JP2007165155A - Radiation electron microscope for insulator sample observation using diagonally irradiating method of charged neutralization electron - Google Patents

Radiation electron microscope for insulator sample observation using diagonally irradiating method of charged neutralization electron Download PDF

Info

Publication number
JP2007165155A
JP2007165155A JP2005360977A JP2005360977A JP2007165155A JP 2007165155 A JP2007165155 A JP 2007165155A JP 2005360977 A JP2005360977 A JP 2005360977A JP 2005360977 A JP2005360977 A JP 2005360977A JP 2007165155 A JP2007165155 A JP 2007165155A
Authority
JP
Japan
Prior art keywords
sample
electron
sample surface
insulator
excitation light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005360977A
Other languages
Japanese (ja)
Other versions
JP4831604B2 (en
Inventor
Hideyuki Yasufuku
秀幸 安福
Hideki Yoshikawa
英樹 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005360977A priority Critical patent/JP4831604B2/en
Publication of JP2007165155A publication Critical patent/JP2007165155A/en
Application granted granted Critical
Publication of JP4831604B2 publication Critical patent/JP4831604B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique to obtain a clear electronic image without using an energy filter in which formed charge on a sample surface can be suppressed when an insulator sample installed on the sample board is observed in the field of a radiation electron microscope technology, and provide the radiation electron microscope applying it. <P>SOLUTION: In the method for observing the sample surface by irradiating excitation light onto the insulator sample installed on the sample board and by making photoelectron or secondary electron emitted from the sample surface form an image by a projection type electronic optical system, and in a state that a high electric field or high magnetic field is impressed on the sample face, so that the neutralization electron reflected or elastically scattered after having accomplished antistatic function can be removed by an angle restriction diaphragm (contrast aperture diaphragm) simultaneously with the excitation light, this is the method for observing the insulator sample surface on which charged neutralization electron beam is irradiated in a diagonal direction against the image forming optical axis by adjusting electro-optical conditions of a beam polarizer or a beam separator. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、帯電中和電子の斜め照射法を用いた絶縁物試料観察用放射電子顕微鏡に関す
る。
The present invention relates to a radiation electron microscope for observing an insulator sample using an oblique irradiation method of charged neutralized electrons.

放射電子顕微鏡には、試料面上に強電場や強磁場を印加しない方式と試料面上に強電場
や強磁場を印加する方式がある。前者の、試料面上に強電場や強磁場を印加しない方式の
装置であれば、数eV程度の低速の電子ビームを試料に照射し、絶縁物試料の帯電を抑制す
る方法があった(例えば、特許文献1,2)。
The radiation electron microscope includes a method in which a strong electric field or a strong magnetic field is not applied on the sample surface and a method in which a strong electric field or a strong magnetic field is applied on the sample surface. If the former is a device that does not apply a strong electric field or a strong magnetic field on the sample surface, there is a method of irradiating the sample with a low-speed electron beam of about several eV to suppress charging of the insulator sample (for example, Patent Documents 1, 2).

後者の、試料面上に強電場や強磁場を印加する方式の装置であれば、一般に対物レンズ
によって回転対称な電場や磁場を発生させて使う。この回転対称な電場や磁場の回転中心
に沿って、数eV程度の低速の電子ビームを試料に照射し、絶縁物試料の帯電を抑制する方
法があった。なお、帯電抑制のために試料に照射する電子を、帯電を中和するという意味
で中和電子と呼称する。
In the latter case, a device that applies a strong electric field or a strong magnetic field on a sample surface is generally used by generating a rotationally symmetric electric field or magnetic field by an objective lens. There has been a method of suppressing charging of the insulating sample by irradiating the sample with a low-speed electron beam of about several eV along the rotationally symmetric electric field or the rotation center of the magnetic field. In addition, the electrons irradiated to the sample for suppressing charging are referred to as neutralizing electrons in the sense of neutralizing charging.

特開2000−277048号公報JP 2000-277048 A 特開2000−340160号公報JP 2000-340160 A

しかし、後者の場合、試料に照射した中和電子が、反射又は弾性散乱して観測する光電
子像にかぶってしまう問題点があった。一般に、十分な帯電抑制効果を得るには、光電子
強度に対して数桁以上の強度を持つ中和電子を試料に照射するため、大強度の中和電子が
微弱な光電子像にかぶってしまえば、光電子像を観察することが困難となってしまうから
である。この問題点を解決するためには、結像電子光学系内部にエネルギーフィルターを
組み込んで、反射又は弾性散乱した中和電子を取り除く必要があった。
However, in the latter case, there is a problem that the neutralized electrons irradiated on the sample are covered with a photoelectron image observed by reflection or elastic scattering. In general, in order to obtain a sufficient charge suppression effect, the sample is irradiated with neutralizing electrons having an intensity of several orders of magnitude or more with respect to the photoelectron intensity. This is because it becomes difficult to observe the photoelectron image. In order to solve this problem, it is necessary to incorporate an energy filter in the imaging electron optical system to remove the reflected or elastically scattered neutralized electrons.

先に出願した(特願2005−172859)本発明者等の発明に関わる手法及び装置
は、絶縁物試料面上に強電場又は強磁場が印加された状態で中和電子を照射して帯電抑制
をするもので、中和電子ビームを結像光軸上から試料に垂直に照射することで強電場又は
強磁場に妨害されることなく中和電子を十分な強度で試料に到達させられるようにしたも
のであった。
The method and apparatus relating to the inventors' invention previously filed (Japanese Patent Application No. 2005-172859) are designed to suppress charging by irradiating neutralizing electrons in a state where a strong electric field or a strong magnetic field is applied to the surface of the insulator sample. By irradiating the sample with the neutralizing electron beam perpendicularly from the imaging optical axis, the neutralizing electron can reach the sample with sufficient intensity without being disturbed by the strong electric field or strong magnetic field. Was.

しかし、この方法では、試料で反射又は弾性散乱した中和電子ビームと光電子が同一の
角度を持つ電子軌道を描いて結像されるため、観測する光電子像から反射又は弾性散乱し
た中和電子をエネルギーフィルターなどを用いて取り除く必要があり、装置構成が複雑に
なる問題点があった。
However, in this method, the neutralized electron beam reflected or elastically scattered by the sample and the photoelectron are imaged by drawing an electron trajectory having the same angle, so that the neutralized electron reflected or elastically scattered from the observed photoelectron image is removed. There is a problem that the configuration of the apparatus becomes complicated because it is necessary to remove it by using an energy filter or the like.

光電子顕微鏡に代表される放射電子顕微鏡は、試料台に設置した試料から放出される光
電子などの荷電粒子を強電場や強磁場で引き出して結像し、拡大像を得る電子顕微鏡であ
る。本発明は、この放射電子顕微鏡技術の分野において、試料台に設置した絶縁物試料を
観察した際に生じる試料表面の帯電を抑制し、エネルギーフィルターを用いること無く鮮
明な電子像を得るための手法と、それを応用した放射電子顕微鏡を提供する。
A radiant electron microscope typified by a photoelectron microscope is an electron microscope that obtains an enlarged image by drawing charged particles such as photoelectrons emitted from a sample placed on a sample stage with a strong electric field or a strong magnetic field. The present invention is a technique for suppressing the charging of the surface of a sample that occurs when an insulating sample placed on a sample stage is observed and obtaining a clear electronic image without using an energy filter. And a radiation electron microscope using it.

試料台に設置した絶縁物試料面上に強電場や強磁場が存在する中で、エネルギーフィル
ターを用いずに、試料で反射又は弾性散乱した帯電中和電子を取り除くため、本発明では
帯電中和電子ビームを対物レンズによって作られる回転対称な電場や磁場の回転中心に一
致する結像光軸の方向から少し斜めに傾け(電子光学系の設計に依るが400μmφの角
度制限絞りを使用した場合でおよそ27°)、角度を持たせて試料に照射する方式(以下
、適宜「斜め照射方式」という)とした。
In the present invention, in order to remove the charged neutralized electrons reflected or elastically scattered from the sample without using an energy filter in the presence of a strong electric field or strong magnetic field on the surface of the insulator sample placed on the sample stage, the present invention neutralizes the charge neutralization. The electron beam is tilted slightly obliquely from the direction of the imaging optical axis that coincides with the rotationally symmetric electric field or magnetic field rotation center created by the objective lens (depending on the design of the electron optical system, when using an angle-limiting aperture of 400 μmφ The sample was irradiated at an angle (approximately 27 °) (hereinafter referred to as “oblique irradiation method” as appropriate).

すなわち、本発明は、(1)試料台に設置した絶縁物試料に励起光を照射し、試料表面
から放出された光電子又は二次電子を投影型電子光学系により結像させて試料表面を観察
する方法において、試料面上に強電場又は強磁場が印加された状態で、励起光と同時に、
帯電中和電子ビームをビーム偏向器又はビームセパレータの電子光学条件を調整すること
により結像光軸に対して斜め方向から試料表面に照射するとともに試料表面で反射又は弾
性散乱した中和電子を角度制限絞り(コントラスト絞り)で除去することを特徴とする絶
縁物試料表面を観察する方法、である。
That is, the present invention (1) irradiates an insulating sample placed on a sample stage with excitation light, forms photoelectrons or secondary electrons emitted from the sample surface with a projection electron optical system, and observes the sample surface In the method to perform, in the state where a strong electric field or a strong magnetic field is applied on the sample surface, simultaneously with the excitation light,
By adjusting the electron optical conditions of the beam deflector or beam separator, the charged neutralized electron beam is irradiated onto the sample surface obliquely with respect to the imaging optical axis, and the neutralized electrons reflected or elastically scattered from the sample surface are angled. This is a method for observing the surface of an insulator sample, which is characterized by removing with a limiting diaphragm (contrast diaphragm).

また、(2)励起光と同時に、帯電抑制用光ビームを試料表面に照射することを特徴と
する上記(1)の絶縁物試料表面を観察する方法、である。
Also, (2) the method of observing the surface of an insulator sample according to (1) above, wherein the sample surface is irradiated with a light beam for suppressing charging simultaneously with the excitation light.

また、(3)絶縁物試料を載せる試料台と、励起光を照射する光源と、試料面から放出
される光電子や二次電子を結像する電子光学系とを有し、試料面上に強電場又は強磁場が
印加された状態で、試料の帯電を抑さえる機能を持つ帯電中和電子線源又は帯電抑制用光
ビームを試料表面に照射する紫外光源を有し、かつ帯電中和電子ビームを結像光軸に対し
て斜め方向から試料表面に照射するビーム偏向器及び結像光軸内に設置された角度制限絞
り(コントラスト絞り)を有することを特徴とする放射電子顕微鏡、である。
And (3) a sample stage on which an insulator sample is placed, a light source that emits excitation light, and an electron optical system that forms an image of photoelectrons and secondary electrons emitted from the sample surface. A charged neutralized electron beam having a function of suppressing charging of the sample with an electric field or strong magnetic field applied, or an ultraviolet light source for irradiating the sample surface with a light beam for suppressing charging A radiation deflector that irradiates the sample surface from a direction oblique to the imaging optical axis, and an angle limiting aperture (contrast aperture) installed in the imaging optical axis.

また、(4)試料と対物レンズの間の電位を調整できる磁場電場重畳型対物レンズを備
えたことを特徴とする上記(3)の放射電子顕微鏡、である。
(4) The radiation electron microscope according to (3), further including a magnetic field electric field superposition type objective lens capable of adjusting a potential between the sample and the objective lens.

放射電子顕微鏡で観測される像は、主に試料表面の垂直方向に放出された光電子又は二
次電子を結像する。一方、帯電中和電子ビームを結像光軸に対して斜め方向から試料表面
に照射すると、帯電中和電子は試料上で鏡面反射を起こして試料表面の垂直方向に対して
照射角と同じ角度を持って反射される。
An image observed with a radiation electron microscope forms mainly photoelectrons or secondary electrons emitted in a direction perpendicular to the sample surface. On the other hand, when the charged neutralized electron beam is irradiated onto the sample surface from an oblique direction with respect to the imaging optical axis, the charged neutralized electrons cause a specular reflection on the sample and the same angle as the irradiation angle with respect to the vertical direction of the sample surface. Is reflected.

ここで、結像光軸内に設置された角度制限絞り(コントラスト絞り)を用いて、角度を
持った中和電子ビームを取り除くことで、エネルギーフィルターを用いることなく微弱な
光電子又は二次電子と大強度の中和電子を切り分けることができ、光電子又は二次電子像
を容易に観測することが可能となる。
Here, by using an angle limiting diaphragm (contrast diaphragm) installed in the imaging optical axis, the neutralized electron beam having an angle is removed, so that weak photoelectrons or secondary electrons can be obtained without using an energy filter. High-intensity neutralized electrons can be separated, and a photoelectron or secondary electron image can be easily observed.

従来の放射電子顕微鏡では絶縁物の観察にエネルギーフィルターが必要であり非常に複
雑な装置が必要であったが、本発明の斜め照射方式により、そのエネルギーフィルターを
必要としない簡便な装置で観察を可能にする。
The conventional radiation electron microscope requires an energy filter for observation of the insulator and requires a very complicated device, but the oblique irradiation method of the present invention allows observation with a simple device that does not require the energy filter. enable.

図1に、本発明の装置の一例を示す。試料台(図示せず)に設置した絶縁物試料11の
表面に励起光ビームの経路80に沿って照射される光源として励起光源(X線源)21、
試料11の表面に帯電抑制用光ビームの経路82に沿って照射される紫外光源22、試料
11の表面に中和電子ビームの経路81に沿って照射される中和電子線源(電子銃)31
が、電子顕微鏡の基本光学系に付属している。
FIG. 1 shows an example of the apparatus of the present invention. An excitation light source (X-ray source) 21 as a light source that is irradiated along the path 80 of the excitation light beam onto the surface of the insulator sample 11 placed on a sample stage (not shown);
An ultraviolet light source 22 that irradiates the surface of the sample 11 along the path 82 of the light beam for suppressing charging, and a neutralized electron beam source (electron gun) that irradiates the surface of the sample 11 along the path 81 of the neutralized electron beam. 31
Is attached to the basic optical system of the electron microscope.

ビームセパレータ61により中和電子線は、結像ビームの経路(結像光軸)90に沿っ
て試料11の表面に照射することができる。試料11には、負の高電圧がかかっている。
X線や紫外線を試料11に斜めから当てられるようになっており、試料11から放出され
た電子を電子レンズ系41−51(対物レンズ41、投影型電子光学系の磁界レンズ42
,43,44,45、投影型電子光学系のビーム偏向器46,47,48,49、投影型
電子光学系のスティグメータ50,51)で結像し、検出器71を介してCCDカメラ7
2で観察する。
The neutralizing electron beam can be irradiated to the surface of the sample 11 along the path (imaging optical axis) 90 of the imaging beam by the beam separator 61. A high negative voltage is applied to the sample 11.
X-rays and ultraviolet rays can be applied to the sample 11 at an angle, and electrons emitted from the sample 11 are converted into electron lens systems 41-51 (objective lens 41, magnetic lens 42 of a projection electron optical system).
, 43, 44, 45, projection electron optical system beam deflectors 46, 47, 48, 49, projection electron optical system stigmeters 50, 51), and CCD camera 7 via detector 71.
Observe at 2.

中和電子線源31から出て中和電子ビームの経路81に沿って照射された中和電子線は
、ビームセパレータ61を用いて結像光軸90上に導かれ、通常は試料11に垂直に照射
するため、試料11の表面上の強電場や磁場に妨げられることなく試料11に到達する。
The neutralized electron beam emitted from the neutralized electron beam source 31 and irradiated along the path 81 of the neutralized electron beam is guided onto the imaging optical axis 90 using the beam separator 61 and is usually perpendicular to the sample 11. Therefore, it reaches the sample 11 without being disturbed by a strong electric field or magnetic field on the surface of the sample 11.

この中和電子線を用いて試料11の帯電を中和するためには、電子銃31の電位を試料
11の電位と同じ値か又は負極性に僅かにずらした(試料の形状や帯電状況に依るが1〜
5eV程度)値に設定する。その様にすると、試料11の表面が帯電する前の中性の状態の
ときは、中和電子ビームの試料11に対する照射エネルギーはほぼ0eVであり、照射電子
は試料11の表面電位にはじき返されて試料11の表面に当たらずに反射させられる。こ
の様に、試料11の表面電位で反射された電子を反射電子と呼ぶ。
In order to neutralize the charging of the sample 11 using this neutralized electron beam, the potential of the electron gun 31 is shifted to the same value as the potential of the sample 11 or slightly to the negative polarity (depending on the shape and charging state of the sample). 1 to
Set to a value of about 5 eV. By doing so, when the surface of the sample 11 is in a neutral state before charging, the irradiation energy of the neutralized electron beam to the sample 11 is approximately 0 eV, and the irradiated electrons are repelled by the surface potential of the sample 11. Thus, the light is reflected without hitting the surface of the sample 11. Thus, the electrons reflected by the surface potential of the sample 11 are called reflected electrons.

試料11にX線や紫外線などを照射することによって光電子又は二次電子放出が起こっ
て試料11が正極性に帯電すると、電子銃31の電位と試料11の電位に差が生じる。こ
の電位差が発生すると、照射した中和電子ビームが電位差分の運動エネルギーを持って試
料11の表面に当たり始めて、試料11の表面に生じた帯電が中和される。
When the sample 11 is irradiated with X-rays or ultraviolet rays to emit photoelectrons or secondary electrons and the sample 11 is positively charged, a difference occurs between the potential of the electron gun 31 and the potential of the sample 11. When this potential difference occurs, the irradiated neutralized electron beam starts to strike the surface of the sample 11 with the kinetic energy of the potential difference, and the charge generated on the surface of the sample 11 is neutralized.

試料11の表面の帯電が中和されると試料11の電位が元に戻り、入射電子は再び試料
11の表面直前で反射されるようになる。この様にして、試料11の電位のバランスが取
れたところで中和が完了する。
When the charge on the surface of the sample 11 is neutralized, the potential of the sample 11 returns to its original state, and incident electrons are reflected again immediately before the surface of the sample 11. In this way, neutralization is completed when the potential of the sample 11 is balanced.

このとき、中和電子ビームを試料11の表面に対して垂直に照射すると、反射電子や弾
性散乱された電子が観測したい光電子像にかぶる問題が生じる(図2(a)参照)。図2(a)
は、試料11から放出された光電子が対物レンズ41を介して像面100における結像の
ために描く結像光電子の電子軌道110−112である。
At this time, if a neutralized electron beam is irradiated perpendicularly to the surface of the sample 11, a problem occurs in which reflected electrons and elastically scattered electrons are covered with a photoelectron image to be observed (see FIG. 2A). Fig. 2 (a)
Is the electron trajectory 110-112 of the imaging photoelectrons that the photoelectrons emitted from the sample 11 draw for imaging on the image plane 100 via the objective lens 41.

図2(b)は、結像光軸に対して斜め方向から照射した中和電子ビームの電子軌道11
3を実線で示す。試料11で反射又は弾性散乱した中和電子のみを角度制限絞りCAで取
り除くことができる。点線は、(a)で示した結像光電子の電子軌道である。なお、角度
制限絞りは、透過電子顕微鏡(TEM)では一般的に「回折絞り」といわれる部品であり
、他に「コントラスト絞り」とも呼ばれる。本件発明では、放出された光電子又は二次電
子の角度の制限を行うため、「角度制限絞り」と記載している。
FIG. 2B shows an electron trajectory 11 of a neutralized electron beam irradiated from an oblique direction with respect to the imaging optical axis.
3 is indicated by a solid line. Only neutralized electrons reflected or elastically scattered by the sample 11 can be removed by the angle limiting aperture CA. A dotted line is the electron orbit of the imaging photoelectron shown in (a). The angle limiting diaphragm is a component generally called a “diffraction diaphragm” in a transmission electron microscope (TEM), and is also called a “contrast diaphragm”. In the present invention, in order to limit the angle of the emitted photoelectron or secondary electron, it is described as “angle limit stop”.

一般に、十分な帯電抑制効果を得るには、光電子強度に対して数桁以上の強度を持つ中
和電子を試料に照射するため、大強度の反射電子が微弱な光電子像にかぶってしまえば、
光電子像を観察することが事実上不可能となる。
In general, in order to obtain a sufficient charge suppression effect, the sample is irradiated with neutralization electrons having an intensity of several orders of magnitude or more with respect to the photoelectron intensity.
It is virtually impossible to observe the photoelectron image.

従来は、この反射電子を取り除くために結像電子光学系にエネルギーフィルターを内蔵
し、エネルギーフィルターを用いて光電子を選別し結像することによって表面の観測を行
っていた。
Conventionally, in order to remove the reflected electrons, an energy filter is built in the imaging electron optical system, and the surface is observed by selecting and imaging photoelectrons using the energy filter.

それに対し、本発明では、図2(b)に示すように、電子銃31のビーム偏向器35を
用いてビームを大きく外に振ってビームセパレータ61を用いてそのビームを振り戻すよ
うに電子光学条件を調整することによって中和電子ビームを試料11の表面に対して鉛直
方向から少しずらして斜めに(電子光学系の設計に依るが、直径400μmの角度制限絞
りを使用した場合でおよそ27°)照射することで、帯電抑制機能を果たした後の中和電
子は照射方向に対して鏡面反射方向に反射又は弾性散乱する。
On the other hand, in the present invention, as shown in FIG. 2B, the beam is deflected greatly by using the beam deflector 35 of the electron gun 31 and the beam is returned by using the beam separator 61. By adjusting the conditions, the neutralized electron beam is slightly shifted from the vertical direction with respect to the surface of the sample 11 and obliquely (depending on the design of the electron optical system, approximately 27 ° when an angle-limiting aperture having a diameter of 400 μm is used. ) By irradiation, the neutralized electrons after fulfilling the charge suppressing function are reflected or elastically scattered in the specular reflection direction with respect to the irradiation direction.

鏡面反射方向に反射又は弾性散乱した帯電抑制機能を果たした後の中和電子は、結像光
軸(試料の表面に対して鉛直方向)に対して角度を持っているため、図2(b)に示すよ
うに角度制限絞り(コントラスト絞り:CA)を用いて取り除くことが可能であり、エネ
ルギーフィルターなしにX線によって放出された光電子像を容易に観測することができる
Since neutralization electrons after fulfilling the charge suppressing function reflected or elastically scattered in the specular reflection direction have an angle with respect to the imaging optical axis (perpendicular to the surface of the sample), FIG. ), It can be removed by using an angle limiting diaphragm (contrast diaphragm: CA), and a photoelectron image emitted by X-rays can be easily observed without an energy filter.

放射電子顕微鏡のうちで特に光電子を結像に使った光電子顕微鏡装置は、高空間分解能
の化学状態分析装置として産業利用され始めている。従って、本発明の斜め照射方式によ
り、光電子顕微鏡装置で絶縁物の観察が容易に可能になることは、産業利用に貢献し、経
済的効果をもたらす。
Among the electron microscopes, photoelectron microscope devices that use photoelectrons for imaging in particular have begun to be industrially used as chemical state analyzers with high spatial resolution. Accordingly, the fact that the oblique irradiation method of the present invention makes it possible to easily observe an insulator with a photoelectron microscope device contributes to industrial use and brings an economic effect.

放射電子顕微鏡の概略模式図。Schematic schematic diagram of a radiation electron microscope. 試料から放出された結像光電子の電子軌道と中和電子の電子軌道の関係を示す模式図。The schematic diagram which shows the relationship between the electron orbit of the imaging photoelectron discharge | released from the sample, and the electron orbit of a neutralization electron.

符号の説明Explanation of symbols

11:試料
21:励起光源
22:紫外光源
31:中和電子線源
32,33:中和電子ビーム系の磁界レンズ
34,35:中和電子ビーム系のビーム偏向器
36: 中和電子ビーム系のスティグメータ
41:対物レンズ
42,43,44,45:投影型電子光学系の磁界レンズ
46,47,48,49:投影型電子光学系のビーム偏向器
50.51:投影型電子光学系のスティグメータ
61:ビームセパレータ
71:検出器
72:CCDカメラ
80:励起光ビームの経路
81:中和電子ビームの経路
82:帯電抑制用光ビームの経路
90:結像ビームの経路
100:像面
110,111,112:結像光電子の電子軌道
113:中和電子ビームの電子軌道
CA:角度制限絞り(コントラスト絞り・回折絞り)
11: Sample 21: Excitation light source 22: Ultraviolet light source 31: Neutralization electron beam source 32, 33: Magnetic lens 34 of neutralization electron beam system, 35: Beam deflector 36 of neutralization electron beam system: Neutralization electron beam system Stigmator 41: objective lenses 42, 43, 44, 45: magnetic lenses 46, 47, 48, 49 of projection type electron optical system: beam deflector 50.51: of projection type electron optical system Stigmeter 61: Beam separator 71: Detector 72: CCD camera 80: Excitation light beam path 81: Neutralization electron beam path 82: Charge suppression light beam path 90: Imaging beam path 100: Image plane 110 , 111, 112: Electron trajectory of imaging photoelectrons 113: Electron trajectory of neutralizing electron beam CA: Angle limiting aperture (contrast aperture / diffraction aperture)

Claims (4)

試料台に設置した絶縁物試料に励起光を照射し、試料表面から放出された光電子又は二次
電子を投影型電子光学系により結像させて試料表面を観察する方法において、試料面上に
強電場又は強磁場が印加された状態で、励起光と同時に、帯電抑制機能を果たした後に試
料表面で反射又は弾性散乱した中和電子が角度制限絞り(コントラスト絞り)で除去でき
るように、帯電中和電子ビームをビーム偏向器又はビームセパレータの電子光学条件を調
整することにより結像光軸に対して斜め方向から試料表面に照射することを特徴とする絶
縁物試料表面を観察する方法。
In the method of observing a sample surface by irradiating an insulating sample placed on a sample stage with excitation light and forming an image of photoelectrons or secondary electrons emitted from the sample surface with a projection electron optical system, While charging an electric field or strong magnetic field, charging is performed so that neutralization electrons reflected or elastically scattered on the sample surface after performing the charge suppression function simultaneously with the excitation light can be removed with an angle limiting diaphragm (contrast diaphragm) A method of observing an insulator sample surface, wherein the sample surface is irradiated with a sum electron beam from an oblique direction with respect to an imaging optical axis by adjusting an electron optical condition of a beam deflector or a beam separator.
励起光と同時に、帯電抑制用光ビームを試料表面に照射することを特徴とする請求項1記
載の絶縁物試料表面を観察する方法。
2. The method of observing an insulator sample surface according to claim 1, wherein the sample surface is irradiated with a light beam for suppressing charging simultaneously with the excitation light.
絶縁物試料を載せる試料台と、励起光を照射する光源と、試料面から放出される光電子や
二次電子を結像する電子光学系とを有し、試料面上に強電場又は強磁場が印加された状態
で、試料の帯電を抑さえる機能を持つ帯電中和電子線源又は帯電抑制用光ビームを試料表
面に照射する紫外光源を有し、かつ帯電中和電子ビームを結像光軸に対して斜め方向から
試料表面に照射するビーム偏向器及び結像光軸内に設置された角度制限絞り(コントラス
ト絞り)を有することを特徴とする放射電子顕微鏡。
It has a sample stage on which an insulator sample is placed, a light source that emits excitation light, and an electron optical system that images photoelectrons and secondary electrons emitted from the sample surface. A strong electric field or strong magnetic field is generated on the sample surface. A charged neutralization electron beam source having a function of suppressing charging of the sample in an applied state or an ultraviolet light source that irradiates the sample surface with a light beam for suppressing charging, and the charged neutralizing electron beam is applied to the imaging optical axis. A radiation electron microscope comprising: a beam deflector that irradiates the sample surface obliquely with respect to the angle; and an angle limiting diaphragm (contrast diaphragm) installed in the imaging optical axis.
試料と対物レンズの間の電位を調整できる磁場電場重畳型対物レンズを備えたことを特徴
とする請求項3記載の放射電子顕微鏡。
4. A radiation electron microscope according to claim 3, further comprising a magnetic field electric field superposition type objective lens capable of adjusting a potential between the sample and the objective lens.
JP2005360977A 2005-12-14 2005-12-14 Radiation electron microscope for observation of insulator samples using obliquely charged neutralized electron irradiation method Expired - Fee Related JP4831604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005360977A JP4831604B2 (en) 2005-12-14 2005-12-14 Radiation electron microscope for observation of insulator samples using obliquely charged neutralized electron irradiation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005360977A JP4831604B2 (en) 2005-12-14 2005-12-14 Radiation electron microscope for observation of insulator samples using obliquely charged neutralized electron irradiation method

Publications (2)

Publication Number Publication Date
JP2007165155A true JP2007165155A (en) 2007-06-28
JP4831604B2 JP4831604B2 (en) 2011-12-07

Family

ID=38247835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005360977A Expired - Fee Related JP4831604B2 (en) 2005-12-14 2005-12-14 Radiation electron microscope for observation of insulator samples using obliquely charged neutralized electron irradiation method

Country Status (1)

Country Link
JP (1) JP4831604B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004114A (en) * 2007-06-19 2009-01-08 Hitachi Ltd Inspection method and device
US8362428B2 (en) 2007-07-09 2013-01-29 Medical Research Council Transmission electron microscope

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260801A (en) * 1994-03-18 1995-10-13 Nikon Corp Scanning probe microscope
JPH07325052A (en) * 1994-02-25 1995-12-12 Physical Electron Inc Scanning and high-resolution electronic spectroscopy and image pickup device
JP2002056794A (en) * 2000-08-08 2002-02-22 National Institute For Materials Science Objective lens for electron microscope
JP2005174591A (en) * 2003-12-08 2005-06-30 Horon:Kk Charged particle beam device and charged particle beam image generation method
JP2005292013A (en) * 2004-04-02 2005-10-20 Jeol Ltd Surface analyzer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07325052A (en) * 1994-02-25 1995-12-12 Physical Electron Inc Scanning and high-resolution electronic spectroscopy and image pickup device
JPH07260801A (en) * 1994-03-18 1995-10-13 Nikon Corp Scanning probe microscope
JP2002056794A (en) * 2000-08-08 2002-02-22 National Institute For Materials Science Objective lens for electron microscope
JP2005174591A (en) * 2003-12-08 2005-06-30 Horon:Kk Charged particle beam device and charged particle beam image generation method
JP2005292013A (en) * 2004-04-02 2005-10-20 Jeol Ltd Surface analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004114A (en) * 2007-06-19 2009-01-08 Hitachi Ltd Inspection method and device
US8362428B2 (en) 2007-07-09 2013-01-29 Medical Research Council Transmission electron microscope

Also Published As

Publication number Publication date
JP4831604B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
US9129774B2 (en) Method of using a phase plate in a transmission electron microscope
US9455120B2 (en) Particle beam device and method for processing and/or analyzing a sample
TWI803572B (en) Charged particle beam device, sample processing and observation method
JP2008153085A (en) Sample potential information detection method and charged particle beam device
CN108604522B (en) Charged particle beam device and method for adjusting charged particle beam device
JP5848506B2 (en) Image processing method
JP2015141899A (en) Correlative optical and charged particle microscope
US10504684B1 (en) High performance inspection scanning electron microscope device and method of operating the same
US10504691B2 (en) Method for generating a composite image of an object and particle beam device for carrying out the method
JP2007188905A (en) Sample holder for charged particle beam device
JP4831604B2 (en) Radiation electron microscope for observation of insulator samples using obliquely charged neutralized electron irradiation method
US20080149830A1 (en) Ameliorating charge trap in inspecting samples using scanning electron microscope
JPH10312765A (en) Charged particle beam device and processing method for sample using charged particle beam
JP7159011B2 (en) Electron beam device
JP2005108545A (en) Electron/secondary ion microscope device
JP5690610B2 (en) Photoelectron microscope
JP2021068505A (en) Electron beam device and electrode
JP2006164969A (en) Apparatus and method for irradiating tilted particle beam
JP2006349384A (en) Photoemission electron microscope suppressing charging or potential strain of insulator sample, and sample observation method
JP2001006605A (en) Focusing ion beam processing device and processing method for specimen using focusing ion beam
WO2019049261A1 (en) Electron gun and electron beam application device
JP5470360B2 (en) Sample potential information detection method and charged particle beam apparatus
JPH0262815B2 (en)
JP2005127967A (en) High resolution/chemical bond electron/secondary ion microscope apparatus
Ose et al. High resolution CD-SEM system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees