JP2594452B2 - Surface profile measuring device - Google Patents

Surface profile measuring device

Info

Publication number
JP2594452B2
JP2594452B2 JP63051257A JP5125788A JP2594452B2 JP 2594452 B2 JP2594452 B2 JP 2594452B2 JP 63051257 A JP63051257 A JP 63051257A JP 5125788 A JP5125788 A JP 5125788A JP 2594452 B2 JP2594452 B2 JP 2594452B2
Authority
JP
Japan
Prior art keywords
stylus
frictional force
load
probe
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63051257A
Other languages
Japanese (ja)
Other versions
JPH01224616A (en
Inventor
礼三 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63051257A priority Critical patent/JP2594452B2/en
Publication of JPH01224616A publication Critical patent/JPH01224616A/en
Application granted granted Critical
Publication of JP2594452B2 publication Critical patent/JP2594452B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 半導体、磁気記録媒体、光記録媒体などにおける表面
の欠陥や吸着物質は、これらの性能や歩留りに大きな影
響を与える。これらの欠陥はミクロンメータ以下の大き
さでも問題になり、時には原子レベルの大きさのもので
さえ、欠陥成長の原因として問題になることがある。こ
れらは、表面の凹凸を測定することにより観測すること
ができる。しかし、これまでミクロンメータ以下の分解
能で測定することは困難であった。本発明はこれを測定
する表面形状測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) Surface defects and adsorbed substances in semiconductors, magnetic recording media, optical recording media and the like greatly affect their performance and yield. These defects can be problematic at submicron scales, and sometimes even at the atomic level as a cause of defect growth. These can be observed by measuring surface irregularities. However, it has been difficult to measure with a resolution of less than a micrometer. The present invention relates to a surface shape measuring device for measuring this.

(従来技術および発明が解決しようとする課題) 表面の凹凸を測定するもっとも一般的な測定器は、触
針を表面に押し付け表面をなぞる従来の触針式評面粗さ
計である。これは触針の表面への押し付け荷重は10ミリ
グラムオーダもしくはそれ以上であり、この荷重に触針
が耐えるためにはその先端半径はミクロンメートルオー
ダにする必要がある。よってミクロンメートル以下のピ
ッチの微細な凹凸は検出できない。さらにこの大きさ荷
重で表面を損傷したり、柔かい吸着物質がある場合それ
を削り取ってしまい正確な表面を測定できない危険もあ
る。
(Prior Art and Problems to be Solved by the Invention) The most common measuring instrument for measuring surface irregularities is a conventional stylus-type surface roughness meter which presses a stylus against a surface and traces the surface. This imposes a pressing force on the surface of the stylus of the order of 10 milligrams or more, and in order for the stylus to withstand this load, its tip radius must be on the order of microns. Therefore, fine irregularities with a pitch of less than a micron meter cannot be detected. Furthermore, there is a danger that the surface may be damaged by this large load, or if there is a soft adsorbed substance, it may be scraped off, and an accurate surface cannot be measured.

最近、非接触で表面の凹凸を光で検出する光式表面粗
さ計も用いられるようになった。これは表面を損傷する
危険はないが、光スポットの直径は1ミクロンメートル
以上あり、やはりミクロンメートル以下のピッチの微小
凹凸の測定には分解能が不足である。
Recently, an optical surface roughness meter that detects unevenness of a surface with light in a non-contact manner has been used. Although this does not pose a risk of damaging the surface, the diameter of the light spot is 1 micron or more, and the resolution is insufficient for the measurement of minute irregularities also having a pitch of less than 1 micron.

また、走査型電子顕微鏡は高い面分解能を持っている
が、凹凸の高さを直接求めることは出来ない。しかも測
定は真空中で行われるため、吸着物質が散逸し正確な測
定が出来ないこともある。
Further, although the scanning electron microscope has a high surface resolution, it is impossible to directly determine the height of the unevenness. In addition, since the measurement is performed in a vacuum, the adsorbed material may be dissipated and accurate measurement may not be performed.

さらに、鋭い針を表面にオングストロームオーダまで
近づけ、その間に流れるトンネル電流を検出する走査型
トンネル顕微鏡が開発された。分解能は原子レベルまで
期待でき、空気中でも測定可能であるが、トンネル電流
を利用するかぎり表面は導体に限定されるという大きな
欠点がある。
In addition, a scanning tunneling microscope has been developed in which a sharp needle is brought close to the surface to the order of angstroms, and the tunnel current flowing during that time is detected. The resolution can be expected to the atomic level and can be measured even in air, but there is a major drawback that the surface is limited to conductors as long as tunnel current is used.

さらに、従来の摩擦力顕微鏡(FFM:Friction Force M
icroscopy)は、原子間力顕微鏡(AFM:Atomic Force
Microscopy)と組合わせて、走査時に試料表面にかける
探針の荷重を一定に保つように試料高さを変化させ、そ
のときの試料高さを変化させるフィードバック信号を形
状情報(AFM像)とするとともに、探針荷重一定の条件
下での摩擦力の変化を像にする(FFM像)か、または、
試料表面にある探針荷重をかけ、その状態で走査して
(荷重は試料の形状に従って変化)、そのときの摩擦力
の変化を像にする方法がある。通常、前者は力一定モー
ド、後者は高さ一定モードと呼ばれている。また、探針
にかかる摩擦力の変化を測定する方法としては、探針を
つけたカンチレバーの上方よりカンチレバーのねじれを
測定する(このときの試料表面の法線方向のカンチレバ
ーたわみがAFM像にあたり、接線方向のねじれがFFM像に
あたる)、もしくは試料表面の接線方向から、摩擦力に
よるカンチレバーの変位(接線方向からみるとカンチレ
バーのねじれは変位となる)を測定する方法がある。
In addition, a conventional friction force microscope (FFM: Friction Force M)
icroscopy) is an atomic force microscope (AFM).
In combination with Microscopy, the height of the sample is changed so that the tip load applied to the sample surface during scanning is kept constant, and the feedback signal that changes the sample height at that time is used as shape information (AFM image). In addition, the change in frictional force under the condition of constant probe load is imaged (FFM image), or
There is a method in which a probe load on a sample surface is applied, scanning is performed in that state (the load changes according to the shape of the sample), and a change in frictional force at that time is imaged. Usually, the former is called a constant force mode, and the latter is called a constant height mode. In addition, as a method of measuring the change in the frictional force applied to the probe, the torsion of the cantilever is measured from above the cantilever with the probe attached thereto. There is a method of measuring the displacement of the cantilever due to the frictional force from the tangential direction of the sample surface (the tangential torsion corresponds to the FFM image).

しかしながら、上記の,の方法とも、バイオ材料
のような柔軟試料に対しては、探針走査によって試料破
壊の危険性がある。それはの場合、探針走査が試料基
板から柔軟材料部に達したときに、探針荷重一定条件の
走査のため、探針先端が柔軟材料内部にはいってそのま
ま柔軟材料内部を探針が引っかくことになるからであ
る。このとき探針の柔軟材料部走査のときは試料基板部
走査のときより大きな摩擦力が働き、カンチレバーねじ
れ量は大きくなる。さらに、カンチレバーねじれ量が極
端に大きくなるとカンチレバー高さが減少し、これをAF
M/FFM装置のフィードバック制御系は荷重減少ととらえ
るので、より高い荷重が柔軟材料部にかかって、試料破
壊が促進されることもありうる。また、の場合は、探
針が高さ一定の状態で走査すなわち柔軟材料部をそのま
ま探針が走査するため、やはり探針による試料破壊を避
け得ない。
However, in both of the above methods, there is a risk that a flexible sample such as a biomaterial is destroyed by probe scanning. In this case, when the probe scans from the sample substrate to the flexible material section, the tip of the probe enters the flexible material and the probe scratches the flexible material as it is for scanning under a constant probe load condition. Because it becomes. At this time, when the probe scans the flexible material portion, a larger frictional force acts than when the probe scans the sample substrate portion, and the torsion amount of the cantilever increases. Furthermore, when the amount of twist of the cantilever becomes extremely large, the height of the cantilever decreases, and this
Since the feedback control system of the M / FFM apparatus regards the load reduction as being lower, a higher load may be applied to the flexible material portion, and the sample destruction may be accelerated. In the case of (1), since the scanning is performed with the probe at a constant height, that is, the flexible material portion is directly scanned by the probe, it is inevitable that the sample is destroyed by the probe.

また、試料表面に鋭い突起または溝がある場合は探針
表面に突起または溝にあたり、このとき、探針は突起ま
たは溝のところで傾く。しかし、上記の,の場合と
も荷重一定、高さ一定で探針が走査され、この傾き情報
をAFM/FFM装置のフィードバック制御系に戻すわけでは
ないので、探針破壊の危険性を避け得ない。
If there is a sharp protrusion or groove on the surface of the sample, the probe hits the protrusion or groove on the surface of the probe. At this time, the probe is inclined at the protrusion or groove. However, in both cases, the probe is scanned with a constant load and a constant height, and this tilt information is not returned to the feedback control system of the AFM / FFM device. .

以上のように、従来の摩擦力顕微鏡では、柔軟試料に
対して試料破壊の危険性があること、試料表面の突起ま
たは溝で探針破壊の危険性があるという問題点があっ
た。
As described above, the conventional friction force microscope has a problem that there is a danger of breaking the sample with respect to the flexible sample, and there is a risk of breaking the probe with a protrusion or groove on the surface of the sample.

本発明の目的は、これら従来の測定装置の欠点を解消
し、あらゆる物質の表面に対して、気体中、真空中を問
わず、容易な操作かつ高い分解能でその表面の特定位置
における表面形状を測定できる表面形状測定装置を提供
することにある。
An object of the present invention is to eliminate the disadvantages of these conventional measuring devices, and to easily form a surface shape at a specific position on a surface of any substance with high resolution regardless of whether the surface is a gas or a vacuum. An object of the present invention is to provide a surface shape measuring device capable of measuring.

(課題を解決するための手段) 上記の目的を達成するため本発明は、触針を測定面に
接触摺動させて表面形状を測定する装置において、触針
走査時に摩擦力が増大する場合は、荷重を低減するよう
にフィードバック制御系を働かせ、逆に摩擦力が低減し
た場合は、荷重を増大するようにフィードバック制御系
を働かせ、前記フィードバック信号を形状情報に用いる
ことを特徴とする表面形状測定装置を発明の要旨とする
ものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention relates to an apparatus for measuring a surface shape by sliding a stylus in contact with a measurement surface. A surface shape characterized by operating a feedback control system to reduce the load, and conversely, when the frictional force is reduced, operating the feedback control system to increase the load and using the feedback signal for shape information. The gist of the present invention is a measuring device.

(作用) 本発明は、摩擦力が一定になるように探針を走査して
形状情報を得る、すなわち、探針走査時に摩擦力が増大
するのを形状した場合は荷重を低減するようにフィード
バック制御系を働かせ(摩擦力は荷重に比例するため、
荷重低減で摩擦力も低減)、逆に摩擦力が低減した場合
は荷重を増大するようにフィードバック制御系を働かせ
ることによって、このフィードバック信号を形状情報に
用いるところにその眼目がある。これにより、柔軟材料
の場合、また試料表面の突起または溝がある場合、探針
の摩擦力が増大したところで探針が試料表面から引き上
げられるような動作をするため、試料破壊、探針破壊を
避けることができる。
(Function) The present invention obtains shape information by scanning the probe so that the frictional force becomes constant. That is, when the frictional force increases during scanning of the probe, the load is reduced so as to reduce the load. Activate the control system (because the friction force is proportional to the load,
When the frictional force is reduced, the feedback control system is operated so as to increase the load when the frictional force is reduced, so that the feedback signal is used for the shape information. As a result, in the case of a flexible material, or in the case where there are protrusions or grooves on the sample surface, the sample is operated to be lifted from the sample surface when the frictional force of the probe is increased. Can be avoided.

換言すれば、従来装置では実現できなかった鋭い触針
を破壊の危険がなく使用できるので、高い分解能でかつ
柔らかい吸着物質表面でもそれを削り取ることなく正確
な表面形状を測定できるものである。
In other words, a sharp stylus that could not be realized by the conventional apparatus can be used without danger of destruction, so that it is possible to measure an accurate surface shape with high resolution and without scraping the soft adsorbent surface.

(実施例) 次に本発明の実施例について説明する。(Example) Next, an example of the present invention will be described.

なお実施例は一つの例示であって、本発明の精神を逸
脱しない範囲で、種々の変更あるいは改良を行いうるこ
とは言うまでもない。
It should be noted that the embodiments are merely examples, and it is needless to say that various changes or improvements can be made without departing from the spirit of the present invention.

第1図は本発明の実施例の側面と制御回路を示す図で
ある。
FIG. 1 is a diagram showing aspects of an embodiment of the present invention and a control circuit.

図において1は触針、2は板ばねである。触針1の板
ばね2の先端に固定されている。3は測定面で、触針1
はこの上を接触摺動する。触針1の先端半径はサブミク
ロンメートルの分解能を得るのにサブミクロンメートル
もしくはそれ以下にする。板ばね2はたわみ易いものと
し、例えば長さ10ミリメートル、幅1ミリメートル、厚
さ数十ミクロンメートルとすれば100マイクログラム/
ミクロンメートル以下の剛性が得られる。また、フォト
リソグラフィによるエッチング技術を使いミリメートル
以下のばねを形成しそれを用いてもよい。
In the figure, 1 is a stylus and 2 is a leaf spring. The stylus 1 is fixed to the tip of the leaf spring 2. 3 is a measuring surface, and a stylus 1
Slides on it. The tip radius of the stylus 1 is set to be submicrometer or less to obtain a resolution of submicrometer. The leaf spring 2 is easy to bend. For example, if the length is 10 mm, the width is 1 mm, and the thickness is several tens of micrometers, 100 microgram /
A rigidity of less than a micron meter can be obtained. Alternatively, a spring of less than a millimeter may be formed using an etching technique by photolithography and used.

4は板ばね2の変位を検出する形状検出機構で静電容
量センサや光センサなどで構成する。5は板ぱね2を吸
引し荷重を調整する荷重調整電磁石である。6は平行ば
ねで、板ば2と同様たわみ易いもので構成する。平行ば
ね6は触針1の測定面3との接触摺動によって生じる摩
擦力によりたわむ。7は平行ばね6の変位を検出する4
と同様の構造の変位検出機構である。8は平行ばね6を
吸引し平行ばね6のたわみを常に零にするたわみ調整電
磁石である。9は変位検出機構7からの変位信号を入力
としたわみ調整電磁石8の電流を制御し平行ばねのたわ
みを零にする摩擦変位制御回路である。摩擦変位制御回
路9の動作によって発生するたわみ調整電磁石8の吸引
力は摩擦力と等しくなる。10は摩擦変位制御回路9の出
力、すなわちたわみ調整電磁石8の吸引力を入力とし、
摩擦力が過大のときは荷重調整電磁石5の電流を減じ、
過小のときは電流を増加させて常に一定の摩擦力が発生
するように制御する摩擦力制御回路である。11は形状検
出機構4からの信号を表示する表示装置である。
Reference numeral 4 denotes a shape detection mechanism for detecting the displacement of the leaf spring 2, which is constituted by a capacitance sensor, an optical sensor, or the like. Reference numeral 5 denotes a load adjusting electromagnet for adjusting the load by sucking the plate ridge 2. Reference numeral 6 denotes a parallel spring, which is made of a flexible material similar to the plate 2. The parallel spring 6 bends due to the frictional force generated by the sliding contact of the stylus 1 with the measuring surface 3. Numeral 7 is for detecting the displacement of the parallel spring 6
This is a displacement detection mechanism having the same structure as that of FIG. Numeral 8 denotes a deflection adjusting electromagnet which attracts the parallel spring 6 and makes the deflection of the parallel spring 6 always zero. Reference numeral 9 denotes a friction displacement control circuit which controls the current of the deflection adjusting electromagnet 8 to which the displacement signal from the displacement detection mechanism 7 is input to make the deflection of the parallel spring zero. The attraction force of the deflection adjusting electromagnet 8 generated by the operation of the friction displacement control circuit 9 becomes equal to the friction force. Reference numeral 10 designates an output of the friction displacement control circuit 9, that is, an attraction force of the deflection adjusting electromagnet 8, as an input.
When the frictional force is excessive, the current of the load adjusting electromagnet 5 is reduced,
When the value is too small, the frictional force control circuit controls the current to be increased so that a constant frictional force is always generated. Reference numeral 11 denotes a display device for displaying a signal from the shape detection mechanism 4.

これを動作させるには、まず触針1を測定面3に接触
させる。この時触針先端と測定面に作用する力は殆ど原
子間引力であって極めて小さい。測定面3を移動させる
と摩擦力が発生するが、平行ばね6のたわみは常に零に
なるよう摩擦変位制御回路9とたわみ調整電磁石8で調
節される。摩擦力は測定面の形状により変化する。特
に、表面に大きな段差の凸があると触針の先端ではなく
側面が測定面と接触するため摩擦力は極めて大きくな
る。このような過大の摩擦力は触針を破壊してしまう危
険を発生する。荷重調整電磁石5の制御はこれを避ける
ためのもので、摩擦力が増大すると触針1を測定面3か
ら引き離す作用をする。ただし、摩擦力は接触状態での
み発生するものであるから触針1が測定面3から完全に
離れてしまうことはない。このようにして触針1は測定
面3の上を一定の摩擦力で接触摺動し、触針1の上下運
動は測定面の凹凸をトレースする。この上下動は形状検
出機構4で検出し表示装置11の表面形状として示すこと
ができる。
To operate this, first, the stylus 1 is brought into contact with the measurement surface 3. At this time, the force acting on the tip of the stylus and the measurement surface is almost an atomic attractive force and extremely small. When the measurement surface 3 is moved, a frictional force is generated, but the deflection of the parallel spring 6 is adjusted by the friction displacement control circuit 9 and the deflection adjusting electromagnet 8 so that the deflection is always zero. The friction force changes depending on the shape of the measurement surface. In particular, when the surface has a large convexity, the side surface, not the tip of the stylus, comes into contact with the measurement surface, so that the frictional force becomes extremely large. Such excessive frictional force creates a risk of destroying the stylus. The control of the load adjusting electromagnet 5 is intended to avoid this, and when the frictional force increases, the stylus 1 is separated from the measurement surface 3. However, since the frictional force is generated only in the contact state, the stylus 1 does not completely separate from the measurement surface 3. In this way, the stylus 1 slides on the measuring surface 3 in contact with a constant frictional force, and the vertical movement of the stylus 1 traces the unevenness of the measuring surface. This vertical movement can be detected by the shape detection mechanism 4 and shown as the surface shape of the display device 11.

なお、本発明の実施例の板状ばねのかわりに棒状ばね
を用いても本発明の効果は失われないし、電磁石のかわ
りに静電力など他の吸引力もしくは反発力を発生する機
構を用いても本発明の効果は失われない。
The effect of the present invention is not lost even if a bar spring is used in place of the plate spring of the embodiment of the present invention, and a mechanism that generates another attractive force or repulsive force such as electrostatic force instead of the electromagnet is used. However, the effect of the present invention is not lost.

(発明の効果) 以上述べたごとく、本発明によれば、触針を測定面に
接触摺動させて表面形状を測定する装置において、接触
摺動時の摩擦力を検知し、かつ、摩擦力が一定となるよ
う触針を測定表面に上下させることにより、極めて微小
な荷重と摩擦力で表面形状を測定でき、従来装置では実
現できなかった鋭い触針を破壊の危険がなく使用できる
ので、高い分解能でかつ柔らかい吸収物質表面でもそれ
を削り取ることなく正確な表面形状を測定できる表面形
状測定装置を実施しうる効果を有する。
(Effects of the Invention) As described above, according to the present invention, in a device for measuring the surface shape by bringing a stylus into contact with a measurement surface, the frictional force at the time of the contact sliding is detected and the frictional force is measured. By moving the stylus up and down on the measurement surface so that is constant, it is possible to measure the surface shape with extremely small load and frictional force, and it is possible to use a sharp stylus that could not be realized with the conventional device without risk of destruction, There is an effect that a surface shape measuring device capable of accurately measuring a surface shape without shaving it even with a soft absorbing material surface with a high resolution can be implemented.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例の側面と制御回路を示す。 1……触針、2……板ばね、3……測定面、4……形状
検出機構、5……荷重調整電磁石、6……平行ばね、7
……変位検出機構、8……たわみ調整電磁石、9……摩
擦変位制御回路、10……摩擦力制御回路、11……表示装
置。
FIG. 1 shows aspects of the embodiment and a control circuit. 1 stylus, 2 leaf spring, 3 measurement surface, 4 shape detection mechanism, 5 load adjusting electromagnet, 6 parallel spring, 7
... Displacement detecting mechanism, 8... Deflection adjusting electromagnet, 9... Frictional displacement control circuit, 10... Frictional force control circuit, 11.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】触針を測定面に接触摺動させて表面形状を
測定する装置において、触針走査時に摩擦力が増大する
場合は、荷重を低減するようにフィードバック制御系を
働かせ、逆に摩擦力が低減した場合は、荷重を増大する
ようにフィードバック制御系を働かせ、前記フィードバ
ック信号を形状情報に用いることを特徴とする表面形状
測定装置。
In a device for measuring a surface shape by sliding a stylus in contact with a measurement surface, when a frictional force increases during scanning of the stylus, a feedback control system is operated so as to reduce the load, and conversely. When the frictional force is reduced, a feedback control system is operated so as to increase the load, and the feedback signal is used for shape information.
JP63051257A 1988-03-04 1988-03-04 Surface profile measuring device Expired - Lifetime JP2594452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63051257A JP2594452B2 (en) 1988-03-04 1988-03-04 Surface profile measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63051257A JP2594452B2 (en) 1988-03-04 1988-03-04 Surface profile measuring device

Publications (2)

Publication Number Publication Date
JPH01224616A JPH01224616A (en) 1989-09-07
JP2594452B2 true JP2594452B2 (en) 1997-03-26

Family

ID=12881893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63051257A Expired - Lifetime JP2594452B2 (en) 1988-03-04 1988-03-04 Surface profile measuring device

Country Status (1)

Country Link
JP (1) JP2594452B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347854A (en) * 1992-09-22 1994-09-20 International Business Machines Corporation Two dimensional profiling with a contact force atomic force microscope
KR100457867B1 (en) * 2002-05-23 2004-11-18 학교법인연세대학교 Friction Tester for The Measurement of Organs and Artifact

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0194323B1 (en) * 1985-03-07 1989-08-02 International Business Machines Corporation Scanning tunneling microscope
EP0223918B1 (en) * 1985-11-26 1990-10-24 International Business Machines Corporation Method and atomic force microscope for imaging surfaces with atomic resolution

Also Published As

Publication number Publication date
JPH01224616A (en) 1989-09-07

Similar Documents

Publication Publication Date Title
US7100430B2 (en) Dual stage instrument for scanning a specimen
US5852232A (en) Acoustic sensor as proximity detector
US5193383A (en) Mechanical and surface force nanoprobe
JP3157840B2 (en) New cantilever structure
US6279389B1 (en) AFM with referenced or differential height measurement
US6094971A (en) Scanning-probe microscope including non-optical means for detecting normal tip-sample interactions
US6880386B1 (en) Method and device for simultaneously determining the adhesion, friction, and other material properties of a sample surface
US5831181A (en) Automated tool for precision machining and imaging
EP0391429B1 (en) Micro-displacement detector device, piezo-actuator provided with the micro-displacement detector device and scanning probe microscope provided with the piezo-actuator
EP0587459A1 (en) An ultra-low force atomic force microscope
US5375087A (en) Tunneling-stabilized magnetic reading and recording
US5874669A (en) Scanning force microscope with removable probe illuminator assembly
JP2594452B2 (en) Surface profile measuring device
US6081113A (en) Cantilever magnetic force sensor for magnetic force microscopy having a magnetic probe coated with a hard-magnetic material
JPH01259210A (en) Surface shape measuring instrument
JPH079363B2 (en) Surface mechanical property measuring device
JPH09251026A (en) Scanning probe microscope
KR100298301B1 (en) Scanning probe with built-in sensor for sensing bending state and apparatus for measuring the bending state by using the same
JP3428403B2 (en) Friction force probe microscope and method for identifying atomic species and materials using friction force probe microscope
Serry et al. 4 Characterization and Measurement of Microcomponents with the Atomic Force Microscope (AFM)
Quinten et al. Tactile Surface Metrology
JPH02212702A (en) Probe mechanism for measuring shape of surface
JPH06258068A (en) Interatomic force microscope
JP3473937B2 (en) Scanning probe microscope and its scanning method
Wiegräbe et al. A multifunctional scanning force microscope for biological applications

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12