JP2012154861A - Core of hybrid type nuclear reactor - Google Patents

Core of hybrid type nuclear reactor Download PDF

Info

Publication number
JP2012154861A
JP2012154861A JP2011015900A JP2011015900A JP2012154861A JP 2012154861 A JP2012154861 A JP 2012154861A JP 2011015900 A JP2011015900 A JP 2011015900A JP 2011015900 A JP2011015900 A JP 2011015900A JP 2012154861 A JP2012154861 A JP 2012154861A
Authority
JP
Japan
Prior art keywords
reactor
fuel
uranium
core
subcritical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011015900A
Other languages
Japanese (ja)
Inventor
Koji Fujimura
幸治 藤村
Koji Nanba
孝次 難波
Takeshi Nitawaki
武志 仁田脇
Satoshi Itooka
聡 糸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011015900A priority Critical patent/JP2012154861A/en
Publication of JP2012154861A publication Critical patent/JP2012154861A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To sharply simplify the whole fuel cycle and to reduce a power generation unit cost of nuclear power generation.SOLUTION: A hybrid type nuclear reactor comprises: a neutron source area which loads depleted uranium, receives charged particle beams applied from the external and generates neutrons; and two reactors, i.e. a subcritical reactor which surrounds the neutron source area, uses a nitride of natural uranium or recovered uranium as a fuel and uses heavy water as a coolant and a moderator, and a fast reactor arranged adjacently to the subcritical reactor and loaded with a core fuel assembly which seals a nitride fuel of natural uranium, recovered uranium or depleted uranium into cladding tubes, bundles the cladding tubes in a wrapper tube, and allows liquid Na to flow among the cladding tubes upward to remove heat generated by nuclear fission.

Description

本発明は粒子線加速器で駆動される未臨界原子炉(ADS)と高速炉(FR、Fast Reactor)の炉心に係わり、特に濃縮ウランやプルトニウムを用いずに劣化ウランや天然ウランのみを燃料として、原子炉寿命中の発電継続を可能とするハイブリッド型の原子炉概念に関する。   The present invention relates to the cores of subcritical reactors (ADS) and fast reactors (FRs) driven by particle beam accelerators, and in particular, only depleted uranium and natural uranium without using enriched uranium and plutonium as fuel. The present invention relates to a hybrid reactor concept that enables power generation to continue during the lifetime of the reactor.

高速炉(FR)の燃料集合体、炉心に関しては、平川直弘、岩崎智彦著「原子炉物理入門」(東北大学出版会、2003年10月30日、p279〜286)(非特許文献1)等に記載されている。すなわち、一般的にFBRの炉心燃料集合体は、プルトニウム(Pu)を富化した劣化ウラン(U−238)を燃料棒被覆管に封入して束ねた燃料棒束と、これを取り囲むラッパ管,燃料棒束より上方にある冷却材流出部、および燃料棒束の下方にある中性子遮蔽体と冷却材流入部(エントランスノズル)より構成される。炉心は、上記の燃料集合体を円柱状に多数束ねて形成され、標準的な均質炉心の場合、Pu富化度は半径方向に2領域配置され、炉心の周辺側に装荷する燃料集合体のPu富化度を、中心寄りに装荷する燃料集合体のPu富化度よりも高くして、半径方向の出力分布を平坦化している。燃料の形態としては、これ迄、金属,窒化物,酸化物等が検討されているが、酸化物燃料が最も実績が豊富である。その場合、燃料棒被覆管の軸方向中心位置にはPuと劣化Uの酸化物を混合した混合酸化物、すなわちMOX燃料のペレットが80〜100cm程度の高さ領域に充填され、その上下位置には劣化Uの酸化物UO2燃料のペレットを充填した軸方向ブランケット領域が設けられる。またMOX燃料を充填した燃料棒から構成される燃料集合体を配置した炉心領域の周辺に、劣化ウランの酸化物UO2燃料ペレットのみを充填した燃料棒のみで構成されるブランケット燃料集合体を装荷する径方向ブランケット領域が設けられる。ブランケット領域では、炉心領域の核分裂反応で発生した中性子のうち、炉心領域から漏れ出た中性子がU−238に吸収されて核分裂性核種Pu−239が生成され、炉心全体のPuの増殖(増殖比>1.0)に寄与する。また、炉の起動・停止時及び出力を変える場合には制御棒が用いられる。制御棒は、炭化ホウ素(B4C)ペレットをステンレス製の被覆管に封入して束ね、炉心燃料集合体と同様に正六角形のラッパ管に収納される。主炉停止系と後備炉停止系の独立2系統構成となっており、いずれか一方のみで緊急停止が可能となるよう設計される。 Regarding the fuel assembly and core of the fast reactor (FR), Naohiro Hirakawa, Tomohiko Iwasaki, “Introduction to Reactor Physics” (Tohoku University Press, October 30, 2003, p279-286) (Non-patent Document 1), etc. It is described in. That is, generally, an FBR core fuel assembly includes a fuel rod bundle in which deteriorated uranium (U-238) enriched with plutonium (Pu) is enclosed in a fuel rod cladding tube, and a wrapper tube surrounding the fuel rod bundle. A coolant outlet portion above the fuel rod bundle, and a neutron shield and coolant inlet portion (entrance nozzle) below the fuel rod bundle. The core is formed by bundling a large number of the above fuel assemblies in a cylindrical shape. In the case of a standard homogeneous core, Pu enrichment is arranged in two regions in the radial direction, and the fuel assemblies loaded on the peripheral side of the core are The Pu enrichment is set higher than the Pu enrichment of the fuel assembly loaded closer to the center to flatten the power distribution in the radial direction. Up to now, metals, nitrides, oxides, etc. have been studied as fuel forms, but oxide fuels have the most extensive results. In this case, the fuel rod cladding tube is filled with a mixed oxide obtained by mixing Pu and deteriorated U oxide, that is, MOX fuel pellets in a height region of about 80 to 100 cm at the center position in the axial direction of the fuel rod cladding tube. Is provided with an axial blanket region filled with pellets of deteriorated U oxide UO 2 fuel. In addition, a blanket fuel assembly consisting only of fuel rods filled only with depleted uranium oxide UO 2 fuel pellets is loaded around the core region where fuel assemblies composed of fuel rods filled with MOX fuel are arranged. A radial blanket region is provided. In the blanket region, among the neutrons generated by the nuclear fission reaction in the core region, neutrons leaking from the core region are absorbed by U-238 to generate fissile nuclides Pu-239, and the proliferation of Pu in the entire core (growth ratio) > 1.0). Control rods are used when starting and stopping the furnace and when changing the output. The control rod is packed with boron carbide (B 4 C) pellets enclosed in a stainless steel cladding tube and housed in a regular hexagonal trumpet tube in the same manner as the core fuel assembly. The system consists of two independent systems, a main furnace stop system and a post-furnace stop system, and is designed so that an emergency stop is possible only with one of them.

通常、炉心燃料集合体と炉心最外周の遮へい体との境界には、劣化ウラン(U)燃料より構成した径方向ブランケットが装荷される。この領域では、炉心燃料領域の核分裂によって発生した中性子の一部が漏れ出て、劣化Uの大半を占めるU−238が中性子を吸収する(n、γ)反応によってPuが生成される。すなわち、ブランケット領域の主要な機能は燃料増殖である。   Normally, a radial blanket made of deteriorated uranium (U) fuel is loaded at the boundary between the core fuel assembly and the outermost shield body. In this region, a part of the neutrons generated by the nuclear fission in the core fuel region leaks out, and Pu is generated by the (n, γ) reaction in which U-238 occupying most of the degradation U absorbs the neutrons. That is, the main function of the blanket region is fuel growth.

一方、粒子線加速器により加速した高エネルギーの陽子や重陽子を鉛やタングステン等の重金属で形成したターゲットに照射して核破砕反応を起こし、発生した中性子を外部中性子源として、未臨界の原子炉を駆動する加速器駆動未臨界炉(ADS:Accelerator driven transmutation System)が提案されている。例えば、「高レベル廃棄物処分としての加速器駆動核変換技術の現状と展望」、高野秀機著(RISTニュース No.35(2003)、pp.4−6、非特許文献2)には、燃料をMA60%+Pu40%の窒化物(N−15濃縮)とし、冷却材をPb−Biとした熱出力800MWtのADSの設計例が示されている。このADSでは燃料に、現状の軽水炉サイクルでは高レベル廃棄物(HLW:High-level radioactive waste)の一部となる長寿命のマイナーアクチニド(MA)と、高濃度のPuの窒化物が含まれており、実効増倍率keffが0.95となるように設計される。ADSは原子炉が未臨界であるため、加速器を停止すると核分裂反応が停止するので、安全性を保ちつつ多量のMAを核変換できるとされている。ADSを用いて長寿命の核分裂生成物(LLFP:Long-Lived Fission Product)を核変換する未臨界炉が特開2000−321390号公報に開示されており、この発明では、冷却材はNa、燃料はU、Pu及びMAの窒化物が想定されている。   On the other hand, a high-energy proton or deuteron accelerated by a particle beam accelerator is irradiated to a target made of heavy metal such as lead or tungsten to cause a spallation reaction, and the generated neutron is used as an external neutron source to generate a subcritical reactor. Accelerator driven transmutation system (ADS) has been proposed. For example, “Current Status and Prospects of Accelerator-driven Transmutation Technology as High-level Waste Disposal”, Hideki Takano (RIST News No. 35 (2003), pp. 4-6, Non-Patent Document 2) A design example of an ADS with a heat output of 800 MWt, in which N is MA 60% + Pu 40% nitride (N-15 concentration) and the coolant is Pb-Bi is shown. In this ADS, the fuel contains long-lived minor actinides (MA), which are part of high-level radioactive waste (HLW) in the current light water reactor cycle, and high concentrations of Pu nitride. Therefore, the effective multiplication factor keff is designed to be 0.95. Since the nuclear reactor is subcritical in ADS, the fission reaction stops when the accelerator is stopped. Therefore, it is said that a large amount of MA can be transmuted while maintaining safety. A subcritical furnace for transmutating a long-lived fission product (LLFP) using ADS is disclosed in Japanese Patent Application Laid-Open No. 2000-321390. In this invention, the coolant is Na, fuel Are assumed to be nitrides of U, Pu and MA.

他方、初期に火種となるわずかの濃縮ウランのみで、劣化Uもしくは天然Uを燃料としたNa冷却高速炉の核分裂連鎖反応を発生・継続し、炉心の寿命中燃料交換せずに、発電を継続するTWR(Traveling Wave Reactor)のアイデアが「A ONCE-THROUGH FUEL CYCLE FOR FAST REACTORS(高速炉のためのワンススルー燃料サイクル)」(Kevan D. Weaver 他著,Proceedings of the 17th International Conference on Nuclear Engineering,ICONE17,July 12-16,2009,論文番号75381、非特許文献3)に示されている。同文献のFigure 2に示されるようにTWRの燃料棒および燃料集合体は非特許文献1に示される高速炉と同様であるが、燃料棒の直径8.8mmに対する燃料棒の間隔が0.8mmと小さく、冷却材に対する燃料の体積割合が大きく、稠密格子を採用している点に特徴がある。炉心は、同文献のFigure 3の水平断面図に示される様に、六角形状の燃料集合体が直方体形状に配置され、核分裂連鎖反応が生じる燃焼領域は、同文献のFigure 1に示される様に、炉心の一端から他端に進行する。 On the other hand, with only a small amount of enriched uranium, which initially becomes a fire type, the fission chain reaction of the Na-cooled fast reactor using depleted U or natural U as fuel is generated and continued, and power generation is continued without changing the fuel throughout the life of the core. to TWR (Traveling Wave reactor) the idea of "a oNCE-tHROUGH fUEL cYCLE fOR fAST rEACTORS ( once-through fuel cycle for fast reactors)" (Kevan D. Weaver et al., Proceedings of the 17 th International Conference on Nuclear Engineering , ICONE17, July 12-16, 2009, paper number 75381, Non-Patent Document 3). As shown in Figure 2 of the same document, the TWR fuel rod and fuel assembly are the same as the fast reactor shown in Non-Patent Document 1, but the distance between the fuel rods with respect to the fuel rod diameter of 8.8 mm is 0.8 mm. This is characterized by the fact that the volume ratio of the fuel to the coolant is large and a dense grid is adopted. As shown in the horizontal cross section of Figure 3 in the same document, the reactor core has hexagonal fuel assemblies arranged in a rectangular parallelepiped shape, and the combustion region where the fission chain reaction occurs is shown in Figure 1 of the same document. , Proceeds from one end of the core to the other.

特開2000−321390号公報JP 2000-321390 A

平川直弘、岩崎智彦著「原子炉物理入門」、東北大学出版会、pp.279−286、2003年10月30日。Naohiro Hirakawa, Tomohiko Iwasaki, “Introduction to Reactor Physics”, Tohoku University Press, pp. 279-286, October 30, 2003. 高野秀機「高レベル廃棄物処分としての加速器駆動核変換技術の現状と展望」、RISTニュース、No.35(2003)、pp.2−18。Hideki Takano “Current Status and Prospects of Accelerator Driven Transmutation Technology as High-level Waste Disposal”, RIST News, No. 35 (2003), pp. 2-18. Kevan D. Weaver 他「A ONCE-THROUGH FUEL CYCLE FOR FAST REACTORS(高速炉のためのワンススルー燃料サイクル)」,Proceedings of the 17th International Conference on Nuclear Engineering,ICONE17,July 12-16,2009,論文番号75381。Kevan D. Weaver et al. “A ONCE-THROUGH FUEL CYCLE FOR FAST REACTORS”, Proceedings of the 17th International Conference on Nuclear Engineering, ICONE17, July 12-16, 2009, paper number 75381 .

軽水炉は勿論、これ迄建設・提案されている高速炉や、加速器駆動未臨界炉ADSは、核分裂連鎖反応、従って発電の継続に、濃縮UやPu等の核分裂性物質が必要である。また、TWRは炉心寿命の初期のみ火種となる核分裂性物質が必要である。左記のような核分裂性物質が不要で、劣化Uを燃料として、原子炉の寿命中に核分裂連鎖反応の維持すなわち発電を継続できる原子炉ができれば、再処理やウラン濃縮施設,ウラン採鉱が不要となり、燃料サイクル全体を大幅に簡素化できる。   In addition to light water reactors, fast reactors that have been constructed and proposed so far and accelerator-driven subcritical reactors ADS require fissionable materials such as enriched U and Pu in order to continue the fission chain reaction and thus power generation. In addition, TWR requires a fissile material that becomes a fire type only at the beginning of the core life. If a nuclear reactor capable of maintaining the fission chain reaction, that is, continuing power generation during the life of the reactor, without the need for fissile materials as shown on the left, reprocessing, uranium enrichment facilities, and uranium mining will be unnecessary. The whole fuel cycle can be greatly simplified.

本発明の目的は、核分裂性核種が不要で長期に渡り電力を供給できる原子炉が実現することにより、再処理やウラン濃縮施設,ウラン採鉱が不要となり、燃料サイクル全体を大幅に簡素化し、原子力発電の発電単価を低減することにある。   The purpose of the present invention is to realize a nuclear reactor that can supply power for a long time without the use of fissile nuclides, eliminating the need for reprocessing, uranium enrichment facilities, and uranium mining, greatly simplifying the entire fuel cycle, The purpose is to reduce the unit price of power generation.

上記課題を解決するために、本発明では、劣化ウランを装荷し、外部から照射する荷電粒子ビームを受けて中性子を発生する中性子源領域と、上記中性子源領域を取り囲み、天然ウランもしくは回収ウランの窒化物を燃料とし、重水を冷却材かつ減速材とする未臨界の原子炉と、上記未臨界原子炉に隣接して配置され、天然ウランもしくは回収ウランもしくは劣化ウランの窒化物燃料を被覆管に封入し、上記被覆管をラッパ管内に束ねて構成し、被覆管の間を下方から上方に液体Naを流して核分裂で発生する熱を徐熱する炉心燃料集合体を装荷した高速炉の2つの原子炉から構成されることを特徴とする。   In order to solve the above problems, in the present invention, a depleted uranium is loaded, a neutron source region that generates neutrons by receiving a charged particle beam irradiated from the outside, and the neutron source region is surrounded, and natural uranium or recovered uranium is A subcritical reactor using nitride as fuel and heavy water as a coolant and moderator, and adjacent to the subcritical reactor, and using nitrided fuel of natural uranium, recovered uranium, or deteriorated uranium as cladding Two fast reactors loaded with a core fuel assembly that consists of the above clad tube bundled in a trumpet tube and flows liquid Na from the bottom to the top to gradually heat the heat generated by fission. It is composed of a nuclear reactor.

本発明では、核分裂性核種が不要で長期に渡り電力を供給できる原子炉が実現できるので、再処理やウラン濃縮施設,ウラン採鉱が不要となり、燃料サイクル全体を大幅に簡素化できるので、原子力発電の発電単価を低減できる。   In the present invention, it is possible to realize a nuclear reactor that does not require fissile nuclides and can supply power for a long period of time. The unit price of power generation can be reduced.

第1の実施の形態を示すハイブリッド型原子炉の垂直断面の構造を示す図である。It is a figure which shows the structure of the vertical cross section of the hybrid type reactor which shows 1st Embodiment. 第1及び第2の実施の形態を示すハイブリッド型原子炉の水平断面図である。It is a horizontal sectional view of a hybrid type reactor showing the 1st and 2nd embodiments. 第3の実施の形態を示すハイブリッド型原子炉の垂直断面の構造を示す図である。It is a figure which shows the structure of the vertical cross section of the hybrid nuclear reactor which shows 3rd Embodiment. 第3の実施の形態を示すハイブリッド型原子炉のうち、未臨界原子炉炉心および燃料集合体の水平断面の構造を示す図である。It is a figure which shows the structure of the horizontal cross section of a subcritical reactor core and a fuel assembly among the hybrid type reactors which show 3rd Embodiment. 第3の実施の形態を示すハイブリッド型原子炉のうち、高速炉の炉心および燃料集合体の水平断面の構造を示す図である。It is a figure which shows the structure of the horizontal cross section of the core and fuel assembly of a fast reactor among the hybrid type reactors which show 3rd Embodiment. 第3の実施の形態を示すハイブリッド型原子炉のうち、燃料集合体の垂直断面の構造を示す図である。It is a figure which shows the structure of the vertical cross section of a fuel assembly among the hybrid type reactors which show 3rd Embodiment. ハイブリッド型原子炉のうち、窒化物を燃料として用いる高速炉の中性子実効増倍率の燃焼変化を示す図である。It is a figure which shows the combustion change of the neutron effective multiplication factor of the fast reactor which uses nitride as a fuel among hybrid type | mold reactors. 未臨界の原子炉における、中性子増倍係数の中性子実効倍率への依存性を示す図である。It is a figure which shows the dependence on the neutron effective magnification of the neutron multiplication factor in a subcritical reactor. 第2の実施の形態になる、窒化物を燃料として用いる高速炉の中性子実効増倍率の燃焼変化を、第1の実施の形態の場合と比較して示す図である。It is a figure which shows the combustion change of the neutron effective multiplication factor of the fast reactor which uses nitride as a fuel which becomes 2nd Embodiment compared with the case of 1st Embodiment.

本発明は、加速器で駆動される未臨界原子炉(ADS、Accerelator Driven Subcritical Reactor System)で発生させた核分裂中性子を火種として、劣化ウランを燃料とする液体金属高速炉の炉心の核分裂反応を自動的に発生・継続させ、原子炉の寿命中に外部からの核分裂性物質の供給を不要とするADSと高速炉のハイブリッド型原子炉に関する。   The present invention automatically performs fission reactions in the core of a liquid metal fast reactor using depleted uranium as fuel, using fission neutrons generated in an accelerator-driven subcritical reactor system (ADS) as a fire. The present invention relates to a hybrid reactor of an ADS and a fast reactor that does not require the supply of fissile material from the outside during the life of the reactor.

本発明を実施するための形態を図1,図2,図7および図8を用いて説明する。図1は本実施の形態におけるハイブリッド型原子炉の軸方向の構造を示す図、図2は水平断面を示す図である。図1において、4は1.5GeV程度の高エネルギー陽子線加速器等で発生させた荷電粒子のビーム、2は上記のビームを照射して核破砕反応を起こし、中性子を発生させるための中性子源、3は左記の中性子源で発生する中性子を増倍して、所定の核分裂反応を継続するための未臨界原子炉の中性子増倍領域、5は未臨界原子炉で発生した中性子を火種として核分裂反応を継続するための高速炉の炉心領域である。図2において、2は上述した通りの中性子源であるが、材質は劣化ウラン(U−235/U=0.2〜0.3wt%)もしくは天然ウラン(U−235/U=0.7wt%)であり、重水を充填した重水タンク24の中央付近に設けた正方形のチャンネル27に装荷され、チャンネル内を下方から上方にポンプで駆動されて流される重水冷却材で除熱される。また22は、天然ウランもしくは回収ウラン(U−235/U≒1wt%)の酸化物を燃料棒被覆管に封入して束ねた燃料集合体であり、上記の重水タンク内に設けられた燃料集合体装荷用の燃料チャンネル26も重水冷却材で除熱される。7は液体金属Naを冷却材とし、劣化ウランもしくは天然ウランの窒化物を燃料とする高速炉である。未臨界原子炉6は、上述したように、天然ウランもしくは回収ウランを燃料とし、中性子の吸収が小さな重水を冷却材かつ中性子減速材としているため、被覆管やその他の構造材にステンレス鋼を用いても、中性子実効増倍率keffは1に近く、0.985である。この未臨界炉への荷電粒子ビームの照射が継続している間は、隣接する高速炉7の未臨界原子炉に近い領域の燃料棒が中性子の照射を受け、時間の経過と伴に燃焼度が向上する。高速炉7の中性子実効増倍率keffの燃焼度依存性は図7に示す通りである。図中、73は中性子実効増倍率、72は燃焼度、71はkeffの燃焼度依存性を示す曲線である。燃焼度の増大に応じてkeffは大きくなり、ある一定の燃焼度74になると1.0を超え、未臨界原子炉からの中性子がなくても核分裂連鎖反応が維持され、発電に必要な熱エネルギーが発生する。未臨界原子炉の未臨界度=1−keffと中性子増倍係数Sは下記の式(1)で与えられる。
S=1/(1−keff) …(1)
A mode for carrying out the present invention will be described with reference to FIGS. 1, 2, 7 and 8. FIG. 1 is a diagram showing an axial structure of a hybrid nuclear reactor according to the present embodiment, and FIG. 2 is a diagram showing a horizontal section. In FIG. 1, 4 is a beam of charged particles generated by a high energy proton beam accelerator of about 1.5 GeV, 2 is a neutron source for generating a neutron by causing the above-mentioned beam to cause a spallation reaction, 3 is the neutron multiplication region of the subcritical reactor to multiply the neutron generated by the neutron source on the left and continue the prescribed fission reaction, 5 is the fission reaction using the neutron generated in the subcritical reactor as a fire type This is the core region of the fast reactor to continue the process. In FIG. 2, 2 is a neutron source as described above, but the material is deteriorated uranium (U-235 / U = 0.2 to 0.3 wt%) or natural uranium (U-235 / U = 0.7 wt%). ) And loaded in a square channel 27 provided in the vicinity of the center of the heavy water tank 24 filled with heavy water, and the heat is removed by a heavy water coolant that is driven by a pump from below to flow upward. Reference numeral 22 denotes a fuel assembly in which an oxide of natural uranium or recovered uranium (U-235 / U≈1 wt%) is enclosed in a fuel rod cladding tube and bundled, and the fuel assembly provided in the heavy water tank described above. The fuel channel 26 for body loading is also removed by heavy water coolant. Reference numeral 7 denotes a fast reactor using liquid metal Na as a coolant and fuel of deteriorated uranium or natural uranium nitride. As described above, the subcritical reactor 6 uses natural uranium or recovered uranium as a fuel, and uses heavy water that absorbs small neutrons as a coolant and a neutron moderator. Therefore, stainless steel is used for cladding tubes and other structural materials. Even so, the effective neutron multiplication factor keff is close to 1 and 0.985. While the subcritical reactor is continuously irradiated with the charged particle beam, the fuel rod in the region near the subcritical reactor in the adjacent fast reactor 7 is irradiated with neutrons, and the burnup is increased with time. Will improve. The burnup dependence of the effective neutron multiplication factor keff of the fast reactor 7 is as shown in FIG. In the figure, 73 is a neutron effective multiplication factor, 72 is a burnup degree, and 71 is a curve showing the burnup dependence of keff. The keff increases as the burnup increases, and when the burnup reaches a certain burnup of 74, it exceeds 1.0. The fission chain reaction is maintained even without neutrons from the subcritical reactor, and the thermal energy required for power generation. Will occur. The subcriticality of the subcritical reactor = 1−keff and the neutron multiplication factor S are given by the following equation (1).
S = 1 / (1-keff) (1)

またkeffと中性子増倍係数の関係をグラフ化すると図8のようになる。ここで、83は中性子増倍係数、82はkeff、81は中性子増倍係数のkeff依存性を示す曲線である。既存のADSの設計ではkeffが0.95で、原子炉の熱出力が800MWtの設計例がある。本発明ではkeffを0.985に設計しており、既存の設計例と同規模の陽子線加速器を想定すると、図8のグラフより約3300MWtの原子炉熱出力が達成でき、電気出力約1000MWeが達成できる。   FIG. 8 is a graph showing the relationship between keff and the neutron multiplication coefficient. Here, 83 is a neutron multiplication coefficient, 82 is keff, and 81 is a curve showing the keff dependence of the neutron multiplication coefficient. In the existing ADS design, there is a design example in which the keff is 0.95 and the thermal output of the reactor is 800 MWt. In the present invention, the keff is designed to be 0.985, and assuming a proton beam accelerator of the same scale as the existing design example, a reactor thermal output of about 3300 MWt can be achieved from the graph of FIG. Can be achieved.

未臨界原子炉6が、上記の電気出力を発生して運転を継続すると、この未臨界原子炉に隣接する高速炉7の炉心燃料集合体23のうち、未臨界原子炉6に近い位置の燃料が、中性子の照射を受け、上述したようにkeffが時間の経過とともに増加して、燃焼度が300GWd/t程度になると1.0を超え核分裂連鎖反応が維持できる様になる。この時点では、未臨界原子炉への荷電粒子のビームを止めても、電気出力1000MWeで定格運転を継続しつつ、自動的に燃焼領域が、未臨界原子炉とは反対側に移動し、炉心の寿命約60年間、燃料交換によって、新たな核分裂性物質、例えば濃縮ウランやPuを供給せずに、定格出力運転を継続することが可能である。   When the subcritical reactor 6 generates electric power as described above and continues to operate, the fuel at the position close to the subcritical reactor 6 in the core fuel assembly 23 of the fast reactor 7 adjacent to the subcritical reactor 7. However, when irradiated with neutrons and keff increases with time as described above and the burnup reaches about 300 GWd / t, it exceeds 1.0 and the fission chain reaction can be maintained. At this time, even if the beam of charged particles to the subcritical reactor is stopped, the combustion region automatically moves to the opposite side of the subcritical reactor while continuing the rated operation at an electric power of 1000 MWe, and the core It is possible to continue the rated power operation without supplying new fissile materials such as enriched uranium and Pu by refueling for about 60 years.

本発明を実施するための第2の形態を、図2と図9を用いて説明する。未臨界原子炉と隣接高速炉は第1の実施の形態とほぼ同様である。但し、高速炉の炉心燃料集合体23内における、劣化ウラン窒化物が占める体積割合は、実施の形態1と比べて大きく、約50%である。本実施の形態における高速炉の炉心のkeffの燃焼度依存性を、実施の形態1と比較して図9に示す。図中の91が本実施の形態2の場合、71が図7でも示した、実施の形態1の場合のkeffの燃焼度依存性を示す曲線である。   A second embodiment for carrying out the present invention will be described with reference to FIGS. The subcritical reactor and the adjacent fast reactor are substantially the same as those in the first embodiment. However, the volume ratio occupied by the deteriorated uranium nitride in the core fuel assembly 23 of the fast reactor is larger than that of the first embodiment and is about 50%. FIG. 9 shows the burnup dependence of the keff of the core of the fast reactor in the present embodiment in comparison with the first embodiment. In the figure, 91 is a curve showing the burn-in dependence of keff in the case of Embodiment 1 shown in FIG.

本実施の形態の高速炉は、第1の実施の形態と比べて、燃料体積の割合が大きく、逆に冷却材であるNaの体積割合が小さい。従って、本第2の実施の形態における高速炉の方が、第1の実施の形態と比べて、中性子のスペクトルが硬い(=平均エネルギーが高い)ため、中性子経済が良くなり、keffが高くなる。更に、keffが1.0で臨界となる燃焼度が第1の実施の形態と比べて、低くなる(約200GWd/t)。すなわち、高速炉における核分裂連鎖反応の自動的な発生と燃焼領域の自動的な移動を達成するのに必要な燃焼度が低くなるため、燃料棒被覆管の開発課題が低減する。また、冷却材体積割合が小さくなっているので、安全性に係わるNaボイド反応度が小さくなり、安全性が向上する。   The fast reactor of the present embodiment has a large fuel volume ratio and, conversely, a small volume ratio of Na, which is a coolant, as compared with the first embodiment. Therefore, the fast reactor in the second embodiment has a neutron spectrum that is harder (= higher average energy) than the first embodiment, so that the neutron economy is improved and keff is increased. . Furthermore, the critical burnup at keff of 1.0 is lower than that of the first embodiment (about 200 GWd / t). That is, the burnup required to achieve automatic generation of the fission chain reaction and automatic movement of the combustion region in the fast reactor is reduced, so the development problem of the fuel rod cladding tube is reduced. Moreover, since the volume fraction of the coolant is small, the Na void reactivity related to safety is small, and the safety is improved.

本発明を実施するための第3の形態を図3,図4,図5および図6を用いて説明する。本実施の形態では、実施の形態1で示した未臨界原子炉の下部に、同じく実施の形態1で示した高速炉の炉心を配置してハイブリッド型の原子炉31を構成することを特徴としている。図3のAA断面における未臨界原子炉の構成は図4に示す。本実施の形態では、図4の41で示す未臨界原子炉は、図5で示す高速炉の水平断面と同様の六角形状の集合体で構成される。43は荷電粒子ビームを照射する中性子源領域で、Na冷却燃料集合体45は(c)で示すように、内部ダクト48を有し、内部ダクトの内側に、回収ウランもしくは天然ウランの窒化物を燃料棒被覆管に封入して、ラッパ管の内部ダクトの間に、重水減速材46が充填されている。内部ダクトの内側には、図6の(b)に示すように、高速炉の下端から流入した液体Na47が未臨界原子炉41の入口部で絞り込まれる。他の集合体の構造は、図5に示すように、高速炉の燃料集合体と同じ構造となっており、高速炉下端部から流入した液体Na47が、そのまま未臨界原子炉内を下方から上方に通過する。本実施の形態では、未臨界原子炉の下端に隣接する、高速炉の上部の燃料が中性子の照射を受けて、上記中性子の照射を受ける高速炉の炉心の上方から核分裂連鎖反応が発生し、一旦高速炉の炉心燃料領域で核分裂の連鎖反応が発生すると、燃焼領域は自動的に炉心の下方に移動する。   A third embodiment for carrying out the present invention will be described with reference to FIGS. 3, 4, 5 and 6. The present embodiment is characterized in that the hybrid reactor 31 is configured by disposing the core of the fast reactor similarly shown in the first embodiment below the subcritical reactor shown in the first embodiment. Yes. The configuration of the subcritical reactor in the AA cross section of FIG. 3 is shown in FIG. In the present embodiment, the subcritical reactor indicated by 41 in FIG. 4 is configured by a hexagonal assembly similar to the horizontal section of the fast reactor shown in FIG. Reference numeral 43 denotes a neutron source region for irradiating a charged particle beam, and the Na cooling fuel assembly 45 has an internal duct 48 as shown in (c), and a nitride of recovered uranium or natural uranium is placed inside the internal duct. A heavy water moderator 46 is filled between the inner ducts of the trumpet pipes enclosed in the fuel rod cladding pipe. As shown in FIG. 6B, the liquid Na 47 that has flowed in from the lower end of the fast reactor is squeezed inside the internal duct at the inlet of the subcritical reactor 41. As shown in FIG. 5, the structure of the other assembly is the same as the fuel assembly of the fast reactor, and the liquid Na 47 that has flowed in from the lower end of the fast reactor is directly passed through the subcritical reactor from below. To pass through. In this embodiment, the fuel in the upper part of the fast reactor adjacent to the lower end of the subcritical reactor is irradiated with neutrons, and a fission chain reaction occurs from above the core of the fast reactor that is irradiated with the neutrons, Once a fission chain reaction occurs in the core fuel region of the fast reactor, the combustion region automatically moves below the core.

本実施の形態では、高速炉の炉心が未臨界原子炉の下端に配置されており、原子炉建屋の面積を小さくすることができる。   In the present embodiment, the core of the fast reactor is disposed at the lower end of the subcritical reactor, and the area of the reactor building can be reduced.

以上の実施の形態では、高速炉の燃料を窒化物としていたが、金属としても同様の効果が得られる。さらに、高速炉の冷却材として、液体Naを用いていたが、液体の鉛、もしくは鉛−ビスマスとしても同様の効果が得られる。   In the above embodiment, the fast reactor fuel is nitride, but the same effect can be obtained by using metal. Furthermore, although liquid Na was used as the coolant for the fast reactor, the same effect can be obtained with liquid lead or lead-bismuth.

1,21,31 ハイブリッド型原子炉
2 中性子源
3 未臨界原子炉の中性子増倍領域
4 荷電粒子ビーム
5 高速炉の炉心領域
6,41 未臨界原子炉
7 高速炉
22 燃料集合体
23 高速炉の炉心燃料集合体
24 重水タンク
25 重水減速材
26 燃料チャンネル
27 チャンネル
43 荷電粒子ビームを照射する中性子源領域
44 未臨界原子炉のNa冷却燃料集合体
45 Na冷却燃料集合体
46 重水減速材
47 液体Na
48 内部ダクト
51 未臨界原子炉の高速炉の炉心
52 未臨界原子炉の高速炉炉心燃料集合体
61 未臨界原子炉の重水減速材内包型燃料集合体の軸方向断面構造図
71,91 keffの燃焼度依存性を示す曲線
72,74 燃焼度
73,82 中性子実効倍増率(keff)
81 中性子増倍係数のkeff依存性を示す曲線
83 中性子増倍係数
1,21,31 Hybrid reactor 2 Neutron source 3 Neutron multiplication region 4 of subcritical reactor Charged beam 5 Core region of fast reactor 6, 41 Subcritical reactor 7 Fast reactor 22 Fuel assembly 23 Core fuel assembly 24 Heavy water tank 25 Heavy water moderator 26 Fuel channel 27 Channel 43 Neutron source region 44 irradiated with charged particle beam Na-cooled fuel assembly 45 Na-cooled fuel assembly 46 Heavy water moderator 47 Liquid Na
48 Internal duct 51 Fast reactor core 52 of subcritical reactor Fast reactor core fuel assembly 61 of subcritical reactor Axial cross-sectional structure of heavy water moderator inclusion fuel assembly of subcritical reactor 71, 91 keff Curves 72 and 74 showing burnup dependence Burnup 73 and 82 Neutron effective multiplication factor (keff)
81 Curve showing keff dependence of neutron multiplication factor 83 Neutron multiplication factor

Claims (5)

劣化ウランを装荷し、外部から照射する荷電粒子ビームを受けて中性子を発生する中性子源領域と、上記中性子源領域を取り囲み、天然ウランもしくは回収ウランの窒化物を燃料とし、重水を冷却材かつ減速材とする未臨界の原子炉と、上記未臨界原子炉に隣接して配置され、天然ウランもしくは回収ウランもしくは劣化ウランの窒化物燃料を被覆管に封入し、上記被覆管をラッパ管内に束ねて構成し、被覆管の間を下方から上方に液体Naを流して核分裂で発生する熱を徐熱する炉心燃料集合体を装荷した高速炉の2つの原子炉から構成されることを特徴とするハイブリッド型原子炉の炉心。   Loading depleted uranium, enclosing the neutron source region that receives neutrons by receiving a charged particle beam irradiated from the outside, and surrounding the neutron source region, using natural uranium or recovered uranium nitride as fuel, heavy water as a coolant and deceleration A subcritical nuclear reactor that is used as a material, and adjacent to the subcritical nuclear reactor, in which a nitride fuel of natural uranium, recovered uranium, or deteriorated uranium is sealed in a cladding tube, and the cladding tube is bundled in a wrapper tube A hybrid comprising two reactors of a fast reactor loaded with a core fuel assembly for gradually heating the heat generated by fission by flowing liquid Na from below to above between the cladding tubes Type reactor core. 請求項1記載のハイブリッド型原子炉の炉心であって、前記高速炉の炉心における燃料の体積割合が50%より大きいことを特徴とするハイブリッド型原子炉の炉心。   The hybrid nuclear reactor core according to claim 1, wherein a volume ratio of fuel in the fast reactor core is larger than 50%. 請求項1記載のハイブリッド型原子炉の炉心であって、前記未臨界の原子炉の下方に隣接して、上記の高速炉を配置したことを特徴とするハイブリッド型原子炉の炉心。   The hybrid reactor core according to claim 1, wherein the fast reactor is disposed adjacent to a lower part of the subcritical reactor. 請求項1から3に記載のハイブリッド型原子炉の炉心であって、前記高速炉の六角形状燃料集合体を構成する被覆管に封入する核燃料物質が金属燃料であることを特徴とするハイブリッド型原子炉の炉心。   4. The hybrid nuclear reactor according to claim 1, wherein a nuclear fuel material enclosed in a cladding tube constituting a hexagonal fuel assembly of the fast reactor is a metal fuel. 5. The core of the furnace. 請求項1から4に記載のハイブリッド型原子炉の炉心であって、前記高速炉の冷却材を鉛、もしくは鉛−ビスマスとしたことを特徴とするハイブリッド型原子炉の炉心。   5. The core of a hybrid nuclear reactor according to claim 1, wherein the coolant of the fast reactor is lead or lead-bismuth.
JP2011015900A 2011-01-28 2011-01-28 Core of hybrid type nuclear reactor Pending JP2012154861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011015900A JP2012154861A (en) 2011-01-28 2011-01-28 Core of hybrid type nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011015900A JP2012154861A (en) 2011-01-28 2011-01-28 Core of hybrid type nuclear reactor

Publications (1)

Publication Number Publication Date
JP2012154861A true JP2012154861A (en) 2012-08-16

Family

ID=46836725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011015900A Pending JP2012154861A (en) 2011-01-28 2011-01-28 Core of hybrid type nuclear reactor

Country Status (1)

Country Link
JP (1) JP2012154861A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104269193A (en) * 2014-09-18 2015-01-07 中科华核电技术研究院有限公司 Subcritical energy cladding accident mitigation system
JP2018195507A (en) * 2017-05-19 2018-12-06 国立研究開発法人理化学研究所 Differential pressure chamber interconnection device and differential pressure chamber interconnection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104269193A (en) * 2014-09-18 2015-01-07 中科华核电技术研究院有限公司 Subcritical energy cladding accident mitigation system
JP2018195507A (en) * 2017-05-19 2018-12-06 国立研究開発法人理化学研究所 Differential pressure chamber interconnection device and differential pressure chamber interconnection method
JP7019141B2 (en) 2017-05-19 2022-02-15 国立研究開発法人理化学研究所 Differential pressure chamber communication device and differential pressure chamber communication method

Similar Documents

Publication Publication Date Title
JP6039524B2 (en) Transmutation assembly and fast reactor nuclear power generation system using the same
Puill et al. Advanced plutonium fuel assembly: an advanced concept for using plutonium in pressurized water reactors
Hernandez et al. Potential fuel cycle performance of floating small modular light water reactors of Russian origin
Tsujimoto et al. Accelerator-driven system for transmutation of high-level waste
JP2013050366A (en) Fast reactor core
JP6878251B2 (en) Fuel assembly for light water reactors, core design method for light water reactors, and fuel assembly design method for light water reactors
Hong et al. The encapsulated nuclear heat source (ENHS) reactor core design
JP6753760B2 (en) Fast reactor core
JP2011174838A (en) Core of fast breeder reactor
JP2012154861A (en) Core of hybrid type nuclear reactor
Villarino Core performance improvements using high density fuel in research reactors
JP3062770B2 (en) Fuel assembly structure
Kuntjoro et al. Fuel burn-up and radioactivity inventory analysis for new in-core fuel management of the RSG-GAS research reactor
Stewart et al. The SABrR concept for a fission-fusion hybrid 238U-to-239PU fissile production reactor
JP2013029403A (en) Core of fast breeder reactor
JP2015059791A (en) Fast reactor core and fast reactor comprising the core
JP6862261B2 (en) Fast reactor core and fast reactor fuel loading method
JPH1184043A (en) Hydride fuel of reactor, hydride fuel assembly using fuel, and fast reactor using fuel
JP2011174728A (en) Nuclear reactor of reflector control type
JP2003222694A (en) Light water reactor core, fuel assembly, and control rod
JP2011169710A (en) Core and fuel assembly in fast breeder reactor
CN112599259A (en) Fusion-fission hybrid reactor transmutation fuel assembly
JPH11352272A (en) Reactor core and fuel assembly and fuel element used for the core
EP3457414B1 (en) Fuel assembly and nuclear reactor core loaded with same
Bucher India's baseline plan for nuclear energy self-sufficiency.

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120522