JPH07260801A - Scanning probe microscope - Google Patents

Scanning probe microscope

Info

Publication number
JPH07260801A
JPH07260801A JP6048925A JP4892594A JPH07260801A JP H07260801 A JPH07260801 A JP H07260801A JP 6048925 A JP6048925 A JP 6048925A JP 4892594 A JP4892594 A JP 4892594A JP H07260801 A JPH07260801 A JP H07260801A
Authority
JP
Japan
Prior art keywords
light
cantilever
ray
scanning probe
microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6048925A
Other languages
Japanese (ja)
Inventor
Nobuhito Ishii
信人 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP6048925A priority Critical patent/JPH07260801A/en
Publication of JPH07260801A publication Critical patent/JPH07260801A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To enable high-speed and highly accurate observation of a specimen having a rough surface by providing a scattered-ray-filter means with an opening at the focusing point of the reflected ray which has passed through a condenser. CONSTITUTION:A ray 9 reflected on the surface of a cantilever 5 is collected with a condenser 6. A scattered-ray-filter means 7 has a small opening, at which the ray collected with the lens 6 focuses. Then, the ray focuses at the small opening and is projected on a ray detector 8. A ray 10 falling not on the cantilever 5 but on a specimen does not focus at the opening or is projected on the ray detector 8, because it is blocked with the scattered-ray-filter means 7. Thus, a ray that could be a noise is not projected the ray detector 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、走査型プローブ顕微鏡
に関する。
FIELD OF THE INVENTION The present invention relates to a scanning probe microscope.

【0002】[0002]

【従来の技術】医学や生物工学の分野では、通常の可視
光(波長 λ=約400nm 〜800nm)を用いる顕微鏡よりも
解像度が高く、更に生きた試料(以下、生物試料とい
う)例えば、細胞、バクテリア、精子、染色体、ミトコ
ンドリア、べん毛などが見られる高解像度の顕微鏡を要
求する声が日増しに高まっている。また、電子工業の分
野では、高機能デバイスの開発や評価に於て、素子表面
の微細構造を非破壊で観察できる高分解能の顕微鏡を要
求する声が高まっている。
2. Description of the Related Art In the fields of medicine and biotechnology, the resolution is higher than that of a microscope using ordinary visible light (wavelength λ = about 400 nm to 800 nm), and a living sample (hereinafter referred to as biological sample) such as a cell, The demand for high-resolution microscopes that show bacteria, sperm, chromosomes, mitochondria, flagella, etc. is increasing day by day. Further, in the field of electronic industry, in developing and evaluating high-performance devices, there is an increasing demand for a high-resolution microscope capable of nondestructively observing a fine structure on the element surface.

【0003】これらの要求に対し、非接触、非破壊、高
分解能、分解能の制限がない等の条件を満たす顕微鏡と
して、試料表面をプローブで走査し、試料表面の何らか
の局所情報を得て、試料表面の観察を行う走査型プロー
ブ顕微鏡が注目されている。これらの顕微鏡には、例え
ば走査型トンネル顕微鏡(STM)、原子間力顕微鏡
(AFM)、磁気力顕微鏡(MFM)、走査型容量顕微
鏡(SCaM)等があり観察目的に合わせ、それに適し
た顕微鏡が使用される。この中で特に観察試料の制約の
少ない原子間力顕微鏡は、将来、光学工業、半導体工
業、磁気記録工業等の製品開発や品質管理において、多
様な目的に使用されよう。走査型プローブ顕微鏡の中に
は、プローブとしてカンチレバーを使用するものがあ
る。カンチレバーは、可撓性板材とその一端に位置し板
面から垂直方向に突出した針状チップとからなる。
In response to these requirements, the sample surface is scanned with a probe as a microscope satisfying the conditions of non-contact, non-destructive, high resolution, no restriction of resolution, etc. Attention has been paid to a scanning probe microscope for observing the surface. These microscopes include, for example, a scanning tunneling microscope (STM), an atomic force microscope (AFM), a magnetic force microscope (MFM), and a scanning capacitance microscope (SCaM). used. Among them, the atomic force microscope with less restrictions on observation samples will be used for various purposes in the future in product development and quality control in the optical industry, semiconductor industry, magnetic recording industry and the like. Some scanning probe microscopes use a cantilever as a probe. The cantilever is composed of a flexible plate material and a needle-shaped tip located at one end of the flexible plate material and projecting vertically from the plate surface.

【0004】原子間力顕微鏡では、カンチレバーの先端
にある針状ティップの尖端と試料表面が至近距離に接近
すると両者の間に力が作用し、カンチレバーの可撓性板
材がZ方向に撓む。この撓み量を光学的手段等を用いた
受光素子等での光検出器で検出する。例えば、光源から
発射されたレーザービームを可撓性板材へ斜入射させ
て、その反射光の角度変化を受光素子で検出する。角度
変化は、撓み量変化に比例する。検出された撓み量(Z
方向)が一定になるように制御しながらカンチレバーを
試料表面にXY方向に走査させる。Z方向の制御量が試
料表面の凹凸像に相当し、XY方向に走査することで凹
凸像が得られる。針状ティップ尖端形状は、測定原理
上、凹凸像の分解能を決定する重要な要因である。分解
能を高くするには針状ティップ尖端を鋭角にすればよ
い。また、磁気力顕微鏡では、試料表面をカンチレバー
で走査することによって、試料内の磁気モーメントの向
きの差異に依存する磁気力がカンチレバーの撓み量を左
右する。これによって、試料の磁化情報を凹凸情報とし
て観察することができる。
In the atomic force microscope, when the tip of the needle-like tip at the tip of the cantilever and the sample surface come close to each other, a force acts between them and the flexible plate material of the cantilever bends in the Z direction. This amount of deflection is detected by a photodetector such as a light receiving element using optical means. For example, the laser beam emitted from the light source is obliquely incident on the flexible plate material, and the angle change of the reflected light is detected by the light receiving element. The change in angle is proportional to the change in the amount of bending. Deflection detected (Z
The surface of the sample is scanned by the cantilever in the XY directions while controlling the direction to be constant. The control amount in the Z direction corresponds to the uneven image on the sample surface, and the uneven image is obtained by scanning in the XY directions. The tip shape of the needle tip is an important factor that determines the resolution of the uneven image on the measurement principle. To improve the resolution, the tip of the needle tip may be made to have an acute angle. In the magnetic force microscope, the surface of the sample is scanned by the cantilever, so that the magnetic force depending on the difference in the direction of the magnetic moment in the sample influences the amount of bending of the cantilever. Thereby, the magnetization information of the sample can be observed as uneven information.

【0005】[0005]

【発明が解決しようとする課題】従来の構成を有する光
学顕微鏡と原子間力顕微鏡の複合型顕微鏡を用い試料の
測定を行ったところ、原子間力顕微鏡が使用不可能にな
ったり、検出能力が低下する問題点が生じた。光源から
射出されたレーザービームは可撓性板材上に集光される
が、このレーザービームのスポットの径は、カンチレバ
ーの幅よりも大きいため、カンチレバーからはみ出した
光は試料上に入射されてしまう。このはみ出した光は試
料表面上で反射され、その一部が原子力間顕微鏡の光検
出器に入射することによりこれがノイズになってしまう
ことが分かった。そこで、例えば特開平5-71951 号公報
においてカンチレバーの一部に光のスポット径よりも大
きな光反射平板を設け、従来のカンチレバーから入射光
がはみ出さないような構成が提案された。しかし、この
ような光反射平板を設けたカンチレバーで観察したとこ
ろ高速測定には向かないという問題点が生じた。更に、
観察試料の微小な凹凸が測定できないという問題点も生
じた。
When a sample is measured by using a compound microscope of an optical microscope and an atomic force microscope having a conventional structure, the atomic force microscope becomes unusable and its detection capability is low. There was a problem of decline. The laser beam emitted from the light source is focused on the flexible plate material, but the diameter of the spot of this laser beam is larger than the width of the cantilever, so the light protruding from the cantilever is incident on the sample. . It was found that the protruding light was reflected on the surface of the sample and a part of the light was incident on the photodetector of the atomic force microscope, which turned into noise. Therefore, for example, in Japanese Unexamined Patent Publication No. 5-71951, there has been proposed a structure in which a light reflecting flat plate having a diameter larger than the spot diameter of light is provided on a part of the cantilever so that incident light does not overflow from the conventional cantilever. However, when observed with a cantilever provided with such a light reflection plate, there was a problem that it was not suitable for high speed measurement. Furthermore,
There was also a problem that minute irregularities of the observation sample could not be measured.

【0006】[0006]

【課題を解決するための手段】本発明者は、鋭意研究の
結果、高速測定時に使用できない原因として、光反射平
板を設けたカンチレバーは、カンチレバー自身の大型化
のためカンチレバーの先端に形成されている探針の固有
振動が低くなるためと分かった。また、観察試料の微小
な凹凸が測定できない原因は、探針の支点と作用点の距
離が長くなるために、作用点の上下の変化量に比べ、反
射面の角度変化が小さくなってしまうためであることが
分かった。そこで本発明者は、カンチレバー自身を改良
し、上記課題を解決するという視点から、従来のカンチ
レバーを使用し、課題の解決を試みた。
As a result of earnest research, the present inventor has found that a cantilever provided with a light-reflecting flat plate is formed at the tip of the cantilever in order to increase the size of the cantilever itself. It was found that the natural vibration of the existing probe was low. In addition, the reason why the minute unevenness of the observation sample cannot be measured is that the distance between the fulcrum of the probe and the point of action becomes long, and the angle change of the reflecting surface becomes smaller than the amount of change above and below the point of action It turned out that Therefore, the present inventor has tried to solve the problem by using the conventional cantilever from the viewpoint of improving the cantilever itself and solving the above problem.

【0007】そこで本発明は第1に「可撓性を有するプ
レート状の形状をとり、前記プレートの一端に針状の探
針を有し、少なくとも前記探針の形成領域の裏面に反射
膜を形成したカンチレバー、前記カンチレバーの駆動手
段、前記反射膜に光を斜入射可能な位置に設置する該カ
ンチレバーの撓み量測定用光源、前記光源からの光の反
射光を集光する集光レンズ、前記集光レンズを通った反
射光を受光する受光手段を少なくとも有する走査型プロ
ーブ顕微鏡において、該レンズを通った反射光の焦点位
置に穿説された開口部部を有する散乱光除去手段を設置
したことを特徴とする走査型プローブ顕微鏡(請求項
1)」を提供する。
Therefore, the first aspect of the present invention is that it has a flexible plate-like shape, has a needle-like probe at one end of the plate, and has a reflective film on at least the back surface of the probe forming region. The formed cantilever, the driving means of the cantilever, the light source for measuring the deflection amount of the cantilever installed at a position where the light can be obliquely incident on the reflection film, the condenser lens that collects the reflected light of the light from the light source, In a scanning probe microscope having at least a light receiving means for receiving the reflected light passing through the condenser lens, a scattered light removing means having an opening portion formed at the focal position of the reflected light passing through the lens is installed. And a scanning probe microscope (claim 1) ".

【0008】また好ましくは「前記散乱光除去手段がブ
ラックアルマイトを塗布した材料からなることを特徴と
する請求項1記載の走査型プローブ顕微鏡(請求項
2)」を提供する。
Preferably, the "scanning probe microscope according to claim 1 (claim 2)" is provided in which the means for removing scattered light is made of a material coated with black alumite.

【0009】[0009]

【作用】本発明の原子力間顕微鏡は、図2に示すように
散乱光除去手段7を有するものである。カンチレバーの
反射面で反射された反射光9は、レンズ6によって集光
され、散乱光除去手段7には極微小な開口部11が穿設さ
れており、この開口部の位置でレンズ6によって集光さ
れた光が焦点を結ぶよう構成されている。カンチレバー
表面で反射された光は散乱光除去手段7の極微小な開口
部11で焦点を結び光検出器8に入射されるが、カンチレ
バーからはずれ、直接、試料表面に入射した光の反射光
10は開口部11で焦点を結ぶことはなく、散乱光除去手段
7で遮断されることから、反射光が光検出手段8に入射
することはない。従って、ノイズとなる光が光検出手段
8に入射されることはない。
The atomic force microscope of the present invention has a scattered light removing means 7 as shown in FIG. The reflected light 9 reflected by the reflecting surface of the cantilever is condensed by the lens 6, and the scattered light removing means 7 is provided with a very small opening 11, and the lens 6 collects the light at the position of this opening. The emitted light is configured to focus. The light reflected by the surface of the cantilever is focused on the photodetector 8 by focusing on the very small opening 11 of the scattered light removing means 7, but is separated from the cantilever and directly reflected on the sample surface.
The aperture 10 does not focus at the opening 11 and is blocked by the scattered light removing means 7, so that the reflected light does not enter the light detecting means 8. Therefore, the light that becomes noise is not incident on the light detecting means 8.

【0010】尚、本発明は、走査型プローブ顕微鏡に用
いることができ、特にAFM(原子間力顕微鏡)、LF
M(摩擦力顕微鏡)、MFM(磁気力顕微鏡)、静電気
力顕微鏡、ポテンシャル顕微鏡、分子間力顕微鏡に有効
である。
The present invention can be applied to a scanning probe microscope, and particularly AFM (atomic force microscope), LF
It is effective for M (friction force microscope), MFM (magnetic force microscope), electrostatic force microscope, potential microscope, and intermolecular force microscope.

【0011】[0011]

【実施例1】図1は、本実施例による原子間力顕微鏡の
概略図である。カンチレバー5は、針状部と針状部が一
端に形成された可撓体プレートとプレートの他端片持ち
支持する支持部とを備えている。支持部は、針状部の先
端部を試料から原子間力を受ける位置に支持し、プレー
トは針状部の受けた原子間力によって撓みを生じる。こ
の撓み量を検出光学系で検出する。
Embodiment 1 FIG. 1 is a schematic diagram of an atomic force microscope according to this embodiment. The cantilever 5 includes a needle-shaped portion, a flexible plate having the needle-shaped portion formed at one end, and a support portion that cantilevers the other end of the plate. The support portion supports the tip end portion of the needle-shaped portion at a position where an atomic force is received from the sample, and the plate is bent by the atomic force received by the needle-shaped portion. This deflection amount is detected by the detection optical system.

【0012】観察にあたって、試料4を試料台3に設置
する。光源1から出射された光は、レンズ2を通り試料
上に設置されたカンチレバー5に入射される。そしてカ
ンチレバー上で反射した光は、1000倍のレンズ6を通り
縦1.2 mm、横15mmの長方形の開口部のあいたブラッ
クアルマイトからなる散乱光除去手段7に焦点が結ばれ
る。開口部を通った光は、光検出器8に入射する。試料
表面の凹凸に伴うカンチレバーの変位量は、上下の受光
素子の差分から測定する。
For observation, the sample 4 is set on the sample table 3. The light emitted from the light source 1 passes through the lens 2 and enters the cantilever 5 installed on the sample. Then, the light reflected on the cantilever passes through the lens 6 of 1000 times and is focused on the scattered light removing means 7 made of black alumite having a rectangular opening of 1.2 mm in length and 15 mm in width. The light that has passed through the opening enters the photodetector 8. The amount of displacement of the cantilever due to the unevenness of the sample surface is measured from the difference between the upper and lower light receiving elements.

【0013】散乱光除去手段としては、表面に例えばブ
ラックアルマイトが塗布されたような黒色のものが好ま
しく、黒色の場合、散乱光除去手段に散乱光が当たった
場合に反射が起こらず、ノイズを更に低減することがで
きる。また散乱光除去手段の開口部の大きさ、形状はレ
ーザービーム発光部の形状とレンズの倍率で変更され
る。
As the scattered light removing means, black one whose surface is coated with black alumite, for example, is preferable. In the case of black, when scattered light hits the scattered light removing means, reflection does not occur and noise is generated. It can be further reduced. Further, the size and shape of the opening of the scattered light removing means are changed depending on the shape of the laser beam emitting section and the magnification of the lens.

【0014】[0014]

【発明の効果】本発明の原子間力顕微鏡は、従来のカン
チレバーと全く同様のものを使用できるため、高速測定
や微小な凹凸を有する試料を高精度で観察することが可
能である。また、カンチレバーは破損し易く、交換を頻
繁に行うが、特別なカンチレバーを製造することがない
のでランニングコストを低減することが可能である。
As the atomic force microscope of the present invention, the same one as the conventional cantilever can be used, and therefore high speed measurement and observation of a sample having minute irregularities can be performed with high accuracy. Further, the cantilever is easily damaged and is frequently replaced, but since a special cantilever is not manufactured, running cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明の走査型プローブ顕微鏡の概略図で
ある。
FIG. 1 is a schematic view of a scanning probe microscope of the present invention.

【図2】は、本発明の走査型プローブ顕微鏡の光路を示
した概略図である。
FIG. 2 is a schematic view showing an optical path of the scanning probe microscope of the present invention.

【符号の説明】[Explanation of symbols]

1・・・カンチレバーの撓み量測定用光源 2・・・レンズ 3・・・試料台 4・・・試料 5・・・カンチレバー 6・・・集光レンズ 7・・・散乱光除去手段 8・・・受光手段 9・・・正常な反射光 10・・異常な反射光 11・・開口部 以上 1 ... Light source for measuring cantilever deflection amount 2 ... Lens 3 ... Sample stage 4 ... Sample 5 ... Cantilever 6 ... Condensing lens 7 ... Scattered light removing means 8 ....・ Light receiving means 9 ・ ・ ・ Normal reflected light 10 ・ ・ Abnormal reflected light 11 ・ ・ Aperture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】可撓性を有するプレート状の形状をとり、
前記プレートの一端に針状の探針を有し、少なくとも前
記探針の形成領域の裏面に反射膜を形成したカンチレバ
ー、前記カンチレバーの駆動手段、前記反射膜に光を斜
入射可能な位置に設置する該カンチレバーの撓み量測定
用光源、前記光源からの光の反射光を集光する集光レン
ズ、前記集光レンズを通った反射光を受光する受光手段
を少なくとも有する走査型プローブ顕微鏡において、該
レンズを通った反射光の焦点位置に穿説された開口部部
を有する散乱光除去手段を設置したことを特徴とする走
査型プローブ顕微鏡。
1. A flexible plate-like shape,
A cantilever having a needle-like probe at one end of the plate and a reflective film formed on the back surface of at least the probe forming region, a driving means for the cantilever, and a position where light can be obliquely incident on the reflective film. A scanning probe microscope having at least a light source for measuring the bending amount of the cantilever, a condensing lens that condenses the reflected light of the light from the light source, and a light receiving unit that receives the reflected light that has passed through the condensing lens, A scanning probe microscope, characterized in that a scattered light removing means having an opening is provided at a focal position of reflected light passing through a lens.
【請求項2】前記散乱光除去手段がブラックアルマイト
を塗布した材料からなることを特徴とする請求項1記載
の走査型プローブ顕微鏡。
2. The scanning probe microscope according to claim 1, wherein the scattered light removing means is made of a material coated with black alumite.
JP6048925A 1994-03-18 1994-03-18 Scanning probe microscope Pending JPH07260801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6048925A JPH07260801A (en) 1994-03-18 1994-03-18 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6048925A JPH07260801A (en) 1994-03-18 1994-03-18 Scanning probe microscope

Publications (1)

Publication Number Publication Date
JPH07260801A true JPH07260801A (en) 1995-10-13

Family

ID=12816841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6048925A Pending JPH07260801A (en) 1994-03-18 1994-03-18 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JPH07260801A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165155A (en) * 2005-12-14 2007-06-28 National Institute For Materials Science Radiation electron microscope for insulator sample observation using diagonally irradiating method of charged neutralization electron
JP2019095243A (en) * 2017-11-20 2019-06-20 国立大学法人金沢大学 Method for preparing sample for observation of organelle by high speed atomic force microscopy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165155A (en) * 2005-12-14 2007-06-28 National Institute For Materials Science Radiation electron microscope for insulator sample observation using diagonally irradiating method of charged neutralization electron
JP2019095243A (en) * 2017-11-20 2019-06-20 国立大学法人金沢大学 Method for preparing sample for observation of organelle by high speed atomic force microscopy

Similar Documents

Publication Publication Date Title
US6521921B2 (en) Scanning probe microscope (SPM) probe having field effect transistor channel and method of fabricating the same
US5994691A (en) Near-field scanning optical microscope
US6642517B1 (en) Method and apparatus for atomic force microscopy
US8300221B2 (en) Minute measuring instrument for high speed and large area and method thereof
EP0715147A2 (en) Microscope with aligning function
US7586084B2 (en) Optical fiber probe, optical detection device, and optical detection method
US8156568B2 (en) Hybrid contact mode scanning cantilever system
JP5305650B2 (en) Displacement detection mechanism for scanning probe microscope and scanning probe microscope using the same
KR960013676B1 (en) Method of measuring a minute displacement
US6913982B2 (en) Method of fabricating a probe of a scanning probe microscope (SPM) having a field-effect transistor channel
US6128073A (en) Device and method for examining the smoothness of a sample surface
JPH07260801A (en) Scanning probe microscope
US5546223A (en) Method for external excitation of subwavelength light sources that is integrated into feedback methodologies
JP3021872B2 (en) Cantilever, atomic force microscope
JP3523754B2 (en) Scanning probe microscope
JPH09325278A (en) Confocal type optical microscope
JP2002022640A (en) Scanning proximity field optical microscope
JP2004101425A (en) Scattering-type near-field microscope and scattering-type near-field spectroscopic system
Nakano Three-dimensional beam tracking for optical lever detection in atomic force microscopy
JP2594452B2 (en) Surface profile measuring device
JP4535488B2 (en) Scanning probe microscope
JPH06258068A (en) Interatomic force microscope
JP3205455B2 (en) Atomic force detection mechanism and atomic force detection scanning near-field microscope
JP2000234994A (en) Method for measuring displacement of cantilever in scanning probe microscope
JP3874685B2 (en) Scanning probe microscope