5 to 90% by mass with respect to the inorganic oxide. If the mass of the metal particles relative to the inorganic oxide in the composite particles is 5% by mass or more, the composite particles have desired conductivity, and if the mass is 90% by mass or less, the composite particles can be easily dispersed uniformly in the coating layer. it can.

金属粒子が無機酸化物粒子に付着した粒子の含有量としては特に限定されるものではないが、被覆層に含有されるバインダー100質量部に対して、0.5〜25質量部の割合で配合することが好ましい。配合量が0.5質量部以上であれば導電性が向上し、25質量部以下であれば導電性の低下を抑制することができる。   The content of the particles in which the metal particles adhere to the inorganic oxide particles is not particularly limited, but is blended at a ratio of 0.5 to 25 parts by mass with respect to 100 parts by mass of the binder contained in the coating layer. It is preferable to do. If the amount is 0.5 parts by mass or more, the conductivity is improved, and if it is 25 parts by mass or less, a decrease in conductivity can be suppressed.

このような複合粒子においては、金属粒子表面の水酸基に被覆層に含有されるバインダー中のヒドロニウムイオン等の陽イオンを配位させるため、被覆層中の陽イオンの伝播が容易になり、低抵抗化を実現することができる。複合粒子はイオン導電剤やイオン性液体のようにバインダー中を移動することが少なく、導電性部材における導電性は安定し、表面に移行して感光体等を汚染することを抑制し、電子写真装置の使用に伴なう導電部材の導電性の不均一を抑制できる。   In such composite particles, cations such as hydronium ions in the binder contained in the coating layer are coordinated with the hydroxyl groups on the surface of the metal particles. Resistance can be realized. Composite particles rarely move in the binder like ionic conductive agents and ionic liquids, and the conductivity of the conductive member is stable, suppressing migration to the surface and contamination of the photoreceptor, etc. It is possible to suppress non-uniform conductivity of the conductive member accompanying use of the apparatus.

上記複合粒子の一例として、図1の模式図に示すように、金属粒子5aが無機酸化物粒子5b表面に付着したものを示すことができる。   As an example of the composite particle, as shown in the schematic diagram of FIG. 1, the metal particle 5a attached to the surface of the inorganic oxide particle 5b can be shown.

本発明の電子写真装置用導電性部材における被覆層は、上記複合粒子を分散させるバインダーとなる樹脂を含むことが好ましい。バインダーとなる樹脂としてはいずれのものであってもよいが、電気抵抗が均一なイオン導電系樹脂を使用することが好ましい。イオン導電系樹脂としては、例えば、エチレンオキサイド−プロピレンオキサイド−アリルグリシジルエーテル共重合体、 エピクロルヒドリンホモポリマー(CHC)、エピクロルヒドリン−エチレンオキサイド共重合体(CHR)、エピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル共重合体(CHR−AGE)、アクリロニトリル−ブタジエン共重合体(NBR)、アクリロニトリル−ブタジエン共重合体の水素添加物(H−NBR)、アクリルゴム(ACM、ANM)及びウレタンゴム(U)等を挙げることができる。これらは一種を用いても、二種以上を組み合わせて使用することもできる。   The coating layer in the electroconductive member for an electrophotographic apparatus of the present invention preferably contains a resin that serves as a binder for dispersing the composite particles. Although any resin can be used as the binder, it is preferable to use an ion conductive resin having a uniform electric resistance. Examples of the ion conductive resin include ethylene oxide-propylene oxide-allyl glycidyl ether copolymer, epichlorohydrin homopolymer (CHC), epichlorohydrin-ethylene oxide copolymer (CHR), epichlorohydrin-ethylene oxide-allyl glycidyl ether copolymer. Examples include coal (CHR-AGE), acrylonitrile-butadiene copolymer (NBR), hydrogenated acrylonitrile-butadiene copolymer (H-NBR), acrylic rubber (ACM, ANM), and urethane rubber (U). Can do. These can be used alone or in combination of two or more.

このような被覆層の体積固有抵抗率は、感光体を印加する帯電部材の場合、1×103〜1×109Ω・cmであることが、高速化電子写真装置に使用可能とするため好ましい。 The volume resistivity of such a coating layer is 1 × 10 3 to 1 × 10 9 Ω · cm in the case of a charging member to which a photoconductor is applied, so that it can be used in a high-speed electrophotographic apparatus. preferable.

更に、上記被覆層は、複合粒子の機能を損なわない範囲内で必要に応じて、上記バインダー樹脂の添加物として一般に用いられている充填剤、軟化剤、加工助剤、架橋助剤、架橋促進剤、架橋促進助剤、架橋遅延剤、粘着付与剤、分散剤、発泡剤等を含有していてもよい。また、上記イオン性導電剤や電子導電剤等を含有していてもよい。   Furthermore, the coating layer may be a filler, a softening agent, a processing aid, a crosslinking aid, or a crosslinking accelerator that is generally used as an additive for the binder resin, if necessary, within a range that does not impair the function of the composite particles. Agents, crosslinking accelerators, crosslinking retarders, tackifiers, dispersants, foaming agents, and the like. Moreover, the said ionic conductive agent, an electronic conductive agent, etc. may be contained.

上記被覆層の調製方法としては、複合粒子及びバインダー樹脂原料や、必要に応じて上記添加物をバンバリーミキサーや加圧式ニーダーといった密閉型混合機や、オープンロールのような開放型の混合機を使用して混合し、加熱等により硬化する方法等を例示することができる。   As a method for preparing the coating layer, a composite particle and a binder resin raw material, if necessary, the additive is used as a closed mixer such as a Banbury mixer or a pressure kneader, or an open mixer such as an open roll. And a method of curing by heating and the like.

上記被覆層は、1層構造であっても、種々の機能を有する2以上の層を有する多層構造であってもよい。多層構造の場合、上記複合粒子はいずれかの層に含まれていても、また総ての層に含まれていてもよい。また、所望の半導電性を示すように必要に応じて、カーボンブラック、グラファイト、酸化チタン及び酸化錫等の酸化物や、銅、銀等の上記イオン性導電剤や電子導電剤等を含有していてもよい。   The coating layer may have a single-layer structure or a multilayer structure having two or more layers having various functions. In the case of a multilayer structure, the composite particles may be contained in any layer or in all layers. In addition, as necessary, it contains oxides such as carbon black, graphite, titanium oxide and tin oxide, ionic conductive agents such as copper and silver, electronic conductive agents, etc. as necessary. It may be.

また、被覆層の感光体等と接する最外層として、トナーや外添剤の付着を防止する目的で、非粘着処理を施された非粘着処理層を有していてもよい。非粘着処理としては、電子線、紫外線、X線及びマイクロウェーブ等のエネルギー線を照射して表面を硬化し非粘着性とする方法や、アクリル樹脂、ポリウレタン、ポリアミド、ポリエステル、ポリオレフィン及びシリコーン樹脂等の非粘着性樹脂やシリコーン系の反応性表面処理剤を用いることが好ましい。   Further, as the outermost layer in contact with the photoreceptor or the like of the coating layer, a non-adhesive treatment layer that has been subjected to a non-adhesion treatment may be provided for the purpose of preventing adhesion of toner and external additives. Non-adhesive treatment includes methods of irradiating energy rays such as electron beams, ultraviolet rays, X-rays and microwaves to cure the surface to make it non-sticky, acrylic resin, polyurethane, polyamide, polyester, polyolefin, silicone resin, etc. It is preferable to use a non-adhesive resin or a silicone-based reactive surface treatment agent.

このような本発明の電子写真装置用導電性部材は、50〜200Vにおける抵抗の電圧依存性Yが式(1)
Y(Ω)=A・e(Bx) (1)
(式中、0<A<1.0E+10、−0.0001≧B≧−0.010、50≦x(V)≦200を満たす。)を満たすものである。電子写真装置用導電性部材が50〜200Vにおける電圧に対して抵抗値Yが式(1)を満たす範囲の電圧依存性を有することにより、感光体の汚染を抑制し、高速化電子写真装置において、耐久性が高く帯電能力を安定させることができる。このような電圧依存性を有する電子写真装置用導電性部材を得るには、被覆層において上記複合粒子を上記範囲で含有させることによればよい。
In such a conductive member for an electrophotographic apparatus of the present invention, the voltage dependency Y of resistance at 50 to 200 V is represented by the formula (1).
Y (Ω) = A · e (Bx) (1)
(Where 0 <A <1.0E + 10, −0.0001 ≧ B ≧ −0.010, and 50 ≦ x (V) ≦ 200). In the electrophotographic apparatus, the electroconductive member has a voltage dependency in a range where the resistance value Y satisfies the formula (1) with respect to a voltage of 50 to 200 V, thereby suppressing the contamination of the photoreceptor. Durability is high and charging ability can be stabilized. In order to obtain a conductive member for an electrophotographic apparatus having such voltage dependency, the composite particles may be contained in the above range in the coating layer.

ここで本発明の電子写真装置用導電性部材の抵抗値としては、図2に概略図を示す電気抵抗測定装置を用いて測定した値とすることができる。具体的には、被検体であるゴムローラー4aを芯金11の両端部を押圧手段(図示せず)で円柱状のアルミニウムドラム41に圧接し、アルミニウムドラムの回転駆動に伴い従動回転させる。この状態で、ゴムローラーの芯金部分に電源42を用いて直流電圧、例えば、100V等を印加し、アルミニウムドラムに直列に接続した抵抗43に負荷される電圧から、帯電ローラーの電気抵抗を求めることができる。上記電気抵抗の測定は温度23.5℃/湿度60%R.H.(N/Nとも記載する)環境下で行うことができる。   Here, the resistance value of the electroconductive member for an electrophotographic apparatus of the present invention can be a value measured using an electrical resistance measuring apparatus schematically shown in FIG. Specifically, the rubber roller 4a, which is the subject, is pressed against the cylindrical aluminum drum 41 by pressing means (not shown) at both ends of the metal core 11, and is rotated following the rotation of the aluminum drum. In this state, a direct current voltage, for example, 100 V or the like is applied to the metal core portion of the rubber roller using the power source 42, and the electric resistance of the charging roller is obtained from the voltage loaded on the resistor 43 connected in series to the aluminum drum. be able to. The electrical resistance was measured at a temperature of 23.5 ° C./humidity of 60% R.D. H. It can be performed in an environment (also described as N / N).

本発明の電子写真装置用導電性部材の一例として、図3の概略図に示すものを挙げることができる。本発明の電子写真装置用導電性部材として、例えば、図3(a)に示すように、導電性支持体として芯金11と、その外周に設けられる被覆層12とからなる単層構成のものであっても、図3(b)に示すように被覆層が2層以上の多層構成であってもよい。   As an example of the electroconductive member for an electrophotographic apparatus of the present invention, the one shown in the schematic view of FIG. 3 can be exemplified. As the electroconductive member for an electrophotographic apparatus of the present invention, for example, as shown in FIG. 3A, a monolayer structure comprising a cored bar 11 as a conductive support and a coating layer 12 provided on the outer periphery thereof. Even so, as shown in FIG. 3B, the coating layer may have a multilayer structure of two or more layers.

本発明の電子写真装置用導電性部材が適用される電子写真装置としては、複写機、レーザービームプリンター、LEDプリンター、又は電子写真製版システム等いずれのものであってもよい。また、これらの画像形成装置や、感光体等と共に一体化し、電子写真装置本体に対して着脱自在としたプロセスカートリッジも挙げることができる。本発明の電子写真装置用導電性部材が適用される電子写真装置における部材としては、具体的には、感光体等と接触して感光体等を帯電する帯電部材を挙げることができる。また、感光体等の上に形成された静電潜像にトナーを付着させて現像し、トナー像を形成する現像部材や、感光体等の表面に形成されたトナー像を転写材に転写する転写部材等を挙げることができる。   The electrophotographic apparatus to which the electroconductive apparatus for electrophotographic apparatus of the present invention is applied may be any one of a copying machine, a laser beam printer, an LED printer, an electrophotographic plate making system, and the like. In addition, a process cartridge that is integrated with the image forming apparatus, the photosensitive member, and the like and is detachable from the main body of the electrophotographic apparatus can be used. Specific examples of the member in the electrophotographic apparatus to which the electroconductive member for an electrophotographic apparatus of the present invention is applied include a charging member that contacts the photoreceptor and charges the photoreceptor. In addition, the electrostatic latent image formed on the photosensitive member or the like is developed with toner attached thereto, and the developing member for forming the toner image or the toner image formed on the surface of the photosensitive member or the like is transferred to a transfer material. Examples thereof include a transfer member.

本発明の電子写真装置用導電性部材が適用される電子写真装置の一例として、図4の概略構成図に示す電子写真装置を挙げることができる。図4に示す電子写真装置には、被帯電体としての電子写真感光体21が設けられる。電子写真感光体21としては、アルミニウム等の導電性を有する支持体21bと、支持体21b上に形成した感光層21aを基本構成層とするドラム形状であり、軸21cを中心に図の矢印方向に所定の周速度をもって回転駆動されるものであってもよい。   An example of an electrophotographic apparatus to which the electrophotographic apparatus conductive member of the present invention is applied is the electrophotographic apparatus shown in the schematic configuration diagram of FIG. The electrophotographic apparatus shown in FIG. 4 is provided with an electrophotographic photosensitive member 21 as a member to be charged. The electrophotographic photosensitive member 21 has a drum shape having a basic support layer composed of a conductive support 21b such as aluminum and a photosensitive layer 21a formed on the support 21b. Alternatively, it may be rotationally driven at a predetermined peripheral speed.

電子写真感光体21に接触するように、電子写真感光体を所定の極性・電位に帯電(一次帯電)する本発明の導電性部材である帯電ローラー1が設置される。帯電ローラー1は、導電性支持体である芯金11と、芯金11上に形成された弾性層12及び弾性層12上に形成された表面層13を有する被覆層とを有し、芯金11の両端部が軸着され、電子写真感光体21の回転に伴い従動回転するようになっている。   A charging roller 1, which is a conductive member of the present invention, is installed so as to be in contact with the electrophotographic photosensitive member 21 (primary charging) with a predetermined polarity and potential. The charging roller 1 includes a core metal 11 that is a conductive support, an elastic layer 12 formed on the core metal 11, and a coating layer having a surface layer 13 formed on the elastic layer 12. Both end portions of 11 are pivotally attached, and are driven to rotate as the electrophotographic photosensitive member 21 rotates.

このような帯電ローラー1が、電源23に接続される摺擦電源23aにより、芯金11に所定の直流(DC)バイアス、あるいは直流と交流(DC+AC)バイアスが印加されて帯電され、これに接触回転する電子写真感光体21が所定の極性・電位に帯電される。帯電ローラーに接触回転してその周面が均一に帯電された電子写真感光体は、次いで露光手段24により目的画像情報の露光(レーザービーム走査露光、原稿画像のスリット露光等)を受け、その周面に目的の画像情報に対応した静電潜像が形成される。   Such a charging roller 1 is charged by applying a predetermined direct current (DC) bias or a direct current and alternating current (DC + AC) bias to the metal core 11 by a rubbing power source 23a connected to the power source 23, and comes into contact therewith. The rotating electrophotographic photosensitive member 21 is charged to a predetermined polarity and potential. The electrophotographic photosensitive member whose peripheral surface is uniformly charged by contact rotation with the charging roller is then subjected to exposure of target image information (laser beam scanning exposure, slit exposure of a document image, etc.) by the exposure means 24, and the periphery thereof. An electrostatic latent image corresponding to target image information is formed on the surface.

次いで、感光体上に形成された静電潜像に、現像装置25においてトナーが供給され、トナー画像として順次に可視像化されていく。次いで、トナーと逆極性に帯電された転写ローラー26により、電子写真感光体21上のトナー画像が転写ローラー側へ移動する。このとき、図示しない転写材供給手段から電子写真感光体21の回転と同期取りされて適正なタイミングをもって電子写真感光体21と転写ローラー26との間のニップ部へ転写材27が搬送され、転写材27上にトナー画像が転写される。   Next, toner is supplied to the electrostatic latent image formed on the photoconductor in the developing device 25, and a visible image is sequentially formed as a toner image. Next, the toner image on the electrophotographic photosensitive member 21 is moved to the transfer roller side by the transfer roller 26 charged to a polarity opposite to that of the toner. At this time, the transfer material 27 is conveyed from the transfer material supply means (not shown) to the nip portion between the electrophotographic photosensitive member 21 and the transfer roller 26 at an appropriate timing in synchronism with the rotation of the electrophotographic photosensitive member 21 and transferred. A toner image is transferred onto the material 27.

トナー画像が転写された転写材27は、電子写真感光体から分離されて不図示の定着手段へ搬送され、加熱等の定着手段によりトナー画像が定着され、画像形成物として出力される。あるいは、裏面にも画像形成する電子写真装置においては、画像形成装置へ再搬送される。   The transfer material 27 onto which the toner image has been transferred is separated from the electrophotographic photosensitive member and conveyed to a fixing unit (not shown), and the toner image is fixed by a fixing unit such as heating and output as an image formed product. Alternatively, in an electrophotographic apparatus that forms an image on the back surface, the image is re-conveyed to the image forming apparatus.

トナー像を転写した後の電子写真感光体21の周面は、前露光装置28による前露光を受けて感光体ドラム上の残留電荷が除去(除電)される。この前露光手段28においては、例えばLEDチップアレイ、ヒューズランプ、ハロゲンランプ及び蛍光ランプ等を使用することができる。除電効果を考慮すると、前露光手段における露光量は前述した露光手段の露光量よりも大きいことが好ましいといえる。また、前露光手段の位置は後述するクリーニング部材と帯電装置間等、適宜選択して設けることもできる。   The peripheral surface of the electrophotographic photosensitive member 21 after the toner image is transferred is subjected to pre-exposure by the pre-exposure device 28, and residual charges on the photosensitive drum are removed (static elimination). In the pre-exposure means 28, for example, an LED chip array, a fuse lamp, a halogen lamp, a fluorescent lamp, or the like can be used. Considering the charge eliminating effect, it can be said that the exposure amount in the pre-exposure means is preferably larger than the exposure amount of the exposure means described above. Further, the position of the pre-exposure means can be appropriately selected and provided between a cleaning member and a charging device described later.

除電された電子写真感光体21の周面は、クリーニング部材29により、転写されずにその表面に残留するトナー等の付着汚染物が除去され洗浄されて、次の画像形成に供される。   The cleaned peripheral surface of the electrophotographic photosensitive member 21 is cleaned by a cleaning member 29 to remove adhering contaminants such as toner remaining on the surface without being transferred, and used for the next image formation.

上記帯電ローラー1は上記のように電子写真感光体21に従動回転するものであってもよいが、回転せずに固定した状態や、電子写真感光体21の回転方向に対して順方向又は逆方向に所定の周速度をもって駆動回転する状態で使用するものであってもよい。   The charging roller 1 may be driven and rotated by the electrophotographic photosensitive member 21 as described above. However, the charging roller 1 is fixed without rotating, or forward or reverse with respect to the rotation direction of the electrophotographic photosensitive member 21. It may be used in a state of being driven and rotated with a predetermined peripheral speed in the direction.

上記露光は、電子写真装置を複写機として使用する場合には、原稿からの反射光や透過光、あるいは原稿を読み取り信号化し、この信号に基づいてレーザービームを走査し、LEDアレイを駆動し、又は液晶シャッターアレイを駆動して行うものであってもよい。   When the electrophotographic apparatus is used as a copying machine, the exposure is performed by reflecting or transmitting light from a document, or converting a document into a read signal, scanning a laser beam based on this signal, driving an LED array, Alternatively, it may be performed by driving a liquid crystal shutter array.

本発明の電子写真装置用導電性部材は、上記帯電ローラー等の帯電部材の他、現像部材、転写部材、除電部材や、給紙ローラー等の搬送部材としても使用可能である。   The conductive member for an electrophotographic apparatus of the present invention can be used as a developing member, a transfer member, a charge eliminating member, and a conveying member such as a paper feed roller, in addition to the charging member such as the charging roller.

本発明の電子写真装置用帯電部材を適用する電子写真装置用プロセスカートリッジとしては、例えば、電子写真感光体、帯電部材、現像装置、クリーニング部材のような電子写真装置に設けられる複数の要素が、一体的に組み込まれたものを挙げることができる。具体的には、図5に示すように、本発明の電子写真装置用導電性部材としての帯電ローラー1、感光体21、現像装置25、クリーニング部材29等を一体的に組み込んだプロセスカートリッジを例示することができる。かかるプロセスカートリッジは電子写真装置本体のレール等の案内手段を用いて着脱自在に構成したことが好ましい。   As a process cartridge for an electrophotographic apparatus to which the charging member for an electrophotographic apparatus of the present invention is applied, for example, a plurality of elements provided in the electrophotographic apparatus such as an electrophotographic photosensitive member, a charging member, a developing device, a cleaning member, One that is integrally incorporated can be mentioned. Specifically, as shown in FIG. 5, a process cartridge in which the charging roller 1, the photosensitive member 21, the developing device 25, the cleaning member 29 and the like as the conductive member for the electrophotographic apparatus of the present invention are integrated is illustrated. can do. Such a process cartridge is preferably configured to be detachable using guide means such as a rail of the electrophotographic apparatus main body.

以下に、本発明の電子写真装置用導電性部材を、具体的に詳細に説明するが、本発明の技術的範囲はこれらに限定されるものではない。   Hereinafter, the electroconductive member for an electrophotographic apparatus of the present invention will be described in detail, but the technical scope of the present invention is not limited thereto.

以下、特に明記しない限り、「部」は「質量部」を意味しており、試薬等で特に指定のないものは、市販の高純度品を用いた。
[実施例1]
[導電性部材の作製]
原料ゴムとして、エピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル3元共重合体(商品名:エピクロマーCG105、ダイソー(株)社製)50部、及びエピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル3元共重合体(商品名:エピクロマーON301、ダイソー(株)社製)50部、加工助剤としてステアリン酸亜鉛1部、加硫促進助剤として酸化亜鉛5部、充填剤としてMTカーボンブラック(商品名:サーマックッスフローフォームN990、CANCAB社製)35部、及び焼成クレー(商品名:ST−KE 白石カルシウム(株)社製)5部、金属粒子が無機酸化物に付着した粒子として金属粒子が平均粒径2nmのAg、無機酸化物粒子が平均粒径100nmのAl23であり金属含有率が30wt%の複合粒子(商品名:ナノセラメタル、中国寧波凌日表面工程有限公司製)を2部、加硫剤としてジベンゾチアゾリルジスルフィド(商品名:ノクセラーDM、大内振興化学工業(株)社製)1部、テトラメチルチオラムジスルフィド(商品名:ノクセラーTS、大内振興化学工業(株)社製)1部、及び硫黄1.2部をオープンロールにて混合し、未加硫ゴム組成物を得た。
Hereinafter, unless otherwise specified, “parts” means “parts by mass”, and commercially available high-purity products were used as reagents and the like unless otherwise specified.
[Example 1]
[Production of conductive member]
As raw material rubber, 50 parts of epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer (trade name: Epichromer CG105, manufactured by Daiso Corporation) and epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer (product) Name: Epichromer ON301, manufactured by Daiso Co., Ltd.) 50 parts, Zinc stearate as processing aid, 1 part of zinc stearate as vulcanization accelerator, MT carbon black as filler (trade name: Therma Macs Flow) 35 parts of Form N990, manufactured by CANCAB, and 5 parts of calcined clay (trade name: ST-KE, manufactured by Shiraishi Calcium Co., Ltd.), the metal particles having an average particle diameter of 2 nm as particles adhered to the inorganic oxide Ag, inorganic oxide particles are Al 2 O 3 having an average particle size of 100nm metal containing 2 parts of composite particles (trade name: Nanocera Metal, manufactured by Ningbo Lingji Surface Process Co., Ltd.), dibenzothiazolyl disulfide (trade name: Noxeller DM, Ouchi Shinko Chemical Industries, Ltd.) 1 part), tetramethylthioram disulfide (trade name: Noxeller TS, manufactured by Ouchi Shinko Chemical Co., Ltd.) 1 part, and 1.2 parts of sulfur are mixed in an open roll and unvulcanized. A rubber composition was obtained.

得られた未加硫ゴム組成物をベント式ゴム押出機(口径50mmベント押出機 L/D=16 EM技研社製)によってチューブ状に押出し、加硫缶を用いた加圧水蒸気により160℃で30分間の一次加硫を行い、外径15mm、内径5.5mm、長さ250mmのゴムチューブを得た。   The obtained unvulcanized rubber composition was extruded into a tube shape by a vent type rubber extruder (caliber 50 mm vent extruder L / D = 16, manufactured by EM Giken Co., Ltd.), and 30 ° C. at 160 ° C. with pressurized steam using a vulcanized can. The rubber tube having an outer diameter of 15 mm, an inner diameter of 5.5 mm, and a length of 250 mm was obtained.

次に、直径6mm、長さ256mmの円柱形の導電性芯金(鋼製、表面はニッケルメッキ)の円柱面の軸方向中央部232mmに導電性ホットメルト接着剤を塗布し、80℃で30分間乾燥したものに、前述のゴムチューブを圧入し、熱風炉にて160℃で2時間の二次加硫と接着処理を行った。この加硫後のローラーのゴム両端部を突っ切り、ゴム部分の長さを232mmとした後、ゴム部分を回転砥石で研磨し、端部直径8.40mm、中央部直径8.5mmのクラウン形状の被覆層を得た。   Next, a conductive hot melt adhesive was applied to the central portion 232 mm in the axial direction of a cylindrical surface of a cylindrical conductive core (steel, surface is nickel plated) having a diameter of 6 mm and a length of 256 mm. The rubber tube described above was press-fitted into what was dried for 2 minutes, followed by secondary vulcanization and adhesion treatment at 160 ° C. for 2 hours in a hot air oven. Cut both ends of the rubber of the vulcanized roller to make the length of the rubber part 232 mm, and then polish the rubber part with a rotating grindstone to obtain a crown shape with an end diameter of 8.40 mm and a central part diameter of 8.5 mm. A coating layer was obtained.

次に、被覆層表面に紫外線を照射して表面処理を行った。表面処理はローラーを回転させながら、その表面に紫外線照射装置(185nm、245nmが波長主成分)を用いて紫外線強度40mW/cm2を10分間照射し、帯電ローラーを作製した。
[導電性部材の電気抵抗]
得られた帯電ローラーの電気抵抗を、温度23.5℃/湿度60%R.H.(N/Nとも記載する)環境下で、図2の電気抵抗測定装置を使用し、芯金と金属ドラムの間に直流100Vの電圧を印加して電気抵抗を求めたところ、1.06×106Ωであった。また、x=50〜200Vで、抵抗を測定した結果、電圧依存性としての体積抵抗Y(=A・e(Bx))として、A=3.0E+07、B=−0.0031であった。
[導電性部材の帯電能力の評価]
この帯電ローラーを図5に示したプロセスカートリッジに組み込み、電子写真装置(レーザショットLBP−2510、キヤノン製)にて画像評価を行った。画像評価は帯電ローラーによる帯電能の差が最も顕著に表れるように、N/N環境下において、画像評価は感光体表面電位が−600Vとなるように、帯電ローラーの芯金に直流電圧のみを印加した。更に、前露光手段を作動させないようにして、1ドットをケイマパターンで印字したハーフトーン画像を形成させ評価を行った。
Next, the surface treatment was performed by irradiating the surface of the coating layer with ultraviolet rays. In the surface treatment, while rotating the roller, the surface was irradiated with an ultraviolet intensity of 40 mW / cm 2 for 10 minutes using an ultraviolet irradiation device (185 nm and 245 nm were the wavelength main components) to prepare a charging roller.
[Electrical resistance of conductive members]
The electrical resistance of the obtained charging roller was measured at a temperature of 23.5 ° C./humidity of 60% R.D. H. Under the environment (also referred to as N / N), the electrical resistance was determined by applying a voltage of DC 100V between the cored bar and the metal drum using the electrical resistance measuring device of FIG. 10 6 Ω. As a result of measuring the resistance at x = 50 to 200 V, the volume resistance Y (= A · e (Bx)) as voltage dependency was A = 3.0E + 07 and B = −0.0031.
[Evaluation of charging ability of conductive members]
This charging roller was incorporated into the process cartridge shown in FIG. 5, and image evaluation was performed with an electrophotographic apparatus (Laser Shot LBP-2510, manufactured by Canon Inc.). In the image evaluation, only the DC voltage is applied to the core metal of the charging roller so that the surface potential of the photosensitive member becomes −600 V in the N / N environment so that the difference in charging ability by the charging roller is most noticeable. Applied. Further, evaluation was performed by forming a halftone image in which one dot was printed with a comma pattern without operating the pre-exposure means.

画像評価は帯電能力が不足した場合に生じる、ハーフトーン画像の横黒スジ状画像不良の発生状況によりランク付けを行った。ランク1は良好(黒スジ状の画像不良はまったく見られない)、ランク2は画像の全面に微な黒スジ状の画像不良が確認できる、というレベルであり、本例の画像ランクはランク1であった。   The image evaluation was ranked according to the state of occurrence of a horizontal black streak-like image defect in a halftone image that occurs when charging ability is insufficient. Rank 1 is good (no black streak-like image defects are observed at all), and rank 2 is a level that fine black streak-like image defects can be confirmed on the entire surface of the image. The image rank of this example is rank 1 Met.

次に、通紙を1万枚行い、耐久試験を行った結果、通紙後の画像ランクも1であった。
[導電性部材の感光体の汚染性の評価]
さらに、このカートリッジを40℃/95%R.H.の環境下で30日間放置した後、もう一度、電子写真装置に組込み、N/N環境下でハーフトーンの画像形成を行い、過酷環境放置後の画像評価を行った。その結果、帯電ローラーから感光体への汚染物質の移行は確認されず、品位良好な画像が得られた。
[実施例2]
複合粒子を2.5部とした他は実施例1と同様に帯電ローラーを作製した。実施例1と同様にして帯電ローラーの電気抵抗、電圧依存性としての体積抵抗を測定し、帯電能力の評価、感光体の汚染性の評価を行った。
Next, 10,000 sheets were passed and the durability test was performed. As a result, the image rank after passing was also 1.
[Evaluation of Contamination of Conductive Member Photoconductor]
Further, the cartridge was placed at 40 ° C./95% R.D. H. After being left for 30 days in this environment, it was once again incorporated into an electrophotographic apparatus, halftone images were formed in an N / N environment, and image evaluation was performed after leaving in a harsh environment. As a result, the transfer of contaminants from the charging roller to the photoreceptor was not confirmed, and an image with good quality was obtained.
[Example 2]
A charging roller was prepared in the same manner as in Example 1 except that 2.5 parts of the composite particles were used. In the same manner as in Example 1, the electrical resistance of the charging roller and the volume resistance as voltage dependency were measured to evaluate the charging ability and the contamination of the photoreceptor.

N/N環境下での電気抵抗は7.62×106Ω、電圧依存性としての体積抵抗Y(=A・e(Bx))として、A=3.0E+07、B=−0.0025であった。帯電能力における画像評価はランク1であった。通紙後の画像評価はランク1、過酷環境放置後も帯電ローラーから感光体への汚染物質の移行は確認されなかった。
[実施例3]
複合粒子を5.0部とした他は実施例1と同様に帯電ローラーを作製した。実施例1と同様にして帯電ローラーの電気抵抗、電圧依存性としての体積抵抗を測定し、帯電能力の評価、感光体の汚染性の評価を行った。
The electrical resistance under N / N environment is 7.62 × 10 6 Ω, and the volume resistance Y (= A · e (Bx)) as voltage dependence is A = 3.0E + 07, B = −0.0025 there were. The image evaluation in charging ability was rank 1. The evaluation of the image after paper passing was rank 1, and no migration of contaminants from the charging roller to the photoconductor was confirmed even after leaving in a harsh environment.
[Example 3]
A charging roller was produced in the same manner as in Example 1 except that 5.0 parts of the composite particles were used. In the same manner as in Example 1, the electrical resistance of the charging roller and the volume resistance as voltage dependency were measured to evaluate the charging ability and the contamination of the photoreceptor.

N/N環境下での電気抵抗は8.57×106Ω、電圧依存性としての体積抵抗Y(=A・e(Bx))として、A=4.0E+07、B=−0.0022であった。帯電能力における画像評価はランク1であった。通紙後の画像評価はランク1、過酷環境放置後も帯電ローラーから感光体への汚染物質の移行は確認されなかった。
[実施例4]
複合粒子を10部とした他は実施例1と同様に帯電ローラーを作製した。実施例1と同様にして帯電ローラーの電気抵抗、電圧依存性としての体積抵抗を測定し、帯電能力の評価、感光体の汚染性の評価を行った。
The electric resistance under N / N environment is 8.57 × 10 6 Ω, and volume resistance Y (= A · e (Bx)) as voltage dependency is A = 4.0E + 07, B = −0.0022 there were. The image evaluation in charging ability was rank 1. The evaluation of the image after paper passing was rank 1, and no migration of contaminants from the charging roller to the photoconductor was confirmed even after leaving in a harsh environment.
[Example 4]
A charging roller was produced in the same manner as in Example 1 except that 10 parts of the composite particles were used. In the same manner as in Example 1, the electrical resistance of the charging roller and the volume resistance as voltage dependency were measured to evaluate the charging ability and the contamination of the photoreceptor.

N/N環境下での電気抵抗は9.37×106Ω、電圧依存性としての体積抵抗Y(=A・e(Bx))として、A=4.0E+07、B=−0.0026であった。帯電能力における画像評価はランク1であった。通紙後の画像評価はランク1、過酷環境放置後も帯電ローラーから感光体への汚染物質の移行は確認されなかった。
[実施例5]
複合粒子を30部とした他は実施例1と同様に帯電ローラーを作製した。実施例1と同様にして帯電ローラーの電気抵抗、電圧依存性としての体積抵抗を測定し、帯電能力の評価、感光体の汚染性の評価を行った。
The electrical resistance in the N / N environment is 9.37 × 10 6 Ω, and the volume resistance Y (= A · e (Bx)) as voltage dependence is A = 4.0E + 07, B = −0.0026 there were. The image evaluation in charging ability was rank 1. The evaluation of the image after paper passing was rank 1, and no migration of contaminants from the charging roller to the photoconductor was confirmed even after leaving in a harsh environment.
[Example 5]
A charging roller was produced in the same manner as in Example 1 except that 30 parts of the composite particles were used. In the same manner as in Example 1, the electrical resistance of the charging roller and the volume resistance as voltage dependency were measured to evaluate the charging ability and the contamination of the photoreceptor.

N/N環境下での電気抵抗は1.09×108Ω、電圧依存性としての体積抵抗Y(=A・e(Bx))として、A=6.0E+07、B=−0.0050であった。過酷環境放置後も帯電ローラーから感光体への汚染物質の移行は確認されなかったものの、帯電能力における画像評価は高抵抗による帯電性不足のため、ランク2となった。
[比較例1]
複合粒子として用いた金属粒子が無機酸化物に付着した粒子として金属粒子が平均粒径2nmのAg、無機酸化物粒子が平均粒径100nmのAl23であり金属含有率が30wt%(商品名:ナノセラメタル、中国寧波凌日表面工程有限公司製)2部に替えて、イオン導電剤として、アデカサイザ−LV−70(旭電化(株)社製)2部を用いた他は実施例1と同様にして帯電ローラーを作製した。
The electric resistance under the N / N environment is 1.09 × 10 8 Ω, and the volume resistance Y (= A · e (Bx)) as voltage dependence is A = 6.0E + 07, B = −0.0050 there were. Although no transfer of contaminants from the charging roller to the photoconductor was confirmed even after being left in a harsh environment, the image evaluation in charging ability was ranked 2 because of insufficient charging due to high resistance.
[Comparative Example 1]
The metal particles used as the composite particles are adhered to the inorganic oxide, the metal particles are Ag having an average particle diameter of 2 nm, the inorganic oxide particles are Al 2 O 3 having an average particle diameter of 100 nm, and the metal content is 30 wt% (product) Name: Nanocera Metal, manufactured by Ningbo Lingji Surface Process Co., Ltd., China 2) Example 1 except that 2 parts of Adeka Sizer-LV-70 (Asahi Denka Co., Ltd.) were used as the ion conductive agent. In the same manner, a charging roller was produced.

実施例1と同様にして帯電ローラーの電気抵抗、電圧依存性としての体積抵抗を測定し、帯電能力の評価、感光体の汚染性の評価を行った。   In the same manner as in Example 1, the electrical resistance of the charging roller and the volume resistance as voltage dependency were measured to evaluate the charging ability and the contamination of the photoreceptor.

N/N環境下での電気抵抗は5.03×106Ω、電圧依存性としての体積抵抗Y(=A・e(Bx))として、A=2.0E+07、B=−0.0025であった。帯電能力における画像評価はランク1、通紙後の画像評価はランク1であったが、過酷環境放置後も帯電ローラーから感光体への汚染物質の移行が認められた。
[比較例2]
複合粒子として用いた金属粒子が無機酸化物に付着した粒子として金属粒子が平均粒径2nmのAg、無機酸化物粒子が平均粒径100nmのAl23であり金属含有率が30wt%(商品名:ナノセラメタル、中国寧波凌日表面工程有限公司製)2部に替えて、導電剤としてEC600JD(ライオン(株)社製)8部及びHS500(旭カーボン(株)社製)14部を用いた他は実施例1と同様にして帯電ローラーを作製した。
The electric resistance in the N / N environment is 5.03 × 10 6 Ω, and the volume resistance Y (= A · e (Bx)) as voltage dependency is A = 2.0E + 07, B = −0.0025 there were. The image evaluation in terms of charging ability was rank 1, and the image evaluation after passing paper was rank 1, but the transfer of contaminants from the charging roller to the photoconductor was observed even after being left in a harsh environment.
[Comparative Example 2]
The metal particles used as the composite particles are adhered to the inorganic oxide, the metal particles are Ag having an average particle diameter of 2 nm, the inorganic oxide particles are Al 2 O 3 having an average particle diameter of 100 nm, and the metal content is 30 wt% (product) Name: Nanocera Metal, manufactured by Ningbo Lingji Surface Process Co., Ltd., China 2 parts, EC600JD (Lion Corporation) 8 parts and HS500 (Asahi Carbon Co., Ltd.) 14 parts are used as conductive agents. A charging roller was produced in the same manner as in Example 1 except for the above.

実施例1と同様にして帯電ローラーの電気抵抗、電圧依存性としての体積抵抗を測定し、帯電能力の評価、感光体の汚染性の評価を行った。   In the same manner as in Example 1, the electrical resistance of the charging roller and the volume resistance as voltage dependency were measured to evaluate the charging ability and the contamination of the photoreceptor.

N/N環境下での電気抵抗は3.18×104Ω、電圧依存性としての体積抵抗Y(=A・e(Bx))として、A=2.0E+05、B=−0.012であった。帯電能力における画像評価はランク1、過酷環境放置後も帯電ローラーから感光体への汚染物質の移行が認められなかったものの、電圧変動による抵抗変動の影響で、通紙後の画像評価はランク2となった。 The electrical resistance in the N / N environment is 3.18 × 10 4 Ω, and the volume resistance Y (= A · e (Bx)) as voltage dependence is A = 2.0E + 05, B = −0.012. there were. Image evaluation in terms of charging ability was rank 1, and although no contaminants were transferred from the charging roller to the photoconductor even after being left in a harsh environment, the image evaluation after passing paper was ranked 2 because of the effect of resistance fluctuation due to voltage fluctuation. It became.

Figure 2007171826
Figure 2007171826

結果から明らかなように、本発明の電子写真装置用導電性部材は、電気抵抗が充分に低いため、これを用いた高速化電子写真装置において、N/N環境下でのハーフトーン画像出力における画像や、通紙1万枚後の画像の品質が良好であり耐久性に優れ、感光体との当接による過酷環境下で長期放置した場合にも、導電性部材からの移行物質に起因する感光体汚染が抑制され高品質の画像が得られる。   As is apparent from the results, the electroconductive member for an electrophotographic apparatus of the present invention has a sufficiently low electric resistance. Therefore, in a high-speed electrophotographic apparatus using the electroconductive apparatus, a halftone image can be output in an N / N environment. The quality of the image and the image after 10,000 sheets is good and excellent in durability. Even when left for a long time in a harsh environment due to contact with the photoconductor, it is caused by the transferred substance from the conductive member. Photoconductor contamination is suppressed and a high quality image is obtained.

本発明の電子写真装置用導電性部材に含まれる複合粒子の一例を示す模式図である。It is a schematic diagram which shows an example of the composite particle contained in the electroconductive member for electrophotographic apparatuses of this invention. 本発明の電子写真装置用導電性部材の電気抵抗を測定する装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the apparatus which measures the electrical resistance of the electroconductive member for electrophotographic apparatuses of this invention. 本発明の電子写真装置用導電性部材の一例を示す模式的断面図である。It is a typical sectional view showing an example of a conductive member for electrophotographic devices of the present invention. 本発明の電子写真装置用導電性部材が適用される電子写真装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the electrophotographic apparatus to which the electroconductive member for electrophotographic apparatuses of this invention is applied. 本発明の電子写真装置用導電性部材が適用される電子写真装置用のプロセスカートリッジの一例を示す概略模式図である。FIG. 2 is a schematic diagram illustrating an example of a process cartridge for an electrophotographic apparatus to which a conductive member for an electrophotographic apparatus of the present invention is applied.

符号の説明Explanation of symbols

1 帯電ローラー(電子写真装置用導電性部材)
11 芯金(導電性支持体)
12 被覆層
13 被覆層
21 像担持体(感光体)
21a 感光層
21b 支持体
21c 支軸
23 電源
23a 摺擦電源
24 露光手段
25 現像装置
26 転写ローラー
27 転写材
28 前露光手段
29 クリーニング部材
41 アルミニウムドラム
42 外部電源
43 基準抵抗
4a ゴムローラー
T トナー
5a 金属粒子
5b 無機酸化物粒子
1 Charging roller (conductive member for electrophotographic equipment)
11 Core (conductive support)
12 Covering layer 13 Covering layer 21 Image carrier (photoreceptor)
21a photosensitive layer 21b support 21c support shaft 23 power supply 23a rubbing power supply 24 exposure means 25 developing device 26 transfer roller 27 transfer material 28 pre-exposure means 29 cleaning member 41 aluminum drum 42 external power supply 43 reference resistance 4a rubber roller T toner 5a metal Particle 5b Inorganic oxide particle

Claims (7)

導電性支持体と、その外側に形成された被覆層とを有し、該被覆層が、金属粒子が無機酸化物粒子表面に付着した複合粒子を含有する電子写真装置用導電性部材であって、50〜200Vにおける電圧に対して抵抗値Yが式(1)を満たす範囲であることを特徴とする電子写真装置用導電性部材。
Y(Ω)=A・e(Bx) (1)
(式中、0<A<1.0E+10、−0.0001≧B≧−0.010、50≦x(V)≦200を満たす。)
A conductive member for an electrophotographic apparatus having a conductive support and a coating layer formed on the outside thereof, wherein the coating layer contains composite particles in which metal particles adhere to the surface of inorganic oxide particles. A conductive member for an electrophotographic apparatus, wherein the resistance value Y is in a range satisfying the formula (1) with respect to a voltage of 50 to 200V.
Y (Ω) = A · e (Bx) (1)
(In the formula, 0 <A <1.0E + 10, −0.0001 ≧ B ≧ −0.010, 50 ≦ x (V) ≦ 200 is satisfied)
被覆層が、複合粒子をバインダー100質量部に対して0.5〜25質量部含有することを特徴とする請求項1記載の電子写真装置用導電性部材。   The conductive member for an electrophotographic apparatus according to claim 1, wherein the coating layer contains 0.5 to 25 parts by mass of the composite particles with respect to 100 parts by mass of the binder. 複合粒子が、粒径が20nm〜1μmの無機酸化物粒子を含有することを特徴とする請求項1または2記載の電子写真装置用導電性部材。   The electroconductive member for an electrophotographic apparatus according to claim 1, wherein the composite particles contain inorganic oxide particles having a particle diameter of 20 nm to 1 μm. 複合粒子が、粒径が1〜20nmの金属粒子を含有することを特徴とする請求項1〜3のいずれか記載の電子写真装置用導電性部材。   The electroconductive member for an electrophotographic apparatus according to any one of claims 1 to 3, wherein the composite particles contain metal particles having a particle diameter of 1 to 20 nm. 複合粒子として、無機酸化物の粒径をD、金属粒子の粒径をdとしたとき、式(2)
D/1000<d<D/10 (2)
を満たすことを特徴とする請求項1〜4のいずれか記載の電子写真装置用導電性部材。
As composite particles, when the particle size of the inorganic oxide is D and the particle size of the metal particles is d, the formula (2)
D / 1000 <d <D / 10 (2)
5. The electroconductive member for an electrophotographic apparatus according to claim 1, wherein:
複合粒子が、金属粒子を無機酸化物粒子に対して5〜90質量%含有することを特徴とする請求項1〜5のいずれか記載の電子写真装置用導電性部材。   The electroconductive member for an electrophotographic apparatus according to any one of claims 1 to 5, wherein the composite particles contain 5 to 90 mass% of metal particles with respect to the inorganic oxide particles. 金属粒子が、金、白金、銀、コバルト、銅のいずれか一種または二種以上を含み、無機酸化物粒子が、酸化錫、酸化アルミニウム、酸化チタンのいずれか一種または二種以上を含むことを特徴とする請求項1〜6のいずれか記載の電子写真装置用導電性部材。


The metal particles include one or more of gold, platinum, silver, cobalt, and copper, and the inorganic oxide particles include one or more of tin oxide, aluminum oxide, and titanium oxide. The electroconductive member for an electrophotographic apparatus according to any one of claims 1 to 6.


JP2005372599A 2005-12-26 2005-12-26 Conductive member for electrophotographic device Pending JP2007171826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005372599A JP2007171826A (en) 2005-12-26 2005-12-26 Conductive member for electrophotographic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005372599A JP2007171826A (en) 2005-12-26 2005-12-26 Conductive member for electrophotographic device

Publications (1)

Publication Number Publication Date
JP2007171826A true JP2007171826A (en) 2007-07-05

Family

ID=38298433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005372599A Pending JP2007171826A (en) 2005-12-26 2005-12-26 Conductive member for electrophotographic device

Country Status (1)

Country Link
JP (1) JP2007171826A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151962A (en) * 2008-12-24 2010-07-08 Fuji Xerox Co Ltd Image forming apparatus and process cartridge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151962A (en) * 2008-12-24 2010-07-08 Fuji Xerox Co Ltd Image forming apparatus and process cartridge

Similar Documents

Publication Publication Date Title
JP4928120B2 (en) Conductive member for electrophotography, electrophotographic apparatus and process cartridge using the same
JP2002003651A (en) Semiconductive rubber composition, electrified member, electrophotographic device and process cartridge
JP6641828B2 (en) Charging member, image forming apparatus and process cartridge
JP5110985B2 (en) Contact charging member, process cartridge, and electrophotographic image forming apparatus
JP2010076205A (en) Method of manufacturing conductive roller, conductive roller, charged roller, and electrophotographic device
JP6261133B2 (en) Conductive rubber composition and developing roller
JP6338354B2 (en) Charging device, image forming means, and image forming apparatus
JP5591082B2 (en) Charging roller and manufacturing method thereof
JP2007292298A (en) Method for producing charging member
JP2006251008A (en) Charging member, process cartridge and image forming apparatus
JP2003221474A (en) Conductive member
JP7424139B2 (en) Charging member, charging device, process cartridge, and image forming device
JP2005092076A (en) Elastic member, electrophotographic apparatus and process cartridge
JP2007171826A (en) Conductive member for electrophotographic device
JP2008299120A (en) Charging member
JP2009223214A (en) Charging device, image forming unit, and image forming apparatus
JP7059718B2 (en) Intermediate transfer member and image forming apparatus
JP4745736B2 (en) Semiconductive elastic member for electrophotography
JP5201886B2 (en) Electrophotographic equipment
JP4713900B2 (en) Manufacturing method of conductive member and conductive member for electrophotography
JP5377024B2 (en) Method for manufacturing charging member
JP2006154634A (en) Semi-conductive elastic member for electrophotography, process cartridge and electrophotographic device
JP5317510B2 (en) Charging member, electrophotographic image forming apparatus
JP2010060609A (en) Charging roller and electrophotographic apparatus
JP2005024830A (en) Charging member, cartridge with the same and image forming apparatus with cartridge