JPH1112708A - Production of galvannealed dipped steel sheet - Google Patents

Production of galvannealed dipped steel sheet

Info

Publication number
JPH1112708A
JPH1112708A JP16850497A JP16850497A JPH1112708A JP H1112708 A JPH1112708 A JP H1112708A JP 16850497 A JP16850497 A JP 16850497A JP 16850497 A JP16850497 A JP 16850497A JP H1112708 A JPH1112708 A JP H1112708A
Authority
JP
Japan
Prior art keywords
dew point
alloying
steel sheet
temp
galvanizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16850497A
Other languages
Japanese (ja)
Other versions
JP3503426B2 (en
Inventor
Nobue Fujibayashi
亘江 藤林
Yoichi Tobiyama
洋一 飛山
Kazuaki Kyono
一章 京野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16850497A priority Critical patent/JP3503426B2/en
Publication of JPH1112708A publication Critical patent/JPH1112708A/en
Application granted granted Critical
Publication of JP3503426B2 publication Critical patent/JP3503426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable alloying at high speed by specifying a dew point at reducing atmosphere from a specific temp. at the time of recrystallize-annealing to a specific temp. in a cooling stage after reaching the max. temp. and a dew point just before dipping into a galvanizing bath, and executing galvanizing and alloying. SOLUTION: The dew point from 600 deg.C at the time of recrystallize-annealing to 700 deg.C in the cooling stage after reaching the max. temp., is regulated to 0 deg.C-20 deg.C, and the dew point just before dipping into the galvanizing bath is regulated to <=-20 deg.C. It is desirable to use a steel containing >=0.01 wt.% P. The suitable atmosphere at the time of executing anneal-reduction, is an N2 atmosphere containing <=2% H2 , and the dew point of <=700 deg.C at the temp. of anneal-heating is ordinally the one between the dew point at 700 deg.C and the dew point just before galvanizing, because the dew point just before galvanizing is regulated to <-20 deg.C. However, any dew point is not surely regulated. The productivity can be improved by quickening a line speed and the deterioration of the galvanized quality can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は合金化とめっき性に
優れた自動車車体用合金化溶融亜鉛めっき鋼板の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an alloyed hot-dip galvanized steel sheet for an automobile body having excellent alloying and plating properties.

【0002】[0002]

【従来の技術】合金化溶融亜鉛めっきは耐食性や溶接性
に優れ、また、安価に製造可能であることから自動車用
鋼板として多用されている。しかし、鋼板の量産に当っ
てはラインの合金化炉の能力がネックとなりライン速度
を上昇させることができず、またライン速度を上げたと
しても合金化が十分終了しない未合金材ができたりする
といった問題がある。特に、高強度化のために鋼中にP
を添加した鋼板では合金化の遅滞は顕著である(例えば
「鉄と鋼」:vol68、1400)。
2. Description of the Related Art Alloyed hot-dip galvanizing is widely used as a steel sheet for automobiles because it is excellent in corrosion resistance and weldability and can be manufactured at low cost. However, in mass production of steel sheets, the capacity of the line's alloying furnace becomes a bottleneck, making it impossible to increase the line speed, and even if the line speed is increased, there are unalloyed materials that do not complete alloying sufficiently. There is a problem. In particular, P in steel for high strength
In a steel sheet to which is added, alloying delay is remarkable (for example, “iron and steel”: vol 68, 1400).

【0003】これらの対策としては、ライン速度を低下
させ、合金化時間を長くする方法、炉温を上昇させる方
法、亜鉛浴中Al濃度を低下させる方法、亜鉛浴温度を
変更する方法、鋼中にTiを添加し、合金化を促進する
方法などが知られている。しかし、ライン速度の低下は
生産性を悪くし、炉温の上昇による方法では合金化の制
御が難しく反対に過合金になりやすい。過合金になると
めっきの密着性が低下するといった悪影響が問題とな
る。また、浴中Alや浴温を変更することは時間がかか
り、様々な鋼種をめっきする連続溶融亜鉛めっきライン
においては非効率的であること、また、ドロスと呼ばれ
るFe−ZnやFe−Alといった固形物が生成しやす
く鋼板に付着して欠陥となるため、亜鉛浴の状態はなる
べく一定に保った方がよい。また、鋼中に多量のTiを
添加することは目的とした強度が得られるかわからない
こと、耐2次加工脆性が劣化することが問題となり、ま
た、少量のTiでは合金化促進の効果は少ない。
[0003] As a countermeasure, there are a method of reducing the line speed and lengthening the alloying time, a method of increasing the furnace temperature, a method of reducing the Al concentration in the zinc bath, a method of changing the zinc bath temperature, and a method of changing the temperature of the steel. There is known a method of adding Ti to steel to promote alloying. However, a decrease in line speed degrades productivity, and the method based on an increase in furnace temperature makes it difficult to control alloying, and conversely, tends to overalloy. When the alloy is over-alloyed, an adverse effect such as a decrease in the adhesion of the plating becomes a problem. In addition, changing the Al and bath temperature in the bath is time-consuming and inefficient in a continuous hot-dip galvanizing line for plating various steel types. It is better to keep the state of the zinc bath as constant as possible, since solids are easily generated and adhere to the steel sheet to cause defects. In addition, adding a large amount of Ti to the steel causes problems in that it is not known whether the intended strength can be obtained, and that the secondary work brittleness resistance is deteriorated. In addition, a small amount of Ti has little effect of promoting alloying. .

【0004】[0004]

【発明が解決しようとする課題】本発明は上記問題点を
解決すべく、様々な条件を変更し実験を行ったところ、
溶融めっきを行う前の焼鈍時の条件が合金化速度に大き
く影響を与えていることがわかった。特に再結晶焼鈍時
の還元性雰囲気の露点を高くすることにより高速合金化
が可能であることがわかった。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention was conducted by changing various conditions and conducting experiments.
It was found that the conditions during annealing before hot-dip plating greatly affected the alloying speed. In particular, it was found that high-speed alloying was possible by increasing the dew point of the reducing atmosphere during recrystallization annealing.

【0005】本発明はこのような技術を提供することを
目的とするものである。
An object of the present invention is to provide such a technique.

【0006】[0006]

【課題を解決するための手段】本発明は、高速合金化を
達成するためになされたもので、その技術手段は、連続
溶融亜鉛めっきラインにおいて、再結晶焼鈍時の600
℃から最高温度到達後さらに冷却段階700℃までにお
ける還元性雰囲気の露点を0℃以上+20℃以下とし、
溶融亜鉛めっき浴に浸漬する直前の雰囲気の露点を−2
0℃以下として、溶融亜鉛めっきを行い、さらに合金化
することを特徴とする合金化溶融亜鉛めっき鋼板の製造
方法である。この場合にPを0.01重量%以上含有す
る鋼を用いると、ライン速度の上昇は顕著であり、好適
である。
SUMMARY OF THE INVENTION The present invention has been made to achieve high-speed alloying, and its technical means is to provide a continuous hot-dip galvanizing line with a 600 ° C recrystallization annealing.
The dew point of the reducing atmosphere from 0 ° C to + 20 ° C after reaching the maximum temperature from 700 ° C to the cooling stage 700 ° C,
The dew point of the atmosphere immediately before immersion in the hot dip galvanizing bath is -2.
This is a method for producing an alloyed hot-dip galvanized steel sheet, wherein hot-dip galvanizing is performed at a temperature of 0 ° C. or lower and further alloying is performed. In this case, if steel containing 0.01% by weight or more of P is used, the increase in line speed is remarkable, which is preferable.

【0007】[0007]

【発明の実施の形態】本発明者等は、焼鈍時の露点を変
更することによりMnやSiとPの表面濃化挙動が異な
り、特にPが表面濃化し易い領域で合金化が促進するこ
とを見出した。ここでいう表面濃化とは、鋼中成分が鋼
板表面に移動して鋼板表面の酸素と結合し、酸化物を形
成することである。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have found that by changing the dew point during annealing, the surface enrichment behavior of Mn, Si and P is different, and alloying is promoted particularly in a region where P is easily enriched. Was found. The term “surface concentration” as used herein means that components in the steel move to the surface of the steel sheet and combine with oxygen on the surface of the steel sheet to form an oxide.

【0008】600℃から最高到達温度800℃を経て
700℃に至る間の露点を変更した鋼板の合金化速度を
図1に示した。図1は合金化温度と時間を一定にし、め
っき層中のFe量をプロットしたものであり、めっき層
中の鉄量が多いほど合金化速度が速いといえる。−10
℃以上では急激に速くなっていることがわかる。そこ
で、図2に露点と表面濃化の関係を示す。表面濃化量と
してはMn、Si、PともGDS(グロー放電発光分光
分析)による表層強度積算値を用いた。MnやSiは露
点が−30℃〜−40℃で表面濃化量が多く、それより
も低温側でも高温側でも表面濃化量は減少する。それに
対し、Pでは−10℃以下では表面濃化はほとんど見ら
れず、0℃以上の高温側で表面濃化が増加している。こ
のPの表面濃化物をESCA(X線光電子分光分析)に
て測定した結果を図3に示す。低温側では見られなかっ
たピークが+10℃では観察され、そのピーク位置から
リン酸であると考えられる。
FIG. 1 shows the alloying speed of a steel sheet having a dew point changed from 600 ° C. to 700 ° C. through 800 ° C. FIG. 1 plots the amount of Fe in the plating layer while keeping the alloying temperature and time constant. It can be said that the alloying speed increases as the amount of iron in the plating layer increases. -10
It can be seen that the temperature is rapidly increased above ℃. FIG. 2 shows the relationship between the dew point and the surface concentration. As the amount of surface enrichment, the integrated value of the surface layer intensity by GDS (glow discharge emission spectroscopy) was used for Mn, Si, and P. Mn and Si have a large surface concentration at a dew point of −30 ° C. to −40 ° C., and the surface concentration decreases at lower and higher temperatures. On the other hand, in P, the surface concentration is hardly observed at -10 ° C or lower, and the surface concentration increases at the high temperature side of 0 ° C or higher. FIG. 3 shows the results of measurement of the surface condensate of P by ESCA (X-ray photoelectron spectroscopy). A peak that was not observed on the low temperature side was observed at + 10 ° C., and it is considered that phosphoric acid was found from the peak position.

【0009】表面濃化と合金化速度との関係は、Mnや
Siの表面濃化物は鉄の拡散を阻害する、つまり合金化
を遅くすると考えられているが、焼鈍時の露点0℃以上
での合金化速度の急激な変化はMnやSiの表面濃化量
の現象だけでは説明できない。そのため、AES(オー
ジェ電子分光)内で鋼板の脆性破断を行い、極表層粒界
のP量を測定した。結果を表1に示す。露点が0℃以上
の高温側では表層部の粒界P量が減少していることがわ
かる。これは、高露点で、Pが酸化して表面に濃化した
ため、表層部の固溶Pが減少したものと考えられる。
The relationship between the surface concentration and the alloying rate is thought to be that the surface concentrate of Mn or Si inhibits the diffusion of iron, that is, slows down the alloying. The rapid change in the alloying rate cannot be explained only by the phenomenon of the surface concentration of Mn or Si. Therefore, the steel sheet was subjected to brittle fracture in AES (Auger electron spectroscopy), and the P content at the extremely surface layer grain boundary was measured. Table 1 shows the results. It can be seen that on the high temperature side where the dew point is 0 ° C. or higher, the amount of the grain boundary P in the surface layer decreases. This is presumably because P was oxidized and concentrated on the surface at the high dew point, so that the amount of P dissolved in the surface layer decreased.

【0010】以上の結果より、表面に濃化したP酸化物
が合金化速度に及ぼす影響は少なく、反対に表面濃化す
ることによって表層部の固溶P量が減少したため、鉄の
拡散が速くなり、合金化速度が速くなったものと推定さ
れる。露点の上限は図1に示す合金化速度の飽和と、表
面における鉄酸化物の生成によるめっき密着性の劣化よ
り、+20℃とする。
From the above results, the effect of the P oxide concentrated on the surface to the alloying rate is small, and conversely, the amount of solid solution P in the surface layer is reduced by the surface concentration, so that the diffusion of iron is fast. It is estimated that the alloying speed was increased. The upper limit of the dew point is set to + 20 ° C. due to the saturation of the alloying rate shown in FIG. 1 and the deterioration of plating adhesion due to the formation of iron oxide on the surface.

【0011】次に、めっき直前の露点であるが、これは
種々の試験の結果、高露点であると亜鉛浴面の酸化膜の
発生が多く、スリキズなどの表面欠陥になりやすいた
め、−20℃以下とするのがよい。ここでいう、めっき
直前とは通常スナウトと呼ばれる部分を通過するときで
あり、冷却帯の後の鋼板が亜鉛浴に導かれる部分であ
る。
[0011] Next, the dew point immediately before plating is as follows. As a result of various tests, if the dew point is high, an oxide film on the zinc bath surface is likely to be generated, and surface defects such as scratches are likely to occur. It is good to be below ° C. Here, the term “immediately before plating” refers to a time when the steel sheet passes through a portion usually called a snout, and is a portion where the steel sheet after the cooling zone is guided to the zinc bath.

【0012】本発明は特にPを添加した鋼板においての
み効力を発揮するものではなく、意図的にPを添加して
いない鋼中P量が0.01重量%程度の鋼板においても
十分な効果が見られている。0.01重量%P鋼では高
露点にすることにより20〜30%程度のライン速度の
上昇が可能であり、0.04重量%のP添加鋼では30
〜60%程度合金化促進効果が観察されている。
The present invention is not particularly effective only in steel sheets to which P is added, and a sufficient effect is obtained even in steel sheets in which P is not intentionally added and the P content is about 0.01% by weight. It has been seen. By increasing the dew point to 0.01% by weight of P steel, it is possible to increase the line speed by about 20 to 30%.
An alloying promoting effect of about 60% has been observed.

【0013】本発明における焼鈍還元時の雰囲気は2%
以上のH2 を含むN2 雰囲気中が適当であり、焼鈍加熱
時の600℃以下の露点は特に規定するものではない。
また、焼鈍後冷却時の700℃以下の露点は、めっき直
前の雰囲気を−20℃以下とするため、700℃での露
点とめっき直前の露点との間であるのが通常である。た
だし、それを規定するものではない。
The atmosphere during the reduction by annealing in the present invention is 2%
The above N 2 atmosphere containing H 2 is suitable, and the dew point of 600 ° C. or less during annealing heating is not particularly specified.
Further, the dew point of 700 ° C. or less upon cooling after annealing is usually between the dew point at 700 ° C. and the dew point immediately before plating in order to keep the atmosphere immediately before plating at −20 ° C. or less. However, it is not specified.

【0014】[0014]

【実施例】表2に示す供試材を転炉にて溶製した後、連
続鋳造によりスラブとした。このスラブをスラブ加熱温
度(SRT)1250℃に加熱し、熱延工程の最終仕上
げ温度を900℃とし、550℃にて巻き取り、3.2
mm厚の熱延板コイルを作成した。酸洗で黒皮を除去し
た後、冷間圧延を行い0.8mm厚の冷延鋼板とした。
この冷延鋼板を連続溶融亜鉛めっきラインにおいて焼鈍
条件を表3のように変化させ合金化溶融亜鉛めっき鋼板
を作成した。合金化速度の評価は合金化が終了するため
の最高ライン速度を用いた。ここで合金化終了とはめっ
き層中Fe%が8.6%以上10.7%以下となったと
きをいう。
EXAMPLES After smelting the test materials shown in Table 2 in a converter, slabs were produced by continuous casting. This slab is heated to a slab heating temperature (SRT) of 1250 ° C., the final finishing temperature of the hot rolling step is set to 900 ° C., and the slab is wound at 550 ° C. 3.2
A hot-rolled sheet coil having a thickness of mm was prepared. After the black scale was removed by pickling, cold rolling was performed to obtain a cold-rolled steel sheet having a thickness of 0.8 mm.
The annealing conditions of this cold-rolled steel sheet were changed in a continuous hot-dip galvanizing line as shown in Table 3 to prepare an alloyed hot-dip galvanized steel sheet. For the evaluation of the alloying speed, the maximum line speed for completing the alloying was used. Here, the completion of alloying refers to when the Fe% in the plating layer becomes 8.6% or more and 10.7% or less.

【0015】焼鈍時の雰囲気は3〜6%H2 −N2 とし
た。めっき浴条件は、浴中Al濃度を0.140重量
%、浴温460℃〜470℃、侵入板温度460℃〜4
80℃、合金化温度を530℃一定とした。また、亜鉛
付着量は45〜55g/m2 とした。品質試験としては
めっきの密着性を90度曲げ戻し試験で確認を行った。
The atmosphere during annealing was 3-6% H 2 -N 2 . The plating bath conditions were as follows: the Al concentration in the bath was 0.140% by weight, the bath temperature was 460 ° C to 470 ° C, and the intrusion plate temperature was 460 ° C to 4 ° C.
80 ° C. and the alloying temperature were kept constant at 530 ° C. Further, the zinc adhesion amount was 45 to 55 g / m 2 . As a quality test, the adhesion of the plating was confirmed by a 90-degree bending back test.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【表4】 [Table 4]

【0020】[0020]

【発明の効果】本発明によれば、合金化溶融亜鉛めっき
鋼板の製造方法において、ライン速度を高めて生産性を
向上させることができると共に、めっきの品質劣化を防
止することができる。
According to the present invention, in the method for producing an alloyed hot-dip galvanized steel sheet, the line speed can be increased to improve the productivity, and the deterioration of the plating quality can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】焼鈍時の露点とめっき層中のFe量との関係を
示すグラフである。
FIG. 1 is a graph showing the relationship between the dew point during annealing and the amount of Fe in a plating layer.

【図2】焼鈍時の露点とめっき層中のMn、Si、Pの
表面濃化量との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the dew point at the time of annealing and the surface concentration of Mn, Si, and P in a plating layer.

【図3】結合エネルギーとPの表面濃化との関係を示す
ESCA分析チャートである。
FIG. 3 is an ESCA analysis chart showing a relationship between binding energy and surface concentration of P.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 連続溶融亜鉛めっきラインにおいて、再
結晶焼鈍時の600℃から最高温度到達後さらに冷却段
階700℃までにおける還元性雰囲気の露点を0℃以上
+20℃以下とし、溶融亜鉛めっき浴に浸漬する直前の
雰囲気の露点を−20℃以下として、溶融亜鉛めっきを
行いさらに合金化することを特徴とする合金化溶融亜鉛
めっき鋼板の製造方法。
In a continuous hot-dip galvanizing line, the dew point of the reducing atmosphere in the recrystallization annealing after reaching the maximum temperature from 600 ° C. to a maximum cooling temperature of 700 ° C. is set to 0 ° C. or more and + 20 ° C. or less, A method for producing an alloyed hot-dip galvanized steel sheet, wherein the dew point of the atmosphere immediately before immersion is set to −20 ° C. or less, hot-dip galvanizing is performed, and further alloying is performed.
【請求項2】 Pを0.01重量%以上含有する鋼を用
いることを特徴とする請求項1記載の合金化溶融亜鉛め
っき鋼板の製造方法。
2. The method for producing a galvannealed steel sheet according to claim 1, wherein a steel containing 0.01% by weight or more of P is used.
JP16850497A 1997-06-25 1997-06-25 Manufacturing method of galvannealed steel sheet Expired - Fee Related JP3503426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16850497A JP3503426B2 (en) 1997-06-25 1997-06-25 Manufacturing method of galvannealed steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16850497A JP3503426B2 (en) 1997-06-25 1997-06-25 Manufacturing method of galvannealed steel sheet

Publications (2)

Publication Number Publication Date
JPH1112708A true JPH1112708A (en) 1999-01-19
JP3503426B2 JP3503426B2 (en) 2004-03-08

Family

ID=15869298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16850497A Expired - Fee Related JP3503426B2 (en) 1997-06-25 1997-06-25 Manufacturing method of galvannealed steel sheet

Country Status (1)

Country Link
JP (1) JP3503426B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169696A (en) * 2005-12-20 2007-07-05 Nippon Steel Corp Galvannealed steel superior in appearance quality, and manufacturing method therefor
JP2007262463A (en) * 2006-03-28 2007-10-11 Jfe Steel Kk Method for producing hot dip galvanized steel sheet and alloyed hot dip galvanized steel sheet
JP2011153368A (en) * 2010-01-28 2011-08-11 Sumitomo Metal Ind Ltd High-strength hot dip galvannealed steel sheet having excellent adhesion, and method for producing the same
JP2011162869A (en) * 2010-02-15 2011-08-25 Sumitomo Metal Ind Ltd Method for producing hot dip galvannealed steel sheet
JP2011219779A (en) * 2009-03-31 2011-11-04 Jfe Steel Corp High-strength hot-dip galvanized steel plate and method for manufacturing the same
JP2012149307A (en) * 2011-01-20 2012-08-09 Jfe Steel Corp Method for producing hot dip galvannealed steel sheet having excellent plating adhesion and sliding property
WO2013140730A1 (en) * 2012-03-19 2013-09-26 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvanized steel sheet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169696A (en) * 2005-12-20 2007-07-05 Nippon Steel Corp Galvannealed steel superior in appearance quality, and manufacturing method therefor
JP4757622B2 (en) * 2005-12-20 2011-08-24 新日本製鐵株式会社 Method for producing alloyed hot-dip galvanized steel with excellent appearance quality
JP2007262463A (en) * 2006-03-28 2007-10-11 Jfe Steel Kk Method for producing hot dip galvanized steel sheet and alloyed hot dip galvanized steel sheet
JP2011219779A (en) * 2009-03-31 2011-11-04 Jfe Steel Corp High-strength hot-dip galvanized steel plate and method for manufacturing the same
JP2011153368A (en) * 2010-01-28 2011-08-11 Sumitomo Metal Ind Ltd High-strength hot dip galvannealed steel sheet having excellent adhesion, and method for producing the same
JP2011162869A (en) * 2010-02-15 2011-08-25 Sumitomo Metal Ind Ltd Method for producing hot dip galvannealed steel sheet
JP2012149307A (en) * 2011-01-20 2012-08-09 Jfe Steel Corp Method for producing hot dip galvannealed steel sheet having excellent plating adhesion and sliding property
WO2013140730A1 (en) * 2012-03-19 2013-09-26 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvanized steel sheet
JP2013194271A (en) * 2012-03-19 2013-09-30 Jfe Steel Corp Method of manufacturing hot dip galvanized steel sheet of high strength, and hot dip galvanized steel sheet of high strength
CN104204266A (en) * 2012-03-19 2014-12-10 杰富意钢铁株式会社 Method for producing high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvanized steel sheet
US10449751B2 (en) 2012-03-19 2019-10-22 Jfe Steel Corporation Method for manufacturing high strength galvanized steel sheet

Also Published As

Publication number Publication date
JP3503426B2 (en) 2004-03-08

Similar Documents

Publication Publication Date Title
JP5676642B2 (en) Hot-pressed galvanized steel sheet with excellent surface characteristics, hot-press formed parts using the same, and manufacturing method thereof
JP4589880B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and hole expansibility, high-strength alloyed hot-dip galvanized steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
CN111936650B (en) High-strength galvanized steel sheet, high-strength member, and method for producing same
JP2005060742A (en) High-strength galvannealed steel sheet with superior adhesiveness, and manufacturing method therefor
JP2003055751A (en) High strength hot dip galvanized steel sheet having excellent plating adhesion on high working and excellent ductility, and production method therefor
JP3596316B2 (en) Manufacturing method of high tensile high ductility galvanized steel sheet
WO2015133061A1 (en) Cold-rolled steel sheet, method for producing same, high-strength hot-dipped galvanized steel sheet, and high-strength alloyed hot-dipped galvanized steel sheet
JP3912014B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP5978826B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent surface stability
JPH1112708A (en) Production of galvannealed dipped steel sheet
JP3631710B2 (en) Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and ductility and method for producing the same
JP2023505444A (en) Galvanized steel sheet with excellent surface quality and spot weldability, and its manufacturing method
JP3126911B2 (en) High strength galvanized steel sheet with good plating adhesion
JP3698049B2 (en) Alloy hot-dip galvanized steel sheet
JPH11140587A (en) Galvannealed steel sheet excellent in plating adhesion
JP2018165398A (en) Methods for manufacturing galvanized steel sheet and galvannealed steel sheet
JP2004211140A (en) Hot-dip galvanized steel sheet and manufacturing method therefor
WO2024053663A1 (en) Plated steel sheet
JP2003105492A (en) High strength and high ductility galvanized steel sheet having excellent corrosion resistance, and production method therefor
JP2550849B2 (en) Method for producing high strength galvannealed steel sheet with excellent deep drawability, plating adhesion and corrosion resistance after painting
JP3052835B2 (en) Galvannealed steel sheet
JPH0625817A (en) Production of hot-dip galvanized cold rolled steel sheet having high strength and excellent in adhesion of plating film
JP2618306B2 (en) High P content high tensile galvanized steel sheet
JP2023505445A (en) Galvanized steel sheet excellent in fatigue strength of electric resistance spot welds, and manufacturing method thereof
JPH0941111A (en) High strength hot dip galvanized steel sheet excellent in plating suitability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees