JP2018165398A - Methods for manufacturing galvanized steel sheet and galvannealed steel sheet - Google Patents

Methods for manufacturing galvanized steel sheet and galvannealed steel sheet Download PDF

Info

Publication number
JP2018165398A
JP2018165398A JP2017213807A JP2017213807A JP2018165398A JP 2018165398 A JP2018165398 A JP 2018165398A JP 2017213807 A JP2017213807 A JP 2017213807A JP 2017213807 A JP2017213807 A JP 2017213807A JP 2018165398 A JP2018165398 A JP 2018165398A
Authority
JP
Japan
Prior art keywords
hot
steel sheet
oxidation
annealing
galvanized steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017213807A
Other languages
Japanese (ja)
Other versions
JP6764847B2 (en
Inventor
友英 小西
Tomohide Konishi
友英 小西
広司 入江
Koji Irie
広司 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of JP2018165398A publication Critical patent/JP2018165398A/en
Application granted granted Critical
Publication of JP6764847B2 publication Critical patent/JP6764847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide methods for manufacturing galvanized steel sheets and galvannealed steel sheets, capable of making, during heating for annealing, rates of temperature rise uniform at an end and the center of an annealing material in sheet width direction.SOLUTION: A steel material containing Si 0.8-2.7 mass% is hot-rolled and wound up at 600°C or more, and then acid-cleaned, to obtain an annealing material. First, an end of the annealing material in width direction is oxidized, and then the full width of it is oxidized, to form an oxide film. The oxide film is reduced for galvanization. Optionally the plating layer may be galvannealed.SELECTED DRAWING: Figure 4

Description

本発明は、溶融亜鉛めっき鋼板の製造方法及び合金化溶融亜鉛めっき鋼板の製造方法に関する。   The present invention relates to a method for producing a hot-dip galvanized steel sheet and a method for producing an alloyed hot-dip galvanized steel sheet.

耐食性を有するとともに成形性に優れた高強度鋼板として、Si添加鋼の冷延材に溶融亜鉛めっき処理又は合金化溶融亜鉛めっき処理を施しためっき鋼板が使われている。例えば、特許文献1はこのめっき鋼板が次の製造方法で得られることを開示している。   As a high-strength steel sheet having corrosion resistance and excellent formability, a plated steel sheet obtained by subjecting a cold rolled material of Si-added steel to hot dip galvanizing or galvannealing is used. For example, patent document 1 is disclosing that this plated steel plate is obtained with the following manufacturing method.

まず、Siを0.5〜2.5質量%含有する鋼素材を熱間圧延して600℃以上の温度で巻取り、次いで酸洗及び冷間圧延を施す。そして、得られた冷延材(即ち、焼鈍素材)に対して、0.9〜1.4の空燃比で酸化させてAc3点〜Ac3点+100℃の範囲の焼鈍温度で還元させる酸化還元焼鈍を施す。その後、焼鈍材を溶融亜鉛めっき浴に浸漬してめっき層を形成し、必要に応じてめっき層を合金化させる。これにより、上記めっき鋼板が得られる。 First, a steel material containing 0.5 to 2.5 mass% of Si is hot-rolled and wound at a temperature of 600 ° C. or higher, and then pickled and cold-rolled. Then, the obtained cold-rolled material (ie, annealed material) is oxidized at an air-fuel ratio of 0.9 to 1.4 and reduced at an annealing temperature in the range of Ac 3 point to Ac 3 point + 100 ° C. Apply reduction annealing. Thereafter, the annealed material is immersed in a hot dip galvanizing bath to form a plating layer, and the plating layer is alloyed as necessary. Thereby, the said plated steel plate is obtained.

特開2015−34334号公報JP 2015-34334 A

特許文献1に開示された製造方法では、焼鈍加熱時に焼鈍素材の板幅方向端部の昇温速度が当該焼鈍素材の板幅方向中央部の昇温速度よりも小さく、目標温度である焼鈍温度に到達するまでの時間が板幅方向中央部よりも板幅方向端部で長くなることがある。この現象は、特許文献1に開示された製造方法に限らず、Siを0.8質量%以上含有する鋼素材を熱間圧延して600℃以上の温度で巻取った熱延材を用いて酸化還元焼鈍を行った場合に発生する。この現象が生じると、板幅方向の焼鈍温度不均一の問題が生じるため、めっき鋼板の製造上好ましくない。   In the manufacturing method disclosed in Patent Document 1, the annealing temperature, which is the target temperature, is such that the temperature rising rate at the end in the plate width direction of the annealing material is smaller than the temperature rising rate at the center in the plate width direction of the annealing material. In some cases, the time required to reach the end becomes longer at the end in the plate width direction than at the center in the plate width direction. This phenomenon is not limited to the manufacturing method disclosed in Patent Document 1, and a hot rolled material obtained by hot rolling a steel material containing 0.8 mass% or more of Si and winding it at a temperature of 600 ° C. or higher is used. Occurs when oxidation-reduction annealing is performed. When this phenomenon occurs, there arises a problem of uneven annealing temperature in the plate width direction, which is not preferable in the production of a plated steel plate.

本発明は上記事情に鑑みてなされたものであり、焼鈍加熱時に焼鈍素材の板幅方向端部と板幅方向中央部の昇温速度が同程度になる溶融亜鉛めっき鋼板の製造方法及び合金化溶融亜鉛めっき鋼板の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a manufacturing method and alloying of a hot-dip galvanized steel sheet in which the rate of temperature increase at the end part in the sheet width direction and the center part in the sheet width direction of the annealing material are approximately the same during annealing heating. It aims at providing the manufacturing method of a hot-dip galvanized steel plate.

本発明の一局面は、Siを0.8〜2.7質量%含有する鋼素材を熱間圧延して600℃以上で巻取ることで熱延材を得て、前記熱延材を酸洗することで焼鈍素材を得て、前記焼鈍素材の幅端部を酸化させ、次いで当該焼鈍素材の全幅を酸化させることで酸化膜を形成して、前記酸化膜を還元し、次いで溶融亜鉛めっきを施すことで溶融亜鉛めっき鋼板を得る、溶融亜鉛めっき鋼板の製造方法である。   In one aspect of the present invention, a hot-rolled material is obtained by hot rolling a steel material containing 0.8 to 2.7% by mass of Si and winding at 600 ° C. or higher, and pickling the hot-rolled material. To obtain an annealed material, oxidize the width end of the annealed material, then oxidize the entire width of the annealed material to form an oxide film, reduce the oxide film, and then hot dip galvanize It is the manufacturing method of the hot dip galvanized steel plate which obtains the hot dip galvanized steel plate by performing.

本発明の他の一局面は、上記製造方法で得られた溶融亜鉛めっき鋼板が有するめっき層を合金化させることで合金化溶融亜鉛めっき鋼板を得る、合金化溶融亜鉛めっき鋼板の製造方法である。   Another aspect of the present invention is a method for producing an alloyed hot-dip galvanized steel sheet, in which an alloyed hot-dip galvanized steel sheet is obtained by alloying the plating layer of the hot-dip galvanized steel sheet obtained by the above production method. .

本発明によれば、溶融亜鉛めっき鋼板の製造及び合金化溶融亜鉛めっき鋼板の製造に際して、焼鈍加熱時に焼鈍素材の板幅方向端部と板幅方向中央部の昇温速度を同程度にすることができる。ひいては、溶融亜鉛めっき層形成時の不めっきを抑制することができる。   According to the present invention, in the production of hot dip galvanized steel sheet and the production of alloyed hot dip galvanized steel sheet, the rate of temperature rise at the end in the width direction of the annealing material and the central portion in the width direction of the annealing material should be approximately the same during annealing heating. Can do. As a result, the non-plating at the time of hot-dip galvanized layer formation can be suppressed.

Si添加鋼の熱延材の板厚方向における、固溶Siの分布状態を表す断面模式図である。(a)は熱間圧延直後の巻取り温度が低温である場合を表し、(b)は熱間圧延直後の巻取り温度が高温である場合を表す。It is a cross-sectional schematic diagram showing the distribution state of solute Si in the plate | board thickness direction of the hot-rolled material of Si addition steel. (A) represents the case where the winding temperature immediately after hot rolling is low, and (b) represents the case where the winding temperature immediately after hot rolling is high. 熱間圧延直後に高温で巻取ったSi添加鋼の焼鈍素材の、酸化工程、還元工程及び溶融めっき工程の断面模式図である。It is a cross-sectional schematic diagram of the oxidation process, the reduction | restoration process, and the hot dipping process of the annealing raw material of Si addition steel wound up at high temperature immediately after hot rolling. 本発明の実施形態で用いられる連続式溶融亜鉛めっきラインの模式図である。It is a schematic diagram of the continuous hot dip galvanizing line used in the embodiment of the present invention. 本発明の実施例1における加熱時間に対する試験片温度のグラフである。It is a graph of the test piece temperature with respect to the heating time in Example 1 of this invention. 本発明の実施例2における加熱時間に対する試験片温度のグラフである。It is a graph of the test piece temperature with respect to the heating time in Example 2 of this invention.

はじめに、本発明に到達した経緯の概要を説明する。   First, an overview of how the present invention has been achieved will be described.

Si添加鋼を用いて溶融亜鉛めっき鋼板や合金化溶融亜鉛めっき鋼板を製造する場合、めっき素材を得るべく酸化還元焼鈍が行われる。酸化還元焼鈍とは、焼鈍素材を酸化雰囲気で加熱することで焼鈍素材の表面に酸化Fe皮膜を形成する酸化工程と、酸化Fe皮膜が形成された焼鈍素材を還元雰囲気で加熱することで酸化Fe皮膜を還元させて還元Fe層を形成する還元工程と、還元Fe層が形成された焼鈍素材を冷却することで焼鈍材を得る冷却工程とを有する熱処理である。   When manufacturing a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet using Si-added steel, oxidation-reduction annealing is performed to obtain a plating material. Oxidation-reduction annealing is an oxidation process in which an annealed material is heated in an oxidizing atmosphere to form an oxidized Fe film on the surface of the annealed material, and an annealed material on which the oxidized Fe film is formed is heated in a reducing atmosphere to produce oxidized Fe It is heat processing which has the reduction process which reduces a membrane | film | coat, and forms a reduced Fe layer, and the cooling process which obtains an annealing material by cooling the annealing raw material in which the reduced Fe layer was formed.

Si添加鋼の焼鈍素材に対して酸化還元焼鈍を行うと、還元工程にて酸化Fe皮膜のバリアー作用によって、焼鈍素材内部のSiが焼鈍素材表面で選択酸化されることが防止される。そのため、酸化還元焼鈍が施されたSi添加鋼の焼鈍材を溶融亜鉛めっき浴に浸漬して溶融亜鉛めっき層を形成した場合には、不めっきの発生が抑制される。   When oxidation-reduction annealing is performed on the annealing material of the Si-added steel, Si inside the annealing material is prevented from being selectively oxidized on the surface of the annealing material by the barrier action of the oxidized Fe film in the reduction process. Therefore, when the hot-dip galvanized layer is formed by immersing the annealed material of Si-added steel subjected to oxidation-reduction annealing in a hot-dip galvanizing bath, the occurrence of non-plating is suppressed.

又、熱延材を軟らかくして、後の冷間圧延設備などへの負荷を低減させるために、熱間圧延後の巻取り温度は高温(例えば600〜700℃)に設定される。これにより、焼鈍素材の表層部の結晶粒界にSiの酸化物が形成される。その理由を、図1、2を参照して説明する。   Further, in order to soften the hot rolled material and reduce the load on the subsequent cold rolling equipment, the coiling temperature after hot rolling is set to a high temperature (for example, 600 to 700 ° C.). Thereby, an oxide of Si is formed at the crystal grain boundary in the surface layer portion of the annealed material. The reason will be described with reference to FIGS.

図1は、Si添加鋼の熱延材の板厚方向における、固溶Siの分布状態を表す断面模式図である。図1中、(a)は熱間圧延直後の巻取り温度が低温である場合を表し、(b)は熱間圧延直後の巻取り温度が高温である場合を表す。   FIG. 1 is a schematic cross-sectional view showing a distribution state of solute Si in the thickness direction of a hot-rolled material of Si-added steel. In FIG. 1, (a) represents the case where the winding temperature immediately after hot rolling is low, and (b) represents the case where the winding temperature immediately after hot rolling is high.

巻取り温度が低温(例えば500℃以下)に設定されると、巻取り後の冷却過程では鋼板表面に形成されたFe酸化物(いわゆる熱延スケール)中の酸素が拡散しない。そのため、表層部にSi酸化物が形成されず、図1(a)に示すように、固溶Siが板厚方向中央部から表層部に至るまで均一に分布した熱延材が得られる。   When the coiling temperature is set to a low temperature (for example, 500 ° C. or lower), oxygen in the Fe oxide (so-called hot rolled scale) formed on the steel sheet surface does not diffuse in the cooling process after winding. Therefore, Si oxide is not formed in the surface layer portion, and as shown in FIG. 1A, a hot rolled material in which solute Si is uniformly distributed from the central portion in the plate thickness direction to the surface layer portion is obtained.

これに対して、巻取り温度が高温(例えば600〜700℃)に設定されると、巻取り後の冷却過程では鋼板表面に形成されたFe酸化物(いわゆる熱延スケール)中の酸素が拡散する。これにより、表層部にSi酸化物が形成され、板厚方向内質側に粒界酸化が進行する。その結果、室温まで冷却された熱延材では、図1(b)に示すように、固溶Siは板厚方向中央部と比べて、表層部において相対的に少なくなる。これが焼鈍素材として用いられる。   On the other hand, when the coiling temperature is set to a high temperature (for example, 600 to 700 ° C.), oxygen in the Fe oxide (so-called hot rolled scale) formed on the steel sheet surface diffuses during the cooling process after coiling. To do. Thereby, Si oxide is formed in the surface layer portion, and grain boundary oxidation proceeds on the inner side in the thickness direction. As a result, in the hot-rolled material cooled to room temperature, as shown in FIG. 1B, solute Si is relatively less in the surface layer portion than in the central portion in the plate thickness direction. This is used as an annealing material.

図2は、熱間圧延後に高温で巻取ったSi添加鋼の焼鈍素材の、酸化工程、還元工程及び溶融めっき工程の断面模式図である。図2中、符号Siは固溶Siの分布状態を模式的に表している。図2の焼鈍素材が示すように、表層部には固溶Siが殆ど分布してしない。   FIG. 2 is a schematic cross-sectional view of an oxidation process, a reduction process, and a hot dipping process of an annealed material of Si-added steel wound at a high temperature after hot rolling. In FIG. 2, the symbol Si schematically represents the distribution state of solute Si. As shown in the annealed material in FIG. 2, almost no solid solution Si is distributed in the surface layer portion.

上記焼鈍素材に対して酸化還元焼鈍を施すと、図2の酸化工程が示すように、まず表層部のFeが酸化されて十分な酸化Fe皮膜が形成される。次に、図2の還元工程が示すように、表層側からこの酸化Fe皮膜が還元されて、還元Fe層が形成される。その際、前述の通り、酸化Fe皮膜のバリアー作用により、Siの選択酸化が抑制される。還元工程では、酸化Fe皮膜が完全に還元されるまで還元反応が継続して、焼鈍材が得られる。   When oxidation-reduction annealing is performed on the annealed material, as shown in the oxidation step of FIG. 2, first, Fe in the surface layer portion is oxidized to form a sufficient oxidized Fe film. Next, as shown in the reduction step of FIG. 2, the oxidized Fe film is reduced from the surface layer side to form a reduced Fe layer. At that time, as described above, the selective oxidation of Si is suppressed by the barrier action of the oxidized Fe film. In the reduction step, the reduction reaction continues until the Fe oxide film is completely reduced, and an annealed material is obtained.

そして、この焼鈍材を溶融亜鉛めっき浴に浸漬すると、図2の溶融亜鉛めっき過程が示すように、めっき層が均一に形成された溶融亜鉛めっき鋼板が得られる。この焼鈍材の表面には、Siの酸化物が形成されていないからである。又、この溶融亜鉛めっき鋼板のめっき層を合金化させると、合金層が均一に形成された合金化溶融亜鉛めっき鋼板が得られる。   When this annealed material is immersed in a hot dip galvanizing bath, a hot dip galvanized steel sheet in which a plating layer is uniformly formed is obtained as shown in the hot dip galvanizing process of FIG. This is because no Si oxide is formed on the surface of the annealed material. Moreover, when the plating layer of this hot dip galvanized steel sheet is alloyed, an alloyed hot dip galvanized steel sheet in which the alloy layer is uniformly formed is obtained.

しかし、本発明者らがSi添加鋼を熱間圧延直後に高温で巻取った熱延材に対して、酸洗及び冷間圧延を施し、次いで酸化還元焼鈍を施したところ、部分的に不めっきや合金化むらが生じた。その原因を調べたところ、室温から焼鈍温度に到達するまでの時間が板幅方向中央部よりも板幅方向端部で長くなっていることにより、酸化還元焼鈍において板幅方向端部で酸化Fe皮膜が十分に形成されていないことが判明した。このような現象は以下の理由によって起きたものと推察された。   However, when the present inventors performed pickling and cold rolling on the hot-rolled material obtained by winding the Si-added steel at a high temperature immediately after hot rolling, and then subjected to oxidation-reduction annealing, it was partially unsatisfactory. Uneven plating and alloying occurred. As a result of examining the cause, the time taken to reach the annealing temperature from room temperature is longer at the end in the plate width direction than at the center in the plate width direction. It was found that the film was not sufficiently formed. Such a phenomenon was assumed to have occurred for the following reasons.

すなわち、Si添加鋼を熱間圧延直後に高温で巻取った熱延コイルは、大気雰囲気下で冷却される。このとき、当該熱延コイルの板幅方向中央部は徐々に冷却されるため、Si酸化物は粒界に沿って板厚方向内質側深くまで成長する。これに対して、当該熱延コイルの板幅方向端部は相対的に速く冷却されるため、Si酸化物の粒界に沿った成長は板厚方向表層側の浅い箇所に留まる。その結果、板幅方向中央部と板幅方向端部とでSiの粒界酸化の程度に差が生じる。そして、このSiの粒界酸化のばらつきに応じて鋼板の昇温速度にも差が生じているものと推察された。   That is, the hot-rolled coil obtained by winding the Si-added steel at a high temperature immediately after hot rolling is cooled in an air atmosphere. At this time, since the central portion in the plate width direction of the hot-rolled coil is gradually cooled, the Si oxide grows deep along the grain boundary in the plate thickness direction. On the other hand, the plate width direction end portion of the hot-rolled coil is cooled relatively quickly, so that the growth along the grain boundary of the Si oxide stays at a shallow portion on the surface layer side in the plate thickness direction. As a result, a difference occurs in the degree of Si grain boundary oxidation between the central portion in the plate width direction and the end portion in the plate width direction. And it was speculated that there was a difference in the heating rate of the steel sheet according to the variation in grain boundary oxidation of Si.

本発明者らは、焼鈍加熱時において、板幅方向端部の昇温速度が板幅方向中央部の昇温速度と同程度になるように鋭意検討した。そして、板幅方向端部の放射率が板幅方向中央部の放射率よりも小さいことに着目して、板幅方向端部の放射率が板幅方向中央部の放射率に近付くように、板幅方向端部をまず酸化させ、次に板幅方向全体に亘って酸化させた。その結果、板幅方向端部の昇温速度が板幅方向中央部の昇温速度と同程度になることを見出し、本発明を完成させた。   The inventors diligently studied that the temperature rising rate at the end portion in the plate width direction is approximately the same as the temperature rising rate at the center portion in the plate width direction during annealing heating. Then, paying attention to the fact that the emissivity of the plate width direction end is smaller than the emissivity of the plate width direction center, so that the emissivity of the plate width direction end approaches the emissivity of the plate width direction center, The plate width direction end was first oxidized, and then oxidized over the entire plate width direction. As a result, it has been found that the temperature rising rate at the end in the plate width direction is substantially the same as the temperature rising rate at the center in the plate width direction, and the present invention has been completed.

尚、本明細書において、昇温速度とは、加熱目標温度と加熱開始温度の温度差を、加熱開始の時刻から加熱目標温度に到達した時刻までの時間で割った値をいう。例えば、室温20℃から目標温度900℃まで加熱するのに40秒を要した場合には、昇温速度は22℃/秒である。   In this specification, the rate of temperature increase refers to a value obtained by dividing the temperature difference between the heating target temperature and the heating start temperature by the time from the heating start time to the time when the heating target temperature is reached. For example, when it takes 40 seconds to heat from a room temperature of 20 ° C. to a target temperature of 900 ° C., the rate of temperature increase is 22 ° C./second.

次に、本発明の一局面である溶融亜鉛めっき鋼板の製造方法について、説明する。   Next, the manufacturing method of the hot dip galvanized steel sheet which is one aspect of the present invention will be described.

本発明の溶融亜鉛めっき鋼板の製造方法では、Siを0.8〜2.7質量%含有する鋼素材を熱間圧延して600℃以上で巻取ることで熱延材が得られ、前記熱延材を酸洗することで焼鈍素材が得られ、前記焼鈍素材の幅端部を酸化させ、次いで当該焼鈍素材の全幅を酸化させることで酸化膜が形成され、前記酸化膜を還元し、次いで溶融亜鉛めっきを施すことによって、溶融亜鉛めっき鋼板が得られる。   In the manufacturing method of the hot dip galvanized steel sheet according to the present invention, a hot rolled material is obtained by hot rolling a steel material containing 0.8 to 2.7% by mass of Si and winding at 600 ° C. or higher. Annealing material is obtained by pickling the rolled material, oxidizing the width end of the annealing material, then oxidizing the entire width of the annealing material to form an oxide film, reducing the oxide film, A hot dip galvanized steel sheet is obtained by hot dip galvanizing.

以下、このように規定した理由について説明する。   Hereinafter, the reason for this definition will be described.

1.鋼素材
本発明の溶融亜鉛めっき鋼板の製造方法で用いられる鋼素材とは、熱間圧延に供される鋼片をいう。例えば、転炉で溶製された溶鋼を鋳造することにより得られた鋼スラブを鋼素材として挙げることができる。この鋼素材は、Feを主成分として含有するとともに、Siを0.8〜2.7質量%含有する。又、この鋼素材は不可避的不純物も含有する。この鋼素材がSiを0.8〜2.7質量%含有する理由を次に記す。
1. Steel material The steel material used in the method for producing a hot-dip galvanized steel sheet according to the present invention refers to a steel piece to be subjected to hot rolling. For example, the steel slab obtained by casting the molten steel melted with the converter can be mentioned as a steel raw material. This steel material contains Fe as a main component and 0.8 to 2.7% by mass of Si. This steel material also contains inevitable impurities. The reason why this steel material contains 0.8 to 2.7% by mass of Si will be described below.

Siは、固溶強化能が大きく、鋼板の延性を低下させずに強度を高める元素である。機械的特性を確保する観点から、Si含有量は0.8質量%以上、好ましくは0.9質量%以上、より好ましくは1.0質量%以上とする。しかし、Si含有量が過剰になると、強度が高くなりすぎて圧延負荷が増大する。そして、熱間圧延の際にSiスケールを形成して熱延材の表面性状を悪化させる。そのため、Si含有量は2.7質量%以下、好ましくは2.5質量%以下、より好ましくは2.3質量%以下とする。   Si is an element that has a large solid solution strengthening ability and increases the strength without reducing the ductility of the steel sheet. From the viewpoint of ensuring mechanical properties, the Si content is 0.8 mass% or more, preferably 0.9 mass% or more, more preferably 1.0 mass% or more. However, when the Si content is excessive, the strength becomes too high and the rolling load increases. And Si scale is formed in the case of hot rolling, and the surface property of a hot-rolled material is deteriorated. Therefore, the Si content is 2.7% by mass or less, preferably 2.5% by mass or less, and more preferably 2.3% by mass or less.

上記鋼素材は、優れた機械的特性を確保する観点から、C及びMnの含有量を次のようにしてもよい。   From the viewpoint of ensuring excellent mechanical properties, the steel material may have the following contents of C and Mn.

C:0.05質量%〜0.5質量%
Cは、鋼板の強度を高める元素である。高強度鋼板として用いる場合には、C含有量は0.05質量%以上であることが好ましい。一方、C含有量が過剰になると溶接性が低下する。そのため、C含有量は0.5質量%以下であることが好ましい。
C: 0.05 mass%-0.5 mass%
C is an element that increases the strength of the steel sheet. When used as a high-strength steel plate, the C content is preferably 0.05% by mass or more. On the other hand, when the C content is excessive, the weldability is lowered. Therefore, the C content is preferably 0.5% by mass or less.

Mn:1.6質量%〜4.0質量%
Mnは、鋼板の強度を高めるとともに、残留オーステナイトの生成を促進して加工性を高める元素である。高強度鋼板として用いる場合には、Mn含有量は1.6質量%以上であることが好ましい。一方、Mn含有量が過剰になると延性や溶接性が劣化する。そのため、Mn含有量は4.0質量%以下であることが好ましい。
Mn: 1.6% by mass to 4.0% by mass
Mn is an element that increases the strength of the steel sheet and promotes the formation of retained austenite to improve workability. When used as a high-strength steel plate, the Mn content is preferably 1.6% by mass or more. On the other hand, when the Mn content is excessive, ductility and weldability deteriorate. Therefore, the Mn content is preferably 4.0% by mass or less.

又、上記鋼素材は、例えば、以下の1種以上の元素をさらに含有してもよい。   Moreover, the said steel raw material may further contain the following 1 or more types of element, for example.

Al:0質量%超0.5質量%以下
Alは、鋼素材を溶製する際に脱酸剤として作用する元素である。Alで脱酸する場合には、その効果を有効に発揮させるために、Al含有量は0.010質量%以上であることが好ましい。一方、Al含有量が過剰になると鋼板中にアルミナなどの介在物が多く生成し、加工性を劣化させることがある。そのため、Al含有量は0.5質量%以下であることが好ましい。
Al: more than 0% by mass and 0.5% by mass or less Al is an element that acts as a deoxidizer when melting a steel material. When deoxidizing with Al, the Al content is preferably 0.010% by mass or more in order to effectively exhibit the effect. On the other hand, when the Al content is excessive, many inclusions such as alumina are produced in the steel sheet, which may deteriorate the workability. Therefore, the Al content is preferably 0.5% by mass or less.

Ti:0質量%超0.2質量%以下
Tiは、炭化物や窒化物を形成して鋼板の強度を向上させる元素である。又、Ti窒化物を形成することで、鋼中N含有量を低減させてB窒化物の形成を抑制し、固溶Bの焼入れ性を有効に活用するための元素でもある。このような効果を有効に発揮させるために、Ti含有量は0.005質量%以上であることが好ましい。一方、Ti含有量が過剰になると、Ti炭化物やTi窒化物が過剰となり、延性、伸びフランジ性及び伸び加工性を劣化させる。そのため、Ti含有量は0.2質量%以下であることが好ましい。
Ti: more than 0% by mass and 0.2% by mass or less Ti is an element that improves the strength of the steel sheet by forming carbides and nitrides. Further, by forming Ti nitride, it is also an element for reducing the N content in the steel to suppress the formation of B nitride and effectively utilizing the hardenability of solute B. In order to effectively exhibit such an effect, the Ti content is preferably 0.005% by mass or more. On the other hand, when the Ti content is excessive, Ti carbide and Ti nitride are excessive, which deteriorates ductility, stretch flangeability, and stretch workability. Therefore, the Ti content is preferably 0.2% by mass or less.

Nb:0質量%超0.1質量%以下
Nbは、組織を微細化して鋼板の強度と靭性を向上させる元素である。この効果を有効に発揮させるために、Nb含有量は0.005質量%以上であることが好ましい。一方、Nb含有量が過剰になると、加工性を劣化させる。そのため、Nb含有量は0.1質量%以下であることが好ましい。
Nb: more than 0% by mass and 0.1% by mass or less Nb is an element that refines the structure and improves the strength and toughness of the steel sheet. In order to effectively exhibit this effect, the Nb content is preferably 0.005% by mass or more. On the other hand, when the Nb content is excessive, workability is deteriorated. Therefore, the Nb content is preferably 0.1% by mass or less.

V:0質量%超0.3質量%以下
Vは、組織を微細化して鋼板の強度と靭性を向上させる元素である。この効果を有効に発揮させるために、V含有量は0.005質量%以上であることが好ましい。一方、V含有量が過剰になると、上記効果が飽和してコストが増加するだけである。そのため、V含有量は0.3質量%以下であることが好ましい。
V: more than 0% by mass and 0.3% by mass or less V is an element that refines the structure and improves the strength and toughness of the steel sheet. In order to effectively exhibit this effect, the V content is preferably 0.005% by mass or more. On the other hand, if the V content is excessive, the above effect is saturated and only the cost is increased. Therefore, the V content is preferably 0.3% by mass or less.

B:0質量%超0.01質量%以下
Bは、焼入れ性を向上させて鋼板の高強度化に寄与する元素である。この効果を有効に発揮させるために、B含有量は0.0005質量%以上であることが好ましい。一方、B含有量が過剰になると、上記効果が飽和してコストが増加するだけである。そのため、B含有量は0.01質量%以下であることが好ましい。
B: more than 0% by mass and 0.01% by mass or less B is an element that contributes to increasing the strength of the steel sheet by improving the hardenability. In order to effectively exhibit this effect, the B content is preferably 0.0005% by mass or more. On the other hand, if the B content is excessive, the above effect is saturated and only the cost is increased. Therefore, the B content is preferably 0.01% by mass or less.

Mo:0質量%超0.5質量%以下
Moは、高温域からの冷却中に生成するフェライトを抑制する元素である。この効果を有効に発揮させるために、Mo含有量は0.01質量%以上であることが好ましい。一方、Mo含有量が過剰になると、上記効果が飽和してコストが増加するだけである。そのため、Mo含有量は0.5質量%以下であることが好ましい。
Mo: more than 0% by mass and 0.5% by mass or less Mo is an element that suppresses ferrite generated during cooling from a high temperature range. In order to effectively exhibit this effect, the Mo content is preferably 0.01% by mass or more. On the other hand, if the Mo content is excessive, the above effect is saturated and only the cost is increased. Therefore, the Mo content is preferably 0.5% by mass or less.

Ca:0質量%超0.005質量%以下
Caは、鋼中の硫化物を球状化して伸びフランジ性を高めることに有効な元素である。この効果を有効に発揮させるために、Ca含有量は0.0005質量%以上であることが好ましい。一方、Ca含有量が過剰になると、上記効果が飽和してコストが増加するだけである。そのため、Ca含有量は0.005質量%以下であることが好ましい。
Ca: more than 0% by mass and 0.005% by mass or less Ca is an element effective for improving the stretch flangeability by spheroidizing sulfides in steel. In order to effectively exhibit this effect, the Ca content is preferably 0.0005% by mass or more. On the other hand, when the Ca content is excessive, the above effect is saturated and only the cost is increased. Therefore, the Ca content is preferably 0.005% by mass or less.

Cu:0質量%超1.0質量%以下
Cuは、鋼板の耐食性向上に有効な元素である。この効果を有効に発揮させるために、Cu含有量は0.01質量%以上であることが好ましい。一方、Cu含有量が過剰になると、上記効果が飽和してコストが増加するだけである。そのため、Cu含有量は1.0質量%以下であることが好ましい。
Cu: more than 0% by mass and 1.0% by mass or less Cu is an element effective for improving the corrosion resistance of a steel sheet. In order to effectively exhibit this effect, the Cu content is preferably 0.01% by mass or more. On the other hand, if the Cu content is excessive, the above effect is saturated and only the cost is increased. Therefore, the Cu content is preferably 1.0% by mass or less.

Ni:0質量%超1.0質量%以下
Niは、鋼板の耐食性向上に有効な元素である。この効果を有効に発揮させるために、Ni含有量は0.01質量%以上であることが好ましい。一方、Ni含有量が過剰になると、上記効果が飽和してコストが増加するだけである。そのため、Ni含有量は1.0質量%以下であることが好ましい。
Ni: more than 0% by mass and 1.0% by mass or less Ni is an element effective for improving the corrosion resistance of a steel sheet. In order to effectively exhibit this effect, the Ni content is preferably 0.01% by mass or more. On the other hand, when the Ni content is excessive, the above effect is saturated and only the cost is increased. Therefore, the Ni content is preferably 1.0% by mass or less.

Cr:0質量%超0.3質量%以下
Crは、酸化を抑制する元素である。鋼素材がCrを含有することによって、粒界に生成するSi酸化物量が低減して、固溶Si量が増加する。固溶SiとCrはともに酸化抑制元素として作用して、酸化工程において急速な酸化の進行を防止する。こうした効果を発揮させるために、Cr含有量は0.1質量%以上であることが好ましい。一方、鋼素材がCrを過剰に含有すると、酸化の進行が大幅に抑制されて酸化不足を引き起こす。そのため、Cr含有量は0.3質量%以下であることが好ましい。
Cr: more than 0% by mass and 0.3% by mass or less Cr is an element that suppresses oxidation. When the steel material contains Cr, the amount of Si oxide generated at the grain boundary is reduced, and the amount of solute Si is increased. Both solute Si and Cr act as oxidation-inhibiting elements and prevent rapid progress of oxidation in the oxidation process. In order to exert such effects, the Cr content is preferably 0.1% by mass or more. On the other hand, if the steel material contains excessive Cr, the progress of oxidation is greatly suppressed, resulting in insufficient oxidation. Therefore, the Cr content is preferably 0.3% by mass or less.

上記不可避的不純物とは、鋼中に原料、資材、製造設備などの状況によって持ち込まれる元素をいい、以下に示すP及びSの他、例えば、N、O、Pb、Bi、Sb、Snなどが挙げられる。   The inevitable impurities refer to elements brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc. In addition to P and S shown below, for example, N, O, Pb, Bi, Sb, Sn, etc. Can be mentioned.

P:0質量%超0.03質量%以下 Pは、鋼素材が不可避的不純物として含有する元素である。Pは、粒界に偏析して粒界脆化を助長するだけでなく、穴広げ性を劣化させる。そのため、P含有量はできるだけ低く、例えば0.03質量%以下であることが好ましい。   P: more than 0% by mass and 0.03% by mass or less P is an element contained in the steel material as an inevitable impurity. P not only segregates at the grain boundary and promotes grain boundary embrittlement, but also deteriorates hole expansibility. Therefore, the P content is as low as possible, for example, 0.03% by mass or less is preferable.

S:0質量%超0.01質量%以下
SもPと同様に、鋼素材が不可避的不純物として含有する元素である。Sは鋼板中に介在物を生成して、加工性を劣化させる。そのため、S含有量はできるだけ低く、例えば0.01質量%以下であることが好ましい。
S: More than 0% by mass and 0.01% by mass or less S, like P, is an element contained in the steel material as an inevitable impurity. S produces inclusions in the steel sheet and degrades workability. Therefore, the S content is as low as possible, and is preferably 0.01% by mass or less, for example.

2.熱延材
本発明の溶融亜鉛めっき鋼板の製造方法では、上記化学組成を満足する鋼素材を熱間圧延して600℃以上で巻取ることで、熱延材が得られる。
2. Hot-rolled material In the manufacturing method of the hot dip galvanized steel sheet of the present invention, a hot-rolled material is obtained by hot rolling a steel material satisfying the above chemical composition and winding it at 600 ° C or higher.

熱間圧延方法は特に限定されず、公知の方法を採用することができる。例えば、鋼素材を1100℃以上に加熱して、Ar点以上の温度で熱間圧延を完了させればよい。 The hot rolling method is not particularly limited, and a known method can be adopted. For example, the steel material may be heated to 1100 ° C. or higher, and hot rolling may be completed at a temperature of Ar 3 points or higher.

熱間圧延完了後の巻取り温度は600℃以上に設定する。600℃以上で巻取ることにより、熱延材が相対的に軟らかくなり、冷間圧延を施す場合には、冷間圧延設備への負荷を低減させることができる。巻取り温度の上限値は特に限定されないが、設備上の制約などから例えば750℃以下が好ましい。   The coiling temperature after completion of hot rolling is set to 600 ° C. or higher. By winding at 600 ° C. or higher, the hot-rolled material becomes relatively soft, and when cold rolling is performed, the load on the cold rolling equipment can be reduced. The upper limit value of the coiling temperature is not particularly limited, but is preferably 750 ° C. or less, for example, due to equipment restrictions.

上記温度で巻取られた熱延材は、公知の方法で自然冷却される。例えば、大気雰囲気下で放冷すればよい。これにより、熱圧材の表層部に形成されたFe酸化物(即ち熱延スケール)から熱延材の内質側に酸素が供給されて、当該Fe酸化物の下層にてSiの粒界酸化が進行する。   The hot rolled material wound up at the above temperature is naturally cooled by a known method. For example, it may be allowed to cool in an air atmosphere. Thereby, oxygen is supplied from the Fe oxide (that is, hot-rolled scale) formed on the surface layer portion of the hot-pressed material to the inner side of the hot-rolled material, and the grain boundary oxidation of Si is performed in the lower layer of the Fe oxide. Progresses.

3.焼鈍素材
本発明の溶融亜鉛めっき鋼板の製造方法では、上記熱延材を酸洗することで、酸洗材が得られる。
3. Annealing material In the manufacturing method of the hot dip galvanized steel sheet of the present invention, pickling material is obtained by pickling the hot-rolled material.

酸洗方法は特に限定されず、公知の方法を採用することができる。例えば、塩酸を用いて、熱延材表層部のFe酸化物(即ち熱延スケール)を完全に除去すればよい。   The pickling method is not particularly limited, and a known method can be employed. For example, hydrochloric acid may be used to completely remove the Fe oxide (that is, the hot rolling scale) on the surface layer of the hot rolled material.

溶融亜鉛めっき鋼板の原板が熱延鋼板である場合には、上記酸洗材が焼鈍素材として用いられる。一方、溶融亜鉛めっき鋼板の原板が冷延鋼板である場合には、上記酸洗材に対して冷間圧延を施して得られた冷延材が、焼鈍素材として用いられる。   When the hot-dip galvanized steel sheet is a hot-rolled steel sheet, the pickling material is used as an annealing material. On the other hand, when the original sheet of the hot-dip galvanized steel sheet is a cold-rolled steel sheet, a cold-rolled material obtained by subjecting the pickling material to cold rolling is used as an annealing material.

冷間圧延方法は特に限定されず、公知の方法を採用することができる。例えば冷延率30〜80%で行えばよい。   The cold rolling method is not particularly limited, and a known method can be adopted. For example, the cold rolling rate may be 30 to 80%.

4.酸化還元焼鈍
本発明の溶融亜鉛めっき鋼板の製造方法では、上記焼鈍素材に対して酸化還元焼鈍を行うことで、焼鈍材が得られる。より具体的には、上記焼鈍素材に対して、当該焼鈍素材の幅端部を酸化させ、次いで当該焼鈍素材の全幅を酸化させることで酸化膜を形成する工程(酸化工程)と、この酸化膜を還元させて還元Fe層を形成する工程(還元工程)と、還元反応完了後の焼鈍素材を冷却して所望の金属組織を得る工程(冷却工程)とを有する焼鈍処理を行うことで、溶融亜鉛めっき浴に浸漬するための焼鈍材(即ちめっき素材)が得られる。
4). Oxidation-reduction annealing In the manufacturing method of the hot-dip galvanized steel sheet of the present invention, an annealing material is obtained by performing oxidation-reduction annealing on the annealing material. More specifically, with respect to the annealing material, a step (oxidation step) of forming an oxide film by oxidizing the width end portion of the annealing material and then oxidizing the entire width of the annealing material, and the oxide film By performing an annealing process including a step (reduction step) of reducing a reduced Fe layer and a step (cooling step) of cooling the annealing material after completion of the reduction reaction to obtain a desired metal structure (melting step). An annealing material (that is, a plating material) to be immersed in the galvanizing bath is obtained.

酸化還元焼鈍は、上記酸化工程、還元工程及び冷却工程を行うことができる単数又は複数の設備を用いるのであれば、設備上、連続式及びバッチ式を含めて特に限定されない。しかし、生産効率及び製品品質を確保する観点から、例えば連続式溶融亜鉛めっきライン(CGL:Continuous Galvanizing Line)にて行うことが好ましい。   The oxidation-reduction annealing is not particularly limited including a continuous type and a batch type as long as one or a plurality of facilities capable of performing the oxidation step, the reduction step and the cooling step are used. However, from the viewpoint of ensuring production efficiency and product quality, for example, it is preferable to use a continuous hot dip galvanizing line (CGL: Continuous Galvanizing Line).

連続式溶融亜鉛めっきラインの模式図を図3に示す。このラインは、焼鈍素材の通板方向順に予熱帯、酸化帯、還元帯、めっき浴及び合金化炉を備えており、酸化還元焼鈍と、溶融亜鉛めっきと、必要に応じてめっき層の合金化とを連続して行うことができる。   A schematic diagram of a continuous hot dip galvanizing line is shown in FIG. This line is equipped with pre-tropical zone, oxidation zone, reduction zone, plating bath and alloying furnace in the order of the passing direction of annealing material, oxidation-reduction annealing, hot dip galvanization, and alloying of plating layer as necessary Can be performed continuously.

以下、本発明の溶融亜鉛めっき鋼板の製造方法における酸化還元焼鈍を、上記連続式溶融亜鉛めっきラインを用いて行う場合について、酸化工程、還元工程及び冷却工程に分けて説明する。   Hereinafter, the case where the oxidation-reduction annealing in the manufacturing method of the hot-dip galvanized steel sheet of the present invention is performed using the above-described continuous hot-dip galvanizing line will be described separately for the oxidation step, the reduction step, and the cooling step.

4−1.酸化工程
酸化工程では、まず、加熱下で上記焼鈍素材の板幅方向端部(即ち幅端部)を酸化させて、当該板幅方向端部の鋼板表面に酸化物を形成する(以下、プレ酸化ともいう)。この際、板幅方向中央部を酸化しない(すなわち、板幅方向端部のみを酸化する)構成とすることが好ましいが、板幅方向中央部よりも板幅方向端部の方が多く酸化するような構成であれば、板幅中央部が少し酸化されても構わない。プレ酸化により、加熱中の焼鈍素材における板幅方向端部の放射率を板幅方向中央部の放射率に近づけて、板幅方向端部の昇温速度を向上させる。そして、プレ酸化によって焼鈍素材の板幅方向端部に酸化物を形成した後、加熱下で当該焼鈍素材の板幅方向全体において酸化反応を進行させて全幅に亘って酸化膜を形成する(以下、全体酸化ともいう)。全体酸化により、焼鈍素材の板幅方向各所で形成される酸化膜の厚さを均一にさせる。
4-1. Oxidation Step In the oxidation step, first, the end portion in the plate width direction (that is, the width end portion) of the annealing material is oxidized under heating to form an oxide on the steel plate surface at the end portion in the plate width direction (hereinafter referred to as pre-processing). Also called oxidation). At this time, it is preferable that the central portion in the plate width direction is not oxidized (that is, only the end portion in the plate width direction is oxidized), but the end portion in the plate width direction is oxidized more than the central portion in the plate width direction. If it is such a configuration, the central part of the plate width may be slightly oxidized. By pre-oxidation, the emissivity at the end portion in the plate width direction of the annealing material being heated is brought closer to the emissivity at the center portion in the plate width direction, and the temperature increase rate at the end portion in the plate width direction is improved. And after forming an oxide in the board width direction edge part of an annealing raw material by pre-oxidation, an oxidation reaction is advanced in the whole board width direction of the said annealing raw material under heating, and an oxide film is formed over the whole width (below) Also referred to as total oxidation). Through the overall oxidation, the thickness of the oxide film formed at various locations in the plate width direction of the annealed material is made uniform.

板幅方向端部とは、Siの粒界酸化が殆ど形成されなかった部位をいい、熱延材の冷却状況によって異なるが、例えば板幅方向両端からそれぞれ最長で約100mmまでの範囲に位置する。   The end in the plate width direction refers to a portion where the grain boundary oxidation of Si is hardly formed, and varies depending on the cooling condition of the hot-rolled material, but is located, for example, in a range of up to about 100 mm from each end in the plate width direction. .

プレ酸化によって形成される酸化物の形態は特に限らず、板幅方向端部の放射率が板幅方向中央部の放射率に近くなり、板幅方向端部の昇温速度が向上する酸化物であればよい。そのため、プレ酸化によって形成される酸化物は、熱延材の巻取り及び冷却過程で生成する酸化物と異なっていてもよい。プレ酸化では、放射率を大きくするためにウスタイト、マグネタイト、ヘマタイトなどのFe酸化物を鋼板表面に形成する。その際、Fe酸化物とともに、ファイアライトなどのFe−Si複合酸化物やSi酸化物などが同時に形成されてもよい。   The form of the oxide formed by pre-oxidation is not particularly limited, and the emissivity at the end in the plate width direction is close to the emissivity at the center in the plate width direction, and the temperature rise rate at the end in the plate width direction is improved. If it is. Therefore, the oxide formed by pre-oxidation may be different from the oxide generated in the process of winding and cooling the hot-rolled material. In pre-oxidation, Fe oxides such as wustite, magnetite, and hematite are formed on the steel sheet surface in order to increase the emissivity. In that case, Fe-Si complex oxides, such as a firelite, Si oxide, etc. may be formed simultaneously with Fe oxide.

プレ酸化の加熱雰囲気は、上記のFe酸化物が鋼板表面に形成される酸化雰囲気であれば、特に限定されない。プレ酸化の加熱雰囲気として、例えば、バーナーの排ガス(CO、CO、HO、Nなど)とOの混合ガスや、20体積%HO−80体積%Nを挙げることができる。或いは、後述するように大気雰囲気であってもよい。 The pre-oxidation heating atmosphere is not particularly limited as long as it is an oxidation atmosphere in which the Fe oxide is formed on the steel sheet surface. As heating atmosphere of the pre-oxidized, for example, exhaust gas of the burner (CO, CO 2, H 2 O, N 2 , etc.) mixed gas and the O 2, and the like 20 vol% H 2 O-80 vol% N 2 it can. Alternatively, it may be an air atmosphere as will be described later.

一方、全体酸化の加熱雰囲気は、焼鈍素材の板幅方向全域でFe酸化物の酸化膜が形成される酸化雰囲気であれば、特に限定されない。例えば、プレ酸化の加熱雰囲気と同一の雰囲気でもよい。   On the other hand, the heating atmosphere for the entire oxidation is not particularly limited as long as it is an oxidizing atmosphere in which an oxide film of Fe oxide is formed in the entire region of the annealing material in the plate width direction. For example, the same atmosphere as the pre-oxidation heating atmosphere may be used.

プレ酸化及び全体酸化の進行に際して、それぞれ雰囲気ガスを対流循環させることで、焼鈍素材の長手方向における酸化物形成のばらつきを抑制することができる。   When the pre-oxidation and the overall oxidation proceed, the atmospheric gas can be convectively circulated to suppress variations in oxide formation in the longitudinal direction of the annealed material.

プレ酸化では、焼鈍素材の板幅方向端部を500℃以上に、好ましくは550℃以上に、より好ましくは600℃以上に設定すればよい。但し、プレ酸化時の温度があまり高くなり過ぎると、過酸化により高放射率となるので、800℃以下であることが好ましい。より好ましくは、750℃以下である。   In the pre-oxidation, the plate width direction end of the annealed material may be set to 500 ° C. or higher, preferably 550 ° C. or higher, more preferably 600 ° C. or higher. However, if the temperature at the time of pre-oxidation becomes too high, the emissivity becomes high due to peroxidation. More preferably, it is 750 degrees C or less.

一方、全体酸化では、焼鈍素材全体をAc点以上に、好ましくは800℃以上に、より好ましくは850℃以上に設定すればよい。 On the other hand, in the total oxidation, the entire annealing material may be set to Ac 1 point or higher, preferably 800 ° C. or higher, more preferably 850 ° C. or higher.

プレ酸化の時間は、板幅方向端部の放射率が板幅方向中央部の放射率に近づくまでに酸化が進行する時間であり、例えば、150秒以下が好ましく、15〜30秒がより好ましい。   The pre-oxidation time is a time during which oxidation proceeds until the emissivity at the end in the plate width direction approaches the emissivity at the center in the plate width direction, and is preferably 150 seconds or less, and more preferably 15 to 30 seconds. .

一方、全体酸化の時間は、板幅方向全体に亘って酸化膜の厚さがほぼ均一に成長するまでの時間であり、例えば、120秒以下が好ましく、15〜30秒がより好ましい。   On the other hand, the total oxidation time is a time until the thickness of the oxide film grows substantially uniformly over the entire plate width direction, and is preferably 120 seconds or less, and more preferably 15 to 30 seconds.

プレ酸化は、例えば、上記連続式溶融亜鉛めっきラインの予熱帯で行うことができる。   Pre-oxidation can be performed, for example, in the pre-tropical zone of the continuous hot dip galvanizing line.

予熱帯でプレ酸化を行う場合、例えば、板幅方向端部のみをエッジバーナーを用いて加熱して約600℃に設定すればよい。このとき、バーナーで加熱されていない板幅方向中央部の温度は例えば約400℃である。この温度差により、板幅方向端部の酸化反応が優先的に進行して酸化物が形成される。予熱帯でのエッジバーナーの空気比を1.0よりも大きい値に設定することで、上記加熱雰囲気を実現することができる。予熱帯でプレ酸化を行い、その後、板幅方向端部と板幅方向中央部を、おおよそ同じ温度(例えば摂氏温度で15%以内の差)にしてから、酸化帯で全体酸化を行う。このとき、酸化帯でバーナーの空気比を1.0よりも大きい値に設定することで、予熱帯と同一の加熱雰囲気を実現することができる。   When pre-oxidation is performed in the pre-tropical zone, for example, only the end in the plate width direction may be heated to about 600 ° C. using an edge burner. At this time, the temperature of the central part in the plate width direction not heated by the burner is, for example, about 400 ° C. Due to this temperature difference, the oxidation reaction at the end in the plate width direction preferentially proceeds to form an oxide. The heating atmosphere can be realized by setting the air ratio of the edge burner in the pre-tropical zone to a value larger than 1.0. Pre-oxidation is performed in the pre-tropical zone, and then the plate width direction end portion and the plate width direction center portion are set to approximately the same temperature (for example, a difference of 15% or less in Celsius temperature), and then total oxidation is performed in the oxidation zone. At this time, by setting the air ratio of the burner in the oxidation zone to a value larger than 1.0, the same heating atmosphere as that in the pre-tropical zone can be realized.

尚、プレ酸化を予熱帯で行う代わりに、酸化帯の先端側で行ってもよいし、予熱帯と酸化帯の先端側の双方で行ってもよい。或いは、予熱帯の上流側に、大気加熱酸化設備を別途設けておき、焼鈍素材を連続式溶融亜鉛めっきラインに導入する前に、大気加熱酸化設備で板幅方向端部のみをエッジヒーターを用いて加熱して約800℃に設定してもよい。このときのプレ酸化の加熱雰囲気は、大気雰囲気となる。   In addition, instead of performing pre-oxidation in the pre-tropical zone, it may be performed on the leading end side of the oxidizing zone, or on both the pre-tropical zone and the leading end side of the oxidizing zone. Alternatively, a separate atmospheric heating oxidation facility should be provided upstream of the pre-tropical zone, and before introducing the annealing material into the continuous hot dip galvanizing line, only an edge heater in the plate width direction should be used in the atmospheric heating oxidation facility. And heated to about 800 ° C. At this time, the pre-oxidation heating atmosphere is an air atmosphere.

以上のようにプレ酸化を行うことにより、全体酸化の際の昇温速度が板幅方向端部と中央部とでおおよそ同じになり、板幅方向全体でおおよそ均一な酸化膜を形成させることが可能となる。   By performing pre-oxidation as described above, the rate of temperature increase during the overall oxidation becomes approximately the same at the end portion and the center portion in the plate width direction, and an approximately uniform oxide film can be formed throughout the plate width direction. It becomes possible.

4−2.還元工程
還元工程では、酸化工程にて焼鈍素材の全幅に形成された酸化膜を加熱下で還元させて、還元Fe層を形成する。これにより、Siが表層に露出していない焼鈍材を得ることができる。
4-2. Reduction process In the reduction process, the oxide film formed in the entire width of the annealing material in the oxidation process is reduced under heating to form a reduced Fe layer. Thereby, the annealing material in which Si is not exposed to the surface layer can be obtained.

還元工程の加熱雰囲気は、酸化工程で形成された酸化膜を還元させて還元Fe層が形成される還元雰囲気であれば、特に限定されない。例えば、Hガスを15〜25体積%含み、残部がNなどの不活性ガスである混合ガスを挙げることができる。その際、露点は−50〜0℃に制御する。 The heating atmosphere in the reduction process is not particularly limited as long as it is a reducing atmosphere in which the reduced Fe layer is formed by reducing the oxide film formed in the oxidation process. For example, a mixed gas containing 15 to 25% by volume of H 2 gas and the balance being an inert gas such as N 2 can be used. At that time, the dew point is controlled to -50 to 0 ° C.

還元工程では、焼鈍素材をAc点以上に、好ましくはAc点以上に設定すればよく、鋼素材の化学組成に応じて、例えば850〜970℃の均熱温度に適宜設定すればよい。その際、均熱温度における保持する時間を例えば30〜70秒に設定して、還元反応を進行させればよい。 In the reduction process, the annealing material may be set to Ac 1 point or more, preferably Ac 3 point or more, and may be appropriately set to, for example, a soaking temperature of 850 to 970 ° C. according to the chemical composition of the steel material. At that time, the time for holding at the soaking temperature may be set to 30 to 70 seconds, for example, and the reduction reaction may proceed.

4−3.冷却工程
冷却工程では、還元反応完了後の焼鈍素材を目標冷却パターンに従って、適宜冷却する。これにより、所望の金属組織を得ることができる。
4-3. Cooling step In the cooling step, the annealed material after completion of the reduction reaction is appropriately cooled according to the target cooling pattern. Thereby, a desired metal structure can be obtained.

冷却パターンは所望とする金属組織によって、それぞれ異なる。例えば、焼戻しマルテンサイトとベイナイトを主体として、残部がフェライトと残留オーステナイトとからなる金属組織を得る場合には、均熱温度から460〜550℃の冷却停止温度まで1〜50℃/sの冷却速度で冷却して、当該冷却停止温度で20〜100秒間保持し、続いてめっき処理を行う。   The cooling pattern varies depending on the desired metal structure. For example, in the case of obtaining a metal structure mainly composed of tempered martensite and bainite, with the balance being composed of ferrite and retained austenite, a cooling rate of 1 to 50 ° C./s from a soaking temperature to a cooling stop temperature of 460 to 550 ° C. And is kept at the cooling stop temperature for 20 to 100 seconds, followed by plating.

5.溶融亜鉛めっき
本発明の溶融亜鉛めっき鋼板の製造方法では、上記焼鈍材に対して溶融亜鉛めっきを施すことで、溶融亜鉛めっき鋼板が得られる。
5. Hot dip galvanizing In the manufacturing method of the hot dip galvanized steel sheet of the present invention, a hot dip galvanized steel sheet is obtained by performing hot dip galvanizing on the annealed material.

溶融亜鉛めっき方法は特に限定されず、公知の方法を採用することができる。例えば、溶融亜鉛めっき浴中のAl含有量が0.08〜0.12質量%である場合には、浴温を460〜480℃に調整すればよい。又、溶融亜鉛めっき層の付着量は、所望の付着量とすればよく、例えばガスワイピングを用いて45〜65g/m程度に制御すればよい。 The hot dip galvanizing method is not particularly limited, and a known method can be adopted. For example, when the Al content in the hot dip galvanizing bath is 0.08 to 0.12% by mass, the bath temperature may be adjusted to 460 to 480 ° C. Moreover, what is necessary is just to let the adhesion amount of a hot dip galvanization layer be a desired adhesion amount, for example, to control it to about 45-65 g / m < 2 > using gas wiping.

次に、本発明の他の一局面である合金化溶融亜鉛めっき鋼板の製造方法について、説明する。   Next, the manufacturing method of the galvannealed steel plate which is another one aspect | mode of this invention is demonstrated.

本発明の合金化溶融亜鉛めっき鋼板の製造方法では、上記溶融亜鉛めっき鋼板の製造方法に従って溶融亜鉛めっき鋼板が得られた後、当該溶融亜鉛めっき鋼板が有するめっき層を合金化させることによって、合金化溶融亜鉛めっき鋼板が得られる。   In the method for producing an alloyed hot-dip galvanized steel sheet according to the present invention, after the hot-dip galvanized steel sheet is obtained according to the method for producing a hot-dip galvanized steel sheet, an alloy is formed by alloying the plating layer of the hot-dip galvanized steel sheet. A galvannealed steel sheet is obtained.

以下、めっき層の合金化について説明する。   Hereinafter, alloying of the plating layer will be described.

めっき層の合金化方法は特に限定されず、公知の方法を採用することができる。例えば、合金化炉での合金化温度を450〜600℃程度に制御すればよい。合金化温度が450℃未満では、合金化速度が極めて遅く、生産性を確保できない場合がある。一方、合金化温度が600℃を超えると合金化が進みすぎて、めっき層と素地鋼板の界面にΓ相が形成され、耐パウダリング性が劣化する場合がある。   The method for alloying the plating layer is not particularly limited, and a known method can be employed. For example, what is necessary is just to control the alloying temperature in an alloying furnace to about 450-600 degreeC. When the alloying temperature is less than 450 ° C., the alloying speed is extremely slow, and productivity may not be ensured. On the other hand, when the alloying temperature exceeds 600 ° C., alloying proceeds too much, and a Γ phase is formed at the interface between the plating layer and the base steel sheet, which may deteriorate the powdering resistance.

上述したように、本発明の一局面は、Siを0.8〜2.7質量%含有する鋼素材を熱間圧延して600℃以上で巻取ることで熱延材を得て、前記熱延材を酸洗することで焼鈍素材を得て、前記焼鈍素材の幅端部を酸化させ、次いで当該焼鈍素材の全幅を酸化させることで酸化膜を形成して、前記酸化膜を還元し、次いで溶融亜鉛めっきを施すことで溶融亜鉛めっき鋼板を得る、溶融亜鉛めっき鋼板の製造方法である。   As described above, according to one aspect of the present invention, a hot-rolled material is obtained by hot-rolling a steel material containing 0.8 to 2.7% by mass of Si and winding at 600 ° C. or higher. Annealing material is obtained by pickling the rolled material, the width end portion of the annealing material is oxidized, and then an oxide film is formed by oxidizing the entire width of the annealing material, and the oxide film is reduced, Subsequently, it is a manufacturing method of the hot dip galvanized steel plate which obtains a hot dip galvanized steel plate by performing hot dip galvanization.

この構成によれば、焼鈍素材の幅方向端部がまず酸化されて酸化物が形成され、幅方向端部の放射率が大きくなって、幅方向中央部と幅方向端部の放射率が近くなる。この状態で加熱することにより幅方向中央部と幅方向端部とがほぼ均一に昇温する。これにより、焼鈍素材の全幅でほぼ均一に酸化反応が進行して、酸化物が幅方向全体に亘ってほぼ均一に成長する。酸化Fe皮膜が全幅でほぼ均一になっているため、その後の還元反応も全幅に亘ってほぼ均一に進行する。それ故、板幅方向におけるめっき品質が安定化し、不めっきの発生が防止される。   According to this configuration, the width direction end of the annealed material is first oxidized to form an oxide, the emissivity of the width direction end increases, and the emissivity of the width direction center and the width direction end are close. Become. By heating in this state, the temperature in the center in the width direction and the end in the width direction are raised substantially uniformly. As a result, the oxidation reaction proceeds substantially uniformly over the entire width of the annealed material, and the oxide grows substantially uniformly over the entire width direction. Since the oxidized Fe film is substantially uniform over the entire width, the subsequent reduction reaction proceeds substantially uniformly over the entire width. Therefore, the plating quality in the plate width direction is stabilized, and the occurrence of non-plating is prevented.

本発明の溶融亜鉛めっき鋼板の製造方法では、前記焼鈍素材の幅端部を酸化させる前に、当該焼鈍素材に冷間圧延を施すことができる。この構成により、冷延鋼板を原板とする溶融亜鉛めっき鋼板を得ることができる。   In the manufacturing method of the hot dip galvanized steel sheet according to the present invention, the annealed material can be cold-rolled before the width end portion of the annealed material is oxidized. With this configuration, a hot-dip galvanized steel sheet using a cold-rolled steel sheet as the original sheet can be obtained.

本発明の溶融亜鉛めっき鋼板の製造方法では、予熱帯のエッジバーナーを用いて前記焼鈍素材の幅端部を酸化させることができる。この構成により、連続式溶融亜鉛めっきラインの予熱帯でプレ酸化を行うことができるようになり、生産効率を向上させるとともに、溶融亜鉛めっき鋼板の板幅方向における品質を安定化させることができる。   In the manufacturing method of the hot dip galvanized steel sheet according to the present invention, the width end portion of the annealing material can be oxidized using a pre-tropical edge burner. With this configuration, it is possible to perform pre-oxidation in the pre-tropical zone of the continuous hot dip galvanizing line, thereby improving the production efficiency and stabilizing the quality in the plate width direction of the hot dip galvanized steel sheet.

本発明の他の一局面は、上記製造方法で得られた溶融亜鉛めっき鋼板が有するめっき層を合金化させることで合金化溶融亜鉛めっき鋼板を得る、合金化溶融亜鉛めっき鋼板の製造方法である。   Another aspect of the present invention is a method for producing an alloyed hot-dip galvanized steel sheet, in which an alloyed hot-dip galvanized steel sheet is obtained by alloying the plating layer of the hot-dip galvanized steel sheet obtained by the above production method. .

この構成によれば、上記溶融亜鉛めっき鋼板の製造方法と同様に、酸化還元焼鈍の酸化工程において、焼鈍素材の板幅方向端部と板幅方向中央部の昇温速度が同程度になる。その結果、板幅方向におけるめっき品質が安定化し、不めっきや合金むらの発生が防止された合金化溶融亜鉛めっき鋼板を得ることができる。   According to this configuration, in the oxidation process of oxidation-reduction annealing, the rate of temperature rise at the end in the plate width direction of the annealed material and the central portion in the plate width direction are approximately the same as in the method for manufacturing the hot dip galvanized steel sheet. As a result, it is possible to obtain an alloyed hot-dip galvanized steel sheet in which the plating quality in the plate width direction is stabilized and the occurrence of non-plating and alloy unevenness is prevented.

以下、実施例を挙げて本発明をより具体的に説明する。尚、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することは可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described more specifically with reference to examples. It should be noted that the present invention is not limited by the following examples, and can be implemented with modifications within a range that can meet the gist of the preceding and following descriptions, all of which are included in the technical scope of the present invention. .

(実施例1)
板幅方向両端からそれぞれ70mmまでのエッジ部ではSiの粒界酸化が存在せず、板幅方向においてエッジ部を除いた部分であるセンター部ではSiの粒界酸化が存在する熱延鋼板を供試材として、次のラボ加熱試験を行い、昇温速度を評価した。
Example 1
There is provided a hot-rolled steel sheet in which no grain boundary oxidation of Si exists at both edge portions from both ends in the plate width direction to 70 mm, and in the center portion, which is a portion excluding the edge portion in the plate width direction, Si grain boundary oxidation exists. As a sample, the following laboratory heating test was conducted to evaluate the rate of temperature rise.

尚、この供試材は、C:0.095質量%、Si:1.8質量%及びMn:2.1質量%を含有するとともに残部がFe及び不可避的不純物からなる化学組成を有する鋼スラブを熱間圧延して650℃で巻取り、そして、大気雰囲気下で放冷した後、酸洗して冷間圧延した焼鈍素材である。この供試材の板厚は1.4mmである。又、この供試材の酸化還元焼鈍における均熱目標温度は900℃である。   In addition, this test material contains C: 0.095 mass%, Si: 1.8 mass%, and Mn: 2.1 mass%, and the steel slab which has the chemical composition which the remainder consists of Fe and an unavoidable impurity. This is an annealed material that has been hot-rolled, wound at 650 ° C., allowed to cool in an air atmosphere, pickled and cold-rolled. The plate thickness of this test material is 1.4 mm. Moreover, the soaking target temperature in the oxidation-reduction annealing of this test material is 900 ° C.

[ラボ加熱試験]
まず、供試材のエッジ部及びセンター部から、長さ140mmで幅70mmである供試片をそれぞれ採取した。
[Lab heating test]
First, specimens each having a length of 140 mm and a width of 70 mm were collected from the edge part and the center part of the specimen.

そして、供試材のセンター部から採取した供試片に熱電対を取り付けた加熱試験片1個(試験No.1)と、供試材のエッジ部から採取した供試片に熱電対を取り付けた加熱試験片3個(試験No.2−1〜2−3)とを、雰囲気調整加熱炉に入れて、目標温度950℃まで加熱し、加熱開始から10秒毎の加熱試験片の温度を測定した。測定結果を表1に示す。尚、加熱雰囲気は連続式溶融亜鉛めっきラインの酸化帯を模擬した20体積%HO−80体積%Nである。又、いずれの加熱試験片においても、加熱過程で酸化物が形成されたことを確認した。 Then, one heating test piece (test No. 1) with a thermocouple attached to the specimen taken from the center of the specimen, and a thermocouple attached to the specimen taken from the edge of the specimen The three heated test pieces (Test Nos. 2-1 to 2-3) were placed in an atmosphere-regulating heating furnace, heated to a target temperature of 950 ° C., and the temperature of the heated test piece every 10 seconds from the start of heating. It was measured. The measurement results are shown in Table 1. The heating atmosphere is 20 volume% H 2 O-80 volume% N 2 simulating the oxidation zone of a continuous hot dip galvanizing line. Moreover, it was confirmed that oxides were formed during the heating process in any of the heating test pieces.

一方、供試材のエッジ部から採取した供試片に熱電対を取り付けた他の加熱試験片3個(試験No.3−1〜3−3)については、まず、連続式溶融亜鉛めっきラインの予熱帯でエッジバーナーを用いてプレ酸化を行う場合を模擬した加熱を行った。この加熱では、炉温を600℃に設定して、加熱試験片を150秒間炉内で保持した。加熱雰囲気は20体積%HO−80体積%Nである。この加熱によって、酸化物が形成されたことを確認した。続いて、プレ酸化を模擬した加熱がなされた加熱試験片3個(試験No.3−1〜3−3)に対して、試験No.1及び試験No.2−1〜2−3と同一の条件で、連続式溶融亜鉛めっきラインの酸化帯での全体酸化を模擬した加熱を行った。そして、全体酸化を模擬した加熱の開始から10秒毎の加熱試験片の温度を測定した。この測定結果も表1に示す。尚、この加熱によって、酸化被膜が成長したことを確認した。 On the other hand, for three other heating test pieces (test Nos. 3-1 to 3-3) in which a thermocouple is attached to a test piece taken from the edge portion of the test material, first, a continuous hot dip galvanizing line In the pre-tropics, heating was simulated to simulate pre-oxidation using an edge burner. In this heating, the furnace temperature was set to 600 ° C., and the heated test piece was held in the furnace for 150 seconds. Heating atmosphere is 20 vol% H 2 O-80 vol% N 2. It was confirmed that an oxide was formed by this heating. Subsequently, for three heating test pieces (test Nos. 3-1 to 3-3) subjected to heating simulating pre-oxidation, test nos. 1 and test no. Under the same conditions as in 2-1 to 2-3, heating was performed simulating the overall oxidation in the oxidation zone of the continuous hot dip galvanizing line. And the temperature of the heating test piece was measured every 10 seconds from the start of the heating which simulated the whole oxidation. The measurement results are also shown in Table 1. In addition, it confirmed that the oxide film grew by this heating.

[昇温速度の評価]
センター部の昇温速度に対するエッジ部の昇温速度の乖離の程度から、エッジ部の昇温速度がセンター部の昇温速度と同程度か否かを評価した。具体的には次の方法で評価した。
[Evaluation of heating rate]
Whether or not the temperature rising rate at the edge portion is comparable to the temperature rising rate at the center portion was evaluated from the degree of deviation of the temperature rising rate at the edge portion from the temperature rising rate at the center portion. Specifically, the evaluation was performed by the following method.

上記供試材の均熱目標温度が900℃であることから、センター部(試験No.1)が904℃に到達した時点(即ち、加熱開始から60秒が経過した時点)における各エッジ部(試験No.2−1〜3−3)とセンター部の温度差Δtの、センター部の温度904℃の百分率Rを算出した。各エッジ部(試験No.2−1〜3−3)の温度差Δt及び百分率Rを表1に示す。百分率Rが±5%以内である場合を合格とし、±5%を超える場合を不合格とした。   Since the soaking target temperature of the test material is 900 ° C., each edge portion at the time when the center portion (test No. 1) reaches 904 ° C. (that is, when 60 seconds have elapsed from the start of heating) The percentage R of the temperature 904 ° C. of the center portion between the test Nos. 2-1 to 3-3) and the temperature difference Δt between the center portions was calculated. Table 1 shows the temperature difference Δt and the percentage R of each edge part (Test Nos. 2-1 to 3-3). A case where the percentage R was within ± 5% was considered acceptable, and a case where the percentage R exceeded ± 5% was regarded as unacceptable.

試験No.3−1〜3−3は、本発明の溶融亜鉛めっき鋼板の製造方法で規定する各条件を満足する例である。これらは、いずれも上記百分率Rが±5%以内にあり、エッジ部の昇温速度がセンター部の昇温速度と同程度であることを示した。   Test No. 3-1 to 3-3 are examples which satisfy each condition prescribed | regulated with the manufacturing method of the hot dip galvanized steel plate of this invention. These indicated that the percentage R was within ± 5%, and that the rate of temperature rise at the edge was the same as the rate of temperature rise at the center.

一方、試験No.2−1〜2−3は、本発明の溶融亜鉛めっき鋼板の製造方法で規定するエッジ部を先に酸化させる条件(即ち、プレ酸化)を満たさない例である。これらは、いずれも上記百分率Rが±5%を超えており、エッジ部の昇温速度がセンター部の昇温速度よりも小さいことを示した。   On the other hand, test no. 2-1 to 2-3 are examples that do not satisfy the conditions (that is, pre-oxidation) that oxidize the edge portion specified in the manufacturing method of the hot-dip galvanized steel sheet of the present invention first. All of these indicate that the percentage R exceeds ± 5%, and the temperature rising rate at the edge portion is smaller than the temperature rising rate at the center portion.

昇温速度の他の評価方法として用いられる、各加熱試験片(試験No.1、2−1〜3−3)の加熱時間に対する温度をプロットしたグラフを図4に示す。図4の各加熱時間において、試験No.3−1〜3−3が試験No.1に近接し或いは一部重複しているのに対して、試験No.2−1〜2−3は試験No.1から大幅に乖離していることが示されている。図4からも、プレ酸化を行うことで、エッジ部の昇温速度がセンター部の昇温速度と同程度になることが明白である。   The graph which plotted the temperature with respect to the heating time of each heating test piece (test No.1,2-1 to 3-3) used as another evaluation method of a temperature increase rate is shown in FIG. In each heating time of FIG. 3-1 to 3-3 are test Nos. 1 is close to or partially overlapping, 2-1 to 2-3 are test Nos. It is shown that there is a significant departure from 1. From FIG. 4, it is clear that the temperature increase rate at the edge portion becomes approximately the same as the temperature increase rate at the center portion by performing pre-oxidation.

Figure 2018165398
Figure 2018165398

(実施例2)
供試材のエッジ部から採取した供試片に対して、大気雰囲気でエッジヒータを用いてプレ酸化する場合を模擬した加熱を行うこと以外は、実施例1と同様にしてラボ加熱試験を行い、昇温速度を評価した。
(Example 2)
A laboratory heating test is performed in the same manner as in Example 1 except that the specimen collected from the edge portion of the specimen is heated by simulating the case of pre-oxidation in an air atmosphere using an edge heater. The temperature rising rate was evaluated.

実施例1と同様に、供試材のエッジ部から採取した供試片に熱電対を取り付けた他の加熱試験片3個(試験No.4−1〜4−3)について、大気雰囲気でエッジヒータを用いてプレ酸化する場合を模擬した加熱を行った。この加熱では、供試材のエッジ部から採取した供試片に対して、大気雰囲気で800℃まで昇温し、800℃まで昇温した直度(保持時間は0秒)に冷却を開始する条件とした。この加熱によって、酸化物が形成されたことを確認した。   As in Example 1, three other heating test pieces (test Nos. 4-1 to 4-3) in which a thermocouple was attached to the test piece collected from the edge portion of the test material were edged in the atmosphere. Heating was performed simulating the case of pre-oxidation using a heater. In this heating, the specimen taken from the edge portion of the specimen is heated to 800 ° C. in the air atmosphere, and cooling is started immediately after the temperature is raised to 800 ° C. (holding time is 0 second). Condition. It was confirmed that an oxide was formed by this heating.

続いて、プレ酸化を模擬した加熱がなされた加熱試験片3個(試験No.4−1〜4−3)に対して、実施例1で示した試験No.1及び試験No.2−1〜2−3と同一の条件で、連続式溶融亜鉛めっきラインの酸化帯での全体酸化を模擬した加熱を行った。   Subsequently, three test pieces (test Nos. 4-1 to 4-3) that were heated to simulate pre-oxidation were used for test No. 1 shown in Example 1. 1 and test no. Under the same conditions as in 2-1 to 2-3, heating was performed simulating the overall oxidation in the oxidation zone of the continuous hot dip galvanizing line.

そして、全体酸化を模擬した加熱の開始から10秒毎の加熱試験片の温度を測定し、実施例1と同様に評価した。この測定結果を、前記表1に示した試験No.1及び試験No.2−1〜2−3の結果とともに、表2に示す。尚、この加熱によって、酸化被膜が成長したことを確認した。   Then, the temperature of the heated test piece was measured every 10 seconds from the start of heating simulating the whole oxidation, and evaluated in the same manner as in Example 1. The measurement results are shown in Test No. 1 shown in Table 1 above. 1 and test no. It shows in Table 2 with the result of 2-1 to 2-3. In addition, it confirmed that the oxide film grew by this heating.

試験No.4−1〜4−3は、本発明の溶融亜鉛めっき鋼板の製造方法で規定する各条件を満足する例である。これらは、いずれも上記百分率Rが±5%以内にあり、エッジ部の昇温速度がセンター部の昇温速度と同程度であることを示した。特に、試験No.4−1〜4−3は、加熱開始から60秒が経過した時点における各エッジ部とセンター部の温度差Δtが−12℃〜3℃の範囲にあり、プレ酸化を行うことによる効果が顕著になって
いる。
Test No. 4-1 to 4-3 are examples that satisfy each condition defined by the method for producing a hot-dip galvanized steel sheet of the present invention. These indicated that the percentage R was within ± 5%, and that the rate of temperature rise at the edge was the same as the rate of temperature rise at the center. In particular, test no. As for 4-1 to 4-3, the temperature difference (DELTA) t of each edge part and center part in the time of 60 second having passed from the heating start exists in the range of -12 degreeC-3 degreeC, and the effect by performing pre-oxidation is remarkable. It has become.

昇温速度の他の評価方法として用いられる、各加熱試験片(試験No.1、2−1〜2−3、4−1〜4−3)の加熱時間に対する温度をプロットしたグラフを図5に示す。図5の各加熱時間において、試験No.4−1〜4−3が試験No.1に近接し或いは一部重複していることが分かる。図5からも、プレ酸化を行うことで、エッジ部の昇温速度がセンター部の昇温速度と同程度になることが明白である。   FIG. 5 is a graph plotting the temperature against the heating time of each heating test piece (test Nos. 1, 2-1 to 2-3, 4-1 to 4-3), which is used as another evaluation method of the heating rate. Shown in In each heating time of FIG. 4-1 to 4-3 are test Nos. It can be seen that it is close to 1 or partially overlapping. From FIG. 5, it is clear that the temperature rise rate at the edge portion is approximately the same as the temperature rise rate at the center portion by performing pre-oxidation.

Figure 2018165398
Figure 2018165398

Claims (5)

Siを0.8〜2.7質量%含有する鋼素材を熱間圧延して600℃以上で巻取ることで熱延材を得て、
前記熱延材を酸洗することで焼鈍素材を得て、
前記焼鈍素材の幅端部を酸化させ、次いで当該焼鈍素材の全幅を酸化させることで酸化膜を形成して、
前記酸化膜を還元し、次いで溶融亜鉛めっきを施すことで溶融亜鉛めっき鋼板を得る、溶融亜鉛めっき鋼板の製造方法。
A hot-rolled material is obtained by hot rolling a steel material containing 0.8 to 2.7% by mass of Si and winding at 600 ° C. or higher.
Obtain the annealing material by pickling the hot rolled material,
Oxidizing the width end of the annealed material, then oxidizing the entire width of the annealed material to form an oxide film,
The manufacturing method of the hot dip galvanized steel plate which obtains a hot dip galvanized steel plate by reducing the said oxide film and then performing hot dip galvanization.
前記焼鈍素材の幅端部を酸化させる前に、当該焼鈍素材に冷間圧延を施す、請求項1に記載の溶融亜鉛めっき鋼板の製造方法。   The manufacturing method of the hot-dip galvanized steel sheet according to claim 1, wherein cold annealing is performed on the annealed material before oxidizing the width end portion of the annealed material. 予熱帯のエッジバーナーを用いて前記焼鈍素材の幅端部を酸化させる、請求項1又は2に記載の溶融亜鉛めっき鋼板の製造方法。   The manufacturing method of the hot dip galvanized steel plate of Claim 1 or 2 which oxidizes the width | variety edge part of the said annealing raw material using a pre-tropical edge burner. 大気雰囲気でエッジヒータを用いて前記焼鈍素材の幅端部を酸化させる、請求項1又は2に記載の溶融亜鉛めっき鋼板の製造方法。   The manufacturing method of the hot dip galvanized steel sheet of Claim 1 or 2 which oxidizes the width | variety edge part of the said annealing raw material using an edge heater in air | atmosphere atmosphere. 請求項1〜4のいずれか一項に記載の製造方法で得られた溶融亜鉛めっき鋼板が有するめっき層を合金化させることで合金化溶融亜鉛めっき鋼板を得る、合金化溶融亜鉛めっき鋼板の製造方法。   Manufacture of an alloyed hot-dip galvanized steel sheet which obtains an alloyed hot-dip galvanized steel sheet by alloying the plating layer which the hot-dip galvanized steel sheet obtained by the manufacturing method as described in any one of Claims 1-4 has. Method.
JP2017213807A 2017-03-28 2017-11-06 Manufacturing method of hot-dip galvanized steel sheet and manufacturing method of alloyed hot-dip galvanized steel sheet Active JP6764847B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017062692 2017-03-28
JP2017062692 2017-03-28

Publications (2)

Publication Number Publication Date
JP2018165398A true JP2018165398A (en) 2018-10-25
JP6764847B2 JP6764847B2 (en) 2020-10-07

Family

ID=63922433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017213807A Active JP6764847B2 (en) 2017-03-28 2017-11-06 Manufacturing method of hot-dip galvanized steel sheet and manufacturing method of alloyed hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP6764847B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023191021A1 (en) * 2022-03-31 2023-10-05 Jfeスチール株式会社 Galvanized steel sheet, member, and production methods therefor
WO2023191020A1 (en) * 2022-03-31 2023-10-05 Jfeスチール株式会社 Galvanized steel sheet, member, and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023191021A1 (en) * 2022-03-31 2023-10-05 Jfeスチール株式会社 Galvanized steel sheet, member, and production methods therefor
WO2023191020A1 (en) * 2022-03-31 2023-10-05 Jfeスチール株式会社 Galvanized steel sheet, member, and method for manufacturing same

Also Published As

Publication number Publication date
JP6764847B2 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
JP4589880B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and hole expansibility, high-strength alloyed hot-dip galvanized steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP7095804B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet
US10138530B2 (en) Method for producing high-strength galvannealed steel sheets
KR101880086B1 (en) Method for manufacturing high-strength galvanized steel sheet
JP5826321B2 (en) Manufacturing method of hot dip galvanized steel sheet with excellent plating adhesion
JP2017048412A (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
KR101719947B1 (en) Method for manufacturing high-strength galvannealed steel sheet
EP3382049B1 (en) Method for manufacturing cold-rolled steel sheet for high-strength hot-dip galvanized steel sheet, method for manufacturing high-strength hot-dip galvanized steel sheet
JP6475840B2 (en) High-strength hot-dip galvanized steel sheet excellent in surface quality, plating adhesion, and formability, and its manufacturing method
JP2017075394A (en) High strength hot-dip galvanized steel sheet and method of producing high strength hot-dip galvanized steel sheet
JP2010018874A (en) Hot-dip galvannealed steel sheet and production method thereof
JP6505480B2 (en) Raw plate for hot-dip galvanizing or alloyed hot-dip galvanizing, and hot-dip galvanized steel sheet or alloyed hot-dip galvanized steel sheet
JPH11236621A (en) Production of high tensile strength and high ductility galvanized steel sheet
JPWO2018079124A1 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP6764847B2 (en) Manufacturing method of hot-dip galvanized steel sheet and manufacturing method of alloyed hot-dip galvanized steel sheet
JP6164280B2 (en) Mn-containing alloyed hot-dip galvanized steel sheet excellent in surface appearance and bendability and method for producing the same
JP2006161064A (en) High tensile-strength hot dip galvanized steel sheet and its production method
KR101736640B1 (en) Hot dip zinc alloy coated steel sheet having excellent coatability and spot weldability and method for manufacturing same
JP2002146475A (en) Galvannealed steel sheet
JP4969954B2 (en) Alloyed hot-dip galvanized steel sheet with excellent appearance quality and method for producing the same
JP2010215998A (en) Method for producing high strength hot dip galvanized steel sheet, and method for producing high strength hot dip galvannealed steel sheet
JP2010018873A (en) Method for producing hot-dip galvannealed steel sheet
JP7480928B2 (en) Manufacturing method of galvannealed steel sheet
WO2022191009A1 (en) Steel sheet for hot-dip galvanizing, hot-dip galvanized steel sheet, and alloyed hot-dip galvannealed steel sheet
WO2021006131A1 (en) Methods respectively for manufacturing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6764847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150