JP2007165305A - Joined copper particles and powder for conductive paste - Google Patents

Joined copper particles and powder for conductive paste Download PDF

Info

Publication number
JP2007165305A
JP2007165305A JP2006325389A JP2006325389A JP2007165305A JP 2007165305 A JP2007165305 A JP 2007165305A JP 2006325389 A JP2006325389 A JP 2006325389A JP 2006325389 A JP2006325389 A JP 2006325389A JP 2007165305 A JP2007165305 A JP 2007165305A
Authority
JP
Japan
Prior art keywords
copper
particles
conductive paste
powder
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006325389A
Other languages
Japanese (ja)
Other versions
JP4660784B2 (en
Inventor
Kazuji Sano
和司 佐野
Yoshihiro Okada
美洋 岡田
Hiromasa Miyoshi
宏昌 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2006325389A priority Critical patent/JP4660784B2/en
Publication of JP2007165305A publication Critical patent/JP2007165305A/en
Application granted granted Critical
Publication of JP4660784B2 publication Critical patent/JP4660784B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain copper powder for conductive paste capable of forming a coating film excellent in electrical conductivity. <P>SOLUTION: The present invention provides jointed copper particles and powder for conductive paste composed of two or more unit particles, preferably 20 or less unit particles, joined through neck portions. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は,導電性能のよい導電ペーストが得られる導電ペースト用の金属銅粒子・粉末に関する。   The present invention relates to metallic copper particles / powder for a conductive paste from which a conductive paste having good conductive performance can be obtained.

例えば絶縁基板上に導電ペーストをスクリーン印刷して厚膜回路基板を作製する場合,その導電ペーストとして主に銀系ペーストが使用されてきたが,最近では銅系ペーストも使用される傾向にある。銅系ペーストは銀系ペーストに比べて次のような利点があるからである。   For example, when a thick film circuit board is produced by screen printing a conductive paste on an insulating substrate, silver-based paste has been mainly used as the conductive paste, but recently, copper-based paste has also been used. This is because copper paste has the following advantages over silver paste.

(1) マイグレーションが起き難いのでショートし難い。
(2) 導体抵抗および高周波損失が小さいので回路の微細化が可能である。
(3) 耐半田性に優れるので信頼性が高い。
(4) 低コスト化が可能である。
(1) It is difficult for short-circuiting because migration is unlikely to occur.
(2) Since the conductor resistance and high-frequency loss are small, the circuit can be miniaturized.
(3) High reliability due to excellent solder resistance.
(4) Cost reduction is possible.

このような利点をもつ銅系ペーストは,粒径が0.1〜10μm程度の銅粉をビヒクル(樹脂)に分散させることによって得られる。   A copper-based paste having such advantages can be obtained by dispersing copper powder having a particle size of about 0.1 to 10 μm in a vehicle (resin).

銅粉の製造法としては,機械的粉砕法,溶融銅を噴霧するアトマイズ法,陰極への電解析出法,蒸発蒸着法,湿式還元法等が知られている。これらはそれぞれ得失があるが,湿式還元法はペースト用に適する粒径の微細粉を比較的容易に得ることができるので,導電ペースト用銅粉を製造する場合の主流となっており,例えば特開平4−116109号公報,特開平2−197012号公報および特開昭62−99406号公報には湿式還元法による銅粉の製造法が記載されている。
特開平4−116109号公報 特開平2−197012号公報 特開昭62−99406号公報
As a method for producing copper powder, a mechanical pulverization method, an atomization method in which molten copper is sprayed, an electrolytic deposition method on a cathode, an evaporation method, a wet reduction method, and the like are known. Each of these has advantages and disadvantages, but the wet reduction method can obtain a fine powder having a particle size suitable for paste relatively easily, and is therefore the mainstream in producing copper powder for conductive paste. Japanese Laid-Open Patent Publication No. 4-116109, Japanese Laid-Open Patent Publication No. 2-97012, and Japanese Laid-Open Patent Publication No. 62-99406 describe a method for producing copper powder by a wet reduction method.
JP-A-4-116109 Japanese Patent Laid-Open No. 2-197012 JP-A-62-99406

銅系ペーストとしての性能は各種の観点から評価され得るが,導電ペーストとして使用される場合には,導電性に優れることが基本的に重要である。同一純度の金属銅粉であっても,これを樹脂に分散させた場合に,その粒度分布や粒子形状などの違いにより,電気抵抗も異なる値を示すようになる。電気抵抗を少なくするには,粒子同士が密に接触すること,換言すれば,粒子同士の接触界面が多くなるように,樹脂中に高い充填率をもって銅粒子が分散していることが重要であろうことは当然に考えられる。ところが,導電ペーストに要求される他の性質例えば適正な流動性や粘性を保持し且つ適切な強度を有するように,これを実現しようとすると,実際には容易なことではない。   The performance as a copper-based paste can be evaluated from various viewpoints, but when used as a conductive paste, it is basically important to have excellent conductivity. Even when metallic copper powder of the same purity is dispersed in a resin, the electrical resistance also shows different values due to differences in particle size distribution and particle shape. In order to reduce the electrical resistance, it is important that the particles are in close contact with each other, in other words, that the copper particles are dispersed with a high filling rate in the resin so that the contact interface between the particles increases. Naturally, it is possible. However, it is not easy in practice to realize this so as to maintain other properties required for the conductive paste, for example, proper fluidity and viscosity and appropriate strength.

従来の湿式還元法による銅粉の製法では,得られる銅粉の粒径は経験的に決まることが多く,また,粒径が大きくなるとその粒度の分布も大きくなるのが通常であった。したがって,樹脂中に高い充填率をもって充填でき,しかも粒子同士の接触界面が大きくなるような銅粉が得られるように,その製法を制御することは実質的にできなかった。   In the conventional copper powder manufacturing method using the wet reduction method, the particle size of the obtained copper powder is often determined empirically, and the particle size distribution usually increases as the particle size increases. Therefore, it was practically impossible to control the production method so as to obtain a copper powder that can be filled in the resin with a high filling rate and that the contact interface between the particles becomes large.

本発明の課題は,このような問題を解決し,樹脂に分散させたときに高い導電率を示す(電気抵抗が低い)銅の粒子・粉体を提供するにある。   An object of the present invention is to solve such problems and to provide copper particles / powder exhibiting high electrical conductivity (low electrical resistance) when dispersed in a resin.

本発明によれば,2個以上の単位粒子,好ましくは2個以上20個以下の単位粒子がネック部をもって接合してなる導電ペースト用の接合銅粒子を提供する。とくに,粒径が0.5〜10μm程度の単位粒子2〜20個が互いに三次元の任意方向にネック部をもって接合してなる導電ペースト用の接合銅粒子を提供する。   According to the present invention, there are provided bonded copper particles for a conductive paste in which two or more unit particles, preferably 2 or more and 20 or less unit particles are bonded with a neck portion. In particular, there are provided bonded copper particles for a conductive paste in which 2 to 20 unit particles having a particle size of about 0.5 to 10 μm are bonded to each other with a neck portion in an arbitrary three-dimensional direction.

ここで,ネック部とは,単位粒子と単位粒子が接合した部分を言うが,そのネックの径は,ネック部両側の単位粒子のうち少なくとも一方の粒径よりも小さく,好ましくはネック部両側の両単位粒子の粒径よりも小さい。本発明によれば,このようなネック部をもつ接合銅粒子と,ネック部を持たない単位粒子とからなる導電ペースト用の銅粉体を提供する。この場合,ネック部をもつ接合銅粒子の数が全体の20〜80%を占めることが望ましい。このような金属銅粉体を樹脂中に分散させることによって電気伝導性の良好な導電ペーストを得ることができる。樹脂としてはフエノール樹脂のような熱硬化型樹脂であることができる。   Here, the neck portion refers to a portion where unit particles and unit particles are joined, and the diameter of the neck is smaller than the particle size of at least one of the unit particles on both sides of the neck portion, preferably on both sides of the neck portion. It is smaller than the particle size of both unit particles. According to the present invention, there is provided a copper powder for a conductive paste composed of bonded copper particles having such a neck portion and unit particles having no neck portion. In this case, it is desirable that the number of bonded copper particles having a neck portion occupy 20 to 80% of the whole. By dispersing such metal copper powder in the resin, a conductive paste having good electrical conductivity can be obtained. The resin can be a thermosetting resin such as a phenol resin.

このような金属銅粉体は,銅塩水溶液とアルカリ剤を反応させて水酸化銅を析出させた懸濁液に還元剤を添加して亜酸化銅にまで中間還元し,さらに還元剤で金属銅にまで水中で最終還元する銅粉の製造法において,前記の水酸化銅を析出させる工程を酸素含有ガス雰囲気下で実施することによって,さらには,水酸化銅を析出させる工程をFe濃度が50ppm以下の水溶液中で実施すること,さらには,中間還元のあとの亜酸化銅の懸濁液に酸素含有ガスを吹き込むことによって有利に製造できる。   Such a metal copper powder is obtained by adding a reducing agent to a suspension obtained by reacting an aqueous copper salt solution with an alkali agent to precipitate copper hydroxide, and performing intermediate reduction to cuprous oxide. In the method for producing a copper powder that is finally reduced to copper in water, the step of precipitating copper hydroxide is carried out in an oxygen-containing gas atmosphere, and the step of precipitating copper hydroxide is further performed with an Fe concentration of It can be advantageously produced by carrying out in an aqueous solution of 50 ppm or less, and further by blowing an oxygen-containing gas into the cuprous oxide suspension after the intermediate reduction.

本発明によれば,電気伝導性の優れた塗膜を形成できる導電ペースト用銅粉が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the copper powder for electrically conductive paste which can form the coating film excellent in electrical conductivity can be provided.

図1〜2は後記実施例で得られた本発明に従う金属銅粉の電子顕微鏡写真像(SEM像)であり,図2は図1の中央部のものを拡大したものである。図2の中央部の接合銅粒子は,粒径2.5〜5μm程度の単位粒子7個が3次元のランダム方向にネック部をもって接合していると見てよく,各ネック部は,ネック部両側の単位粒子の径よりも小さな径を有している。そして,このような単位粒子7個の接合銅粒子のほか,図1に見られるように,単位粒子1個のもの(接合せずに独立しているもの),2個接合したもの,3個接合したもの・・n個接合したもの(図1ではnは最大約20個程度である)が存在している。いずれにしてもネック部は,単に粒子同士が点接触しているものとは異なり,ある程度の接合面積をもって単位粒子が接合しており,粉体が流動したときのような自然の衝撃ではネック部で分離しないようなネック強度を有している。このようなネック部をもって接合している接合銅粒子を含む銅粉で導電ペーストを作成すると,接合銅粒子を含まないものに比べて,電気抵抗が著しく低くなることがわかった。   1 and 2 are electron micrograph images (SEM images) of metallic copper powder according to the present invention obtained in Examples described later, and FIG. 2 is an enlarged view of the central portion of FIG. The joint copper particles in the center of FIG. 2 can be seen as seven unit particles having a particle size of about 2.5 to 5 μm joined with a neck portion in a three-dimensional random direction. The diameter is smaller than the diameter of the unit particles on both sides. In addition to the seven unit particle bonded copper particles, as shown in FIG. 1, one unit particle (independent without bonding), two bonded, three There are n joined ones (n is about 20 at the maximum in FIG. 1). In any case, the neck part is different from the case where the particles are merely in point contact with each other, and the unit particles are joined with a certain amount of joint area. It has a neck strength that does not separate. It was found that when the conductive paste was made of copper powder containing bonded copper particles bonded with such a neck portion, the electrical resistance was remarkably reduced as compared with that containing no bonded copper particles.

図3〜4は,後記比較法で得られた金属銅粉の電子顕微鏡写真像(SEM像)であり,図4は図3中央部やや上方位置のものを拡大したものである。この銅粉は,粒径より径小のネック部をもつ接合銅粒子は存在しないと見てよく,ほぼ球形(ボール状)のまま粒径2〜10μmのものがほぼ均等に分布しており,平均粒径は約6.0μmである。   3 to 4 are electron micrograph images (SEM images) of metallic copper powder obtained by the comparison method described later, and FIG. 4 is an enlarged view of the center portion of FIG. 3 slightly above. It can be seen that this copper powder has no joint copper particles having a neck portion smaller than the particle diameter, and those having a particle diameter of 2 to 10 μm are distributed almost evenly in a substantially spherical shape (ball shape). The average particle size is about 6.0 μm.

両者の金属銅粉を同じ量,同じ樹脂に分散させたペーストについて,同じ条件で電気抵抗(乾燥塗膜の体積抵抗)を測定すると,後記の実施例に示すように,前者のペーストでは3.12×10-3Ω・cm,後者のペーストでは2.76×10-2Ω・cmであり,前者の方が1オーダー小さい値を示し,著しく導電性がよい。その理由については厳密には不明であるが,接合銅粒子の数が多い分だけ単位粒子間の連結が確実であり,したがって,粒子同士の接触界面が多くなること,そして,このような接合銅粒子間に,より小さな接合銅粒子や単独の単位粒子が介在することにより,全体として樹脂中に良好に充填されることが挙げられる。ただし前者のものでも,単位粒子の接合数が20を超えるような接合銅粒子ではネックの数が多すぎて樹脂への分散性が劣るようになり,凝集したような状態となるので,好ましいことではない。同様に,接合銅粒子だけからなると分散性に劣る場合があり,例えば接合銅粒子の数が全体の80%を超えると分散性が悪くなり,したがって独立した単位粒子も存在する方がよく,接合銅粒子の数が全体の20〜80%の範囲にあるのがよい。また,接合銅粒子を形成する単位粒子は0.5〜10μm程度の粒径のものであるのがよい。これに対して,後者のネック無しの銅粒子(ボール状のもの)からなる場合には,充填性にとっては良好な粒径分布を有していたとしても,粒子相互間の接触界面が前者のものに比べて格段に少なくなる結果,前者に比べて導電性に劣るようになると思われる。 When the electric resistance (volume resistance of the dried coating film) is measured under the same conditions for the paste in which both metal copper powders are dispersed in the same amount, the former paste is 3. It is 12 × 10 −3 Ω · cm, and the latter paste is 2.76 × 10 −2 Ω · cm. The former is one order of magnitude smaller and the conductivity is remarkably good. Although the reason for this is not exactly known, the connection between the unit particles is assured as the number of bonded copper particles increases, and therefore, the contact interface between the particles increases, and such bonded copper It can be mentioned that the resin is satisfactorily filled into the resin as a whole by interposing smaller bonding copper particles or single unit particles between the particles. However, even in the former case, it is preferable that the bonded copper particles having a unit particle bonding number of more than 20 have too many necks and become inferior in dispersibility in the resin and become agglomerated. is not. Similarly, dispersibility may be inferior if it consists only of bonded copper particles. For example, if the number of bonded copper particles exceeds 80% of the total, the dispersibility deteriorates, and therefore it is better to have independent unit particles. The number of copper particles should be in the range of 20-80% of the total. The unit particles forming the bonded copper particles should have a particle size of about 0.5 to 10 μm. On the other hand, when the latter is composed of copper particles without a neck (ball-shaped ones), the contact interface between the particles is the same even if the particle size distribution is good for filling. As a result, it is expected to become much less conductive than the former.

前者のような適正なネック数をもつ接合銅粒子が分布した金属銅粉は,湿式還元法による金属銅粉の製法において,初期の水酸化銅の生成過程での雰囲気制御によって,さらには該水酸化銅の生成過程での不純物制御によって製造できることがわかった。すなわち,銅塩水溶液とアルカリ剤を反応させて水酸化銅を析出させた懸濁液に還元剤を添加して亜酸化銅にまで中間還元し,さらに還元剤で金属銅にまで水中で最終還元する従来の銅粉の製法において,水酸化銅を析出させる過程は従来は窒素等の不活性雰囲気下で行なっていたのを酸素含有ガス,代表的には空気中で行う方法に改変すると,さらには,この水酸化銅を析出させる液中に共存するMg,Ca,Zn,Na,Al,Feなどの不純物濃度を低下させると,前記のようなネック数をもつ接合銅粒子が得られることがわかった。さらに,亜酸化銅まで中間還元したあと,金属銅まで最終還元する前の段階で,亜酸化銅懸濁液中に酸素含有ガス,代表的には空気の吹き込みを行うと,その程度により,得られる銅粉の粒径と粒度分布を制御できることもわかった。   Metallic copper powder in which bonded copper particles having an appropriate neck number such as the former are distributed is obtained by controlling the atmosphere during the initial copper hydroxide formation process in the production process of metallic copper powder by the wet reduction method. It was found that it can be manufactured by controlling impurities during the formation of copper oxide. That is, a reducing agent is added to a suspension in which copper hydroxide aqueous solution and an alkali agent are reacted to precipitate copper hydroxide, and intermediate reduction is performed to cuprous oxide. In the conventional copper powder manufacturing method, the process of precipitating copper hydroxide was changed from a method that was conventionally performed in an inert atmosphere such as nitrogen to an oxygen-containing gas, typically in the air. If the concentration of impurities such as Mg, Ca, Zn, Na, Al, and Fe coexisting in the liquid for depositing copper hydroxide is lowered, bonded copper particles having the above-mentioned neck number may be obtained. all right. Furthermore, after an intermediate reduction to cuprous oxide and before final reduction to metallic copper, oxygen-containing gas, typically air, is blown into the cuprous oxide suspension to obtain It was also found that the particle size and particle size distribution of the resulting copper powder can be controlled.

より具体的に説明すると,まず銅塩水溶液とアルカリ剤を反応させて水酸化銅を析出させる工程においては,銅塩水溶液としては硫酸銅水溶液を,またアルカリ剤としてはNaOH水溶液が最も普通に使用でき,場合によっては,前者は塩化銅,炭酸銅,硝酸銅などの水溶液であってもよく,後者についても他に影響を与えないアルカリ剤であれば使用可能であり,所定濃度の銅塩水溶液と所定の濃度のアルカリ水溶液を別途に作製し,両液を混ぜ合わせて直ちに強攪拌する方法,或いは銅塩水溶液にアルカリ水溶液を攪拌下に添加し続けるという方法で水酸化銅の析出反応を進行させることができるが,この雰囲気を従来の不活性ガス雰囲気から酸素含有ガス雰囲気(空気)に変えて水酸化銅を析出させると,中間還元において,比較的大きな粒径の亜酸化銅,代表的には0.5〜1.5μm程度の粒径の亜酸化銅が得られる。これに対して,窒素雰囲気とした以外は同一の条件で水酸化銅を析出させると,0.3μm程度の小粒径の亜酸化銅となる。このような小粒径の亜酸化銅の場合には,前記のようなネックをもつ金属銅粉を得ることは困難となる。   More specifically, the copper salt aqueous solution is most commonly used as the copper salt aqueous solution, and the NaOH aqueous solution is most commonly used as the alkaline agent in the step of precipitating copper hydroxide by first reacting the copper salt aqueous solution with the alkali agent. In some cases, the former may be an aqueous solution of copper chloride, copper carbonate, copper nitrate, etc., and the latter may be used as long as it is an alkaline agent that does not affect others, and a copper salt aqueous solution having a predetermined concentration. Separately, an alkaline aqueous solution of a predetermined concentration is prepared separately, and both solutions are mixed and immediately stirred vigorously, or the copper hydroxide aqueous solution is continuously added to the copper salt aqueous solution with stirring, and the copper hydroxide precipitation reaction proceeds. However, if this atmosphere is changed from a conventional inert gas atmosphere to an oxygen-containing gas atmosphere (air) to precipitate copper hydroxide, the intermediate reduction is relatively large. Cuprous oxide a particle size, typically cuprous oxide particle size of about 0.5~1.5μm is obtained. On the other hand, when copper hydroxide is deposited under the same conditions except for the nitrogen atmosphere, cuprous oxide with a small particle size of about 0.3 μm is obtained. In the case of cuprous oxide having such a small particle size, it is difficult to obtain metallic copper powder having the neck as described above.

そのさい,液中のMg,Ca,Zn,Na,Al,Feなどの不純物濃度が高いとそのような大きな粒径の亜酸化銅が得難い。とりわけ,液中のFeは大きな粒径の亜酸化銅を得るのに妨げる作用が強い。したがって,これらの不純物濃度はできるだけ少なくするのがよく,Feは50ppm以下,不純物全体としても70ppm以下,好ましくは50ppm以下とするのがよい。このような不純物は出発原料の銅塩に同伴するのが普通であり,したがって,できるだけ純度の高い銅塩を使用するのがよい。   At that time, if the concentration of impurities such as Mg, Ca, Zn, Na, Al, and Fe in the liquid is high, cuprous oxide having such a large particle size is difficult to obtain. In particular, Fe in the liquid has a strong effect of preventing the obtaining of cuprous oxide having a large particle size. Therefore, the concentration of these impurities should be as low as possible, Fe should be 50 ppm or less, and the total impurities should be 70 ppm or less, preferably 50 ppm or less. Such impurities are usually accompanied by the starting copper salt. Therefore, it is recommended to use a copper salt with the highest possible purity.

析出した水酸化銅の懸濁液に対して,還元剤を添加して亜酸化銅に還元(中間還元)する場合には,還元剤としてグルコース(ブドウ糖)が使用できる。この中間還元工程は不活性ガス雰囲気下で昇温しながら行うのがよい。そして,この中間還元処理を終えたあと,雰囲気ガスを酸素含有ガスに代え,この酸素含有ガスを液中にバブリングするのがよい。   When a reducing agent is added to the precipitated copper hydroxide suspension to reduce it to cuprous oxide (intermediate reduction), glucose (glucose) can be used as the reducing agent. This intermediate reduction step is preferably performed while raising the temperature in an inert gas atmosphere. After the intermediate reduction treatment, the atmosphere gas is preferably replaced with an oxygen-containing gas and the oxygen-containing gas is bubbled into the liquid.

中間還元後にこのような酸化処理を行うことにより,液のpHは5〜9となるが,吹き込む酸素含有ガスの量を多くするにつれて最終還元されたときの銅の単位粒子の粒径は大きくなる傾向にある。酸素含有ガスの吹き込み量は流量と吹き込み時間で決まるが,この流量と吹き込み時間を調節することにより,単位粒子の粒径制御ができ,この酸化処理を行うと,行わない場合に比べて,単位粒子の粒度分布の幅が狭くなって粒径の揃った単位粒子が得られ,しかも,単位粒子の形状も,ボール状になることがわかった。このような成果を得るに必要な酸素含有ガスの吹き込み量は,液中の銅1モルに対して酸素量が少なくとも0.1モル以上となるように流量と吹き込み時間を調節するのがよい。吹き込み量の上限については特に規制しないが,あまり吹き込み量が多くなっても効果が飽和するので,吹き込みの仕方にもよるが,液中の銅1モルに対して酸素量が20モル以下,場合によっては10モル以下であってもよい。吹き込む酸素含有ガスとしては空気の使用が最も便利であり,特別のことがない限り,常温の空気を常温の懸濁液に吹き込めばよい。もちろん酸素富化空気や純酸素ガスも使用できる。   By performing such oxidation treatment after the intermediate reduction, the pH of the liquid becomes 5-9, but as the amount of oxygen-containing gas blown is increased, the particle size of the copper unit particles when final reduction is increased There is a tendency. The flow rate of the oxygen-containing gas is determined by the flow rate and the blow time. By adjusting the flow rate and the blow time, the particle size of the unit particles can be controlled. It was found that unit particles having a uniform particle size were obtained by narrowing the particle size distribution of the particles, and the shape of the unit particles was ball-shaped. The amount of oxygen-containing gas necessary to obtain such a result is preferably adjusted so that the amount of oxygen is at least 0.1 mol or more per 1 mol of copper in the liquid. The upper limit of the blowing amount is not particularly restricted, but the effect is saturated even if the blowing amount is too large, so depending on the blowing method, the oxygen amount is 20 mol or less per 1 mol of copper in the liquid. Depending on the case, it may be 10 mol or less. Air is most convenient as the oxygen-containing gas to be blown. Unless otherwise specified, room temperature air may be blown into the room temperature suspension. Of course, oxygen-enriched air or pure oxygen gas can also be used.

次いで,この懸濁液を不活性ガス雰囲気下でデカンテーションし,その上澄液を除去することにより,沈殿を採取し,この沈殿を新たな水中に懸濁させ,還元剤として抱水ヒドラジンを用いて金属銅にまで最終還元する。こうして得られた液中の金属銅を液から分離し,これを耐酸化性付与のための表面処理を施し,或いは施すことなく,乾燥することにより,本発明に従うネックをもつ金属銅粉を得ることができる。   The suspension is then decanted under an inert gas atmosphere, and the supernatant is removed to collect a precipitate. The precipitate is suspended in fresh water, and hydrazine hydrate is added as a reducing agent. Used to final reduction to copper metal. The metallic copper in the liquid thus obtained is separated from the liquid and dried with or without surface treatment for imparting oxidation resistance to obtain a metallic copper powder having a neck according to the present invention. be able to.

したがって,本発明によれば,銅塩水溶液とアルカリ剤を反応させて水酸化銅を析出させた懸濁液に還元剤を添加して亜酸化銅にまで中間還元し,次いで還元剤で金属銅にまで水中で最終還元する銅粉の製造法において,水酸化銅を析出させる工程を酸素含有ガス雰囲気下で実施すること,水酸化銅を析出させる液中のFe濃度を50ppm以下とすること,さらには,亜酸化銅にまで中間還元したあと酸素含有ガス吹き込みで酸化処理すること,を特徴とするネックをもつ金属銅粒子からなる銅粉の製法を提供する。   Therefore, according to the present invention, a reducing agent is added to a suspension obtained by reacting an aqueous copper salt solution with an alkali agent to precipitate copper hydroxide, and intermediate reduction to cuprous oxide is performed. In the method for producing a copper powder that is finally reduced in water, the step of precipitating copper hydroxide is carried out in an oxygen-containing gas atmosphere, the Fe concentration in the liquid for precipitating copper hydroxide is 50 ppm or less, Furthermore, the present invention provides a method for producing a copper powder comprising metallic copper particles having a neck characterized by performing an intermediate reduction to cuprous oxide followed by oxidation treatment by blowing an oxygen-containing gas.

〔実施例1〕次の硫酸銅水溶液Aとアルカリ水溶液Bを準備した。
硫酸銅水溶液A:
〔CuSO4・5H2O:0.6925Kg〕+〔純水:2.20Kg〕
アルカリ水溶液B:
〔濃度48.1%のNaOH水溶液:0.545Kg〕+〔純水:4.15Kg〕
[Example 1] The following aqueous copper sulfate solution A and alkaline aqueous solution B were prepared.
Copper sulfate aqueous solution A:
[CuSO 4 .5H 2 O: 0.6925 Kg] + [pure water: 2.20 Kg]
Alkaline aqueous solution B:
[48.1% NaOH aqueous solution: 0.545 kg] + [pure water: 4.15 kg]

温度27℃に保持した該アルカリ水溶液Bに,温度29℃の該硫酸銅水溶液Aを大気雰囲気中で全量添加し強攪拌する。液中のFe濃度は50ppm以下であり,他の不純物も痕跡程度しか存在しない。発熱によりA+Bの液の温度は32℃まで上昇し,水酸化銅が析出した懸濁液が得られる。この液のpHは13.2である。A液とB液の混合量比は,液中の銅に対して苛性ソーダの当量比が1.20である。   The entire amount of the copper sulfate aqueous solution A at a temperature of 29 ° C. is added to the alkaline aqueous solution B maintained at a temperature of 27 ° C. in an air atmosphere and vigorously stirred. The Fe concentration in the liquid is 50 ppm or less, and there are only traces of other impurities. The temperature of the A + B liquid rises to 32 ° C. due to heat generation, and a suspension in which copper hydroxide is precipitated is obtained. The pH of this solution is 13.2. The mixing ratio of the liquid A and the liquid B is 1.20 equivalent ratio of caustic soda to copper in the liquid.

得られた水酸化銅懸濁液の全量に対し,純水1.41Kgに0.9935Kgのブドウ糖を溶かしたブドウ糖溶液を添加し,添加後38分間で液の温度を70℃まで昇温したあと,15分間保持する。この時の液のpHは7.8である。この処理は窒素雰囲気下で行う。   After adding a glucose solution in which 0.9935 kg of glucose was dissolved in 1.41 kg of pure water to the total amount of the obtained copper hydroxide suspension, the temperature of the solution was raised to 70 ° C. in 38 minutes after the addition. , Hold for 15 minutes. The pH of the liquid at this time is 7.8. This treatment is performed in a nitrogen atmosphere.

ついで,この液中に0.7リットル/分の流量で420分間にわたって空気をバブリングさせて液を酸化させる。これにより,液のpHは5.76となる。亜酸化銅の粒径はほぼ0.7μmである。   Next, air is bubbled through the liquid at a flow rate of 0.7 liter / min for 420 minutes to oxidize the liquid. As a result, the pH of the liquid becomes 5.76. The particle size of cuprous oxide is approximately 0.7 μm.

この懸濁液を窒素雰囲気中で2日間静置したあと,上澄液(pH5.99)を除去し,亜酸化銅の沈殿をほぼ全量採取し,これに,純水0.55Kgを追加する。この亜酸化銅の懸濁液全量に対し,抱水ヒドラジン0.074Kgを数回に分けて添加する。発熱反応により液の温度は50℃から最終的に80℃まで昇温し反応が終了する。反応終了後の懸濁液を固液分離し,粉体を採取し,これを120℃の窒素雰囲気中で乾燥して銅粉を得る。   The suspension is allowed to stand in a nitrogen atmosphere for 2 days, after which the supernatant (pH 5.9) is removed, almost all of the cuprous oxide precipitate is collected, and 0.55 kg of pure water is added thereto. . 0.074 kg of hydrazine hydrate is added in several portions to the total amount of the cuprous oxide suspension. Due to the exothermic reaction, the temperature of the liquid is finally raised from 50 ° C. to 80 ° C. to complete the reaction. After the completion of the reaction, the suspension is subjected to solid-liquid separation, and powder is collected and dried in a nitrogen atmosphere at 120 ° C. to obtain copper powder.

この方法で得られた銅粉の電子顕微鏡SEM像を図1〜2に示した。この銅粉は,本文に説明したように,粒径2.5〜5.0μmの単位粒子がネックをもって接合した接合銅粒子を含む銅粉であり,SEM像において接合銅粒子を数えると,接合銅粒子の数は粒子全体のおよそ40%であった。   The electron microscope SEM images of the copper powder obtained by this method are shown in FIGS. As described in the text, this copper powder is a copper powder containing bonded copper particles in which unit particles having a particle size of 2.5 to 5.0 μm are bonded with a neck. The number of copper particles was approximately 40% of the total particles.

従来の銅系の導電ペーストと同様の処法に従って,この銅粉30gとフェノール系樹脂7.5gとを混練してペーストを作成し,これを硝子基板上に厚み30μmで塗膜化し,乾燥したあと,電気抵抗を測定した。その結果,該塗膜の体積抵抗は3.12×10-3Ω・cmであった。 In accordance with the same treatment method as conventional copper-based conductive paste, 30 g of this copper powder and 7.5 g of phenol-based resin were kneaded to prepare a paste, which was coated on a glass substrate with a thickness of 30 μm and dried. After that, the electrical resistance was measured. As a result, the volume resistance of the coating film was 3.12 × 10 −3 Ω · cm.

〔比較例1〕次の硫酸銅水溶液Aとアルカリ水溶液B’を準備した。
硫酸銅水溶液A:
〔CuSO4・5H2O:0.6925Kg〕+〔純水:2.20Kg〕
アルカリ水溶液B’:
〔濃度49.0%のNaOH水溶液:0.541Kg〕+〔純水:4.15Kg〕
[Comparative Example 1] The following aqueous copper sulfate solution A and alkaline aqueous solution B 'were prepared.
Copper sulfate aqueous solution A:
[CuSO 4 .5H 2 O: 0.6925 Kg] + [pure water: 2.20 Kg]
Alkaline aqueous solution B ′:
[49.0% NaOH aqueous solution: 0.541 Kg] + [pure water: 4.15 Kg]

温度27℃に保持した該アルカリ水溶液B’に,温度29℃の該硫酸銅水溶液Aを窒素ガス雰囲気中で全量添加し強攪拌する。液中のFe濃度は50ppm以下であり,他の不純物も痕跡程度しか存在しない。発熱によりA+B’の液の温度は32.9℃まで上昇し,水酸化銅が析出した懸濁液が得られる。この液のpHは12.9である。A液とB’液の混合量比は,液中の銅に対して苛性ソーダの当量比が1.19である。   The entire amount of the copper sulfate aqueous solution A at a temperature of 29 ° C. is added to the alkaline aqueous solution B ′ maintained at a temperature of 27 ° C. in a nitrogen gas atmosphere and stirred vigorously. The Fe concentration in the liquid is 50 ppm or less, and there are only traces of other impurities. Due to heat generation, the temperature of the A + B ′ liquid rises to 32.9 ° C., and a suspension in which copper hydroxide is precipitated is obtained. The pH of this solution is 12.9. The mixing ratio of the A liquid and the B 'liquid is 1.19 in terms of the equivalent ratio of caustic soda to copper in the liquid.

得られた水酸化銅懸濁液の全量に対し,純水1.41Kgに0.9935Kgのブドウ糖を溶かしたブドウ糖溶液を添加し,添加後38分間で液の温度を70℃まで昇温したあと,15分間保持する。この時の液のpHは7.8である。この処理は窒素雰囲気下で行う。   After adding a glucose solution in which 0.9935 kg of glucose was dissolved in 1.41 kg of pure water to the total amount of the obtained copper hydroxide suspension, the temperature of the solution was raised to 70 ° C. in 38 minutes after the addition. , Hold for 15 minutes. The pH of the liquid at this time is 7.8. This treatment is performed in a nitrogen atmosphere.

ついで,この液中に0.7リットル/分の流量で420分間にわたって空気をバブリングさせて液を酸化させる。これにより,液のpHは5.80となる。亜酸化銅の粒径はほぼ0.3μmである。   Subsequently, air is bubbled into this liquid at a flow rate of 0.7 liter / min for 420 minutes to oxidize the liquid. As a result, the pH of the liquid becomes 5.80. The particle size of cuprous oxide is approximately 0.3 μm.

この懸濁液を窒素雰囲気中で2日間静置したあと,上澄液(pH6.02)を除去し,亜酸化銅の沈殿をほぼ全量採取し,これに,純水0.55Kgを追加する。この亜酸化銅の懸濁液全量に対し,抱水ヒドラジン0.074Kgを数回に分けて添加する。発熱反応により液の温度は50℃から最終的に80℃まで昇温し反応が終了する。反応終了後の懸濁液を固液分離し,粉体を採取し,これを120℃の窒素雰囲気中で乾燥して銅粉を得る。   After leaving this suspension in a nitrogen atmosphere for 2 days, the supernatant (pH 6.02) is removed, almost all of the cuprous oxide precipitate is collected, and 0.55 kg of pure water is added thereto. . 0.074 kg of hydrazine hydrate is added in several portions to the total amount of the cuprous oxide suspension. Due to the exothermic reaction, the temperature of the liquid is finally raised from 50 ° C. to 80 ° C. to complete the reaction. After the completion of the reaction, the suspension is subjected to solid-liquid separation, and powder is collected and dried in a nitrogen atmosphere at 120 ° C. to obtain copper powder.

この方法で得られた銅粉の電子顕微鏡SEM像を図3〜4に示した。この銅粉は,本文に説明したように,平均粒径がほぼ6.0μmのボール状の粒子からなり,ネックは有していない。   The electron microscope SEM images of the copper powder obtained by this method are shown in FIGS. As described in the text, this copper powder is made of ball-like particles having an average particle diameter of approximately 6.0 μm and has no neck.

実施例1と全く同様にしてこの銅粉30gとフェノール系樹脂7.5gとを混練してペーストを作成し,これを硝子基板上に厚み30μmで塗膜化し,乾燥したあと,電気抵抗を測定した。その結果,該塗膜の体積抵抗は2.76×10-2Ω・cmであった。 In exactly the same manner as in Example 1, 30 g of this copper powder and 7.5 g of phenolic resin were kneaded to prepare a paste, which was coated on a glass substrate with a thickness of 30 μm, dried, and then measured for electrical resistance. did. As a result, the volume resistance of the coating film was 2.76 × 10 −2 Ω · cm.

本発明の実施例1で得られた金属銅粉の電子顕微鏡写真像である。It is an electron micrograph image of the metallic copper powder obtained in Example 1 of the present invention. 図1の中央部の粒子部分を拡大した電子顕微鏡写真像である。It is the electron micrograph image which expanded the particle | grain part of the center part of FIG. 本発明の比較例1で得られた金属銅粉の電子顕微鏡写真像である。It is an electron micrograph image of the metallic copper powder obtained in Comparative Example 1 of the present invention. 図3の中央部やや上の粒子部分を拡大した電子顕微鏡写真像である。It is the electron micrograph image which expanded the particle | grain part in the center part of FIG. 3 slightly.

Claims (8)

2個以上の単位粒子がネック部をもって接合してなる導電ペースト用の接合銅粒子。   Bonded copper particles for a conductive paste formed by bonding two or more unit particles with a neck portion. 2個以上20個以下の単位粒子がネック部をもって接合してなる導電ペースト用の接合銅粒子。   Joined copper particles for a conductive paste formed by joining two or more and 20 or less unit particles with a neck portion. 単位粒子の径が0.5〜10μmである請求項1または2に記載の接合銅粒子。   The bonded copper particles according to claim 1 or 2, wherein the unit particles have a diameter of 0.5 to 10 µm. ネック部の径は,ネック部を挟む両側の単位粒子の径より小さい請求項1または2に記載の導電ペースト用の接合銅粒子。   The bonded copper particles for conductive paste according to claim 1 or 2, wherein the diameter of the neck portion is smaller than the diameter of unit particles on both sides sandwiching the neck portion. 2個以上の単位粒子がネック部をもって接合してなる接合銅粒子と,ネック部を持たない単位粒子とからなる導電ペースト用銅粉末。   A copper powder for a conductive paste, comprising a bonded copper particle formed by bonding two or more unit particles with a neck portion and a unit particle having no neck portion. 接合銅粒子の数が全体の20〜80%である請求項5に記載の導電ペースト用銅粉末。   The copper powder for conductive paste according to claim 5, wherein the number of bonded copper particles is 20 to 80% of the total. 請求項1ないし6のいずれかの導電ペースト用銅粉末を樹脂中に分散させてなる導電ペースト。   A conductive paste obtained by dispersing the copper powder for a conductive paste according to claim 1 in a resin. 樹脂はフエノール系樹脂である請求項7に記載の導電ペースト。   The conductive paste according to claim 7, wherein the resin is a phenol resin.
JP2006325389A 2006-12-01 2006-12-01 Conductive paste Expired - Lifetime JP4660784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006325389A JP4660784B2 (en) 2006-12-01 2006-12-01 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006325389A JP4660784B2 (en) 2006-12-01 2006-12-01 Conductive paste

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15028199A Division JP3918036B2 (en) 1999-05-28 1999-05-28 Copper powder manufacturing method

Publications (2)

Publication Number Publication Date
JP2007165305A true JP2007165305A (en) 2007-06-28
JP4660784B2 JP4660784B2 (en) 2011-03-30

Family

ID=38247949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006325389A Expired - Lifetime JP4660784B2 (en) 2006-12-01 2006-12-01 Conductive paste

Country Status (1)

Country Link
JP (1) JP4660784B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004331A1 (en) 2017-06-30 2019-01-03 積水化学工業株式会社 Conductive paste

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120309A (en) * 1994-10-25 1996-05-14 Daido Steel Co Ltd Manufacture of metallic powder
JPH10330801A (en) * 1997-06-04 1998-12-15 Mitsui Mining & Smelting Co Ltd Fine copper powder and its production
JPH116004A (en) * 1997-06-18 1999-01-12 Sumitomo Metal Mining Co Ltd Manufacture of copper powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120309A (en) * 1994-10-25 1996-05-14 Daido Steel Co Ltd Manufacture of metallic powder
JPH10330801A (en) * 1997-06-04 1998-12-15 Mitsui Mining & Smelting Co Ltd Fine copper powder and its production
JPH116004A (en) * 1997-06-18 1999-01-12 Sumitomo Metal Mining Co Ltd Manufacture of copper powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004331A1 (en) 2017-06-30 2019-01-03 積水化学工業株式会社 Conductive paste
KR20200024742A (en) 2017-06-30 2020-03-09 세키스이가가쿠 고교가부시키가이샤 Conductive paste
US10984921B2 (en) 2017-06-30 2021-04-20 Sekisui Chemical Co., Ltd. Conductive paste

Also Published As

Publication number Publication date
JP4660784B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
US7235119B2 (en) Copper particle clusters and powder containing the same suitable as conductive filler of conductive paste
US6875252B2 (en) Copper powder and process for producing copper powder
US7534283B2 (en) Method of producing copper powder and copper powder
WO2007105636A1 (en) Process for production of ultrafine silver particles and ultrafine silver particles produced by the process
JPH10330801A (en) Fine copper powder and its production
KR20000023067A (en) Metallic powder, manufacturing method thereof and conductive paste
JP3570591B2 (en) Production method of copper powder
JP4651533B2 (en) Method for producing copper particles
US7909908B2 (en) Method of improving the weatherability of copper powder
JP3918036B2 (en) Copper powder manufacturing method
US20020117652A1 (en) Silver-dispersed copper powder, process for producing the powder and conductive paste utilizing the powder
JP4660784B2 (en) Conductive paste
JP4406738B2 (en) Manufacturing method of copper powder with small particle size distribution
JP2007197836A (en) Nickel powder
JP2008069457A (en) Drop-shaped copper powder, method for producing drop-shaped copper powder, and electrically conductive paste
JP3640552B2 (en) Manufacturing method of copper powder with small particle size distribution
JP4012961B2 (en) Production method of plate copper powder
JP3827900B2 (en) Conductive filler and conductive paste
JP2005240164A (en) Nickel powder and manufacturing method therefor
JP3945740B2 (en) Nickel powder
JP2004084069A (en) Inorganic oxide coated metal powder and its manufacturing method
JP2001043734A (en) Nickel powder and manufacture thereof
JP5003668B2 (en) Method for producing oxide-coated copper fine particles
JP3444608B2 (en) Production method of copper fine powder
JP2002226973A (en) Method for manufacturing silver plated copper powder

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term