JP2007169696A - Galvannealed steel superior in appearance quality, and manufacturing method therefor - Google Patents

Galvannealed steel superior in appearance quality, and manufacturing method therefor Download PDF

Info

Publication number
JP2007169696A
JP2007169696A JP2005367235A JP2005367235A JP2007169696A JP 2007169696 A JP2007169696 A JP 2007169696A JP 2005367235 A JP2005367235 A JP 2005367235A JP 2005367235 A JP2005367235 A JP 2005367235A JP 2007169696 A JP2007169696 A JP 2007169696A
Authority
JP
Japan
Prior art keywords
less
steel
iron
zinc alloy
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005367235A
Other languages
Japanese (ja)
Other versions
JP4757622B2 (en
Inventor
Shintaro Yamanaka
晋太郎 山中
Kenichiro Matsumura
賢一郎 松村
Shinichi Suzuki
眞一 鈴木
Mitsuru Nada
満 名田
Tadashi Tsunoda
忠 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005367235A priority Critical patent/JP4757622B2/en
Publication of JP2007169696A publication Critical patent/JP2007169696A/en
Application granted granted Critical
Publication of JP4757622B2 publication Critical patent/JP4757622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide galvannealed steel superior in appearance quality. <P>SOLUTION: A steel material for the galvannealed steel comprises, by mass%, 0.01% or less C, 0.2% or less Si, 2% or less Mn, 0.02-0.2% P, 0.03% or less S, 0.005-0.1% Al, 0.001-0.05% Ti, 0.001-0.05% Nb, and the balance Fe with unavoidable impurities. The galvannealed steel superior in the appearance quality has a coating film of an iron-zinc alloy on the surface of the steel material. The coating film of the iron-zinc alloy contains P, Fe and Zn so that an integral intensity ratio I(P)/I(Fe+Zn) of P to (Fe+Zn) can be 0.025 or less when they are analyzed with GDS. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は,外観品位に優れる合金化溶融亜鉛めっき鋼およびその製造方法に関するものである。より詳しくは,主として,高強度鋼板を基材とした合金化溶融亜鉛めっき鋼において,そのめっき後の外観が従来の合金化溶融亜鉛めっき鋼板よりも均一美麗で,また,塗装後の外観にも優れ,自動車用等に用いることができる,外観品位に優れる合金化溶融亜鉛めっき鋼とその製造方法に関するものである。   The present invention relates to an alloyed hot-dip galvanized steel excellent in appearance quality and a method for producing the same. More specifically, mainly in alloyed hot-dip galvanized steel based on high-strength steel sheets, the appearance after plating is more uniform and beautiful than that of conventional alloyed hot-dip galvanized steel sheets. The present invention relates to an alloyed hot-dip galvanized steel excellent in appearance quality that can be used for automobiles and the like, and a method for producing the same.

合金化溶融亜鉛めっき鋼は,溶接性や塗装性,塗装後耐食性などに優れることから,自動車,家電製品,建材等に多用されている。この合金化溶融亜鉛めっき鋼は,鋼を溶融亜鉛めっきした後,加熱処理し,鋼中のFeとめっき中のZnを拡散させ,合金化反応を生じさせることで鋼材表面に鉄−亜鉛合金層を形成させたものである。この合金化反応は,鋼の結晶粒界から優先的に生じると言われるが,粒界に偏析しやすい元素が多く含まれる場合,局所的にFe,Znの拡散が阻害されるため合金化反応が不均一となり,外観にむらが発生する。このむらは,機械的性質や溶接性などに影響を与えるものではないが,外観不良として拒絶する消費者が多い。特に,近年,鋼の高強度化が進みPを多く含む鋼においてはむらが発生し易く,問題となっている。この原因は,Pが鋼加熱時に鋼材表面,粒界に不均一に濃化して,めっき合金化時におけるFeとZnの拡散を阻害し,局所的なFeとZnの合金化反応の速度差をもたらすことで,めっき厚み差が生じさせるからと考えられる。   Alloyed hot-dip galvanized steel is widely used in automobiles, home appliances, and building materials because of its excellent weldability, paintability, and post-paint corrosion resistance. This alloyed hot-dip galvanized steel is a hot-dip galvanized steel, which is then heat-treated to diffuse Fe in the steel and Zn in the plating to cause an alloying reaction, thereby causing an iron-zinc alloy layer on the steel surface. Is formed. This alloying reaction is said to occur preferentially from the grain boundaries of the steel, but when there are many segregating elements in the grain boundaries, the diffusion of Fe and Zn is locally inhibited, so the alloying reaction Becomes non-uniform and the appearance is uneven. This unevenness does not affect the mechanical properties or weldability, but many consumers reject it as a poor appearance. In particular, in recent years, the strength of steel has increased and steel containing a large amount of P tends to cause unevenness, which is a problem. This is because P is unevenly concentrated on the steel surface and grain boundaries when the steel is heated, which inhibits the diffusion of Fe and Zn during plating alloying, and the difference in the local alloying reaction rate of Fe and Zn. This is thought to cause a difference in plating thickness.

このため,外観品位に優れる合金化溶融亜鉛めっき鋼が種々検討されている。例えば,(特許文献1)では,焼鈍した鋼板をめっきする前にFe,Ni,Co,Cuなどの金属被覆層を形成する方法が開示されている。また,(特許文献2)では,めっき浴中のAl濃度を鋼中のPとTiの濃度によって規定する方法が開示されている。さらに,(特許文献3)では,冷延焼鈍後の鋼板表面のX線回折からの{200}面と{222}面からの回折X線強度比,I(200)/I(222)を0.17未満とする鋼が開示されている。
さらにまた,(特許文献4)では,鋼中にCuを含ませる方法が開示されている。
For this reason, various types of alloyed hot-dip galvanized steel with excellent appearance quality have been studied. For example, (Patent Document 1) discloses a method of forming a metal coating layer of Fe, Ni, Co, Cu or the like before plating an annealed steel sheet. (Patent Document 2) discloses a method of defining the Al concentration in the plating bath by the concentrations of P and Ti in the steel. Furthermore, in (Patent Document 3), the diffraction X-ray intensity ratio, I (200) / I (222), from the {200} plane and {222} plane from the X-ray diffraction of the steel sheet surface after cold rolling annealing is 0. Steels of less than .17 are disclosed.
Furthermore, in (patent document 4), the method of including Cu in steel is disclosed.

特開平6−88187号公報JP-A-6-88187 特開平5−132784号公報JP-A-5-132784 特開平10−18011号公報JP-A-10-18011 特開平6−17216号公報JP-A-6-17216

しかし,特許文献1の方法では設備の増加を伴うためにコスト増,工程増となり,実用化は容易ではない。また,特許文献2の方法は,鋼中のPやTiの濃度は鋼種によって異なるため,鋼種に応じて浴中のAl濃度を制御することは困難であり,実現性は低い。さらに特許文献3の鋼は,結晶方位を制御するのは容易でなく,また,対象としている鋼材のP含有率が0.025%以下であるため,近年のPを多く含む高強度鋼板には適用できない。さらにまた,特許文献4の方法は,材質への影響が懸念され,汎用的な方法ではない。   However, since the method of Patent Document 1 is accompanied by an increase in equipment, the cost and process are increased, and practical application is not easy. In the method of Patent Document 2, the concentration of P and Ti in steel varies depending on the steel type, so it is difficult to control the Al concentration in the bath according to the steel type, and its feasibility is low. Furthermore, in the steel of Patent Document 3, it is not easy to control the crystal orientation, and since the P content of the target steel material is 0.025% or less, high strength steel sheets containing a large amount of P in recent years Not applicable. Furthermore, the method of Patent Document 4 is not a general-purpose method because of concern about the influence on the material.

以上のように,外観品位に優れる合金化溶融亜鉛めっき鋼として種々提案されているが,設備導入,工程増などの問題があるため実現が困難で,またPを多量に含むような高強度鋼に適用できるものでもない。そこで,本発明は,このような設備増や工程増といった問題を解決し,Pを多量に含む鋼であっても,外観品位に優れる合金化溶融亜鉛めっき鋼,およびその製造方法を提供することを目的としている。   As described above, various types of alloyed hot-dip galvanized steels with excellent appearance quality have been proposed, but they are difficult to realize due to problems such as equipment installation and increased process, and high-strength steels containing a large amount of P. It is also not applicable to. Accordingly, the present invention provides an alloyed hot-dip galvanized steel excellent in appearance quality even for steel containing a large amount of P, and a method for producing the same, in order to solve the problems such as an increase in equipment and processes. It is an object.

上記課題を解決するために,本発明者らは,Pを0.02%〜0.2%含む鋼を基材とした合金化溶融亜鉛めっき鋼で,外観にむらが発生した鋼,外観にむらが発生しなかった鋼について,その鉄−亜鉛合金被覆中の濃化元素をGDSで詳細に調べた。その結果,外観にむらが発生した鋼はめっき中のPの濃化が大きいことが分かった。一方,外観にむらが発生しなかった鋼はめっき中のPの濃化が小さく,さらに,GDSによる鉄−亜鉛合金被覆中のPの積分強度と,鉄−亜鉛合金被覆中のFeとZnの積分強度の和の比,I(P)/I(Fe+Zn)が0.025以下であることを見出し,発明に至った。   In order to solve the above-mentioned problems, the inventors of the present invention are alloyed hot-dip galvanized steel based on steel containing 0.02% to 0.2% P. For the steel with no unevenness, the concentrated elements in the iron-zinc alloy coating were examined in detail by GDS. As a result, it was found that steel with uneven appearance had a large concentration of P during plating. On the other hand, steel with no appearance irregularity has a small P concentration during plating, and further, the integrated strength of P in the iron-zinc alloy coating by GDS, and the Fe and Zn in the iron-zinc alloy coating. It was found that the ratio of the sums of integral intensities, I (P) / I (Fe + Zn), was 0.025 or less, and the present invention was reached.

すなわち,本発明は次の通りである。
(1)質量%で,
C;0.01%以下,
Si;0.2%以下,
Mn;2%以下,
P;0.02〜0.2%,
S;0.03%以下,
Al;0.005〜0.1%,
Ti;0.001〜0.05%,
Nb;0.001〜0.05%,
を含有し,残部がFeおよび不可避的不純物からなる鋼材の表面に,鉄−亜鉛合金被覆を有する合金化溶融亜鉛めっき鋼において,GDSによる鉄−亜鉛合金被覆中のPと(Fe+Zn)の積分強度比,I(P)/I(Fe+Zn)が0.025以下であることを特徴とする外観品位に優れる合金化溶融亜鉛めっき鋼。
(2)前記,鉄−亜鉛合金被覆の付着量の偏差が±7g/m以内であることを特徴とする,(1)に記載の外観品位に優れる合金化溶融亜鉛めっき鋼。
(3)前記,鉄−亜鉛合金被覆のΓ層厚みが1μm以下であることを特徴とする,(1)または(2)に記載の外観品位に優れる合金化溶融亜鉛めっき鋼。
(4)質量%で,
C;0.01%以下,
Si;0.2%以下,
Mn;2%以下,
P;0.02〜0.2%,
S;0.03%以下,
Al;0.005〜0.1%,
Ti;0.001〜0.05%,
Nb;0.001〜0.05%,
を含有し,残部がFeおよび不可避的不純物からなる低炭素鋼スラブを熱間圧延した後,酸洗し,さらに冷間圧延,焼鈍,溶融亜鉛めっき,加熱合金化処理を施して,合金化溶融亜鉛めっき鋼とする合金化溶融亜鉛めっき鋼の製造方法において,熱間圧延後のコイルの捲取温度を750℃以上とし,さらにその後,巻き取ったコイルの最外層部の表面温度が500℃以下となるまで空冷することを特徴とする外観品位に優れる合金化溶融亜鉛めっき鋼の製造方法。
That is, the present invention is as follows.
(1) In mass%,
C; 0.01% or less,
Si: 0.2% or less,
Mn: 2% or less,
P; 0.02 to 0.2%,
S: 0.03% or less,
Al; 0.005 to 0.1%,
Ti; 0.001 to 0.05%,
Nb; 0.001 to 0.05%,
Integral strength of P and (Fe + Zn) in iron-zinc alloy coating by GDS in alloyed hot-dip galvanized steel with iron-zinc alloy coating on the surface of steel material containing Fe and unavoidable impurities An alloyed hot-dip galvanized steel excellent in appearance quality, characterized in that the ratio I (P) / I (Fe + Zn) is 0.025 or less.
(2) The alloyed hot-dip galvanized steel having excellent appearance quality according to (1), wherein the deviation of the adhesion amount of the iron-zinc alloy coating is within ± 7 g / m 2 .
(3) The galvannealed steel having excellent appearance quality according to (1) or (2), wherein the thickness of the Γ layer of the iron-zinc alloy coating is 1 μm or less.
(4) In mass%,
C; 0.01% or less,
Si: 0.2% or less,
Mn: 2% or less,
P; 0.02 to 0.2%,
S: 0.03% or less,
Al; 0.005 to 0.1%,
Ti; 0.001 to 0.05%,
Nb; 0.001 to 0.05%,
Hot-rolled low-carbon steel slab containing Fe and the balance of inevitable impurities, pickling, cold rolling, annealing, hot dip galvanizing, heat alloying treatment, alloying and melting In the manufacturing method of alloyed hot-dip galvanized steel to be galvanized steel, the coiling temperature of the coil after hot rolling is set to 750 ° C. or higher, and then the surface temperature of the outermost layer portion of the coil wound is 500 ° C. or lower. A method for producing an alloyed hot-dip galvanized steel excellent in appearance quality, characterized by air cooling until

本発明の合金化溶融亜鉛めっき鋼,また本発明の製造法を経た合金化溶融亜鉛めっき鋼は,外観品位に優れ,また,摺動性,密着性にも優れる。このため,自動車や家電製品,建材等に用いることができ,産業上の価値は極めて大きい。   The alloyed hot-dip galvanized steel of the present invention and the alloyed hot-dip galvanized steel that has undergone the manufacturing method of the present invention are excellent in appearance quality, slidability, and adhesion. For this reason, it can be used for automobiles, home appliances, building materials, etc., and its industrial value is extremely high.

以下,本発明を詳細に説明する。
まず,本発明の要点である,鉄−亜鉛合金被覆中のP含有率について説明する。Pは鋼の強度増加を目的に鋼中に添加される。また,Pは合金化加熱時にめっき中に拡散,濃化するが,このめっき中のP自体も外観に影響を与える元素である。発明者らが,合金化加熱後のめっき中のP量とめっき外観との関係を詳細に調査した結果,GDSによる鉄−亜鉛合金被覆中のPの積分強度I(P)が,(Fe+Zn)の積分強度I(Fe+Zn)の0.025以下である場合,外観が良好で,一方,GDSによる鉄−亜鉛合金被覆中のPの積分強度I(P)が,(Fe+Zn)の積分強度I(Fe+Zn)の0.025より大きい場合,外観が不良となることを見出した。この理由は定かではないが,GDSによる鉄−亜鉛合金被覆中のPの積分強度I(P)が,(Fe+Zn)の積分強度I(Fe+Zn)の0.025以下である場合,めっき中のPがZn,Feの合金化反応速度を均一化させる効果があると考えられる。好ましくは,GDSによる鉄−亜鉛合金被覆中のPの積分強度I(P)が,(Fe+Zn)の積分強度I(Fe+Zn)の0.020以下,より好ましくは,0.015以下である。なお,ここで言う,GDSによる鉄−亜鉛合金被覆中のPの積分強度I(P)とは,株式会社リガク製GDS(高周波グロー放電発光分析装置),GDA750を用い,分析径2.5mmで鉄−亜鉛合金被覆深さ方向の元素分布を測定した際の,鉄−亜鉛合金被覆中のPの強度を積分した値である。また,ここで言う鉄−亜鉛合金被覆とは,GDSによる測定でFeの強度が増加しなくなった深さまでと定義する。GDSによる鉄−亜鉛合金被覆中のPの積分強度I(P)を,(Fe+Zn)の積分強度I(Fe+Zn)の0.025以下とするには,めっき前の表面のP濃度を低減させておくことが望ましい。このためには,熱延時の捲取温度を高くする,また巻き取ったコイルを空冷する,めっき前の鋼を酸洗する,あるいは鋼材表面を研削する等の処理が有効である。
The present invention will be described in detail below.
First, the P content in the iron-zinc alloy coating, which is the main point of the present invention, will be described. P is added to the steel for the purpose of increasing the strength of the steel. P diffuses and concentrates during plating during alloying heating, and P itself during plating is an element that affects the appearance. As a result of detailed investigations by the inventors on the relationship between the amount of P in the plating after the alloying heating and the plating appearance, the integrated strength I (P) of P in the iron-zinc alloy coating by GDS is (Fe + Zn). When the integrated strength I (Fe + Zn) is 0.025 or less, the appearance is good. On the other hand, the integrated strength I (P) of P in the iron-zinc alloy coating by GDS is the integrated strength I of (Fe + Zn) ( It has been found that the appearance is poor when it is larger than 0.025 of (Fe + Zn). The reason for this is not clear, but when the integral strength I (P) of P in the iron-zinc alloy coating by GDS is 0.025 or less of the integral strength I (Fe + Zn) of (Fe + Zn), P Is considered to have the effect of uniforming the alloying reaction rate of Zn and Fe. Preferably, the integrated intensity I (P) of P in the iron-zinc alloy coating by GDS is 0.020 or less, more preferably 0.015 or less of the integrated intensity I (Fe + Zn) of (Fe + Zn). The integral intensity I (P) of P in the iron-zinc alloy coating by GDS is GDS (High Frequency Glow Discharge Emission Analyzer), GDA750 manufactured by Rigaku Corporation, and the analysis diameter is 2.5 mm. It is a value obtained by integrating the strength of P in the iron-zinc alloy coating when the element distribution in the depth direction of the iron-zinc alloy coating is measured. Further, the iron-zinc alloy coating referred to here is defined as the depth at which the strength of Fe does not increase as measured by GDS. In order to make the integral strength I (P) of P in the iron-zinc alloy coating by GDS 0.025 or less of the integral strength I (Fe + Zn) of (Fe + Zn), the P concentration on the surface before plating is reduced. It is desirable to keep it. For this purpose, it is effective to increase the coiling temperature during hot rolling, to cool the coiled coil, to pickle the steel before plating, or to grind the steel surface.

次に,本発明の合金化溶融亜鉛めっき鋼の鋼成分の限定理由について説明する。なお,各鋼成分において%は何れも質量%である。
C;0.01%以下
Cは鋼の強化に必要な元素である。しかし,C量が0.01%を超えると脆化しやすくなるため,C量は0.01%以下とする。
Si;0.2%以下
Siは鋼の強化,脱酸の効果を有する元素である。しかし,過剰に添加すると脆化しやすくなる。また,溶融亜鉛めっき時にめっきの濡れ性を阻害し,まためっき密着性も劣化させる。このため,Siは0.2%以下とする。
Mn;2%以下
Mnも鋼の強化,脱酸の効果を有する元素である。しかし,過剰に添加すると脆化しやすくなる。また,溶融亜鉛めっき時にめっきの濡れ性を阻害し,まためっき密着性も劣化させる。このため,Mnは2%以下とする。
P;0.02〜0.2%
Pは鋼の強化に必要な元素である。しかし,過剰に添加すると脆化しやすくなる。また,溶融亜鉛めっき後の合金化処理性を劣化させる。このため,Pは,0.02〜0.2%とする。尚,鋼板の強度と脆化のバランスを考慮すると,Pは,0.03〜0.05%とすることが好ましい。
S;0.03%以下
Sは不純物であり,加工性や熱間脆性を劣化させるため少ないほうが望ましい。このためSは0.03%以下とする。
Al;0.005〜0.1%
Alは鋼中のNとの親和力が強く,固溶しているNを析出物として固定し加工性を向上させる効果がある。また,脱酸の効果がある。しかし,多すぎると逆に加工性を劣化させる。このためAlは0.005〜0.1%とする。
Ti;0.001〜0.05%
TiはC,Nを固定し,鋼の加工性を向上させる効果がある。しかし,多すぎると逆に加工性を劣化させる。このため,Tiは0.001〜0.05%とする。
Nb;0.001〜0.05%
NbはCを固定し,鋼の加工性を向上させる効果がある。しかし,多すぎると逆に加工性を劣化させる。このため,Nbは0.001〜0.05%とする。
Next, the reasons for limiting the steel components of the galvannealed steel of the present invention will be described. In each steel component,% is mass%.
C: 0.01% or less C is an element necessary for strengthening steel. However, if the C content exceeds 0.01%, embrittlement tends to occur, so the C content is set to 0.01% or less.
Si: 0.2% or less Si is an element having the effect of strengthening and deoxidizing steel. However, it becomes brittle when added in excess. In addition, the wettability of the plating is hindered during hot dip galvanizing, and the plating adhesion is also deteriorated. For this reason, Si is made 0.2% or less.
Mn: 2% or less Mn is an element having the effect of strengthening and deoxidizing steel. However, it becomes brittle when added in excess. In addition, the wettability of the plating is hindered during hot dip galvanizing, and the plating adhesion is also deteriorated. For this reason, Mn is made 2% or less.
P: 0.02 to 0.2%
P is an element necessary for strengthening steel. However, it becomes brittle when added in excess. In addition, the alloying processability after hot dip galvanizing is deteriorated. For this reason, P is made 0.02 to 0.2%. In consideration of the balance between strength and embrittlement of the steel sheet, P is preferably 0.03 to 0.05%.
S: 0.03% or less S is an impurity, and it is desirable that S is less because it degrades workability and hot brittleness. For this reason, S is made 0.03% or less.
Al; 0.005 to 0.1%
Al has a strong affinity with N in the steel, and has an effect of improving the workability by fixing the dissolved N as a precipitate. It also has a deoxidizing effect. However, if the amount is too large, the workability is deteriorated. For this reason, Al is made 0.005 to 0.1%.
Ti; 0.001 to 0.05%
Ti has the effect of fixing C and N and improving the workability of steel. However, if the amount is too large, the workability is deteriorated. For this reason, Ti is made 0.001 to 0.05%.
Nb; 0.001 to 0.05%
Nb has the effect of fixing C and improving the workability of steel. However, if the amount is too large, the workability is deteriorated. For this reason, Nb is made 0.001 to 0.05%.

次に鉄−亜鉛合金被覆について説明する。鉄−亜鉛合金被覆の付着量の偏差は±7g/m以内であることが望ましい。標準偏差が±7g/mの範囲を超える場合,外観上の濃淡が助長されて,外観不良となりやすい。鉄−亜鉛合金被覆の付着量は特に規定するものではないが,耐食性および加工性の観点から,20〜150g/mであることが望ましい。 Next, the iron-zinc alloy coating will be described. The deviation in the amount of iron-zinc alloy coating is preferably within ± 7 g / m 2 . When the standard deviation exceeds the range of ± 7 g / m 2 , the shade on the appearance is promoted and the appearance is liable to be poor. The adhesion amount of the iron-zinc alloy coating is not particularly specified, but is preferably 20 to 150 g / m 2 from the viewpoint of corrosion resistance and workability.

また,鉄−亜鉛合金被覆のΓ(ガンマ)層の平均厚みは1μm以下であることが望ましい。1μmを超える場合,めっき密着性に劣るため,プレスした際にめっきが剥離しやすくなる。   The average thickness of the Γ (gamma) layer of the iron-zinc alloy coating is preferably 1 μm or less. When the thickness exceeds 1 μm, the plating adhesion is inferior, so that the plating easily peels off when pressed.

鉄−亜鉛合金被覆中のFe含有率は,質量%で,7〜11%であることが望ましい。7%未満であれば,めっき外観が不均一となりやすい。一方,11%を超える場合,外観は良好であるが,めっきが過合金となり密着性に劣る。   The Fe content in the iron-zinc alloy coating is preferably 7 to 11% by mass. If it is less than 7%, the plating appearance tends to be uneven. On the other hand, if it exceeds 11%, the appearance is good, but the plating becomes overalloyed and the adhesion is poor.

本発明の合金化溶融亜鉛めっき鋼は,低炭素鋼スラブを熱間圧延した後,酸洗し,さらに冷間圧延,焼鈍,溶融亜鉛めっき,加熱合金化処理を施して,製造する。スラブ加熱温度や熱間圧延条件は,特に規定するものでなく,一般的な鋼を製造する条件であればなんら問題ないが,仕上げ圧延後の捲取温度は750℃以上とする必要がある。高温で巻き取るほど鋼中のPが酸化され,その後の酸洗工程でそのPの酸化層が除去される。この表面のP濃化が小さい鋼を溶融亜鉛めっき,加熱合金化処理することで,本発明の外観品位に優れる合金化溶融亜鉛めっき鋼を製造できる。捲取温度が750℃よりも小さい場合は,Pの酸化が不十分であるため,めっき前の鋼板表面のP濃度も大きく,これを溶融亜鉛めっき,加熱合金化処理すると外観品位に劣る合金化溶融亜鉛めっきとなる。このため,熱間圧延後の鋼の捲取温度は750℃以上とする必要がある。一方,巻取温度が高すぎるとスケールが厚く成長し,その後の酸洗工程に負荷がかかるため,巻取温度の上限は810℃とすることが望ましい。好ましい巻取温度範囲は,760℃以上800℃以下,より好ましくは770℃以上790度以下である。   The alloyed hot dip galvanized steel of the present invention is manufactured by hot rolling a low carbon steel slab and then pickling, and further performing cold rolling, annealing, hot dip galvanizing, and heat alloying treatment. The slab heating temperature and hot rolling conditions are not particularly specified and there is no problem as long as they are conditions for producing general steel, but the cutting temperature after finish rolling needs to be 750 ° C. or higher. As the steel is wound at a higher temperature, P in the steel is oxidized, and the oxidized layer of P is removed in the subsequent pickling process. By galvanizing and heat-alloying the steel having a small P concentration on the surface, an alloyed galvanized steel excellent in appearance quality of the present invention can be produced. When the cutting temperature is lower than 750 ° C, the oxidation of P is insufficient, so the P concentration on the surface of the steel plate before plating is also large. If this is hot-dip galvanized and heat-alloyed, it is inferior in appearance quality. It becomes hot dip galvanizing. For this reason, the steel cutting temperature after hot rolling needs to be 750 ° C. or higher. On the other hand, if the coiling temperature is too high, the scale grows thick and a load is applied to the subsequent pickling process, so the upper limit of the coiling temperature is preferably 810 ° C. A preferable winding temperature range is 760 ° C. or higher and 800 ° C. or lower, more preferably 770 ° C. or higher and 790 ° C. or lower.

巻き取ってコイル状としたコイルは,そのコイルの最外層部の鋼板表面温度が500℃以下となるまで空冷する必要がある。500℃以下となるまで空冷することで鋼板中のPが十分に酸化され,その後の酸洗工程でPの濃化層が除去されるため,外観品位に優れる合金化溶融亜鉛めっき鋼を製造できる。一方,捲取後,直ちに水冷するなど,コイルの最外層部の鋼板表面温度が500℃よりも高温で急冷した場合,Pの酸化が不十分なため,外観品位に劣る合金化溶融亜鉛めっき鋼を生み出す原因となる。このため,巻き取ったコイルはその最外層部の表面温度が500℃以下となるまで空冷する必要がある。但し,巻き取ったコイルを,その最外層部の表面温度が極めて低温になるまで空冷した場合は,生産性を落とすことに繋がる。このため,空冷終了までの好ましい温度範囲は100℃以上500℃以下,より好ましい範囲は200℃以上400℃とする。   The coil that has been wound up into a coil shape needs to be air-cooled until the surface temperature of the steel plate at the outermost layer of the coil becomes 500 ° C. or lower. By cooling to 500 ° C. or less, P in the steel plate is sufficiently oxidized, and the concentrated layer of P is removed in the subsequent pickling process, so that an alloyed hot-dip galvanized steel with excellent appearance quality can be produced. . On the other hand, when the steel sheet surface temperature at the outermost layer of the coil is rapidly cooled to a temperature higher than 500 ° C, such as immediately after cooling, when the steel sheet surface temperature is higher than 500 ° C, the oxidation of galvannealed steel is inferior in appearance due to insufficient oxidation It becomes a cause to produce. For this reason, the wound coil needs to be air-cooled until the surface temperature of the outermost layer becomes 500 ° C. or lower. However, if the wound coil is air-cooled until the surface temperature of the outermost layer becomes extremely low, productivity will be reduced. For this reason, the preferable temperature range until the air cooling end is 100 ° C. or more and 500 ° C. or less, and the more preferable range is 200 ° C. or more and 400 ° C.

熱間圧延後は酸洗,冷間圧延をするが,これらの方法は従来から行われている方法で実施すればよい。例えば,酸洗では50℃以上の塩酸中に鋼を浸漬,冷間圧延は圧下率50〜90%で行えばよい。なお,酸洗に際しては,Pの濃化層をできるだけ除去するために,塩酸温度は高く,また鋼の塩酸中の浸漬時間は長い方が好ましい。酸洗前に熱間圧延材の表面にショットブラスト,サンドブラストなどを行うことはなお望ましい。   After hot rolling, pickling and cold rolling are performed, but these methods may be carried out by conventional methods. For example, in pickling, steel may be immersed in hydrochloric acid at 50 ° C. or higher, and cold rolling may be performed at a reduction rate of 50 to 90%. In pickling, in order to remove the concentrated layer of P as much as possible, it is preferable that the hydrochloric acid temperature is high and the immersion time of steel in hydrochloric acid is long. It is still desirable to perform shot blasting, sand blasting, etc. on the surface of the hot rolled material before pickling.

冷間圧延後は再結晶焼鈍を行う。これは連続式溶融亜鉛めっき設備(CGL)の前段に設置された焼鈍設備で行う。一般的な鋼を製造する条件であれば,焼鈍条件はなんら規定するものはないが,焼鈍温度が高すぎる場合は再結晶粒が粗大化し加工後の肌荒れの原因となるため,焼鈍温度は880℃以下とすることが望ましい。   After cold rolling, recrystallization annealing is performed. This is performed by an annealing facility installed in the preceding stage of the continuous hot dip galvanizing facility (CGL). As long as the conditions for producing general steel, there are no specific annealing conditions, but if the annealing temperature is too high, the recrystallized grains become coarse and cause rough skin after processing, so the annealing temperature is 880. It is desirable that the temperature is not higher than ° C.

再結晶焼鈍後は溶融亜鉛めっき,加熱合金化処理を行う。亜鉛めっき浴の温度は445℃〜500℃,加熱合金化温度は450〜580℃とすることが望ましい。   After recrystallization annealing, hot dip galvanizing and heat alloying are performed. The temperature of the galvanizing bath is preferably 445 ° C to 500 ° C, and the heating alloying temperature is preferably 450 to 580 ° C.

以下に実施例に基づき本発明について説明する。表1に示す組成の鋼を転炉で溶製し,連続鋳造してスラブとした。そのスラブを1200℃で1時間加熱後,熱間圧延して板厚5mmの熱延鋼板とした。熱延時の仕上げ温度は900℃,捲取温度は725℃〜785℃である。また捲取後の冷却は,コイルの最外層部が500℃以下となるまで空冷した場合と,コイルの最外層部が500℃以上の状態で水冷した場合との2水準実施した。得られた熱延鋼板を10%塩酸中で酸洗した後,冷間圧延して板厚1mmの冷延鋼板とした。その冷延鋼板を,連続溶融めっき設備を用い,均熱温度800℃,均熱時間20秒で焼鈍し,冷却速度20℃/秒で465℃まで冷却した後,浴温460℃のZn−0.13%Alめっき浴に3秒間浸漬し,ワイピングで付着量が45g/mとなるように調整し,その後,温度540℃〜580℃で加熱合金化処理し,合金化溶融亜鉛めっき鋼を製造した。
作製した合金化溶融亜鉛めっき鋼の外観は下記の評価をした。
The present invention will be described below based on examples. Steel having the composition shown in Table 1 was melted in a converter and continuously cast into a slab. The slab was heated at 1200 ° C. for 1 hour and hot-rolled to obtain a hot-rolled steel sheet having a thickness of 5 mm. The finishing temperature at the time of hot rolling is 900 ° C, and the cutting temperature is 725 ° C to 785 ° C. In addition, the cooling after scraping was carried out in two levels: when the coil was air-cooled until the outermost layer of the coil was 500 ° C. or less, and when cooled with the outermost layer of the coil being 500 ° C. or higher. The obtained hot-rolled steel sheet was pickled in 10% hydrochloric acid and then cold-rolled to obtain a cold-rolled steel sheet having a thickness of 1 mm. The cold-rolled steel sheet was annealed at a soaking temperature of 800 ° C. and a soaking time of 20 seconds using a continuous hot dipping equipment, cooled to 465 ° C. at a cooling rate of 20 ° C./second, and then Zn-0 having a bath temperature of 460 ° C. .Immerse in a 13% Al plating bath for 3 seconds, adjust the adhesion amount to 45 g / m 2 by wiping, then heat alloy at a temperature of 540 ° C. to 580 ° C. Manufactured.
The appearance of the produced alloyed hot-dip galvanized steel was evaluated as follows.

(1)外観
目視観察し,外観むらの程度に応じてグレード1から6まで,0.5刻みで11段階に分類した。3.5以上が合格である。
(2)鉄−亜鉛合金層中のP濃化量
GDSで鉄−亜鉛合金被覆層の深さ方向の元素分布を測定し,鉄−亜鉛合金被覆層中のPの積分強度,FeとZnの積分強度の和を求めた。用いたGDSは,リガク製高周波グロー放電発光分析装置,GDA750であり,分析径は2.5mmである。
(3)鉄−亜鉛合金被覆層の付着量
鉄−亜鉛合金被覆の付着量を求め,その偏差および組成を測定した。測定は,板幅方向,長手方向の任意の位置から数箇所選び,インヒビターを添加した塩酸で鉄−亜鉛合金被覆を溶解し,ICPで分析して行った。
(4)Γ層厚み
板幅中央,長手方向の任意の位置から25×10mmの大きさに切り出し,SEM(走査型電子顕微鏡)でその断面組織を観察し,Γ層の厚みを測定した。用いたSEMは,日立製S−2460Nである。
(5)鉄−亜鉛合金被覆層の密着性
密着性を60度V曲げ後のテープ剥離試験で評価した。これは,V曲げ部に貼り付けたテープに付着した鉄−亜鉛合金の付着量(付着した部分の長さ)を測定する方法で,付着した部分の長さが6mm以下であれば合格,それよりも大きければ不合格とした。
(1) Appearance Visually observed, grades 1 to 6 were classified into 11 steps in 0.5 increments according to the degree of appearance irregularity. 3.5 or more pass.
(2) The element distribution in the depth direction of the iron-zinc alloy coating layer is measured by the P enrichment amount GDS in the iron-zinc alloy layer, the integrated strength of P in the iron-zinc alloy coating layer, Fe and Zn The sum of integral intensities was obtained. The GDS used was a Rigaku high-frequency glow discharge emission spectrometer, GDA750, and the analysis diameter was 2.5 mm.
(3) Amount of iron-zinc alloy coating layer The amount of iron-zinc alloy coating was determined, and the deviation and composition were measured. The measurement was performed by selecting several points from arbitrary positions in the plate width direction and longitudinal direction, dissolving the iron-zinc alloy coating with hydrochloric acid to which an inhibitor was added, and analyzing by ICP.
(4) Gamma Layer Thickness The width of the Γ layer was measured by slicing it to a size of 25 × 10 mm from an arbitrary position in the longitudinal center of the plate width and observing its cross-sectional structure with a SEM (scanning electron microscope). The SEM used is Hitachi S-2460N.
(5) Adhesiveness of the iron-zinc alloy coating layer The tape adhesion test after 60 degree V-bending was evaluated. This is a method of measuring the amount of iron-zinc alloy adhering to the tape affixed to the V-bend (the length of the adhering part). If the adhering part is 6 mm or less in length, it passes, If it was larger than that, it was rejected.

Figure 2007169696
Figure 2007169696

各評価結果を表2および表3に示す。No.1〜4は,鋼Aを種々の温度で捲取り,鉄−亜鉛合金被覆中のP濃化量を変化させた場合である。捲取温度が低く,鉄−亜鉛合金被覆中のPと(FeとZn)の積分強度比が0.025を超える場合(No.4),外観グレードは5.5であり,外観品位に劣る。No.5〜8は,鋼Bを種々の温度で捲取り,鉄−亜鉛合金被覆中のP濃化量を変化させた場合である。捲取温度が低く,鉄−亜鉛合金被覆中のPと(FeとZn)の積分強度比が0.025を超える場合(No.8),外観グレードは5.0であり,外観品位に劣る。No.9〜12は,鋼Cを種々の温度で捲取り,鉄−亜鉛合金被覆中のP濃化量を変化させた場合である。捲取温度が低く,鉄−亜鉛合金被覆中のPと(FeとZn)の積分強度比が0.025を超える場合(No.11および12),外観グレードは4.0および5.0であり,外観品位に劣る。No.13〜15は,鋼Dを種々の温度で捲取り,鉄−亜鉛合金被覆中のP濃化量を変化させた場合である。捲取温度が低く,鉄−亜鉛合金被覆中のPと(FeとZn)の積分強度比が0.025を超える場合(No.14および15),外観グレードは4.5および5.5であり,外観品位に劣る。なお,No.1〜15の鋼はいずれもコイルに巻き取った後の冷却はコイル最外層部の鋼表面温度が500℃以下となるまで空冷した。   The evaluation results are shown in Table 2 and Table 3. No. 1-4 are the cases where the steel A is scraped at various temperatures and the P concentration in the iron-zinc alloy coating is changed. When the ironing temperature is low and the integrated strength ratio of P and (Fe and Zn) in the iron-zinc alloy coating exceeds 0.025 (No. 4), the appearance grade is 5.5, which is inferior in appearance quality. . No. 5 to 8 are cases where steel B is scraped at various temperatures and the P concentration in the iron-zinc alloy coating is changed. When the ironing temperature is low and the integrated strength ratio of P and (Fe and Zn) in the iron-zinc alloy coating exceeds 0.025 (No. 8), the appearance grade is 5.0, which is inferior in appearance quality. . No. 9 to 12 are cases where the steel C was scraped at various temperatures and the P concentration in the iron-zinc alloy coating was changed. When the ironing temperature is low and the integrated strength ratio of P and (Fe and Zn) in the iron-zinc alloy coating exceeds 0.025 (No. 11 and 12), the appearance grade is 4.0 and 5.0. Yes, inferior in appearance. No. 13 to 15 are cases where the steel D was scraped at various temperatures and the P concentration in the iron-zinc alloy coating was changed. When the ironing temperature is low and the integrated strength ratio of P and (Fe and Zn) in the iron-zinc alloy coating exceeds 0.025 (No. 14 and 15), the appearance grade is 4.5 and 5.5 Yes, inferior in appearance. No. All the steels 1 to 15 were cooled after being wound around the coil until the steel surface temperature of the coil outermost layer became 500 ° C. or lower.

No.16〜23は,鋼A〜Dを種々の温度で捲取り,さらにコイルに巻き取った後の冷却をコイル最外層部の鋼表面温度が500℃より高温の状態で水冷し,鉄−亜鉛合金被覆中のP濃化量を変化させた場合である。このようにして製造したNo.16〜23の鋼は,いずれもめっき後の外観グレードが4.0以上であり,外観品位に劣る。   No. Nos. 16 to 23 are steels A to D which are wound at various temperatures, and further cooled after being wound on a coil by water cooling with the steel surface temperature of the coil outermost layer being higher than 500 ° C. This is a case where the P concentration amount in the coating is changed. No. manufactured in this way. All the steels of Nos. 16 to 23 have an appearance grade after plating of 4.0 or more, and are inferior in appearance quality.

Figure 2007169696
Figure 2007169696

Figure 2007169696
Figure 2007169696

図1は,No.1〜23の鋼における鉄−亜鉛合金被覆中のPと,(FeとZn)の積分強度比I(P)/I(Fe+Zn)に対する外観グレードの関係である。鉄−亜鉛合金被覆中のPと(FeとZn)の積分強度比I(P)/I(Fe+Zn)は,外観グレードと線形関係にあり,積分強度比I(P)/I(Fe+Zn)が0.025以下であると外観グレードは3以下であり,良好な外観を有する。   FIG. It is the relationship of the appearance grade with respect to P in the iron-zinc alloy coating in steels 1 to 23 and the integrated intensity ratio I (P) / I (Fe + Zn) of (Fe and Zn). The integrated intensity ratio I (P) / I (Fe + Zn) of P and (Fe and Zn) in the iron-zinc alloy coating is linearly related to the appearance grade, and the integrated intensity ratio I (P) / I (Fe + Zn) is When it is 0.025 or less, the appearance grade is 3 or less, and it has a good appearance.

表1に示すAの組成の鋼を転炉で溶製し,連続鋳造してスラブとした。そのスラブを1200℃で1時間加熱後,熱間圧延して板厚5mmの熱延鋼板とした。熱延時の仕上げ温度は900℃,捲取温度は780℃であり,捲取後はコイルの最外層部が500℃以下となるまで空冷した。作製した熱延鋼板を10%塩酸中で酸洗した後,冷間圧延して板厚1mmの冷延鋼板とした。その冷延鋼板を,連続溶融めっき設備を用い,均熱温度800℃,均熱時間20秒で焼鈍し,冷却速度20℃/秒で465℃まで冷却した後,浴温460℃のZn−0.13%Alめっき浴に3秒浸漬し,ワイピングで付着量が40〜50g/mとなるように調整し,その後,加熱温度480〜560℃で合金化処理した。作製した合金化溶融亜鉛めっき鋼は,実施例1と同様の方法で各種評価した。評価結果を表4に示す。 Steel of composition A shown in Table 1 was melted in a converter and continuously cast into a slab. The slab was heated at 1200 ° C. for 1 hour and hot-rolled to obtain a hot-rolled steel sheet having a thickness of 5 mm. The finishing temperature at the time of hot rolling was 900 ° C. and the cutting temperature was 780 ° C. After the cutting, the coil was air-cooled until the outermost layer portion of the coil was 500 ° C. or less. The produced hot-rolled steel sheet was pickled in 10% hydrochloric acid and then cold-rolled to obtain a cold-rolled steel sheet having a thickness of 1 mm. The cold-rolled steel sheet was annealed at a soaking temperature of 800 ° C. and a soaking time of 20 seconds using a continuous hot dipping equipment, cooled to 465 ° C. at a cooling rate of 20 ° C./second, and then Zn-0 having a bath temperature of 460 ° C. .Immersion in a 13% Al plating bath for 3 seconds and wiping to adjust the adhesion amount to 40 to 50 g / m 2 , followed by alloying at a heating temperature of 480 to 560 ° C. The produced alloyed hot-dip galvanized steel was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 4.

No.24とNo.25は,鉄−亜鉛合金層付着量の偏差が異なる場合である。偏差が7g・m-2以下であるNo.24は,偏差が8g・m-2のNo.25よりも外観グレードに勝る。また,No.24とNo.26,No.27はFe含有率,Γ層厚みの違いである。Fe含有率,Γ層厚みが最も小さいNo.24は,No.26,No.27より外観グレード,密着性に優れる。また,No.26とNo.27の比較では,Fe含有率,Γ層厚みがより小さいNo.26の方が外観グレード,密着性に優れる。 No. 24 and no. 25 is a case where the deviation of the iron-zinc alloy layer adhesion amount is different. The deviation is 7 g · m −2 or less. No. 24 has a deviation of 8 g · m −2 . The appearance grade is better than 25. No. 24 and no. 26, no. 27 is the difference in Fe content and Γ layer thickness. No. with the smallest Fe content and Γ layer thickness. 24 is No. 24. 26, no. Excellent appearance grade and adhesion than 27. No. 26 and no. In the comparison of No. 27, the Fe content and the Γ layer thickness are smaller. 26 is superior in appearance grade and adhesion.

Figure 2007169696
Figure 2007169696

表1に示すAの組成の鋼を転炉で溶製し,連続鋳造してスラブとした。そのスラブを1200℃で1時間加熱後,熱間圧延して板厚5mmの熱延鋼板とした。熱延時の仕上げ温度は900℃,捲取温度は780℃である。捲取後はコイルの最外層部が,所定の温度となるまで空冷し,その後水冷した。所定の温度は,約100℃,250℃,350℃,450℃,600℃の5水準実施した。作製した熱延鋼板を10%塩酸中で酸洗した後,冷間圧延して板厚1mmの冷延鋼板とした。その冷延鋼板を,連続溶融めっき設備を用い,均熱温度800℃,均熱時間20秒で焼鈍し,冷却速度20℃/秒で465℃まで冷却した後,浴温460℃のZn−0.13%Alめっき浴に3秒浸漬し,ワイピングで付着量が40〜50g/mとなるように調整し,その後,加熱温度540℃で合金化処理した。作製した合金化溶融亜鉛めっき鋼は,実施例1と同様の方法で各種評価した。評価結果を表5に示す。 Steel of composition A shown in Table 1 was melted in a converter and continuously cast into a slab. The slab was heated at 1200 ° C. for 1 hour and hot-rolled to obtain a hot-rolled steel sheet having a thickness of 5 mm. The finishing temperature at the time of hot rolling is 900 ° C., and the cutting temperature is 780 ° C. After coiling, the outermost layer of the coil was air cooled until it reached a predetermined temperature, and then water cooled. Predetermined temperatures were implemented at five levels of about 100 ° C, 250 ° C, 350 ° C, 450 ° C, and 600 ° C. The produced hot-rolled steel sheet was pickled in 10% hydrochloric acid and then cold-rolled to obtain a cold-rolled steel sheet having a thickness of 1 mm. The cold-rolled steel sheet was annealed at a soaking temperature of 800 ° C. and a soaking time of 20 seconds using a continuous hot dipping equipment, cooled to 465 ° C. at a cooling rate of 20 ° C./second, and then Zn-0 having a bath temperature of 460 ° C. .Immersion in a 13% Al plating bath for 3 seconds and wiping to adjust the adhesion amount to 40 to 50 g / m 2 , followed by alloying at a heating temperature of 540 ° C. The produced alloyed hot-dip galvanized steel was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 5.

No.28〜No.31は,捲取後にコイルの最外層部が500℃以下となるまで空冷した場合で,いずれも外観品位に優れる。低温になるまで空冷した方が外観グレードに優れる傾向にあるが,約100℃まで空冷した場合(No.28)は,その温度になるまで48時間かかり,生産性を大きく落とすことに繋がる。一方,約250℃と約350℃となるまで空冷した場合(それぞれ,No.29,No.30)は,その温度になるまでに要する時間も24時間以内であり,外観品位も良好で,バランスに優れる。また,約600℃となるまで空冷し,その後水冷した場合(No.32)は,外観品位に劣る。   No. 28-No. No. 31 is a case where the outermost layer portion of the coil is air-cooled until it reaches 500 ° C. or less after the cutting, and all have excellent appearance quality. Air cooling to a low temperature tends to be superior in appearance grade, but when air cooling to about 100 ° C. (No. 28), it takes 48 hours to reach that temperature, leading to a significant reduction in productivity. On the other hand, when air-cooled to about 250 ° C and about 350 ° C (No. 29 and No. 30 respectively), the time required to reach that temperature is within 24 hours, the appearance quality is good, and the balance Excellent. In addition, when air-cooled to about 600 ° C. and then water-cooled (No. 32), the appearance quality is inferior.

Figure 2007169696
Figure 2007169696

本発明は,例えば自動車,家電製品,建材等に用いられる合金化溶融亜鉛めっき鋼板に適用できる。   The present invention can be applied to alloyed hot-dip galvanized steel sheets used for automobiles, home appliances, building materials, and the like.

実施例1における積分強度比I(P)/I(Fe+Zn)と外観グレードの関係を示すグラフである。4 is a graph showing a relationship between an integrated intensity ratio I (P) / I (Fe + Zn) and an appearance grade in Example 1.

Claims (4)

質量%で,
C;0.01%以下,
Si;0.2%以下,
Mn;2%以下,
P;0.02〜0.2%,
S;0.03%以下,
Al;0.005〜0.1%,
Ti;0.001〜0.05%,
Nb;0.001〜0.05%,
を含有し,残部がFeおよび不可避的不純物からなる鋼材の表面に,鉄−亜鉛合金被覆を有する合金化溶融亜鉛めっき鋼において,GDSによる鉄−亜鉛合金被覆中のPと(Fe+Zn)の積分強度比,I(P)/I(Fe+Zn)が0.025以下であることを特徴とする外観品位に優れる合金化溶融亜鉛めっき鋼。
% By mass
C; 0.01% or less,
Si: 0.2% or less,
Mn: 2% or less,
P; 0.02 to 0.2%,
S: 0.03% or less,
Al; 0.005 to 0.1%,
Ti; 0.001 to 0.05%,
Nb; 0.001 to 0.05%,
Integral strength of P and (Fe + Zn) in iron-zinc alloy coating by GDS in alloyed hot-dip galvanized steel with iron-zinc alloy coating on the surface of steel material containing Fe and unavoidable impurities An alloyed hot-dip galvanized steel excellent in appearance quality, characterized in that the ratio I (P) / I (Fe + Zn) is 0.025 or less.
前記,鉄−亜鉛合金被覆の付着量の偏差が±7g/m以内であることを特徴とする,請求項1に記載の外観品位に優れる合金化溶融亜鉛めっき鋼。 The alloyed hot-dip galvanized steel excellent in appearance quality according to claim 1, wherein the deviation of the adhesion amount of the iron-zinc alloy coating is within ± 7 g / m 2 . 前記,鉄−亜鉛合金被覆のΓ層厚みが1μm以下であることを特徴とする,請求項1または2に記載の外観品位に優れる合金化溶融亜鉛めっき鋼。 The galvannealed steel having excellent appearance quality according to claim 1 or 2, wherein the Γ layer thickness of the iron-zinc alloy coating is 1 µm or less. 質量%で,
C;0.01%以下,
Si;0.2%以下,
Mn;2%以下,
P;0.02〜0.2%,
S;0.03%以下,
Al;0.005〜0.1%,
Ti;0.001〜0.05%,
Nb;0.001〜0.05%,
を含有し,残部がFeおよび不可避的不純物からなる低炭素鋼スラブを熱間圧延した後,酸洗し,さらに冷間圧延,焼鈍,溶融亜鉛めっき,加熱合金化処理を施して,合金化溶融亜鉛めっき鋼とする合金化溶融亜鉛めっき鋼の製造方法において,熱間圧延後のコイルの捲取温度を750℃以上とし,さらにその後,巻き取ったコイルの最外層部の表面温度が500℃以下となるまで空冷することを特徴とする外観品位に優れる合金化溶融亜鉛めっき鋼の製造方法。
% By mass
C; 0.01% or less,
Si: 0.2% or less,
Mn: 2% or less,
P; 0.02 to 0.2%,
S: 0.03% or less,
Al; 0.005 to 0.1%,
Ti; 0.001 to 0.05%,
Nb; 0.001 to 0.05%,
Hot-rolled low-carbon steel slab containing Fe and the balance of inevitable impurities, pickling, cold rolling, annealing, hot dip galvanizing, heat alloying treatment, alloying and melting In the manufacturing method of alloyed hot-dip galvanized steel to be galvanized steel, the coiling temperature of the coil after hot rolling is set to 750 ° C. or higher, and then the surface temperature of the outermost layer portion of the wound coil is 500 ° C. or lower. A method for producing an alloyed hot-dip galvanized steel excellent in appearance quality, characterized by air cooling until
JP2005367235A 2005-12-20 2005-12-20 Method for producing alloyed hot-dip galvanized steel with excellent appearance quality Active JP4757622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005367235A JP4757622B2 (en) 2005-12-20 2005-12-20 Method for producing alloyed hot-dip galvanized steel with excellent appearance quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005367235A JP4757622B2 (en) 2005-12-20 2005-12-20 Method for producing alloyed hot-dip galvanized steel with excellent appearance quality

Publications (2)

Publication Number Publication Date
JP2007169696A true JP2007169696A (en) 2007-07-05
JP4757622B2 JP4757622B2 (en) 2011-08-24

Family

ID=38296639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005367235A Active JP4757622B2 (en) 2005-12-20 2005-12-20 Method for producing alloyed hot-dip galvanized steel with excellent appearance quality

Country Status (1)

Country Link
JP (1) JP4757622B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243751A (en) * 1990-02-21 1991-10-30 Nippon Steel Corp Production of alloyed galvanized steel sheet
JPH06336666A (en) * 1993-05-31 1994-12-06 Sumitomo Metal Ind Ltd Manufacture of galvannealed steel sheet having excellent surface characteristic
JPH0770723A (en) * 1993-06-25 1995-03-14 Kawasaki Steel Corp Production of galvanized steel sheet and galvannealed steel sheet
JPH08277452A (en) * 1995-04-06 1996-10-22 Nippon Steel Corp Galvanized steel sheet having excellent plating adhesion property and its production
JPH1018011A (en) * 1996-07-02 1998-01-20 Kawasaki Steel Corp Galvannealed steel sheet and its production
JPH10280093A (en) * 1997-04-10 1998-10-20 Nippon Steel Corp Steel sheet for galvannealing
JPH1112708A (en) * 1997-06-25 1999-01-19 Kawasaki Steel Corp Production of galvannealed dipped steel sheet
JP2001026853A (en) * 1999-07-15 2001-01-30 Kawasaki Steel Corp Production of high strength hot dip galvanized steel sheet and high strength alloyed hot dip galvannealed steel sheet and high strength alloyed hot dip galvannealed steel sheet
JP2002235146A (en) * 2001-02-05 2002-08-23 Kawasaki Steel Corp Galvannealed steel sheet and production method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243751A (en) * 1990-02-21 1991-10-30 Nippon Steel Corp Production of alloyed galvanized steel sheet
JPH06336666A (en) * 1993-05-31 1994-12-06 Sumitomo Metal Ind Ltd Manufacture of galvannealed steel sheet having excellent surface characteristic
JPH0770723A (en) * 1993-06-25 1995-03-14 Kawasaki Steel Corp Production of galvanized steel sheet and galvannealed steel sheet
JPH08277452A (en) * 1995-04-06 1996-10-22 Nippon Steel Corp Galvanized steel sheet having excellent plating adhesion property and its production
JPH1018011A (en) * 1996-07-02 1998-01-20 Kawasaki Steel Corp Galvannealed steel sheet and its production
JPH10280093A (en) * 1997-04-10 1998-10-20 Nippon Steel Corp Steel sheet for galvannealing
JPH1112708A (en) * 1997-06-25 1999-01-19 Kawasaki Steel Corp Production of galvannealed dipped steel sheet
JP2001026853A (en) * 1999-07-15 2001-01-30 Kawasaki Steel Corp Production of high strength hot dip galvanized steel sheet and high strength alloyed hot dip galvannealed steel sheet and high strength alloyed hot dip galvannealed steel sheet
JP2002235146A (en) * 2001-02-05 2002-08-23 Kawasaki Steel Corp Galvannealed steel sheet and production method therefor

Also Published As

Publication number Publication date
JP4757622B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
RU2567960C1 (en) High-strength steel sheet galvanised by hot immersion
JP5569647B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5376090B2 (en) Galvanized steel sheet and manufacturing method thereof
US8741075B2 (en) Method for manufacturing a hot press-formed member
JP2024020359A (en) High-strength galvanized steel sheet having excellent electrical resistance spot weldability and method for manufacturing the same
JP2021508777A (en) Zinc alloy plated steel with excellent surface quality and corrosion resistance and its manufacturing method
JP4837604B2 (en) Alloy hot-dip galvanized steel sheet
WO2013047810A1 (en) Alloyed hot-dip galvanized steel sheet
EP3663426A1 (en) Zinc hot-dipped steel sheet
MX2014003714A (en) High-strength hot dip galvanized steel plate having excellent moldability, weak material anisotropy and ultimate tensile strength of 980 mpa or more, high-strength alloyed hot dip galvanized steel plate and manufacturing method therefor.
CN113557318A (en) Coated steel sheet
WO2003074751A1 (en) Surface treated steel plate and method for production thereof
JP2004211157A (en) High-strength high-ductility hot dip galvanized steel sheet and its production method
TW201434617A (en) Hot-dip galvanized steel sheet
WO2013157222A1 (en) High-strength hot-dip galvanized steel sheet and process for producing same
JP3596316B2 (en) Manufacturing method of high tensile high ductility galvanized steel sheet
KR20140128414A (en) High-strength hot-dip galvanized steel sheet and method for producing same
WO2018142849A1 (en) High-strength molten zinc plating hot-rolled steel sheet, and production method therefor
JP7137492B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet
JP2023505444A (en) Galvanized steel sheet with excellent surface quality and spot weldability, and its manufacturing method
JP3631710B2 (en) Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and ductility and method for producing the same
WO2020138343A1 (en) Steel sheet
JP2004018970A (en) High-strength high-ductility hot dip galvanized steel plate having excellent burring machinability, and method for manufacturing the same
JP2007314858A (en) Hot dip galvannealed steel sheet and production method therefor
JP2009228104A (en) Hot-dip galvannealed steel sheet having excellent surface appearance and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110601

R151 Written notification of patent or utility model registration

Ref document number: 4757622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350