JP2007163245A - Nuclear reactor loaded with spontaneous neutron emission nuclear fuel - Google Patents

Nuclear reactor loaded with spontaneous neutron emission nuclear fuel Download PDF

Info

Publication number
JP2007163245A
JP2007163245A JP2005358572A JP2005358572A JP2007163245A JP 2007163245 A JP2007163245 A JP 2007163245A JP 2005358572 A JP2005358572 A JP 2005358572A JP 2005358572 A JP2005358572 A JP 2005358572A JP 2007163245 A JP2007163245 A JP 2007163245A
Authority
JP
Japan
Prior art keywords
nuclear fuel
spontaneous
fuel assembly
neutron
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005358572A
Other languages
Japanese (ja)
Inventor
Toshihisa Shirakawa
白川利久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005358572A priority Critical patent/JP2007163245A/en
Publication of JP2007163245A publication Critical patent/JP2007163245A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To vanish at low cost Pu 240 or Pu 242 emitting spontaneous neutrons which may produce a nuclear bomb. <P>SOLUTION: In a core loaded with a spontaneous neutron type nuclear fuel assembly designed based on a simplified equation of a diffusion equation including spontaneous neutrons, a cooling system in a conventional BWR is changed from a double-phase flow of water into gaseous steam. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自発中性子放出核燃料を装荷せる原子炉に関する。 The present invention relates to a nuclear reactor in which spontaneous neutron emission nuclear fuel is loaded.

制御された核分裂連鎖反応を長期間持続することのできるようにウラニウム(U)やネプツニウム(Np)やプルトニウム(Pu)といった核燃料と冷却材とその他を配置した装置を原子炉という。
原子炉の種類には色々あるが微濃縮ウランまたは微濃縮ウランにプルトニウムを混合した核燃料を発熱源とし軽水を冷却材とした軽水型原子炉(加圧水型原子炉(PWR)と沸騰水型原子炉(BWR))が主流である。
図1はBWRの従来の核燃料棒(31)の概観図である。ジルカロイ製の被覆管(41)と、この被覆管(41)の上下開口端を気密閉塞する上部端栓(42)及び下部端栓(43)と、被覆管(41)内に長さ約370cmに装填される多数個の核燃料ペレット(44)と、気体の核分裂生成物を蓄積する上部プレナム(48)の中のスプリング(45)とから構成されている。核燃料ペレット(44)は核分裂し易いウラン235を濃縮した濃縮ウラニウムの酸化物からなる。
図2はBWRに装荷せる核燃料物質を内包する従来の核燃料集合体(30)の概略斜視図である(特許文献1)。核燃料集合体(30)は、多数本正方格子状に配列された核燃料物質を内封している円柱形状の核燃料棒(31)と、それ等の上端及び下端を夫々支持する上側結合板(32)及び下側結合板(33)と、前記核燃料棒(31)の高さ途中に位置して核燃料棒(31)間の間隔を規制する数個のスペーサ(34)と、これ等を4面で覆う断面の1辺が約14cmのチャンネルボックス(35)とから構成される。
スペーサ(34)が位置していない高さでの核燃料集合体(30)の断面図を図3に示した。核燃料棒(31)同士は上述のスペーサ(34)により間隙が確保されている。出力運転中は大半の制御棒(36)は原子炉下部に引き抜かれているため、図4に示すように隣接する核燃料集合体(30)の間は漏洩水通路(51)となっている。図5に核燃料集合体(30)の炉心配置例を示す。1は初装荷で未燃焼の核燃料集合体(30)、2は1が約1年燃焼した核燃料集合体(30)、3は2が約1年燃焼した核燃料集合体(30)、4は3が約1年燃焼した核燃料集合体(30)である。十字型点線は制御棒(36)の配置を示す。
図6は従来の沸騰水型原子炉(1)の圧力容器(60)内の概観図を示す(非特許文献1)。タービンで仕事を終えた水は、給水配管(67)を通って圧力容器(60)壁とシュラウド(39)との間のシュラウド外水(66)に混じり込む。水はポンプモータ(38)により回転する冷却材循環ポンプ(37)で加速されてシュラウド(39)の下端から矢印方向に核燃料物質を内包する核燃料棒を束ねた従来の核燃料集合体(30)に未飽和水が流入し、熱を吸収して液体の水の一部が飽和蒸気になる。液体である水と気体である飽和蒸気が共存して流れている二相流となって上部に流れる。二相流断面において飽和蒸気が占める割合をボイド率と呼んでいる。ボイド率は核燃料集合体(30)の下部ではゼロであり、中程では約40%の中ボイド率になっており、上部では約70%の高ボイド率になっている。
核燃料集合体(30)の上部からの飽和蒸気を非常に多く含有した点線矢印方向の二相流と漏洩材通路(51)からの矢印方向の水とが混合した二相流は気水分離器(65)の中に入り旋回させられることにより、開き矢印方向に上昇する飽和蒸気と矢印方向に下に落ちる水に分離される。上昇した飽和蒸気は水分を若干含んでいるため蒸気乾燥器(62)により、開き矢印方向に上昇する乾燥した飽和蒸気と矢印方向に下に落ちる水に分離される。乾燥した飽和蒸気は蒸気ドーム(61)から、圧力容器(60)壁と蒸気乾燥器胴部(63)の間を通って飽和蒸気配管(64)からタービンへ蒸気が出て行く。
蒸気乾燥器(62)内での飽和蒸気は破線で示した。なお、二相流から分離した飽和蒸気の飽和蒸気温度は、運転圧力約70気圧での飽和蒸気温度で約摂氏286度である。
原子炉出力の制御は、制御棒駆動機構により上下に動く制御棒(36)により達成する。
:昭61-37591、「核燃料集合体」。 :コロナ社、著者都甲「原子動力」117、120頁。
A nuclear reactor is a device in which nuclear fuel such as uranium (U), neptunium (Np), and plutonium (Pu), coolant, and others are arranged so that a controlled fission chain reaction can be sustained for a long time.
Although there are various types of nuclear reactors, light water reactors (pressurized water reactor (PWR) and boiling water reactors) that use micro-enriched uranium or plutonium mixed with micro-enriched uranium as a heat source and light water as a coolant (BWR)) is the mainstream.
FIG. 1 is a schematic view of a conventional nuclear fuel rod (31) of a BWR. Zircaloy-coated tube (41), upper end plug (42) and lower end plug (43) for hermetically closing the upper and lower opening ends of the coated tube (41), and a length of about 370 cm in the coated tube (41) And consists of a number of nuclear fuel pellets (44) and springs (45) in an upper plenum (48) that accumulates gaseous fission products. The nuclear fuel pellet (44) is composed of an enriched uranium oxide enriched with uranium 235 which is easily fissioned.
FIG. 2 is a schematic perspective view of a conventional nuclear fuel assembly (30) containing nuclear fuel material loaded on a BWR (Patent Document 1). The nuclear fuel assembly (30) includes a cylindrical nuclear fuel rod (31) enclosing a nuclear fuel material arranged in a square lattice, and an upper coupling plate (32) for supporting the upper end and the lower end thereof. ) And the lower coupling plate (33), several spacers (34) which are located in the middle of the height of the nuclear fuel rod (31) and regulate the interval between the nuclear fuel rods (31), and these are arranged on four surfaces A channel box (35) having one side of a cross-section covered with about 14 cm.
A cross-sectional view of the nuclear fuel assembly (30) at a height where the spacer (34) is not located is shown in FIG. A gap is secured between the nuclear fuel rods (31) by the spacer (34). During the power operation, most of the control rods (36) are pulled out to the lower part of the nuclear reactor, so that there is a leakage water passage (51) between the adjacent nuclear fuel assemblies (30) as shown in FIG. FIG. 5 shows an example of the core arrangement of the nuclear fuel assembly (30). 1 is the first unloaded nuclear fuel assembly (30), 2 is the nuclear fuel assembly (30) burned for about 1 year, 3 is the nuclear fuel assembly (30) burned for about 1 year, 4 is 3 Is a nuclear fuel assembly (30) burned for about one year. The cross-shaped dotted line indicates the arrangement of the control rod (36).
FIG. 6 shows an overview of a pressure vessel (60) of a conventional boiling water reactor (1) (Non-patent Document 1). The water that has finished work in the turbine is mixed into the shroud water (66) between the pressure vessel (60) wall and the shroud (39) through the water supply pipe (67). The water is accelerated by a coolant circulation pump (37) rotated by a pump motor (38), and enters a conventional nuclear fuel assembly (30) in which nuclear fuel rods containing nuclear fuel material are bundled in the direction of the arrow from the lower end of the shroud (39). Unsaturated water flows in, absorbs heat, and part of the liquid water becomes saturated vapor. It flows into the upper part as a two-phase flow in which liquid water and gas saturated vapor coexist. The proportion of saturated steam in the two-phase flow section is called the void fraction. The void ratio is zero in the lower part of the nuclear fuel assembly (30), the middle void ratio is about 40% in the middle, and the high void ratio is about 70% in the upper part.
The two-phase flow in which the two-phase flow in the direction of the dotted arrow containing a large amount of saturated steam from the upper part of the nuclear fuel assembly (30) and the water in the direction of the arrow from the leakage material passage (51) are mixed is an air-water separator. By being swirled into (65), it is separated into saturated steam rising in the direction of the open arrow and water falling down in the direction of the arrow. Since the rising saturated steam contains some moisture, it is separated by the steam dryer (62) into dried saturated steam rising in the direction of the open arrow and water falling in the direction of the arrow. The dried saturated steam passes from the steam dome (61) through the wall of the pressure vessel (60) and the steam dryer body (63), and then the steam exits from the saturated steam pipe (64) to the turbine.
The saturated steam in the steam dryer (62) is indicated by a broken line. The saturated steam temperature of the saturated steam separated from the two-phase flow is about 286 degrees Celsius at the saturated steam temperature at an operating pressure of about 70 atm.
Control of reactor power is achieved by a control rod (36) that moves up and down by a control rod drive mechanism.
: Sho 61-37591, “Nuclear Fuel Assembly”. : Corona, author Toko “Atomic power” 117, 120 pages.

軽水型原子炉からの使用済みとなった核燃料にはプルトニウム(Pu)が含まれている。Puは長期間に亘って放射線を放出するため廃棄や保管が難しい。中でもプルトニウム240(Pu240)とプルトニウム242(Pu242)は発生量も多く、自発中性子を多く発生させるため出力予測がし難いため扱えず蓄積されていく一方である。テロリストに奪われた場合には、核爆弾にもなり得る。70kg 程度のPu242や20kg 程度のPu240は核爆弾になり得る。
従来の軽水型原子炉を若干改良して、減速材でもある冷却材の水の割合を減らしてPuを効率よく燃焼させる低減速原子炉ならPu242の発生を若干抑制できそうであるが既にあるPu242を燃焼消滅させるのは微々たるものである。
従来の原子炉は厳密には自発中性子入りだった。即ち、ウラン238(U238)は弱いながらも自発中性子を発生する。核燃料が燃焼すればPu242が生成されるため自発中性子が存在していた。ただ、Pu242が少なかったから自発中性子が無視できた。実効増倍係数は約0.99999というような実効増倍係数が1.0の臨界に近いが1.0以下の値で運転していた。設計等での予測は外部中性子源無しの固有値問題として拡散方程式を解いていた。しかし、本発明のように自発中性子を外部中性子源として積極的に大量に導入する場合には、外部中性子源問題として拡散方程式を解かねばならない。
Spent nuclear fuel from light water reactors contains plutonium (Pu). Pu emits radiation over a long period of time, making it difficult to dispose or store. Among them, plutonium 240 (Pu240) and plutonium 242 (Pu242) are generated in large quantities, and since they generate a lot of spontaneous neutrons, it is difficult to predict the output, and they are being accumulated. If taken by a terrorist, it can be a nuclear bomb. A Pu242 of about 70kg or a Pu240 of about 20kg can be a nuclear bomb.
The conventional light water reactor is slightly improved to reduce the proportion of coolant water, which is also a moderator, and to reduce the generation of Pu242. It is insignificant to extinguish the fire.
Strictly speaking, conventional nuclear reactors contained spontaneous neutrons. That is, uranium 238 (U238) generates spontaneous neutrons although it is weak. When nuclear fuel burns, Pu242 is produced and spontaneous neutrons exist. However, since there was little Pu242, spontaneous neutrons could be ignored. The effective multiplication factor was about 0.99999, which was close to the critical value of 1.0. Prediction in design etc. solved the diffusion equation as an eigenvalue problem without an external neutron source. However, when a large amount of spontaneous neutrons is actively introduced as an external neutron source as in the present invention, the diffusion equation must be solved as an external neutron source problem.

本発明は、従来の軽水炉の取り出し燃料でのPuまたはこれに比べてPu242とPu240の割合が多い劣化プルトニウム(DPu)に、天然ウラン(NU)またはNUよりもウラン235(U235)の含有量が少ない劣化ウラン(DU)またはU235を濃縮した微濃縮ウラン(SEU)を混合して無限増倍係数を調節した核燃料と、水蒸気またはヘリウムまたは炭酸ガスの冷却材からなる炉心において、制御棒操作により実効増倍係数を1.0以下で運転する。液体金属を冷却材とする原子炉でも本核燃料を採用すればPu242等の有効燃焼消滅が可能である。
Pu242では核分裂エネルギー閾値が1Mev以上である。したがって、外部中性子源のエネルギーは1Mev以上であれば効果が高い。Pu242の自発中性子エネルギーは1Mev以上であるから効果が期待できる。熱中性子炉ではPu242は中性子吸収体となって核分裂連鎖反応を抑制してしまう。したがって、減速作用の小さい液体ナトリウムや気体であるヘリウムまたは水蒸気を冷却材とした原子炉なら核分裂連鎖反応を持続できる。
In the present invention, Pu in conventional light water reactor removal fuel or degraded plutonium (DPu) with a higher ratio of Pu242 and Pu240 compared to this has a content of uranium 235 (U235) more than natural uranium (NU) or NU. Effective with control rod operation in a reactor core consisting of a nuclear fuel with an infinite multiplication factor adjusted by mixing less depleted uranium (DU) or slightly enriched uranium (SEU) enriched with U235 and a coolant of water vapor, helium or carbon dioxide. Operate at a multiplication factor of 1.0 or less. Even in nuclear reactors that use liquid metal as a coolant, effective burning and extinction of Pu242, etc. is possible if this nuclear fuel is used.
In Pu242, the fission energy threshold is 1Mev or more. Therefore, if the energy of the external neutron source is 1 Mev or more, the effect is high. Since the spontaneous neutron energy of Pu242 is 1Mev or more, the effect can be expected. In the thermal neutron reactor, Pu242 becomes a neutron absorber and suppresses the fission chain reaction. Therefore, the nuclear fission chain reaction can be sustained with a nuclear reactor that uses liquid sodium or gas, which has a low decelerating action, or helium or water vapor as a coolant.

冷却材が水蒸気またはヘリウムまたは炭酸ガスは中性子減速作用が弱いため核分裂エネルギー閾値が高いPu242またはPu240でも高速中性子により充分核分裂を継続できる。U238混合により核反応に制限を設定すれば自発中性子を大量に放出する核燃料を装荷せる原子炉でも、制御棒操作により安定した出力を得ることができる。U238の存在によりドップラー反応度係数が小さな負に保たれるため安全性を損なうことが無い。ガス冷却であるならボイド反応度係数も小さな負に保たれるため安全性を損なうことが無い。 If the coolant is water vapor, helium, or carbon dioxide, the neutron moderation action is weak, so even with Pu242 or Pu240 with a high fission energy threshold, fission can be continued sufficiently by fast neutrons. If the nuclear reaction is limited by mixing U238, a stable output can be obtained by operating the control rod even in a nuclear reactor loaded with nuclear fuel that releases a large amount of spontaneous neutrons. The presence of U238 keeps the Doppler reactivity coefficient at a small negative value, so there is no loss of safety. If it is gas cooling, the void reactivity coefficient is kept at a small negative value so that safety is not impaired.

安全性を損なうことなく発電コストを大幅に上げることなく自発中性子を放出するPu242やPu240を燃焼消滅させる原子炉が提供できた。   We were able to provide a reactor that burns and extinguishes Pu242 and Pu240 that emit spontaneous neutrons without sacrificing safety and without significantly increasing power generation costs.

従来の原子炉も自発中性子入りだった。U238は少ないながらも自発中性子を放出する。少なかったから実効増倍係数は約0.99999と臨界に近い値で運転できた。外部中性子源無しの固有値問題として拡散方程式により予測が可能であり設計ができた。本発明のように多量の自発中性子を原子炉内に満遍なく有する原子炉では外部中性子源無しの固有値問題として拡散方程式を使うことでは予測精度が悪いと考えられる。外部中性子源有りの場合での原子炉内出力分布を適切に予測する簡略手法を発明した。
X0、Y0、Z0を一辺の長さとする3次元体系での高速群と低速群からなる外部中性子源を考慮した2群拡散方程式の近似解を以下に詳述する。「*」は掛け算、「/」は割り算、「≒」は近似的に等しいをあらわす。
g=1は高速群(核分裂中性子と自発中性子スペクトルS(E)を含む)。
g=2は低速群。
Φgはg群の中性子束。
S1は単位体積当たりの高速群の自発中性子数(S(E)の和)。
Σn2nは一個の中性子を吸収して2個中性子を放出する巨視的核断面積。
Σsl1は巨視的減速核断面積。
Σcgはg群の巨視的捕獲核断面積。
Σfgはg群の巨視的核分裂核断面積。
νgはg群の核分裂による中性子発生数。
Dgはg群の巨視的拡散係数。
qは核分裂による発生エネルギー。
Σsl1,Σc1,ν1,Σf1,Σn2n,D1,ν2,Σf2,Σa2,D2は、外部中性子源入り問題を解いた詳細群中性子束で平均化した値である。上記核断面積は、外部中性子源問題として輸送方程式を解かねばならないが臨界近傍の場合には外部中性子源無し固有値計算問題として輸送方程式を解いた値でも良い近似であるし実用的でもある。
ΣR1 = ( Σsl1+Σc1+Σf1+Σn2n )
Σa2 = Σc2 +Σf2
ke1 = ( ν1*Σf1+2 *Σn2n ) /ΣR1
ke2 =( ν2*Σf2 / Σa2 ) * (Σsl1 /ΣR1 )
kinf = ke1 + ke2
とすると、中性子の二群拡散方程式は下記の数式1、数式2の様にあらわされることは一般に知られている[非特許文献2]。数式1は核分裂で発生した中性子と外部中性子源から放出される中性子にかかわる高速群での拡散方程式であり、数式2は高速群から減速して来た中性子にかかわる低速群での拡散方程式である。kinfを自発中性子有りの無限増倍係数と呼ぶことにする。
[数式1]
-D1 * ∇2Φ1 +ΣR1 *Φ1 = ( ν1*Σf1+2 *Σn2n ) *Φ1 +ν2*Σf2 *Φ2 + S1
[数式2]
-D2 * ∇2Φ2 +Σa2 *Φ2 =Σsl1*Φ1
次に、B12 = B22 = ( 3.1416/X0) 2+(3.1416/Y0) 2+(3.1416/Z0) 2
として
( D1/ΣR1 ) = M12
-∇2Φ1 = B12 * Φ1
( D2/Σa2 ) = M22
-∇2Φ2 = B22 * Φ2
L1 = 1 / ( 1 + M12 * B12 )
L2 = 1 / ( 1 + M22 * B22 )
keff = ( ke1+ ke2 * L2 ) * L1 = ( ( ke1/L2 ) + ke2 ) * L1 * L2
Lgをg群の炉心からの中性子漏洩割合、keffを炉心からの中性子漏洩を考慮した自発中性子有りの実効増倍率とすると、数式1、数式2より炉心の単位体積当たり平均のg群の中性子束aveΦgの近似解は数式3、数式4であらわされる。炉心の単位体積当たり平均の出力avePWの近似解は数式5であらわされる。
[数式3]
aveΦ1 = S1* L1 / ( ( 1 keff ) *ΣR1 )
[数式4]
aveΦ2 = (Σsl1/Σa2 ) * L1 * L2 * S1 / ( ( 1 keff ) *ΣR1 )
[数式5]
avePW = q* ( Σf1*aveΦ1 + Σf2*aveΦ2 )
= q * (Σf1 + Σf2 *(Σsl1/Σa2 ) * L2 ) * S1* L1 / ( ( 1 keff ) *ΣR1 )
Σa2の大きい物質で構成される制御棒操作でΣa2とkeffを制御して出力レベルを決めることができる。
L2≒1.0かつ、Σsl1<<Σa2、かつΣn2n<<ΣR1の場合には、近似的には数式6のようにあらせる。
[数式6]
avePW = q*( ke1 /ν1 ) * S1* L1 / ( 1 keff )
keffは炉心のどこでも一定であるから、「(i)」を領域iでの値とすると中心からの位置(x,y,z) での出力PW(i)は、-X0≦x≦X0 、-Y0≦y≦Y0 、-Z0≦z≦Z0 の範囲で領域境界に行く程漏洩が大きくなる近似を余弦(cos)で近似すると、π=3.1416として数式7のようにあらわせる。
[数式7]
PW(i) = (π/2)3 * q(i) * (Σf1(i) + Σf2(i) *(Σsl1(i)/Σa2(i) ) * L2 ) *
S1(i)* L1 *cos(π*x/X0) * cos(π*y/Y0) * cos(π*z/Z0) / ( ( 1 keff ) *ΣR1(i) )
以下に、外部中性子源のある場合keff < 1.0でのkinf(i)のおおよその上限を求めてみる。
keff = ( ( ke1(i)/L2 ) + ke2(i) ) * L1 * L2
であったから、L2≒1.0 とするとkeff ≒ kinf(i) * L1* L2である。したがって、
kinf(i) ≒ keff / ( L1* L2 )
keffは1.0以下であれば自発中性子があってもPW(i)は極端に大きな値にならないから、
[数式8]
kinf(i) < 1 / ( L1* L2 )
なお、中性子が漏洩しやすい炉心境界に近い端部或いは周辺部のkinf(j)が小さければ数式8よりも大きいkinf(i)が可能である。
1.0に近いkinfの値は自発中性子を考慮しないで固有値問題として輸送方程式を解いて求め、1.0に近いkeffは自発中性子を考慮しないで固有値問題として拡散方程式を解いて求めた値を使っても良い近似である。
:現代工学社、1983年、著三神「核燃料管理の方法と解析」
Conventional nuclear reactors also contained spontaneous neutrons. U238 emits a small amount of spontaneous neutrons. Since there were few, the effective multiplication factor was about 0.99999, and it was able to operate at a value close to the criticality. The eigenvalue problem without an external neutron source can be predicted by the diffusion equation and designed. In a nuclear reactor having a large amount of spontaneous neutrons uniformly in the reactor as in the present invention, it is considered that the prediction accuracy is poor by using the diffusion equation as an eigenvalue problem without an external neutron source. We have invented a simplified method for properly predicting the power distribution in the reactor with an external neutron source.
An approximate solution of the two-group diffusion equation considering an external neutron source consisting of a high-speed group and a low-speed group in a three-dimensional system with one side length of X0, Y0, and Z0 is described in detail below. “*” Indicates multiplication, “/” indicates division, and “≈” indicates approximately equal.
g = 1 is a fast group (including fission neutrons and spontaneous neutron spectrum S (E)).
g = 2 is the low speed group.
Φg is the g group neutron flux.
S1 is the number of spontaneous neutrons in the high-speed group per unit volume (sum of S (E)).
Σn2n is a macroscopic nuclear cross section that absorbs one neutron and emits two neutrons.
Σsl1 is the macroscopic deceleration nuclear cross section.
Σcg is the g-group macroscopic capture nucleus cross section.
Σfg is the macroscopic fission cross section of the g group.
νg is the number of neutrons generated by g group fission.
Dg is the macroscopic diffusion coefficient of the g group.
q is the energy generated by fission.
Σsl1, Σc1, ν1, Σf1, Σn2n, D1, ν2, Σf2, Σa2, and D2 are values averaged by the detailed group neutron flux solving the problem with external neutron sources. The above-mentioned nuclear cross section must solve the transport equation as an external neutron source problem, but in the case of near criticality, the value obtained by solving the transport equation as an eigenvalue calculation problem without an external neutron source is an approximation or practical.
ΣR1 = (Σsl1 + Σc1 + Σf1 + Σn2n)
Σa2 = Σc2 + Σf2
ke1 = (ν1 * Σf1 + 2 * Σn2n) / ΣR1
ke2 = (ν2 * Σf2 / Σa2) * (Σsl1 / ΣR1)
kinf = ke1 + ke2
Then, it is generally known that the two-group diffusion equation of neutrons is expressed by the following formulas 1 and 2 [Non-patent Document 2]. Formula 1 is the diffusion equation for the fast group related to neutrons generated by fission and neutrons emitted from the external neutron source, and Formula 2 is the diffusion equation for the slow group related to neutrons decelerated from the fast group. . We call kinf the infinite multiplication factor with spontaneous neutrons.
[Formula 1]
-D1 * ∇ 2 Φ1 + ΣR1 * Φ1 = (ν1 * Σf1 + 2 * Σn2n) * Φ1 + ν2 * Σf2 * Φ2 + S1
[Formula 2]
-D2 * ∇ 2 Φ2 + Σa2 * Φ2 = Σsl1 * Φ1
Next, B1 2 = B2 2 = (3.1416 / X0) 2 + (3.1416 / Y0) 2 + (3.1416 / Z0) 2
As
(D1 / ΣR1) = M1 2
-∇ 2 Φ1 = B1 2 * Φ1
(D2 / Σa2) = M2 2
-∇ 2 Φ2 = B2 2 * Φ2
L1 = 1 / (1 + M1 2 * B1 2 )
L2 = 1 / (1 + M2 2 * B2 2 )
keff = (ke1 + ke2 * L2) * L1 = ((ke1 / L2) + ke2) * L1 * L2
When Lg is the neutron leakage rate from the core of the g group and keff is the effective multiplication factor with spontaneous neutrons considering the neutron leakage from the core, the average neutron flux of the g group per unit volume of the core is obtained from Equation 1 and Equation 2. The approximate solution of aveΦg is expressed by Equation 3 and Equation 4. An approximate solution of the average power avePW per unit volume of the core is expressed by Equation 5.
[Formula 3]
aveΦ1 = S1 * L1 / ((1 keff) * ΣR1)
[Formula 4]
aveΦ2 = (Σsl1 / Σa2) * L1 * L2 * S1 / ((1 keff) * ΣR1)
[Formula 5]
avePW = q * (Σf1 * aveΦ1 + Σf2 * aveΦ2)
= q * (Σf1 + Σf2 * (Σsl1 / Σa2) * L2) * S1 * L1 / ((1 keff) * ΣR1)
The output level can be determined by controlling Σa2 and keff with a control rod operation made of a material with large Σa2.
When L2≈1.0, Σsl1 << Σa2, and Σn2n << ΣR1, the approximate expression is as shown in Equation 6.
[Formula 6]
avePW = q * (ke1 / ν1) * S1 * L1 / (1 keff)
Since keff is constant everywhere in the core, if `` (i) '' is a value in region i, the output PW (i) at the position (x, y, z) from the center is -X0 ≤ x ≤ X0, Approximation with a cosine (cos) where leakage increases as the region boundary is reached in the range of −Y0 ≦ y ≦ Y0 and −Z0 ≦ z ≦ Z0 is expressed as Equation 7 as π = 3.1416.
[Formula 7]
PW (i) = (π / 2) 3 * q (i) * (Σf1 (i) + Σf2 (i) * (Σsl1 (i) / Σa2 (i)) * L2) *
S1 (i) * L1 * cos (π * x / X0) * cos (π * y / Y0) * cos (π * z / Z0) / ((1 keff) * ΣR1 (i))
Below, the approximate upper limit of kinf (i) with keff <1.0 in the presence of an external neutron source is obtained.
keff = ((ke1 (i) / L2) + ke2 (i)) * L1 * L2
Therefore, when L2≈1.0, keff≈kinf (i) * L1 * L2. Therefore,
kinf (i) ≒ keff / (L1 * L2)
If keff is 1.0 or less, PW (i) will not be extremely large even if there is spontaneous neutrons.
[Formula 8]
kinf (i) <1 / (L1 * L2)
If kinf (j) near the core boundary where neutrons are likely to leak is small, kinf (i) larger than Equation 8 is possible.
The value of kinf close to 1.0 can be obtained by solving the transport equation as an eigenvalue problem without considering spontaneous neutrons, and keff close to 1.0 can be obtained by solving the diffusion equation as an eigenvalue problem without considering spontaneous neutrons. Is an approximation.
: Hyundai Engineering, 1983, Mikami, “Method and Analysis of Nuclear Fuel Management”

図7は自発中性子有りの無限増倍係数(kinf)が数式8の範囲内になるようにPu242またはPu240を多量に含有するDPuにDUまたはNUまたはSEUを混合させた本発明の自発中性子型核燃料棒(131)である。Puには半減期の比較的短いプルトニウム241(Pu241)が含まれている関係上DPuは時間と共に組成が変化するためkinfの調節が難しい。本発明では原子炉への初装荷核燃料におけるDPuの組成は同一のものを使い原子炉内での自発中性子放出数を一定にし、DUまたはNUまたはSEUにおけるU235の割合によりkinfの調節を行うことにより数式7に基づいて出力分布平坦化を実施することを特徴とする。上部と下部にはDPu とNUからなる混合酸化物を核燃料としたNU含有自発中性子放出核燃料ペレット(145)を装荷し中央部にはDPu とDUからなる混合酸化物を核燃料としたDU含有自発中性子放出核燃料ペレット(144)を装荷した。ペレットの中心には冷却材が過度に高温になり密度が減少し中性子減速作用が極端に低下しても核反応が過度に活発にならないように固体減速材ペレット(101)例えば炭素や炭化珪素や硼素11を濃縮した炭化硼素を配している。被覆管は高温に強いステンレス被覆管(141)である。ステンレスの代わりにジルカロイであっても可能である。
図8は自発中性子型核燃料棒(131)からなる本発明の自発中性子型核燃料集合体(130)である。チャンネルボックス(35)はステンレス製にする。自発中性子型核燃料棒(131)同士の間の気体冷却材通路(149)には気体冷却材が流れる。チャンネルボックス(35)同士の間の漏洩気体通路(52)には気体冷却材が流れる。
図9は本発明の自発中性子型核燃料集合体(130)を装荷せる自発中性子型原子炉の炉心である。21はDPuとU235の割合が少ないDUとNUによりkinfを小さくした自発中性子型核燃料集合体(130)である。22は21が1年燃焼した自発中性子型核燃料集合体(130)である。23は22が1年燃焼した自発中性子型核燃料集合体(130)である。24は23が1年燃焼した自発中性子型核燃料集合体(130)である。11は出力分布を平坦化するために数式7に基づき自発中性子型核燃料集合体(130)のDUをNUにしNUをSEUにしてU235の割合を多くしてkinfを大きくした大kinf自発中性子型核燃料集合体(232)である。12は11が1年燃焼した大kinf自発中性子型核燃料集合体(232)である。13は12が1年燃焼した大kinf自発中性子型核燃料集合体(232)である。14は13が1年燃焼した大kinf自発中性子型核燃料集合体(232)である。kinfを大きくした大kinf自発中性子型核燃料集合体(232)を炉心周辺部に装荷することにより出力分布の平坦化が図れた。
図10はBWRを改良した本発明の自発中性子型原子炉の概観図を示す。シュラウド(39)は密封シュラウド(54)とした。核燃料棒の冷却は二相流に変わって水蒸気にした。タービンで仕事を終えた低温の水蒸気は、給気管(81)を通って給気吸い込みノズル(83)に放出され低温気体ドーム(86)から自発中性子放出型核燃料集合体(130)に入り加熱され高温気体ドーム(55)に出てから、高温気体管(56)を通ってタービンへ出て行く。給気管(81)の出口は給気吸い込みノズル(83)の中ほどであり、給気吸い込みノズル(83)の吸い込み口は給気管スカート(82)で覆われている。給気管(81)からの給気が途絶えてもシュラウド外気体冷却材(53)の気体が自発中性子放出型核燃料集合体(130)に入っていき、更には、底部冷却フィン(84)で常時冷却されている底部低温冷却材(85)が自発中性子放出型核燃料集合体(130)を冷却する。
事故時での緊急冷却のためには緊急時注水管(87)から液体が注入される。緊急時スプレー管(88)からも液体が漏洩気体通路(52)に注入されチャンネルボックス(35)を介して自発中性子放出型核燃料集合体(130)を冷却する。液体の水は高速中性子を減速させるためPu242の核分裂は抑制される。
原子炉出力は制御棒(36)操作により自発中性子有りの実効増倍係数(keff)が1.0を上回らない範囲で調節することにより調節する。
気体冷却材は水蒸気の他にヘリウムや炭酸ガスでも可能である。
DUとしてNpや超ウラン元素やウラン234(U234)やウラン236(U236)を多く含有する再処理ウランを利用すれば、Npや超ウラン元素やU234やU236の消滅処理に役立つ。
従来のBWRでも本発明の自発中性子型核燃料集合体を装荷し、水をできるだけ排除しかつ、高ボイド率で運転すればPu242を燃焼消滅しつつ出力を得ることができる。例えば、軽水炉からの使用済みMOX燃料を再処理して得られたDPuとUの混合核燃料はNU含有自発中性子放出核燃料ペレット(145)相当であるからこれを中央から上に装荷し下部にはSEUからなる核燃料ペレット(44)とした自発中性子型核燃料棒を束ねた自発中性子型核燃料集合体で炉心を構築することが可能である。本発明による自発中性子入り拡散方程式の簡略式に基づいた設計の核燃料集合体を装荷せる炉心にすれば早期に実現できる。従来のBWRでの冷却方式を水のニ相流から気体の水蒸気にすればより一層の効果が期待できる。
FIG. 7 shows the spontaneous neutron type nuclear fuel of the present invention in which DU, NU or SEU is mixed with DPu containing a large amount of Pu242 or Pu240 so that the infinite multiplication factor (kinf) with spontaneous neutrons is within the range of Equation 8. It is a stick (131). Since Pu contains plutonium 241 (Pu241), which has a relatively short half-life, the composition of DPu changes with time, making it difficult to control kinf. In the present invention, the composition of DPu in the nuclear fuel initially loaded into the reactor is the same, the number of spontaneous neutron emissions in the reactor is kept constant, and kinf is adjusted by the ratio of U235 in DU, NU, or SEU. The output distribution flattening is performed based on Expression 7. The upper and lower parts are loaded with NU-containing spontaneous neutron emission nuclear fuel pellets (145) using DPu and NU mixed oxides as nuclear fuel, and the DU-containing spontaneous neutrons using DPu and DU mixed oxides as nuclear fuel in the center. Emission nuclear fuel pellets (144) were loaded. In the center of the pellet, the solid moderator pellet (101) such as carbon or silicon carbide is used so that the nuclear reaction does not become excessively active even if the coolant becomes too hot and the density decreases and the neutron moderating action decreases extremely. Boron carbide enriched with boron 11 is provided. The cladding tube is a stainless steel cladding tube (141) that is resistant to high temperatures. Zircaloy can be used instead of stainless steel.
FIG. 8 shows a spontaneous neutron nuclear fuel assembly (130) of the present invention composed of spontaneous neutron nuclear fuel rods (131). The channel box (35) is made of stainless steel. The gas coolant flows in the gas coolant passage (149) between the spontaneous neutron fuel rods (131). A gas coolant flows in the leaked gas passageway (52) between the channel boxes (35).
FIG. 9 shows a core of a spontaneous neutron reactor in which the spontaneous neutron nuclear fuel assembly (130) of the present invention is loaded. 21 is a spontaneous neutron type nuclear fuel assembly (130) in which kinf is reduced by DU and NU in which the ratio of DPu and U235 is small. 22 is a spontaneous neutron nuclear fuel assembly (130) in which 21 burns for one year. Reference numeral 23 denotes a spontaneous neutron nuclear fuel assembly (130) in which 22 burns for one year. 24 is a spontaneous neutron nuclear fuel assembly (130) in which 23 burns for one year. 11 is a large kinf spontaneous neutron type nuclear fuel in which the DU of the spontaneous neutron type nuclear fuel assembly (130) is set to NU, NU is set to SEU, and the proportion of U235 is increased to increase the kinf to flatten the power distribution. It is an aggregate (232). 12 is a large kinf spontaneous neutron type nuclear fuel assembly (232) in which 11 burns for one year. 13 is a large kinf spontaneous neutron type nuclear fuel assembly (232) in which 12 is burned for one year. 14 is a large kinf spontaneous neutron nuclear fuel assembly (232) in which 13 burned for one year. The power distribution was flattened by loading the large kinf spontaneous neutron type nuclear fuel assembly (232) with a larger kinf around the core.
FIG. 10 shows an overview of the spontaneous neutron reactor of the present invention with an improved BWR. The shroud (39) was a sealed shroud (54). The cooling of the nuclear fuel rods was changed to a two-phase flow and turned into steam. The low-temperature water vapor that has finished work in the turbine is discharged to the supply air suction nozzle (83) through the supply pipe (81), and enters the spontaneous neutron emission nuclear fuel assembly (130) from the low-temperature gas dome (86) and is heated. After exiting the hot gas dome (55), it exits through the hot gas pipe (56) to the turbine. The outlet of the air supply pipe (81) is in the middle of the air supply suction nozzle (83), and the suction port of the air supply suction nozzle (83) is covered with the air supply pipe skirt (82). Even if the supply air from the supply pipe (81) is interrupted, the gas outside the shroud gas coolant (53) enters the spontaneous neutron emission nuclear fuel assembly (130), and further, always at the bottom cooling fin (84). The cooled bottom cryogenic coolant (85) cools the spontaneous neutron emitting nuclear fuel assembly (130).
For emergency cooling in the event of an accident, liquid is injected from the emergency water injection pipe (87). Liquid is also injected into the leaking gas passageway (52) from the emergency spray pipe (88) to cool the spontaneous neutron emission nuclear fuel assembly (130) through the channel box (35). Since liquid water slows down fast neutrons, Pu242 fission is suppressed.
The reactor power is adjusted by operating the control rod (36) so that the effective multiplication factor (keff) with spontaneous neutrons does not exceed 1.0.
The gas coolant can be helium or carbon dioxide in addition to water vapor.
If reprocessed uranium containing a large amount of Np, transuranium element, uranium 234 (U234), or uranium 236 (U236) is used as DU, it will be useful for annihilation of Np, transuranium element, U234, and U236.
Even when a conventional BWR is loaded with the spontaneous neutron type nuclear fuel assembly of the present invention to eliminate water as much as possible and operate at a high void rate, the output can be obtained while burning out the Pu242. For example, DPu and U mixed nuclear fuel obtained by reprocessing spent MOX fuel from a light water reactor is equivalent to NU-containing spontaneous neutron emission nuclear fuel pellet (145). It is possible to construct a core with a spontaneous neutron type nuclear fuel assembly in which spontaneous neutron type nuclear fuel rods made of nuclear fuel pellets (44) are bundled. This can be realized at an early stage if the core is loaded with a nuclear fuel assembly designed based on the simplified equation of the diffusion equation containing spontaneous neutrons according to the present invention. If the cooling method in the conventional BWR is changed from a two-phase flow of water to gaseous water vapor, a further effect can be expected.

本発明により、使用済み核燃料の処分において扱い難かったDPuやNpや超ウラン元素やU234やU236を有効に利用消滅できるようになる。最終処分地の問題も軽減される。強いては発電コスト低減になる。
現存するガス冷却炉やナトリウム冷却炉やPWRにも応用が可能である。
According to the present invention, DPu, Np, transuranium elements, U234, and U236, which are difficult to handle in disposal of spent nuclear fuel, can be effectively utilized and extinguished. The problem of the final disposal site is also reduced. If this is the case, power generation costs will be reduced.
It can be applied to existing gas-cooled reactors, sodium-cooled reactors and PWRs.

はBWRの従来の核燃料棒(31)の概観図である。Fig. 2 is a schematic view of a conventional nuclear fuel rod (31) of BWR. はBWRに装荷せる核燃料物質を内包する従来の核燃料集合体(30)の概略斜視図である。FIG. 3 is a schematic perspective view of a conventional nuclear fuel assembly (30) containing nuclear fuel material loaded on a BWR. はスペーサ(34)が位置していない高さでの核燃料集合体(30)の断面図である。FIG. 3 is a cross-sectional view of the nuclear fuel assembly (30) at a height where the spacer (34) is not located. は出力運転中で制御棒(36)が引き抜かれている時の炉心部分図である。Fig. 4 is a partial view of the core when the control rod (36) is pulled out during power operation. は核燃料集合体(30)の炉心配置例を示す。Shows an example of the core arrangement of the nuclear fuel assembly (30). は従来の沸騰水型原子炉の圧力容器(60)内の概観図である。These are the general-view figures in the pressure vessel (60) of the conventional boiling water reactor. は本発明のDPuにDUとNUを混合した自発中性子型核燃料棒(131)の概観図である。FIG. 3 is an overview of a spontaneous neutron nuclear fuel rod (131) in which DU and NU are mixed with DPu of the present invention. は自発中性子型核燃料棒(131)からなる本発明の自発中性子型核燃料集合体(130)の断面図である。These are sectional drawings of the spontaneous neutron type nuclear fuel assembly (130) of this invention which consists of a spontaneous neutron type nuclear fuel rod (131). は本発明の自発中性子型核燃料集合体(130)とkinfを大きくした大kinf自発中性子型核燃料集合体(232)を装荷せる炉心である。Is a core for loading the spontaneous neutron type nuclear fuel assembly (130) of the present invention and the large kinf spontaneous neutron type nuclear fuel assembly (232) having a larger kinf. は本発明の自発中性子型原子炉の概観図である。FIG. 2 is an overview of the spontaneous neutron reactor of the present invention.

符号の説明Explanation of symbols

1は従来の初装荷で未燃焼の核燃料集合体(30)。
2は1が1年燃焼した核燃料集合体(30)。
3は2が1年燃焼した核燃料集合体(30)。
4は3が1年燃焼した核燃料集合体(30)。
11は初装荷で未燃焼のkinfの大きい大kinf自発中性子型核燃料集合体(232)。
12は11が1年燃焼した大kinf自発中性子型核燃料集合体(232)。
13は12が1年燃焼した大kinf自発中性子型核燃料集合体(232)。
14は13が1年燃焼した大kinf自発中性子型核燃料集合体(232)。
21は初装荷で未燃焼のkinfの小さい自発中性子型核燃料集合体(130)。
22は21が1年燃焼した自発中性子型核燃料集合体(130)。
23は22が1年燃焼した自発中性子型核燃料集合体(130)。
24は23が1年燃焼した自発中性子型核燃料集合体(130)。
30は従来の核燃料集合体。
31は従来の核燃料棒。
32は上側結合板。
33は下側結合板。
34はスペーサ。
35はチャンネルボックス。
36は制御棒。
37は冷却材循環ポンプ。
38はポンプモータ。
39はシュラウド。
41は被覆管。
42は上部端栓。
43は下部端栓。
44は核燃料ペレット。
45はスプリング。
48は上部プレナム。
49は冷却水通路
51は漏洩水通路。
52は漏洩気体通路。
53はシュラウド外気体冷却材。
54は密封シュラウド。
55は高温気体ドーム。
56は高温気体管。
60は圧力容器。
61は蒸気ドーム。
62は蒸気乾燥機。
63は蒸気乾燥機胴部。
64は飽和蒸気配管。
65は気水分離器。
66はシュラウド外水。
67は給水配管。
81は給気管。
82は給気管スカート。
83は給気吸い込みノズル。
84は底部冷却フィン。
85は底部低温冷却材。
86は低温気体ドーム。
87は緊急時注水管。
88は緊急時スプレー管。
101は固体減速材ペレット。
130は自発中性子型核燃料集合体。
131は自発中性子型核燃料棒。
141はステンレス被覆管。
144はDU添加自発中性子放出核燃料ペレット。
145はNU添加自発中性子放出核燃料ペレット。
149は気体冷却材通路。
232はkinfを大きくした大kinf自発中性子型核燃料集合体。
Reference numeral 1 denotes a conventional unloaded nuclear fuel assembly (30) with initial loading.
2 is a nuclear fuel assembly (30) in which 1 burned for 1 year.
3 is a nuclear fuel assembly (30) in which 2 burned for 1 year.
4 is a nuclear fuel assembly (30) in which 3 burned for one year.
11 is a large kinf spontaneous neutron type nuclear fuel assembly (232) having a large unkind kinf in the initial loading.
12 is a large kinf spontaneous neutron type nuclear fuel assembly (232) in which 11 burned for 1 year.
13 is a large kinf spontaneous neutron type nuclear fuel assembly (232) in which 12 burned for 1 year.
14 is a large kinf spontaneous neutron fuel assembly (232) in which 13 burned for 1 year.
21 is a spontaneous neutron type nuclear fuel assembly (130) with a small unloaded kinf at the initial loading.
22 is a spontaneous neutron type nuclear fuel assembly (130) in which 21 burned for 1 year.
23 is a spontaneous neutron fuel assembly (130) in which 22 burned for one year.
24 is a spontaneous neutron nuclear fuel assembly (130) in which 23 burned for one year.
30 is a conventional nuclear fuel assembly.
31 is a conventional nuclear fuel rod.
32 is an upper coupling plate.
33 is a lower coupling plate.
34 is a spacer.
35 is a channel box.
36 is a control rod.
37 is a coolant circulation pump.
38 is a pump motor.
39 is a shroud.
41 is a cladding tube.
42 is an upper end plug.
43 is a lower end plug.
44 is a nuclear fuel pellet.
45 is a spring.
48 is the upper plenum.
49 is a cooling water passage 51 and a leakage water passage.
52 is a leak gas passage.
53 is a gas coolant outside the shroud.
54 is a sealing shroud.
55 is a hot gas dome.
56 is a hot gas pipe.
60 is a pressure vessel.
61 is a steam dome.
62 is a steam dryer.
63 is a steam dryer trunk.
64 is a saturated steam pipe.
65 is a steam separator.
66 is water outside the shroud.
67 is a water supply pipe.
81 is a supply pipe.
82 is a supply pipe skirt.
83 is a supply air suction nozzle.
84 is a bottom cooling fin.
85 is a low temperature coolant at the bottom.
86 is a low temperature gas dome.
87 is an emergency water injection pipe.
88 is an emergency spray tube.
101 is a solid moderator pellet.
130 is a spontaneous neutron type nuclear fuel assembly.
131 is a spontaneous neutron type nuclear fuel rod.
141 is a stainless clad tube.
144 is a DU-added spontaneous neutron emission nuclear fuel pellet.
145 is an NU-added spontaneous neutron emission nuclear fuel pellet.
Reference numeral 149 denotes a gas coolant passage.
232 is a large kinf spontaneous neutron nuclear fuel assembly with a larger kinf.

Claims (4)

固体減速材(101)を芯にして多量の自発中性子を放出するDPuにDUを混合した混合酸化物核燃料からなるDU含有自発中性子放出核燃料ペレット(144)をステンレス被覆管(141)の中央部に装荷し、固体減速材(101)を芯にして前記DPuと同一の組成のDPuにNUを混合した混合酸化物核燃料からなるNU含有自発中性子放出核燃料ペレット(145)をステンレス被覆管(141)の上部と下部に装荷して高さ方向出力分布を平坦化したことを特徴とする自発中性子型核燃料棒(131)を多数本装荷してなる自発中性子型核燃料集合体(130)。 A DU-containing spontaneous neutron emitting nuclear fuel pellet (144) made of a mixed oxide nuclear fuel in which DU is mixed with DPu that emits a large amount of spontaneous neutrons with a solid moderator (101) as a core is placed in the center of the stainless steel cladding tube (141). The NU-containing spontaneous neutron emission nuclear fuel pellet (145) made of a mixed oxide nuclear fuel in which NU is mixed with DPu having the same composition as the DPu with the solid moderator (101) as the core is loaded into the stainless steel cladding tube (141). Spontaneous neutron type nuclear fuel assembly (130) comprising a large number of spontaneous neutron type nuclear fuel rods (131) loaded on the upper and lower sides and flattening the power distribution in the height direction. 上記核燃料集合体においてDPuは同一組成であるがDUをNUとし、NUをSEUに置き換えたことを特徴とする大kinf自発中性子型核燃料集合体(232)を炉心周辺部に装荷し、自発中性子型核燃料集合体(130)を炉心中心部に装荷して出力分布を平坦化したことを特徴とする炉心。 In the above nuclear fuel assembly, DPu has the same composition, but DU is replaced with NU and NU is replaced with SEU. A large kinf spontaneous neutron fuel assembly (232) is loaded around the core and the spontaneous neutron type A core characterized in that a nuclear fuel assembly (130) is loaded in the center of the core to flatten the power distribution. 数式7
PW(i) = (π/2)3 * q(i) * (Σf1(i) + Σf2(i) *(Σsl1(i)/Σa2(i) ) * L2 ) *
S1(i)* L1 *cos(π*x/X0) * cos(π*y/Y0) * cos(π*z/Z0) / ( ( 1 keff ) *ΣR1(i) )
および数式8
kinf(i) < 1 / ( L1* L2 )
により出力分布を平坦化した請求項1の核燃料棒および核燃料集合体および請求項2の炉心。
Formula 7
PW (i) = (π / 2) 3 * q (i) * (Σf1 (i) + Σf2 (i) * (Σsl1 (i) / Σa2 (i)) * L2) *
S1 (i) * L1 * cos (π * x / X0) * cos (π * y / Y0) * cos (π * z / Z0) / ((1 keff) * ΣR1 (i))
And Equation 8
kinf (i) <1 / (L1 * L2)
The nuclear fuel rod and the nuclear fuel assembly according to claim 1 and the core according to claim 2, wherein the power distribution is flattened by the above.
請求項2における炉心においてBWRを改造し水蒸気を冷却材としたことを特徴とする自発中性子型原子炉。
3. A spontaneous neutron reactor characterized in that the BWR is modified in the core according to claim 2 and steam is used as a coolant.
JP2005358572A 2005-12-13 2005-12-13 Nuclear reactor loaded with spontaneous neutron emission nuclear fuel Pending JP2007163245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005358572A JP2007163245A (en) 2005-12-13 2005-12-13 Nuclear reactor loaded with spontaneous neutron emission nuclear fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005358572A JP2007163245A (en) 2005-12-13 2005-12-13 Nuclear reactor loaded with spontaneous neutron emission nuclear fuel

Publications (1)

Publication Number Publication Date
JP2007163245A true JP2007163245A (en) 2007-06-28

Family

ID=38246313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005358572A Pending JP2007163245A (en) 2005-12-13 2005-12-13 Nuclear reactor loaded with spontaneous neutron emission nuclear fuel

Country Status (1)

Country Link
JP (1) JP2007163245A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505392A (en) * 2008-10-13 2012-03-01 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Apparatus for on-line measurement of fast and epithermal neutron flows.
JP2017032408A (en) * 2015-07-31 2017-02-09 株式会社東芝 Transuranium element conversion fuel assembly, transuranium element conversion reactor core and method for designing transuranium element conversion fuel assembly
CN110867262A (en) * 2019-11-21 2020-03-06 中国核动力研究设计院 Liquid metal cooling reactor based on improvement of fuel utilization rate and management method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505392A (en) * 2008-10-13 2012-03-01 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Apparatus for on-line measurement of fast and epithermal neutron flows.
JP2017032408A (en) * 2015-07-31 2017-02-09 株式会社東芝 Transuranium element conversion fuel assembly, transuranium element conversion reactor core and method for designing transuranium element conversion fuel assembly
CN110867262A (en) * 2019-11-21 2020-03-06 中国核动力研究设计院 Liquid metal cooling reactor based on improvement of fuel utilization rate and management method

Similar Documents

Publication Publication Date Title
Kessler et al. The risks of nuclear energy technology
KR102615657B1 (en) Nuclear fuel containing neutron absorber mixture
JP6096834B2 (en) Light water reactor core
JP6878251B2 (en) Fuel assembly for light water reactors, core design method for light water reactors, and fuel assembly design method for light water reactors
JP2007163245A (en) Nuclear reactor loaded with spontaneous neutron emission nuclear fuel
JP2013050366A (en) Fast reactor core
Ashraf et al. Preliminary design of control rods in the single-fluid double-zone thorium molten salt reactor (SD-TMSR)
JP4351938B2 (en) Reactor
JP5312754B2 (en) Light water reactor core
JP2006029797A (en) Nuclear fuel assembly
JP4467995B2 (en) Boiling water reactor
JP2006064678A (en) Fuel assembly arrangement method, fuel rod, and fuel assembly of nuclear reactor
JP2007086078A (en) Nuclear fuel assembly
Galahom et al. Study the neutronic analysis and burnup for BWR fueled with hydride fuel using MCNPX code
JP2012127749A (en) High conversion sauna-type nuclear reactor
JP2011174728A (en) Nuclear reactor of reflector control type
JP2007256230A (en) Coolant separation type fused nuclear fuel reactor
JP2015059791A (en) Fast reactor core and fast reactor comprising the core
JP2012154861A (en) Core of hybrid type nuclear reactor
JP5090687B2 (en) PWR nuclear fuel rod-based BWR square nuclear fuel assembly manufacturing method and nuclear fuel assembly
Gabaraev et al. Vessel and channel fast reactors cooled by boiling water or water with supercritical parameters
Galahom Analyze the effect of void fraction on the main operating parameters of the VVER-1200
JP2509625B2 (en) Core structure of fast breeder reactor
JP2017090176A (en) Parallel plate transuranium nuclear fuel assembly
Dwijayanto et al. Investigation on Criticality and Burnup Performance of Pebble Bed Reactor with Thorium-based Nuclear Fuel.