JP2007165737A - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
JP2007165737A
JP2007165737A JP2005362625A JP2005362625A JP2007165737A JP 2007165737 A JP2007165737 A JP 2007165737A JP 2005362625 A JP2005362625 A JP 2005362625A JP 2005362625 A JP2005362625 A JP 2005362625A JP 2007165737 A JP2007165737 A JP 2007165737A
Authority
JP
Japan
Prior art keywords
solid
state imaging
imaging device
signal
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005362625A
Other languages
English (en)
Inventor
Koichi Ishida
耕一 石田
Takashi Morimoto
隆史 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Medical and Graphic Inc
Original Assignee
Konica Minolta Medical and Graphic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical and Graphic Inc filed Critical Konica Minolta Medical and Graphic Inc
Priority to JP2005362625A priority Critical patent/JP2007165737A/ja
Publication of JP2007165737A publication Critical patent/JP2007165737A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 本発明は、その表面が十分な平坦性を備えるとともに光電変換部の開口率を高くすることのできる固体撮像装置を提供することを目的とする。
【解決手段】 ガラス基板50の表面に、全画素のフォトダイオード30を形成し、ガラス基板50の裏面に、全画素のTFT31、駆動線8、及び信号読出線9を形成する。各画素において、フォトダイオード30の受光部電極51に対向する位置に、TFT31を形成することで、TFT31に対する遮光を行う。
【選択図】 図3

Description

本発明は、入射光を電気信号に変換する固体撮像装置に関するもので、特に、放射線像撮像装置に使用される固体撮像装置などのように大面積で且つ開口率の求められる固体撮像装置に関する。
近年、デジタル技術及び半導体製造技術の発展により、画像データを取得する方法として、CCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサなどの固体撮像装置が広く普及されている。この固体撮像装置は、半導体シリコンの結晶基板上に形成されて製造されることが一般的である。
又、医療、検査関連分野においても、フィルムレス化とネットワーク化に伴い、医療画像診断や非破壊検査等における取得画像のデジタル化が急速に進められている。それに伴い、X線などの放射線を用いて画像取得するための固体撮像装置が必要とされているが、放射線に対する縮小光学系の実現が難しいことから、等倍での撮像が必要とされ、大面積となる固体撮像装置が要求されている。この固体撮像装置は、ガラスなどの基板に対して半導体膜を堆積させるなどして製造される。
この従来の固体撮像装置の構成について、図10及び図11による単一画素の上面図及び断面図を参照して説明する。固体撮像装置の各画素では、図10の構造模式図のように、入射光に応じた電気信号を発生するフォトダイオードによる光電変換部101の1隅に切り欠きを設けて、この切り欠き部分に、薄膜トランジスタによるスイッチング素子102が設置される。更に、光電変換部101の表面には、光電変換部101に電源電圧を与えるための電力供給線103が設置され、コンタクト104によって光電変換部101と電気的に接続される。
又、スイッチング素子102のゲート領域に制御信号を与えるための駆動線106が、光電変換部101及びスイッチング素子102と重ならない位置に、電力供給線103と平行になるように設置される。そして、スイッチング素子102が駆動したときに光電変換部101で蓄積された電荷による電気信号が出力される信号読出線105が、スイッチング素子102のソース領域と接続されるとともに、光電変換部101及びスイッチング素子102と重ならない位置に、電力供給線103と垂直になるように設置される。
この画素構成の詳細について、図11の断面構造の模式図により更に説明する。光電変換部101、スイッチング素子102、電力供給線103、及び、信号読出線105それぞれが、ガラス基板150の表面に形成される絶縁膜151上に堆積され、又、駆動線106が、ガラス基板150と絶縁膜151との間の層に堆積される。まず、光電変換部101は、絶縁膜151の上に積層された受光部電極152と、この受光部電極152の上面に積層された受光層153と、受光層153の上面に積層された透明電極154とによって構成される。
又、スイッチング素子102は、駆動線106によるゲート電極161の設置位置における絶縁膜151を覆うように積層されたチャネル層155と、チャネル層155の上面を覆うチャネルストップ層156と、光電変換部101に近い側のチャネルストップ層156よりチャネル層155を覆うコンタクト層157と、光電変換部101から遠い側のチャネルストップ層156の端部よりチャネル層155を覆うコンタクト層158と、によって構成される。そして、コンタクト層157の上面に受光部電極152が積層されて、ドレイン電極として機能するとともに、コンタクト層158の上面に信号読出線105と接続された信号読出電極159が積層されて、ソース電極として機能する。又、ゲート電極161が、スイッチング素子102におけるゲート電極として機能する。
更に、このように構成される光電変換部101及びスイッチング素子102を保護するために、光電変換部101及びスイッチング素子102を覆うようにして、パッシベーション膜160が積層される。このパッシベーション膜160の上面に電力供給線103が形成され、パッシベーション膜160の一部を貫通するように設けられたコンタクト104によって電力供給線103が透明電極154と電気的に接続される。
しかしながら、このように構成される固体撮像装置においては、ガラス基板150の同一面に、光電変換部101、スイッチング素子102、電力供給線103、及び、信号読出線105それぞれが形成される。そのため、各画素における光電変換部101の設置面積は、スイッチング素子102、電力供給線103、及び、信号読出線105の設置面積分だけ、制限されてしまう。
これにより、光電変換部101の設置面積制限に最も影響を与えるスイッチング素子102を小さくした場合、スイッチング素子102で処理可能な電流量が減少するため、装置特性が劣化してしまい、スイッチング素子102の小型化にも限界がある。このため、解像度向上のために画素サイズを小さくすると、それに伴って、光電変換部101に対するスイッチング素子102の面積比率が大きくなり、光電変換部101の感度低下を招くこととなる。
それに対して、図12の断面模式図による固体撮像装置のように、スイッチング素子102を絶縁膜となる平坦化膜110で覆い、この平坦化膜110の上面に光電変換部101を設置する構成とすることで、光電変換部101の設置面積を大きくして、各画素の感度を高くすることができる。この図12の画素構成においては、設置されたスイッチング素子102が設置されたガラス基板150表面上に平坦化膜110を堆積し、平坦化膜110の表面に受光部電極152aが形成される。
又、スイッチング素子102では、ドレイン電極152bが、コンタクト層157の上面からガラス基板150表面に形成された絶縁膜151に延びるように形成され、平坦化膜110を貫通するコンタクト152cによって受光部電極152aと電気的に接続される。そして、受光部電極152aの上面に受光層153が堆積されて光電変換部101が形成され、又、受光層153の表面に透明電極154が形成される。
このように、平坦化膜110を堆積した上に受光層153を堆積して、受光層153の面積を広くし、各画素の感度を良くすることができるが、放射線画像を撮像する固体撮像装置においては、この受光層153の表面上に更に、放射線を可視光に変換するシンチレータ膜を堆積する。このシンチレータ膜は十分に平坦であることが望ましいが、平坦化膜110を設けても、スイッチング素子102が形成された位置に凹凸が残ってしまい、十分な平坦性を得ることが難しい。
それに対して、近年、積層後のウェハ表面を平坦化する工程として、CMP(Chemical Mechanical Polishing)法を用いた工程がある。このCMP法を用いた工程では、研磨液をウェハ表面に流しながら、回転させた研磨パッドに接触させて研磨することで、ウェハ表面の段差をなくして平坦化させることができる。又、シリコン基板をエッチングにより除去して現れたエッチング停止層に受光層となるアモルファスセレン膜を堆積させて作製される固体撮像装置が提案されている(特許文献1参照)。この固体撮像装置を作製する際、シリコン基板に堆積したp型半導体層となるエッチング停止層に画素電極を形成するとともに、この画素電極を覆う絶縁膜上にTFT(Thin Film Transistor)を形成した後に、シリコン基板のエッチングが行われる。
特開平7−307449号公報
しかしながら、上述のCMP法による工程では、十分な平坦性を得ることができるが、その処理方法が煩雑であり、又、大面積ウェハへの適用が困難であるという問題がある。又、特許文献1に記載の固体撮像装置では、シリコン基板のエッチングを行うための工程が必要であり、このエッチングの処理工程により固体撮像装置の製造工程が煩雑となる。更に、シリコン基板のエッチングを行った際、エッチャントが浸透に接触しない部分はエッチングされずに残るため、シリコン基板全面に受光層を形成することができない。
このような問題を鑑みて、本発明は、その表面が十分な平坦性を備えるとともに光電変換部の開口率を高くすることのできる固体撮像装置を提供することを目的とする。
上記目的を達成するために、本発明は、入射光量に応じた電気信号を発生する光電変換部と、該光電変換部からの電気信号を出力する信号出力部と、を備えた複数の画素と、前記複数の画素における前記信号出力部を駆動するための制御信号を与える制御信号線と、前記複数の画素の前記信号出力部から出力される電気信号が与えられる信号読出線と、前記複数の画素、前記制御信号線、及び前記信号読出線が設置される基板と、を備える固体撮像装置において、前記各画素の前記光電変換部が、前記基板の第1表面に形成され、前記各画素の前記信号出力部と前記制御信号線と前記信号読出線とが、前記基板における第1面と反対側の第2面に形成されることを特徴とする。
このような固体撮像装置において、前記基板を貫通するとともに、前記光電変換部と前記信号出力部とを電気的に接続する貫通電極を備えることで、前記光電変換部で発生した電気信号が前記貫通電極を通じて前記信号出力部に与えられる。
又、前記信号出力部が、前記光電変換部をリセットするリセット素子、前記光電変換部からの電気信号を増幅する増幅素子、前記光電変換部からの電気信号を前記信号読出線に出力する際に前記信号読出線との電気的な接離を行うスイッチング素子を備えるものとしても構わない。そして、前記信号出力部が、薄膜トランジスタによって構成されるものであっても構わない。
前記光電変換部が、前記基板の第1表面に前記画素毎に形成された受光部電極と、前記該受光部電極の上面に形成されて前記全画素の前記受光部電極を覆うとともに、光電変換を行う半導体層で構成される受光層と、該受光層の上面に形成され、光を透過する透明電極と、を備えるものとする。このとき、前記光電変換部を、pn型フォトダイオードとしても構わないし、pin型フォトダイオードとしても構わない。
前記受光部電極と前記信号出力部とが、前記基板を介して対向する位置に形成されるものとして、前記受光部電極によって前記信号出力部に対する遮光が成されるものとしても構わない。又、前記基板を、電気的に絶縁性を有するものとする。
本発明によると、基板の一方の面にのみ光電変換部を形成するため、形成された光電変換部の表面における平坦性を良好なものとすることができるとともに、画素に対する光電変換部の面積比率を略100%として開口率を高くすることができ、その感度を向上させることができる。又、光電変換部と異なる基板の面に信号出力部を設置するため、信号出力部を構成する面積を広くとることができ、信号出力部を構成する素子を大きくすることができる。このとき、信号出力部を構成する素子として薄膜トランジスタを構成した場合、薄膜トランジスタを大きくして、そのチャネル抵抗を減少させることができるため、読出速度の向上を図ることができる。又、受光部電極と対向するように信号出力部を形成することで、受光部電極で信号出力部を遮光し、信号出力部において、光入射による誤作動を防ぐことができる。
本発明の実施の形態について、図面を参照して説明する。図1は、本実施形態における固体撮像装置の構成を示すブロック図である。
図1に示す固体撮像装置は、フォトダイオード30(図2参照)と薄膜トランジスタ31(図2参照)とを備える画素G11〜Gmnを有するセンサ部1と、データ出力時にセンサ部1の各画素G11〜Gmnを垂直方向に走査する垂直走査回路2と、センサ部1の各画素G11〜Gmnから出力される電気信号を行毎に保持する出力回路3−1〜3−nと、出力回路3−1〜3−nで保持された電気信号を列毎のシリアルな電気信号に変換するマルチプレクサ4と、マルチプレクサ4から与えられる電気信号をデジタルデータとなる画像データに変換するA/D変換回路5と、垂直走査回路2、出力回路3−1〜3−n、マルチプレクサ4、及びA/D変換回路5それぞれの動作タイミングを指定するタイミングジェネレータ6と、を備える。
この固体撮像装置は、画素G11〜Gmnそれぞれに直流電圧VDDを印加する電力供給線7と、垂直走査回路2から各行毎に与える信号φV1〜φVmをセンサ部1における各行の画素に与えるために行毎に設けられた駆動線8−1〜8−mと、センサ部1における画素からの電気信号を列毎に出力回路3−1〜3−nに出力するために列毎に設けられた信号読出線9−1〜9−nと、タイミングジェネレータ6よりセンサ部1の出力回路3−1〜3−nをリセットするリセット信号φRSTを出力回路3−1〜3−nに与えるリセット線10と、を備える。尚、タイミングジェネレータ6と、垂直走査回路2、マルチプレクサ4、及びA/D変換回路5との間や、マルチプレクサ4とA/D変換回路5との間にも、信号をやりとりするための信号線が接続されるが、その詳細な説明は省略する。
又、出力回路3−1〜3−nは、各列の信号読出線9−1〜9−nと接続される。この出力回路3−1〜3−n及び画素G11〜Gmnの構成について、図面を参照して詳細に説明する。尚、以下では、a行b列の画素Gabを代表して、その構成について説明する。即ち、図2には、画素Gabと出力回路3−bの回路構成を示す。
(画素及び出力回路の回路構成及び動作)
画素Gabは、図2に示すように、電力供給線7と接続されて直流電圧VDDがカソードに印加されるフォトダイオード30と、フォトダイオード30のアノードにドレイン電極が接続されるとともに信号読出線9−bにソース電極が接続されたTFT31と、を備える。そして、TFT31のゲート電極は、駆動線8−aが接続され、垂直走査回路2からの信号φVaが与えられる。
出力回路3−bは、オペアンプとキャパシタとにより構成されるいわゆるチャージセンシングアンプを備えている。詳しくは、信号読出線9−bに反転入力端子が接続されるとともに非反転入力端子に基準電圧VREFが印加されるオペアンプ32と、オペアンプ32の反転入力端子と出力端子との間に並列に接続されたキャパシタ33及びスイッチ34と、を備える。そして、オペアンプ32の出力端子がマルチプレクサ4の入力側に接続されるとともに、タイミングジェネレータ6からリセット線10を通じて与えられる信号φRSTによって、スイッチ34のON/OFFが制御される。このように構成されるチャージセンシングアンプは、電気信号をキャパシタ33に保持することで積分機能を具備した読み出し回路であり、キャパシタ33がリセットされない限り、電気信号を読み出しても電気信号は保持されるという特性を備える。
このように、画素G11〜Gmn及び出力回路3−1〜3−nが構成されるとき、画素G11〜Gmn及び出力回路3−1〜3−nのリセット動作を行う場合、タイミングジェネレータ6からハイとなる信号φRSTが与えられて、出力回路3−1〜3−nそれぞれのスイッチ34がONとされると同時に、垂直走査回路2から信号φV1〜φVmが与えられて、画素G11〜GmnそれぞれのTFT31がONとされる。
このとき、スイッチ34がONとなるため、オペアンプ32の出力端子と反転入力端子とが接続されて、キャパシタ33に蓄積された電荷が放電される。又、TFT31がONとなるため、フォトダイオード30のアノードが、TFT31とスイッチ34を介してオペアンプ34の出力端子と電気的に接続され、フォトダイオード30のアノードに蓄積された電荷が放電される。よって、フォトダイオード30のアノード及びキャパシタ33がリセットされる。
そして、撮像動作が行われるとき、信号φRSTがローとされて、スイッチ34がOFFとされるとともに、画素Gabにおいて、信号φVaがローとされて、TFT31がOFFとされる。これにより、フォトダイオード30が光電変換されて得られた光電荷がフォトダイオード30のアノードに蓄積されることとなる。そして、画素Gabの信号読み出し時において、信号φVaがハイとされてTFT31がONとされることで、フォトダイオード30のアノードに蓄積された電荷がキャパシタ33に蓄積され、オペアンプ32の出力端子の電圧値が変更し、このオペアンプ32の出力端子の電圧値がマルチプレクサ4に与えられる。
(画素の素子構造)
又、画素Gabは、図3の断面図と図4の上面図に示されるような構成とされる。この画素Gabにおいて、図3の断面図のように、フォトダイオード30がガラス基板50の表面に形成され、又、TFT31が基板50の裏面に形成される。即ち、ガラス基板50の表面には、まず、画素Gab位置に形成される受光部電極51が形成され、この受光部電極51を覆うように、p型アモルファスシリコン層52とn型アモルファスシリコン層53とが順番に積層されてPN型となるフォトダイオード30が形成される。
そして、このフォトダイオード30のn型アモルファスシリコン層53に上面に、インジウム−スズ酸化物で構成されるITO膜のような透明電極膜54が形成される。この透明電極膜54が、図1における電力供給線7として機能する。更に、ガラス基板50には貫通穴が設けられ、この貫通穴に受光部電極51と接続された貫通電極55が形成される。
又、ガラス基板50の裏面には、TFT31のゲート電極56が形成され、貫通電極55の設置位置以外において、ガラス基板50の裏面及びゲート電極56を覆うように絶縁膜57が積層される。そして、絶縁膜57の下面のゲート電極56の設置位置に相当する部分を覆うようにチャネル層58が積層され、又、チャネル層58の下面中央位置にチャネルストップ層59が積層される。
このチャネルストップ層59の両端それぞれからチャネル層58の両端それぞれを覆うように、ドレイン領域及びソース領域となるコンタクト層60,61が積層される。更に、コンタクト層60の下面から貫通電極55に至る位置までにドレイン電極62が形成され、コンタクト層61の下面から信号読出線9(図1の信号読出線9−1〜9−nに相当する)に至る位置までにソース電極63が形成される。そして、このようにTFT31が形成されたガラス基板50の裏面全体に対して、TFT31を含む回路構造を保護するための絶縁膜となるパッシベーション膜64が積層される。
このように構成されるフォトダイオード30及びTFT31の配置関係について、図4の上面図を参照して説明する。尚、図4の上面図は、ガラス基板50の裏面側から見た構成を示すものである。図4に示すように、ガラス基板50の裏面側には、信号読出線9が縦に配線されるとともに、図1の駆動線8−1〜8−mに相当する駆動線8が横に配線される。そして、点線で表されるように、ガラス基板50の表面側には、画素毎に矩形状に形成された受光部電極51が設置され、この受光部電極51の上面にあるp型アモルファスシリコン層52とn型アモルファスシリコン層53と透明電極膜54によって、1画素分のフォトダイオード30が形成される。
又、ガラス基板50の裏面では、受光部電極51の下側において、駆動線8と信号読出線9とが交差する位置の近傍に、1つのTFT31が形成される。即ち、受光部電極51とTFT31とが対向した位置に設置される。そして、ソース領域となるコンタクト層61上に積層されたソース電極63が信号読出線9に接続されるとともに、ガラス基板50の裏面上におけるチャネルストップ層59と重なる位置に設置されたゲート電極56が駆動線8と接続される。又、ドレイン領域となるコンタクト層60上に積層されたドレイン電極62が、ガラス基板50表面に形成された受光部電極51と接続された貫通電極55と接続される。
(固体撮像装置の製造工程)
図3及び図4に示す素子構造の画素を備えた固体撮像装置の製造工程について、図5〜図8のウェハ断面図を参照して説明する。尚、図5〜図8の断面図では、1画素分の構成を示す。又、以下の製造工程において、金属膜や絶縁膜や半導体膜の堆積する手法として、一般的に使用されるCVD(Chemical Vapor Deposition)法やスパッタリング法などが用いられるとともに、パターニングのためのエッチングとしては、一般的に使用されるRIE(Reactive Ion Etching)やウェットエッチングが用いられる。
最初に、ガラス基板50の裏面を上側に配置して、TFT31が形成されるまでの製造工程が行われる。尚、以下では、ガラス基板50の表面から裏面側に向かう方向を「上」として説明する。まず、ガラス基板50に対して貫通電極55を設置する位置以外の表面をマスキングした後、D−RIE(Deep - RIE)などのエッチングを行うことで、厚さが100μm〜数mmとなるガラス基板50に貫通穴を形成する。そして、メッキ法などを利用することによって、貫通穴が形成されたガラス基板50に銅などの電極材料による金属層を堆積することで、貫通穴に貫通電極55を形成し、この貫通穴以外のマスキング上に堆積された金属層をマスキングと共に除去することで、図5(a)のように、各画素位置に貫通電極55が設けられたガラス基板50を構成することができる。
この各画素位置に貫通電極55が設けられたガラス基板50の表面に、各画素位置に対して矩形状となる穴が設けられたパターンのマスキングを行い、このマスキングの穴部分に現れるガラス基板50表面に電極材料となる金属を貫通電極55を覆うように蒸着させる。そして、マスキングを除去することで、マスキング上に蒸着された金属を除去し、図5(b)のように、ガラス基板50表面に、各画素位置に対して矩形状となるとともに貫通電極55と接続された受光部電極51を形成する。尚、矩形状となる穴が設けられたパターンのマスキングを用いて受光部電極51を形成するものとしたが、金属膜をガラス基板50表面全面に堆積させ、受光部電極51の部分をマスキングした後、エッチングにより受光部電極51以外の金属膜を除去して、受光部電極51を形成するものとしても構わない。
そして、ガラス基板50の裏面に対しても同様に、マスキング及び金属蒸着及びマスキング除去を行うことで、金属膜のパターニングが行われて、図5(c)のように、ゲート電極56及び駆動線8(不図示)が形成される。このゲート電極56及び駆動線8が形成されたガラス基板50裏面側の全面に対して、図5(d)のように、絶縁膜57を堆積させる。その後、絶縁膜57のゲート電極56を覆う位置以外の下面に対してマスキングを行って積層した後にマスキング除去することで、図6(a)のように、絶縁膜57のゲート電極56を覆う位置の上面にチャネル層58を堆積する。
絶縁膜57及びチャネル層58がガラス基板50の裏面側に設けられると、図6(b)のように、この絶縁膜57及びチャネル層58それぞれを覆うように、電流漏れを防ぐためのチャネルストップ層59を構成する半導体層59aが堆積される。そして、ゲート電極56の真上位置以外をマスキングしてエッチングすることで、図6(c)のように、ゲート電極56の真上位置に、チャネルストップ層59を形成する。更に、コンタクト層60,61を構成する半導体層60aが堆積され、この半導体層60aによって、図6(d)に示すように、ガラス基板50の裏面に形成された絶縁膜57及びチャネル層58及びチャネルストップ層59それぞれが覆われる。
このガラス基板50の裏面全面に積層された半導体層60aに対して、チャネルストップ層59の両端それぞれからチャネル層58の両側面を覆う部分をマスキングして、エッチングを行う。これにより、マスキングを除去すると、図7(a)のように、貫通電極55の近い側のチャネルストップ層59の端部からチャネル層58の側面を覆うドレイン領域となるコンタクト層60が形成され、貫通電極55の遠い側のチャネルストップ層59の端部からチャネル層58の側面を覆うソース領域となるコンタクト層61が形成される。更に、貫通電極55の上面部分以外の絶縁膜57をマスキングしてエッチングすることで、図7(a)のように、貫通電極55の上面の絶縁膜57を除去して、貫通電極55を露出させる。
そして、図7(b)のように、このコンタクト層60,61が形成されたガラス基板50の裏面全面に金属膜62aを蒸着させる。そして、信号読出線9を形成する部分、コンタクト層60から貫通電極55に至る部分、及び、コンタクト層61から信号読出線9に至る部分それぞれに形成された金属膜62a上面に対して、マスキングを施す。このようにマスキングされたガラス基板50の裏面をエッチングすることで、図7(c)のように、信号読出線9、コンタクト層60と貫通電極55とを接続するドレイン電極62、コンタクト層61と信号読出線9とを接続するソース電極63それぞれを形成する。
このようにして、TFT31がガラス基板50の裏面に形成されると、このTFT31を保護するとともに、図7(d)のように、各画素間の絶縁を行うためパッシベーション膜64が堆積される。そして、次に、フォトダイオード30をガラス基板50の表面に形成するために、図8(a)のように、ガラス基板50の表面を上側に配置して、以下の処理が行われる。尚、以下では、ガラス基板50の裏面から表面側に向かう方向を「上」として説明する。
そして、ガラス基板50の表面全面に対して、図8(b)のように、p型アモルファスシリコン層52とn型アモルファスシリコン層53とを順番に積層して、pn型フォトダイオードとなるフォトダイオード30を形成する。更に、このフォトダイオード30のn型アモルファスシリコン層53の上面に対して、図8(c)のように、光を透過させるとともに低抵抗となる透明電極54を積層させる。
この図5〜図8に示す製造工程に従って、ガラス基板50の表面及び裏面それぞれに各相を堆積させることで、フォトダイオード30及びTFT31それぞれがガラス基板50の表面及び裏面に形成され、図3及び図4に示す構造の固体撮像装置が生成される。尚、入射される放射線を電気信号に変換するフラットパネルディテクター(Flat Panel Detector: FPD)として構成されるとき、透明電極54の表面上に例えばヨウ化セシウム(CsI)が蒸着されてシンチレータ層が形成される。又、このとき、シンチレータ層と透明電極54との間に、スピンコート技術を用いて感光性のポリイミドやアクリル系樹脂等を塗布することで保護膜層を形成するものとしても構わない。
又、本実施形態では、固体撮像装置を形成するための基板としてガラス基板を用いたが、絶縁性を備えるものであればサファイヤ基板などの他の基板であっても構わない。更に、フォトダイオード30として、pn型フォトダイオードによるものとしたが、p型アモルファスシリコン層52とn型アモルファスシリコン層53との間に、不純物濃度の低いi型アモルファスシリコン層を挟み込んだ構成となるpin型フォトダイオードとしても構わない。
このように、本実施形態の固体撮像装置によると、画素毎に配置された受光部電極51の設置位置におけるガラス基板50の裏面にTFT31が形成されることとなる。これにより、各画素の受光部電極51がTFT31に対して遮光することとなり、TFT31における光入射による誤作動を防ぐことができる。
そして、基板表面に形成される光電変換部の設置面積が、スイッチング素子の設置により制限されることなく、その開口率を高くすることができる。又、基板裏面にスイッチング素子が形成されることにより、スイッチング素子を設置する領域をも広くとることができる。よって、本実施形態のように1つのTFT31によって各画素の信号出力部を形成するのではなく、複数のトランジスタを組み合わせた信号出力部を基板裏面に備えるものとしても構わない。即ち、例えば、その表面にフォトダイオードが形成された基板裏面において、各画素に対して3つのTFTを配置して増幅回路を備えるものとしても構わない。この3つのTFTを各画素に備えた固体撮像装置の回路構成について、図9の回路図を参照して説明する。
(固体撮像装置の別の回路構成例)
図9に示すように、画素Gabには、光電変換部となるフォトダイオード30と、フォトダイオード30のアノードにソース電極が接続されるとともにドレイン電極に直流電圧VRBが印加されるTFT31aと、フォトダイオード30のアノードにゲート電極が接続されるとともにドレイン電極に直流電圧VSFが印加されるTFT31bと、TFT31bのソース電極にドレイン電極が接続されるとともにソース電極に信号読出線9−bが接続されるTFT31cと、を備える。又、TFT31aのゲート電極にリセット線20−aが接続され、TFT31cのゲート電極に駆動線8−aが接続される。更に、出力回路3−bを、信号読出線9−bに入力側が接続されたバッファ21及び定電流源22によって構成する。
このように構成される固体撮像装置では、フォトダイオード30が、基板表面に設置され、TFT31a〜31cそれぞれが基板裏面に設置されることとなる。そして、TFT31aをONとすることによって、フォトダイオード30に蓄積された電荷がTFT311aを通して電源線VRBに排出されることでリセットされ、TFT31aをOFFとすることで、撮像動作を開始する。撮像動作が開始されると、入射光量に応じた光電荷がフォトダイオード30に発生し、TFT31bのゲート電極における電位が変化する。そして、TFT31cをONとしたとき、TFT31bのゲート電極における電位に応じた電圧が、信号読出線9−bに現れる。
このような構成及び動作となる画素G11〜Gmnをセンサ部1として備える固体撮像装置においても、光電変換部となるフォトダイオード30のみを基板の表面に設置するため、その開口率を高いものとすることができる。これにより、固体撮像装置における感度を向上することができる。又、このフォトダイオード30については、基板表面に直接積層されて構成されるため、その表面の平坦性を高くすることができる。又、図9のような回路構成とすることにより、配線間の寄生容量が出力信号に与える影響を低減することができ、ノイズの少ない良好な画像信号を取得することができる。
尚、本例では、3つのTFTを備えた信号出力部が各画素に設けられるものとしたが、図9のような構成以外の回路構成となる信号出力部が各画素に設けられるものとしても構わない。更に、本実施形態において、各画素に備えられる信号出力部として、図2のようなTFT31のみによる構成、又は、図9のようなTFT31a〜TFT31cの構成のように、各素子をTFTによるものとしたが、各素子についてはTFTに限らず、同様の特性を備えたスイッチング素子であればよい。
本発明の固体撮像装置は、開口率が高く大面積の固体撮像装置として利用可能であるとともに、平坦性が要求される放射線撮影を行う固体撮像装置として利用可能である。又、放射線撮影を行う固体撮像装置として使用される場合は、医療診断機器、非破壊検査機器等の画像分析装置に好適に利用され得る。
は、本発明の実施形態における固体撮像装置の内部構成を示す概略ブロック図である。 は、図1の固体撮像装置における画素や出力回路の構成を示す回路図である。 は、図1の固体撮像装置における画素構成を示す断面図である。 は、図1の固体撮像装置における画素構成を示す上面図である。 は、図1の固体撮像装置の製造工程を説明するためのウェハ断面図である。 は、図1の固体撮像装置の製造工程を説明するためのウェハ断面図である。 は、図1の固体撮像装置の製造工程を説明するためのウェハ断面図である。 は、図1の固体撮像装置の製造工程を説明するためのウェハ断面図である。 は、図2の固体撮像装置における画素や出力回路の別の構成を示す回路図である。 は、従来の固体撮像装置における画素構成を示す上面図である。 は、従来の固体撮像装置における画素構成を示す断面図である。 は、従来の固体撮像装置における別の画素構成を示す断面図である。
符号の説明
1 センサ部
2 垂直走査回路
3−1〜3−n 出力回路
4 マルチプレクサ
5 A/D変換回路
6 タイミングジェネレータ
7 電力供給線
8−1〜8−m 駆動線
9−1〜9−n 信号読出線
10 リセット線

Claims (9)

  1. 入射光量に応じた電気信号を発生する光電変換部と、該光電変換部からの電気信号を出力する信号出力部と、を備えた複数の画素と、前記複数の画素における前記信号出力部を駆動するための制御信号を与える制御信号線と、前記複数の画素の前記信号出力部から出力される電気信号が与えられる信号読出線と、前記複数の画素、前記制御信号線、及び前記信号読出線が設置される基板と、を備える固体撮像装置において、
    前記各画素の前記光電変換部が、前記基板の第1表面に形成され、
    前記各画素の前記信号出力部と前記制御信号線と前記信号読出線とが、前記基板における第1面と反対側の第2面に形成されることを特徴とする固体撮像装置。
  2. 前記基板を貫通するとともに、前記光電変換部と前記信号出力部とを電気的に接続する貫通電極を備えることを特徴とする請求項1に記載の固体撮像装置。
  3. 前記信号出力部が、前記光電変換部をリセットするリセット素子を備えることを特徴とする請求項1又は請求項2に記載の固体撮像装置。
  4. 前記信号出力部が、前記光電変換部からの電気信号を増幅する増幅素子を備えることを特徴とする請求項1〜請求項3のいずれかに記載の固体撮像装置。
  5. 前記信号出力部が、前記光電変換部からの電気信号を前記信号読出線に出力する際に、前記信号読出線との電気的な接離を行うスイッチング素子を備えることを特徴とする請求項1〜請求項4のいずれかに記載の固体撮像装置。
  6. 前記信号出力部が、薄膜トランジスタによって構成されることを特徴とする請求項3〜請求項5のいずれかに記載の固体撮像装置。
  7. 前記光電変換部が、
    前記基板の第1表面に前記画素毎に形成された受光部電極と、
    前記該受光部電極の上面に形成されて前記全画素の前記受光部電極を覆うとともに、光電変換を行う半導体層で構成される受光層と、
    該受光層の上面に形成され、光を透過する透明電極と、
    を備えることを特徴とする請求項1〜請求項6のいずれかに記載の固体撮像装置。
  8. 前記受光部電極と前記信号出力部とが、前記基板を介して対向する位置に形成されることを特徴とする請求項1〜請求項7のいずれかに記載の固体撮像装置。
  9. 前記基板が電気的に絶縁性を有することを特徴とする請求項1〜請求項8のいずれかに記載の固体撮像装置。
JP2005362625A 2005-12-16 2005-12-16 固体撮像装置 Pending JP2007165737A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005362625A JP2007165737A (ja) 2005-12-16 2005-12-16 固体撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005362625A JP2007165737A (ja) 2005-12-16 2005-12-16 固体撮像装置

Publications (1)

Publication Number Publication Date
JP2007165737A true JP2007165737A (ja) 2007-06-28

Family

ID=38248265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005362625A Pending JP2007165737A (ja) 2005-12-16 2005-12-16 固体撮像装置

Country Status (1)

Country Link
JP (1) JP2007165737A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022449A (ja) * 2009-07-17 2011-02-03 Hoya Corp 焦点検出装置
US20110073750A1 (en) * 2009-09-28 2011-03-31 Canon Kabushiki Kaisha Image pickup apparatus and radiation image pickup system
KR101062333B1 (ko) 2009-12-29 2011-09-05 (주)실리콘화일 칩 사이즈가 감소된 배면광 이미지센서 및 그 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5894281A (ja) * 1981-11-30 1983-06-04 Toshiba Corp 固体撮像装置
JPS59128878A (ja) * 1983-01-13 1984-07-25 Fujitsu Ltd 固体撮像装置
JPH11307756A (ja) * 1998-02-20 1999-11-05 Canon Inc 光電変換装置および放射線読取装置
JP2000162320A (ja) * 1998-09-22 2000-06-16 Toshiba Corp 平面検出器及びこれを用いたx線診断装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5894281A (ja) * 1981-11-30 1983-06-04 Toshiba Corp 固体撮像装置
JPS59128878A (ja) * 1983-01-13 1984-07-25 Fujitsu Ltd 固体撮像装置
JPH11307756A (ja) * 1998-02-20 1999-11-05 Canon Inc 光電変換装置および放射線読取装置
JP2000162320A (ja) * 1998-09-22 2000-06-16 Toshiba Corp 平面検出器及びこれを用いたx線診断装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022449A (ja) * 2009-07-17 2011-02-03 Hoya Corp 焦点検出装置
US20110073750A1 (en) * 2009-09-28 2011-03-31 Canon Kabushiki Kaisha Image pickup apparatus and radiation image pickup system
KR101062333B1 (ko) 2009-12-29 2011-09-05 (주)실리콘화일 칩 사이즈가 감소된 배면광 이미지센서 및 그 제조방법

Similar Documents

Publication Publication Date Title
JP7006268B2 (ja) 撮像素子、電子機器、並びに、製造装置および方法
TWI505452B (zh) 固態成像裝置,固態成像裝置之製造方法,及電子裝備
KR100764977B1 (ko) 고체촬상장치 및 방사선촬상장치
US7468531B2 (en) Imaging apparatus and radiation imaging apparatus
US20130264485A1 (en) Method of manufacturing radiation detection apparatus, radiation detection apparatus, and radiation imaging system
US20100054418A1 (en) X-ray detecting element
EP2530716B1 (en) Detection device manufacturing method, detection device, and detection system
JPH08116044A (ja) 光電変換装置、その駆動方法及びそれを有するシステム
JP2013033896A (ja) 撮像素子、撮像素子の駆動方法、撮像素子の製造方法、および電子機器
TW201106478A (en) Solid-state imaging device, fabrication method for the same, and electronic apparatus
US20060033033A1 (en) Radiation detection apparatus and system
JP2013235935A (ja) 検出装置の製造方法、その検出装置及び検出システム
JP5739359B2 (ja) 撮像装置およびその製造方法ならびに撮像表示システム
JP2013235934A (ja) 検出装置、検出システム、及び、検出装置の製造方法
JP2005326403A (ja) 変換装置
JP2013161810A (ja) 撮像装置およびその製造方法ならびに撮像表示システム
US20120305777A1 (en) Radiation image pickup device and radiation image pickup display system including the same
JP2015088691A (ja) 固体撮像装置およびその製造方法、並びに電子機器
EP3982411A1 (en) Imaging element and imaging device
JP2005129892A (ja) 撮像装置及びその製造方法、放射線撮像装置、放射線撮像システム
JP2004296654A (ja) 放射線撮像装置
JP2007165738A (ja) 固体撮像装置
JP2007165737A (ja) 固体撮像装置
JP4418639B2 (ja) 撮像装置及び撮像方法
JP2013157347A (ja) 撮像装置およびその製造方法ならびに撮像表示システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110913