JP2007165626A - Light emitting element and its manufacturing method - Google Patents

Light emitting element and its manufacturing method Download PDF

Info

Publication number
JP2007165626A
JP2007165626A JP2005360442A JP2005360442A JP2007165626A JP 2007165626 A JP2007165626 A JP 2007165626A JP 2005360442 A JP2005360442 A JP 2005360442A JP 2005360442 A JP2005360442 A JP 2005360442A JP 2007165626 A JP2007165626 A JP 2007165626A
Authority
JP
Japan
Prior art keywords
substrate
light emitting
emitting element
gallium oxide
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005360442A
Other languages
Japanese (ja)
Inventor
Yoshihei Ikemoto
由平 池本
Koji Hirata
宏治 平田
Kazuo Aoki
和夫 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Koha Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Koha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd, Koha Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2005360442A priority Critical patent/JP2007165626A/en
Priority to US11/634,381 priority patent/US20070131951A1/en
Priority to CNB2006101672389A priority patent/CN100452463C/en
Publication of JP2007165626A publication Critical patent/JP2007165626A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting element formed on a gallium oxide substrate which is not affected by etching even with hydrogen gas used in a compound semiconductor growing process of the gallium oxide substrate, and which is superior in substrate planarity and transparency of the substrate; and to provide a manufacturing method of the element. <P>SOLUTION: The light emitting element has a substrate protection layer on a rear face, the gallium oxide substrate where a semiconductor material is crystal-grown, and a light emitting element formed by crystal-growing it on the gallium oxide substrate on a surface. The method is provided with a protection layer forming process for forming the substrate protection layer on the rear face of the gallium oxide substrate which crystal-grows the material on the surface; a light emitting element forming process for crystal-growing the material on the gallium oxide substrate, and forming the light emitting element; and an assembly process for electrically connecting the light emitting element part, and assembling it into the light emitting element. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、基板保護層を有するガリウム酸化物の基板上に結晶成長させて形成された発光素子、及び、その製造方法に関する。   The present invention relates to a light emitting element formed by crystal growth on a gallium oxide substrate having a substrate protective layer, and a method for manufacturing the same.

従来の発光素子として、SiCからなる基板上にGaNからなるn型層およびp型層を積層したもの等が知られている(例えば、特許文献1参照)。   As a conventional light emitting device, a device in which an n-type layer and a p-type layer made of GaN are stacked on a substrate made of SiC is known (for example, see Patent Document 1).

これに対して、基板を紫外領域の光を透過するものとし、可視領域から紫外領域の光を透過する無色透明の導電体を得ることができ、その導電体を基板に用いて垂直電極構造とすることが可能であり、基板側をも光の取り出し面とすることができる発光素子として、ガリウム酸化物の基板を使用して発光素子を形成したものが開発されている(例えば、特許文献2参照)。
特開2002−255692号公報 特開2004−56098号公報
On the other hand, the substrate is made to transmit light in the ultraviolet region, and a colorless and transparent conductor that transmits light in the visible region to the ultraviolet region can be obtained. As a light-emitting element that can also be used as a light extraction surface, a light-emitting element formed using a gallium oxide substrate has been developed (for example, Patent Document 2). reference).
JP 2002-255692 A JP 2004-56098 A

しかし、特許文献2に開示された発光素子は、GaN層等のエピタキシャル層の成長工程においては、窒素源としてNHが用いられ、キャリアガスとして水素ガスが用いられる。ガリウム酸化物の基板、特に、Ga基板は、この水素ガスにより基板裏面がエッチングされ、光の透過性が低下すると共に、基板平面性が劣化する。 However, in the light emitting device disclosed in Patent Document 2, NH 3 is used as a nitrogen source and hydrogen gas is used as a carrier gas in a growth process of an epitaxial layer such as a GaN layer. A gallium oxide substrate, particularly a Ga 2 O 3 substrate, is etched by the hydrogen gas on the back side of the substrate, so that light transmittance is lowered and substrate planarity is deteriorated.

水素キャリアによるエッチングは、高温熱処理(例えば、1100℃での熱処理)によるダメージと、低温熱処理(例えば、650℃での熱処理)によるダメージが観察される。このダメージによるエッチング跡をSEM観察すると、(010)面、(100)面が特にエッチングされやすいことがわかる。しかし、エピタキシャル成長面を(001)面としても、基板裏面側の微細なキズ等からエッチングが進行し、基板裏面側にエッチング跡が生じないよう結晶成長させることは困難である。   In the etching using a hydrogen carrier, damage due to high-temperature heat treatment (for example, heat treatment at 1100 ° C.) and damage due to low-temperature heat treatment (for example, heat treatment at 650 ° C.) are observed. When an SEM observation of the etching trace due to this damage is made, it can be seen that the (010) plane and the (100) plane are particularly easily etched. However, even if the epitaxial growth surface is the (001) plane, it is difficult to grow crystals so that etching progresses from fine scratches or the like on the back surface side of the substrate and no trace of etching occurs on the back surface side of the substrate.

よって、ガリウム酸化物基板上にGaN層等を成長させて形成した発光素子において、基板裏面から出射光を取出すには研磨等で平坦化する必要があり、また、発光素子製造工程において、基板裏面の平面性が悪く化合物半導体成長工程に種々の悪影響を与えることになる。   Therefore, in a light emitting device formed by growing a GaN layer or the like on a gallium oxide substrate, it is necessary to flatten by polishing or the like in order to take out emitted light from the back surface of the substrate. The flatness of the film is poor, and various adverse effects are exerted on the compound semiconductor growth process.

従って、本発明の目的は、ガリウム酸化物基板の化合物半導体成長工程において使用する水素ガスによってもエッチング等の影響を受けず、基板平面性がよく、基板の透明性に優れたガリウム酸化物基板上に形成された発光素子、及び、その製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a substrate on a gallium oxide substrate that is not affected by etching or the like even by the hydrogen gas used in the compound semiconductor growth process of the gallium oxide substrate, has good substrate flatness, and excellent substrate transparency. It is an object to provide a light emitting device formed in the above and a manufacturing method thereof.

本発明は、上記目的を達成するために、裏面に基板保護層を有し、表面に半導体材料を結晶成長させるガリウム酸化物基板と、前記半導体材料を前記ガリウム酸化物基板の前記表面に結晶成長させて形成した発光素子部とを有する発光素子を提供する。   In order to achieve the above object, the present invention provides a gallium oxide substrate having a substrate protective layer on the back surface and crystal growth of a semiconductor material on the surface, and crystal growth of the semiconductor material on the surface of the gallium oxide substrate. There is provided a light emitting element having a light emitting element portion formed in this manner.

また、本発明は、上記目的を達成するために、表面に半導体材料を結晶成長させるガリウム酸化物基板の裏面に基板保護層を形成する保護層形成工程と、前記半導体材料を前記ガリウム酸化物基板の前記表面に結晶成長させて発光素子部を形成する発光素子部形成工程と、前記発光素子部を電気的に接続して発光素子に組立てる組立工程とを有する発光素子の製造方法を提供する。   In order to achieve the above object, the present invention provides a protective layer forming step of forming a substrate protective layer on the back surface of a gallium oxide substrate on which a semiconductor material is crystal-grown, and the semiconductor material is formed on the gallium oxide substrate. There is provided a method for manufacturing a light emitting device, comprising: a light emitting device portion forming step for forming a light emitting device portion by growing a crystal on the surface of the light emitting device; and an assembly step for electrically connecting the light emitting device portion to assemble the light emitting device.

本発明の発光素子及びその製造方法によれば、ガリウム酸化物基板の化合物半導体成長工程において使用する水素ガスによってもエッチング等の影響を受けず、基板平面性がよく、基板の透明性に優れたガリウム酸化物基板上に形成された発光素子、及び、その製造方法を提供することが可能となる。   According to the light emitting device and the method for manufacturing the same of the present invention, the hydrogen gas used in the compound semiconductor growth process of the gallium oxide substrate is not affected by etching or the like, the substrate flatness is good, and the transparency of the substrate is excellent. It is possible to provide a light-emitting element formed over a gallium oxide substrate and a manufacturing method thereof.

(第1の実施の形態)
(ガリウム酸化物基板)
図1は、発光素子を形成する成長基板であるガリウム酸化物基板を示す図である。ガリウム酸化物基板としては、Ga基板、特に、β―Ga基板が挙げられる。以下では、ガリウム酸化物基板としてGa基板を用いて説明する。
(First embodiment)
(Gallium oxide substrate)
FIG. 1 is a diagram showing a gallium oxide substrate which is a growth substrate on which a light emitting element is formed. Examples of the gallium oxide substrate include a Ga 2 O 3 substrate, particularly a β-Ga 2 O 3 substrate. Hereinafter, description will be made using a Ga 2 O 3 substrate as the gallium oxide substrate.

Ga基板1は、片面にCVD法、スパッタ法等により、基板保護層2が形成されている。基板保護層2としては、1200℃の耐熱性を有する材料で構成されるのが好ましく、TiN,W,WSi,BP,Al,Mo,Ta,GaN,AlN等が挙げられる。この中でも、導電性を有するTiN,W,WSi,BPが特に好ましい。この実施例では、導電性を有するTiNを基板保護層2として用いる。また、基板保護層2は、少なくともピンホールの発生しない程度の膜厚を有することが好ましく、例えば、500Å〜5000Åの膜厚が好ましい。 The Ga 2 O 3 substrate 1 has a substrate protective layer 2 formed on one side by a CVD method, a sputtering method or the like. The substrate protective layer 2 is preferably made of a material having heat resistance of 1200 ° C., and examples thereof include TiN, W, WSi, BP, Al 2 O 3 , Mo, Ta, GaN, and AlN. Among these, TiN, W, WSi, and BP having conductivity are particularly preferable. In this embodiment, conductive TiN is used as the substrate protective layer 2. Moreover, it is preferable that the board | substrate protective layer 2 has a film thickness which does not generate | occur | produce a pinhole at least, for example, the film thickness of 500 to 5000 mm is preferable.

(発光素子の形成)
図2は、MOCVD法を示す概略図であり、MOCVD装置の主要部を示す概略断面を示す。MOCVD装置100は、真空ポンプおよび排気装置(図示せず)を備えた排気部106が接続された反応容器101と、Ga基板1を載置するサセプタ102と、サセプタ102を加熱するヒータ103と、サセプタ102を回転、上下移動させる制御軸104と、Ga基板1に向って斜め、または水平に原料ガスを供給する石英ノズル105と、各種原料ガスを発生する、TMG(トリメチルガリウム)ガス発生装置111、TMA(トリメチルアルミニウム)ガス発生装置112、TMI(トリメチルインジウム)ガス発生装置113等を備える。なお、必要に応じてガス発生装置の数を増減してもよい。窒素源としてNHが用いられ、キャリアガスとしてHが用いられる。GaN薄膜を形成するときは、TMGとNHが、AlGaN薄膜を形成するときは、TMA、TMGおよびNHが、InGaN薄膜を形成するときは、TMI、TMGおよびNHが用いられる。
MOCVD装置100により薄膜を形成するには、例えば、以下のように行う。まず、Ga基板1は、基板保護層2を下面にし、薄膜が形成される面を上にしてサセプタ102に保持され、反応容器101内に設置される。
(Formation of light emitting element)
FIG. 2 is a schematic view showing the MOCVD method, and shows a schematic cross section showing the main part of the MOCVD apparatus. The MOCVD apparatus 100 includes a reaction vessel 101 connected to an exhaust unit 106 having a vacuum pump and an exhaust device (not shown), a susceptor 102 on which the Ga 2 O 3 substrate 1 is placed, and a heater that heats the susceptor 102. 103, a control shaft 104 that rotates and moves the susceptor 102 up and down, a quartz nozzle 105 that supplies a source gas obliquely or horizontally toward the Ga 2 O 3 substrate 1, and TMG (trimethyl) that generates various source gases. A gallium) gas generator 111, a TMA (trimethylaluminum) gas generator 112, a TMI (trimethylindium) gas generator 113, and the like. In addition, you may increase / decrease the number of gas generators as needed. NH 3 is used as a nitrogen source, and H 2 is used as a carrier gas. When forming a GaN thin film, the TMG and NH 3, when forming the AlGaN thin film, TMA, it is TMG and NH 3, when forming an InGaN thin film, TMI, the TMG and NH 3 are used.
In order to form a thin film by the MOCVD apparatus 100, for example, the following is performed. First, the Ga 2 O 3 substrate 1 is held in the susceptor 102 with the substrate protective layer 2 facing down and the surface on which the thin film is formed facing up, and is placed in the reaction vessel 101.

(LED素子の構成)
図3は、第1の実施の形態に係る発光素子としてのLEDの構成を示すものである。
(Configuration of LED element)
FIG. 3 shows a configuration of an LED as a light emitting element according to the first embodiment.

このLED素子10は、n型の導電型を有するGa基板1を有し、Ga基板1上にSiドープのn−GaN層12と、Siドープのn−AlGaN層13と、InGaN/GaNの多重量子井戸構造を有するMQW(Multiple−Quantum Well)14と、Mgドープのp−AlGaN層15と、Mgドープのp−GaN層16と、ITO(Indium Tin Oxide)からなるp電極17とを順次積層して形成されており、Ga基板1の下面には基板保護層2を有する。 This LED element 10 has a Ga 2 O 3 substrate 1 having an n-type conductivity, and a Si-doped n + -GaN layer 12 and a Si-doped n-AlGaN layer 13 on the Ga 2 O 3 substrate 1. And MQW (Multiple-Quantum Well) 14 having a multiple quantum well structure of InGaN / GaN, Mg-doped p-AlGaN layer 15, Mg-doped p + -GaN layer 16, and ITO (Indium Tin Oxide). A p-electrode 17 is sequentially laminated, and a substrate protective layer 2 is provided on the lower surface of the Ga 2 O 3 substrate 1.

−GaN層12およびp−GaN層16は、1100℃の成長温度条件でキャリアガスとしてNを使用し、NHとトリメチルガリウム(TMG)をGa基板1が配置されたリアクタ内に供給することにより形成される。n−GaN層12についてはn型の導電性を付与するためのドーパントとしてモノシラン(SiH)をSi原料として使用し、p−GaN層16についてはp型の導電性を付与するためのドーパントとしてシクロペンタジエニルマグネシウム(CpMg)をMg原料として使用する。また、n−AlGaN層13およびp−AlGaN層15については、上記したもののほかに更にTMAをリアクタ内に供給することによって形成される。 The n + -GaN layer 12 and the p + -GaN layer 16 use N 2 as a carrier gas under the growth temperature condition of 1100 ° C., and the Ga 2 O 3 substrate 1 is arranged with NH 3 and trimethylgallium (TMG). It is formed by feeding into the reactor. For n + -GaN layer 12, monosilane (SiH 4 ) is used as a Si raw material as a dopant for imparting n-type conductivity, and for p + -GaN layer 16, p-type conductivity is imparted. Cyclopentadienyl magnesium (Cp 2 Mg) is used as a Mg raw material as a dopant. The n-AlGaN layer 13 and the p-AlGaN layer 15 are formed by further supplying TMA into the reactor in addition to the above.

MQW14は、1100℃の成長温度条件でキャリアガスとしてHを使用し、トリメチルインジウム(TMI)とTMGをリアクタ内に供給することによって形成される。InGaNの形成時にはTMIとTMGが供給され、GaNの形成時にはTMGが供給される。 The MQW 14 is formed by using H 2 as a carrier gas under a growth temperature condition of 1100 ° C. and supplying trimethylindium (TMI) and TMG into the reactor. TMI and TMG are supplied when InGaN is formed, and TMG is supplied when GaN is formed.

(LED素子の製造工程)
まず、MOCVD装置のサセプタに基板保護層2を下にしてGa基板1を搭載する。
(LED element manufacturing process)
First, the Ga 2 O 3 substrate 1 is mounted on the susceptor of the MOCVD apparatus with the substrate protective layer 2 facing down.

(GaN形成工程)
次に、所定の温度(400℃)に昇温して、Nの供給を開始する。続いてリアクタ内の昇温を開始し、1100℃となったときに昇温を停止し、その温度を維持するとともにTMGを60sccm供給することによって膜厚1μmのn−GaN層12を形成する。次に、リアクタへのNの供給を停止し、Hを供給する。
(GaN formation process)
Next, the temperature is raised to a predetermined temperature (400 ° C.), and supply of N 2 is started. Subsequently, the temperature inside the reactor is started, and when the temperature reaches 1100 ° C., the temperature rise is stopped, and the temperature is maintained and TMG is supplied at 60 sccm to form the n + -GaN layer 12 having a thickness of 1 μm. . Next, the supply of N 2 to the reactor is stopped and H 2 is supplied.

以降、n−AlGaN層13、MQW14、p−AlGaN15層、p−GaN層16、およびp電極17を順次形成する。 Thereafter, the n-AlGaN layer 13, the MQW 14, the p-AlGaN 15 layer, the p + -GaN layer 16, and the p electrode 17 are sequentially formed.

上記の工程により、Ga基板1に形成された複数の発光素子は、ダイシング等により個別の発光素子に切断されて、ベアチップが作製される。 Through the above steps, the plurality of light emitting elements formed on the Ga 2 O 3 substrate 1 are cut into individual light emitting elements by dicing or the like, and a bare chip is manufactured.

尚、上記の説明では、MQW構造の発光素子としたが、ヘテロ構造、ダブルへテロ構造、単一量子井戸構造等であっても同様に本発明が適用できる。   In the above description, the light emitting element has the MQW structure, but the present invention can be similarly applied to a hetero structure, a double hetero structure, a single quantum well structure, or the like.

(発光素子の組立て)
上記のようにGa基板1から取出された個々のベアチップは、以下のような工程により、発光装置として組立てられる。
(Assembly of light emitting element)
Each bare chip taken out from the Ga 2 O 3 substrate 1 as described above is assembled as a light emitting device through the following steps.

Ga基板1、エピタキシャル層21、p電極17で構成される発光素子は、回路基板等へ挿入接続されるリードピン31を有するサブマウント30に導電性の金属ペースト等を介して実装される。サブマウント30は、n型のシリコン基板で形成されているので、LED素子10を静電気から保護するためのツェナーダイオードとして動作し、導電性を有する基板保護層2は、サブマウント30上に形成されたp型半導体層30aに電気的に接続され、p電極17は、ボンディング電極19、ボンディング部20を介してボンディングワイヤ22によりサブマウント30に電気的に接続される。以上の工程により、回路基板等へ実装可能な発光素子ユニットとして完成する。 A light-emitting element composed of the Ga 2 O 3 substrate 1, the epitaxial layer 21, and the p-electrode 17 is mounted on a submount 30 having lead pins 31 inserted and connected to a circuit board or the like via a conductive metal paste or the like. . Since the submount 30 is formed of an n-type silicon substrate, the submount 30 operates as a Zener diode for protecting the LED element 10 from static electricity, and the conductive substrate protection layer 2 is formed on the submount 30. The p-type semiconductor layer 30a is electrically connected, and the p-electrode 17 is electrically connected to the submount 30 by the bonding wire 22 through the bonding electrode 19 and the bonding portion 20. Through the above steps, a light-emitting element unit that can be mounted on a circuit board or the like is completed.

(実施の形態の効果)
第1の実施の形態によれば、Ga基板のエピタキシャル成長工程において使用する水素ガスによってもGa基板がエッチング等の影響を受けず、基板平面性が維持でき、Ga基板の透明性に優れた発光素子、及び、その製造方法が可能となる。
(Effect of embodiment)
According to the first embodiment, Ga 2 O 3 Ga 2 O 3 substrate by the hydrogen gas used in the epitaxial growth process of the substrate is not affected, such as etching, to maintain the substrate flatness, Ga 2 O 3 A light emitting device excellent in the transparency of the substrate and a method for manufacturing the light emitting device are possible.

そして、基板保護層として導電性を有する材質を使用することで、基板保護層はn電極として機能するので、基板保護層は2つの機能を果たすことになり、生産性向上及びコスト低減に繋がる。また、Ga基板の透明性が維持されるので、基板裏面から発光素子の出射光を取出す構成にすることも可能となる。 By using a conductive material as the substrate protective layer, the substrate protective layer functions as an n-electrode, so that the substrate protective layer fulfills two functions, leading to productivity improvement and cost reduction. Further, since the transparency of the Ga 2 O 3 substrate is maintained, it is possible to adopt a configuration in which the emitted light of the light emitting element is extracted from the back surface of the substrate.

(第2の実施の形態)
図4は、第2の実施の形態に係る発光素子としてのLEDの構成を示すものである。
(Second Embodiment)
FIG. 4 shows a configuration of an LED as a light emitting element according to the second embodiment.

第2の実施の形態は、第1の実施の形態において、サブマウント30に対して、発光素子10のp側n側を上下逆に配置して構成したものである。すなわち、Ga基板1から取出されたベアチップは、p電極17がサブマウント30に導電性の金属ペースト等を介して実装されると共に、導電性を有するTiNで形成された基板保護層2はn電極として機能するので、ボンディング電極19、ボンディング部20を介してボンディングワイヤ22によりサブマウント30上に形成されたp型半導体層30aに電気的に接続される。以上の工程により、回路基板等へ実装可能な発光素子ユニットとして完成する。 The second embodiment is configured by arranging the p-side n-side of the light emitting element 10 upside down with respect to the submount 30 in the first embodiment. That is, the bare chip taken out from the Ga 2 O 3 substrate 1 has the p-electrode 17 mounted on the submount 30 via a conductive metal paste or the like, and the substrate protective layer 2 formed of conductive TiN. Since it functions as an n-electrode, it is electrically connected to a p-type semiconductor layer 30 a formed on the submount 30 by a bonding wire 22 through a bonding electrode 19 and a bonding portion 20. Through the above steps, a light-emitting element unit that can be mounted on a circuit board or the like is completed.

(第3の実施の形態)
図5は、第3の実施の形態に係る発光素子としてのLEDの構成を示すものである。
(Third embodiment)
FIG. 5 shows a configuration of an LED as a light emitting element according to the third embodiment.

第3の実施の形態は、第1の実施の形態において、基板保護層2として導電性を有しないAlNを用いた構成となっている。第1の実施の形態と同様にしてMOCVD法によりエピタキシャル層21を形成し、その後、基板保護層2を研磨、CMP(Chemical Mechanical Polishing)法、エッチング等により除去する。   The third embodiment has a configuration using AlN having no conductivity as the substrate protective layer 2 in the first embodiment. Similar to the first embodiment, the epitaxial layer 21 is formed by MOCVD, and then the substrate protective layer 2 is removed by polishing, CMP (Chemical Mechanical Polishing), etching, or the like.

基板保護層2の除去後に、エピタキシャル層21の両側に、フォトリソグラフィ技術を用いたパターニングを作製し、蒸着によりp電極17、およびn電極18を形成する。   After removing the substrate protective layer 2, patterning using a photolithography technique is made on both sides of the epitaxial layer 21, and the p electrode 17 and the n electrode 18 are formed by vapor deposition.

上記の工程により、Ga基板1に形成された発光素子は、ダイシング等により個別の発光素子に切断されて、ベアチップが作製される。 Through the above steps, the light emitting elements formed on the Ga 2 O 3 substrate 1 are cut into individual light emitting elements by dicing or the like, and a bare chip is manufactured.

(発光素子の組立て)
Ga基板1、エピタキシャル層21、p電極17、及びn電極18で構成される発光素子は、回路基板等へ挿入接続されるリードピン31を有するサブマウント30に導電性の金属ペースト等を介して実装される。サブマウント30は、n型のシリコン基板で形成されているので、LED素子10を静電気から保護するためのツェナーダイオードとして動作し、n電極18はサブマウント30上に形成されたp型半導体層30aに電気的に接続され、p電極17は、ボンディング電極19、ボンディング部20を介してボンディングワイヤ22によりサブマウント30に電気的に接続される。以上の工程により、回路基板等へ実装可能な発光素子ユニットとして完成する。
(Assembly of light emitting element)
A light emitting element composed of the Ga 2 O 3 substrate 1, the epitaxial layer 21, the p electrode 17, and the n electrode 18 is made of a conductive metal paste or the like on a submount 30 having lead pins 31 inserted and connected to a circuit board or the like. Implemented through. Since the submount 30 is formed of an n-type silicon substrate, it operates as a Zener diode for protecting the LED element 10 from static electricity, and the n-electrode 18 is a p-type semiconductor layer 30a formed on the submount 30. The p electrode 17 is electrically connected to the submount 30 by the bonding wire 22 through the bonding electrode 19 and the bonding portion 20. Through the above steps, a light-emitting element unit that can be mounted on a circuit board or the like is completed.

(実施の形態の効果)
第3の実施の形態によれば、第1の実施の形態の効果に加え、基板保護層として導電性を有しない材質を使用できるので、材料選択の幅が拡大して、製造プロセスへの制約を小さくできるという効果を有する。
(Effect of embodiment)
According to the third embodiment, in addition to the effects of the first embodiment, a non-conductive material can be used as the substrate protective layer, so that the range of material selection is expanded and the manufacturing process is restricted. Can be reduced.

(第4の実施の形態)
図6は、第4の実施の形態に係る発光素子としてのLEDの構成を示すものである。
(Fourth embodiment)
FIG. 6 shows a configuration of an LED as a light emitting element according to the fourth embodiment.

第4の実施の形態は、第3の実施の形態において、サブマウント30に対して、発光素子10のp側n側を上下逆に配置して構成したものである。すなわち、Ga基板1から取出されたベアチップは、p電極17がサブマウント30に導電性の金属ペースト等を介して実装されると共に、n電極18は、ボンディング電極19、ボンディング部20を介してボンディングワイヤ22によりサブマウント30上に形成されたp型半導体層30aに電気的に接続される。以上の工程により、回路基板等へ実装可能な発光素子ユニットとして完成する。 In the fourth embodiment, the p-side n-side of the light emitting element 10 is arranged upside down with respect to the submount 30 in the third embodiment. That is, in the bare chip taken out from the Ga 2 O 3 substrate 1, the p electrode 17 is mounted on the submount 30 via a conductive metal paste or the like, and the n electrode 18 is bonded to the bonding electrode 19 and the bonding portion 20. The p-type semiconductor layer 30a formed on the submount 30 is electrically connected by the bonding wire 22 to the p-type semiconductor layer 30a. Through the above steps, a light-emitting element unit that can be mounted on a circuit board or the like is completed.

発光素子を形成する成長基板であるガリウム酸化物基板を示す図である。It is a figure which shows the gallium oxide substrate which is a growth substrate which forms a light emitting element. MOCVD法を示す概略図であり、MOCVD装置の主要部を示す概略断面を示すものである。It is the schematic which shows MOCVD method, and shows the schematic cross section which shows the principal part of a MOCVD apparatus. 第1の実施の形態に係る発光素子としてのLEDの構成を示すものである。The structure of LED as a light emitting element which concerns on 1st Embodiment is shown. 第2の実施の形態に係る発光素子としてのLEDの構成を示すものである。The structure of LED as a light emitting element which concerns on 2nd Embodiment is shown. 第3の実施の形態に係る発光素子としてのLEDの構成を示すものである。The structure of LED as a light emitting element which concerns on 3rd Embodiment is shown. 第4の実施の形態に係る発光素子としてのLEDの構成を示すものである。The structure of LED as a light emitting element which concerns on 4th Embodiment is shown.

符号の説明Explanation of symbols

1 Ga基板
2 基板保護層
10 LED素子
12 n−GaN層
13 n−AlGaN層
14 MQW
15 p−AlGaN層
16 p−GaN層
17 p電極
18 n電極
19 ボンディング電極
20 ボンディング部
21 エピタキシャル層
22 ボンディングワイヤ
30 サブマウント
31 リードピン
1 Ga 2 O 3 substrate 2 substrate protective layer 10 LED element 12 n + -GaN layer 13 n-AlGaN layer 14 MQW
15 p-AlGaN layer 16 p + -GaN layer 17 p electrode 18 n electrode 19 bonding electrode 20 bonding portion 21 epitaxial layer 22 bonding wire 30 submount 31 lead pin

Claims (10)

裏面に基板保護層を有し、表面に半導体材料を結晶成長させるガリウム酸化物基板と、
前記半導体材料を前記ガリウム酸化物基板の前記表面に結晶成長させて形成した発光素子部とを有する発光素子。
A gallium oxide substrate having a substrate protective layer on the back surface and crystal growth of a semiconductor material on the surface;
A light emitting element having a light emitting element portion formed by crystal growth of the semiconductor material on the surface of the gallium oxide substrate.
前記基板保護層は、導電性を有し、前記基板保護層を電極として機能させて構成したことを特徴とする請求項1に記載の発光素子。   The light-emitting element according to claim 1, wherein the substrate protective layer has conductivity and is configured to function as the electrode. 前記ガリウム酸化物基板は、Ga基板であることを特徴とする請求項1に記載の発光素子。 The light emitting device according to claim 1, wherein the gallium oxide substrate is a Ga 2 O 3 substrate. 前記基板保護層は、TiN、W、WSi、BP、Al、Mo、Ta、GaN又は、AlNのいずれかであることを特徴とする請求項1に記載の発光素子。 The light emitting device according to claim 1, wherein the substrate protective layer is one of TiN, W, WSi, BP, Al 2 O 3 , Mo, Ta, GaN, or AlN. 表面に半導体材料を結晶成長させるガリウム酸化物基板の裏面に基板保護層を形成する保護層形成工程と、
前記半導体材料を前記ガリウム酸化物基板の前記表面に結晶成長させて発光素子部を形成する発光素子部形成工程と、
前記発光素子部を電気的に接続して発光素子に組立てる組立工程とを有する発光素子の製造方法。
A protective layer forming step of forming a substrate protective layer on the back surface of the gallium oxide substrate on which the semiconductor material is crystal-grown on the surface;
A light emitting element part forming step of forming a light emitting element part by crystal-growing the semiconductor material on the surface of the gallium oxide substrate;
A method of manufacturing a light emitting device, comprising: assembling the light emitting device by electrically connecting the light emitting device portions.
前記ガリウム酸化物基板は、Ga基板であることを特徴とする請求項5に記載の発光素子の製造方法。 The method of manufacturing a light emitting device according to claim 5, wherein the gallium oxide substrate is a Ga 2 O 3 substrate. 前記基板保護層は、TiN、W、WSi、BP、Al、又は、AlNのいずれかであることを特徴とする請求項5に記載の発光素子の製造方法。 The method for manufacturing a light emitting device according to claim 5, wherein the substrate protective layer is one of TiN, W, WSi, BP, Al 2 O 3 , or AlN. 前記組立工程は、前記基板保護層を除去する工程を含むことを特徴とする請求項5に記載の発光素子の製造方法。   The light emitting device manufacturing method according to claim 5, wherein the assembling step includes a step of removing the substrate protective layer. 前記基板保護層は、非導電性であることを特徴とする請求項8に記載の発光素子の製造方法。   The method for manufacturing a light emitting device according to claim 8, wherein the substrate protective layer is non-conductive. 前記基板保護層は、Al又はAlNであることを特徴とする請求項9に記載の発光素子の製造方法。












The method for manufacturing a light emitting device according to claim 9, wherein the substrate protective layer is made of Al 2 O 3 or AlN.












JP2005360442A 2005-12-14 2005-12-14 Light emitting element and its manufacturing method Pending JP2007165626A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005360442A JP2007165626A (en) 2005-12-14 2005-12-14 Light emitting element and its manufacturing method
US11/634,381 US20070131951A1 (en) 2005-12-14 2006-12-06 Light-emitting element and making method thereof
CNB2006101672389A CN100452463C (en) 2005-12-14 2006-12-12 Light-emitting element and making method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005360442A JP2007165626A (en) 2005-12-14 2005-12-14 Light emitting element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007165626A true JP2007165626A (en) 2007-06-28

Family

ID=38138393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005360442A Pending JP2007165626A (en) 2005-12-14 2005-12-14 Light emitting element and its manufacturing method

Country Status (3)

Country Link
US (1) US20070131951A1 (en)
JP (1) JP2007165626A (en)
CN (1) CN100452463C (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393411B2 (en) 2003-02-24 2008-07-01 Waseda University β-Ga2O3 single crystal growing method, thin-film single crystal growing method, Ga2O3 light-emitting device, and its manufacturing method
WO2007111432A1 (en) * 2006-03-28 2007-10-04 Seoul Opto Device Co., Ltd. Light emitting device having zener diode therein and method of fabricating the same
KR101020958B1 (en) * 2008-11-17 2011-03-09 엘지이노텍 주식회사 Method for manufacturing a gallium oxide substrate, light emitting device and method for fabricating the same
JP5491065B2 (en) * 2009-04-30 2014-05-14 住友電気工業株式会社 Method for producing wafer product and method for producing gallium nitride based semiconductor optical device
KR101047652B1 (en) 2009-12-18 2011-07-07 엘지이노텍 주식회사 Light emitting device and manufacturing method
CN102034912B (en) 2009-12-29 2015-03-25 比亚迪股份有限公司 Light-emitting diode epitaxial wafer, manufacturing method and manufacturing method of chip

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306848A (en) * 1996-05-16 1997-11-28 Nec Corp Growing semiconductor crystalline film
JPH11243253A (en) * 1998-02-25 1999-09-07 Sony Corp Growth of nitride-based iii-v compound semiconductor, manufacture of semiconductor device, substrate for growth of nitride-based iii-v compound semiconductor, manufacture of the substrate for growth of nitride-based iii-v compound semiconductor
JP2003163375A (en) * 2001-11-29 2003-06-06 Sanyo Electric Co Ltd Nitride semiconductor element and its manufacturing method
JP2005340308A (en) * 2004-05-24 2005-12-08 Koha Co Ltd Method of manufacturing semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6486499B1 (en) * 1999-12-22 2002-11-26 Lumileds Lighting U.S., Llc III-nitride light-emitting device with increased light generating capability
JP4754711B2 (en) * 2000-06-21 2011-08-24 昭和電工株式会社 Group III nitride semiconductor light-emitting diode, light-emitting diode lamp, light source, group III nitride semiconductor light-emitting diode electrode and manufacturing method thereof
JP3679097B2 (en) * 2002-05-31 2005-08-03 株式会社光波 Light emitting element
JP2004031513A (en) * 2002-06-24 2004-01-29 Sharp Corp Semiconductor light emitting element
JP3795007B2 (en) * 2002-11-27 2006-07-12 松下電器産業株式会社 Semiconductor light emitting device and manufacturing method thereof
JP2005197296A (en) * 2003-12-26 2005-07-21 Shin Etsu Handotai Co Ltd Light-emitting element and its manufacturing process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306848A (en) * 1996-05-16 1997-11-28 Nec Corp Growing semiconductor crystalline film
JPH11243253A (en) * 1998-02-25 1999-09-07 Sony Corp Growth of nitride-based iii-v compound semiconductor, manufacture of semiconductor device, substrate for growth of nitride-based iii-v compound semiconductor, manufacture of the substrate for growth of nitride-based iii-v compound semiconductor
JP2003163375A (en) * 2001-11-29 2003-06-06 Sanyo Electric Co Ltd Nitride semiconductor element and its manufacturing method
JP2005340308A (en) * 2004-05-24 2005-12-08 Koha Co Ltd Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
CN100452463C (en) 2009-01-14
CN1983653A (en) 2007-06-20
US20070131951A1 (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP5068475B2 (en) Method for manufacturing gallium nitride compound semiconductor light emitting device, gallium nitride compound semiconductor light emitting device, and lamp
EP2003705B1 (en) Method for manufacturing gallium nitride compound semiconductor light-emitting device, gallium nitride compound semiconductor light-emitting device and lamp using same
WO2014178248A1 (en) Nitride semiconductor light-emitting element
JP4951443B2 (en) Manufacturing method of light emitting diode
KR20120117892A (en) Nitrogen compound semiconductor light emitting element and manufacturing method thereof
JP2006173581A (en) Group iii nitride semiconductor luminous element
JP2010093186A (en) Method of manufacturing gallium nitride-based compound semiconductor light-emitting element, layered structure of gallium nitride-based compound semiconductor element, gallium nitride-based compound semiconductor light-emitting element, and lamp
JPWO2015146069A1 (en) Light emitting diode element
JP2007165626A (en) Light emitting element and its manufacturing method
JP5554739B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP2007234902A (en) Light-emitting element, and manufacturing method thereof
JP3741528B2 (en) Method for manufacturing gallium nitride based semiconductor device
EP1869717B1 (en) Production method of group iii nitride semioconductor element
JP2005045054A (en) Group iii nitride semiconductor light emitting element
JP2015167177A (en) Method for manufacturing group iii nitride semiconductor light-emitting device
JP2006024913A (en) Translucent positive electrode for compound semiconductor light-emitting device of gallium nitride series, and the light-emitting device
JP5423026B2 (en) Group III nitride semiconductor light emitting device and method of manufacturing the same
JP2006344930A (en) Manufacturing method of group iii nitride semiconductor device
JP5668647B2 (en) Group III nitride semiconductor light emitting device and method of manufacturing the same
JP2012084667A (en) Compound semiconductor light-emitting element, method of manufacturing the same, lamp, electronic device, and mechanical apparatus
JP2008118048A (en) GaN-BASED SEMICONDUCTOR LIGHT EMITTING DEVICE
JP2006140530A (en) Method of manufacturing p-type nitride semiconductor
JP2006245555A (en) Translucent electrode
JPH10178201A (en) Manufacture of semiconductor light-emitting element
JP2006032739A (en) Light emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208