JP2007256230A - Coolant separation type fused nuclear fuel reactor - Google Patents

Coolant separation type fused nuclear fuel reactor Download PDF

Info

Publication number
JP2007256230A
JP2007256230A JP2006084496A JP2006084496A JP2007256230A JP 2007256230 A JP2007256230 A JP 2007256230A JP 2006084496 A JP2006084496 A JP 2006084496A JP 2006084496 A JP2006084496 A JP 2006084496A JP 2007256230 A JP2007256230 A JP 2007256230A
Authority
JP
Japan
Prior art keywords
nuclear fuel
coolant
neutron
container
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006084496A
Other languages
Japanese (ja)
Inventor
Toshihisa Shirakawa
白川利久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006084496A priority Critical patent/JP2007256230A/en
Publication of JP2007256230A publication Critical patent/JP2007256230A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To safely annihilate spent nuclear fuel containing Pu240 and/or Pu242 at a low cost. <P>SOLUTION: The nuclear fuel is separated from a coolant, and the nuclear fuel is brought into a fused state. A power is controlled by opening and closing a neutron absorption contact. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、使用済み核燃料を安全に廉価に燃焼させる原子炉に関する。   The present invention relates to a nuclear reactor that burns spent nuclear fuel safely and inexpensively.

制御された核分裂連鎖反応を長期間持続することのできるようにウラニウム(U)やプルトニウム(Pu) やマイナアクチニド(MA)といった核燃料と冷却材とその他を配置した装置を原子炉という。
原子炉の種類には色々あるが微濃縮ウランまたは微濃縮ウランにプルトニウムを混合した核燃料を発熱源とし軽水を冷却材とした軽水型原子炉(加圧水型原子炉(PWR)と沸騰水型原子炉(BWR))が主流である。
図1は従来の沸騰水型原子力発電装置の概観図である。原子炉圧力容器(1)の中には発熱源である固体核燃料棒(2)と反応を制御する制御棒(3)が装荷されている。固体核燃料棒(2)で発生した熱は、給水ポンプ(4)により原子炉圧力容器(1)の中に入ってきた液体水に伝達され、高温になった水は飽和蒸気となってタービン(5)を回転させる。回転運動は発電機(6)に伝えられ電気を発生する。出力制御は駆動モーターMにより制御棒(3)を上下させることにより中性子吸収量をかえることにより実施する。タービン(5)を出た低温低圧の蒸気は復水器(7)を通って液体の水になり給水ポンプ(4)に行く。
:昭61-37591、「核燃料集合体」。 :コロナ社、著者都甲「原子動力」117、120頁。
A nuclear reactor is a device in which nuclear fuel, coolant, and other components such as uranium (U), plutonium (Pu), and minor actinide (MA) are arranged so that a controlled fission chain reaction can be sustained for a long time.
Although there are various types of nuclear reactors, light water reactors (pressurized water reactor (PWR) and boiling water reactors) that use micro-enriched uranium or plutonium mixed with micro-enriched uranium as a heat source and light water as a coolant (BWR)) is the mainstream.
FIG. 1 is a schematic view of a conventional boiling water nuclear power generator. The nuclear reactor pressure vessel (1) is loaded with a solid nuclear fuel rod (2) as a heat source and a control rod (3) for controlling the reaction. The heat generated in the solid nuclear fuel rod (2) is transferred to the liquid water that has entered the reactor pressure vessel (1) by the feed water pump (4), and the hot water becomes saturated steam as a turbine ( 5) Rotate. The rotational movement is transmitted to the generator (6) to generate electricity. The output control is performed by changing the neutron absorption amount by moving the control rod (3) up and down by the drive motor M. The low-temperature and low-pressure steam that exits the turbine (5) passes through the condenser (7) to become liquid water and goes to the feed water pump (4).
: Sho 61-37591, “Nuclear Fuel Assembly”. : Corona, author Toko “Atomic power” 117, 120 pages.

ウラン(U)の酸化物(UOX)を核燃料とした軽水型原子炉からの使用済みとなった核燃料集合体から気体廃棄物や被覆管等の個体廃棄物を除去した使用済み核燃料(SF)の中のUはウラン235(U235)の他にウラン234(U234)やウラン236(U236)を含む劣性ウラン(DU)である。U234やU236は、熱中性子主体の軽水炉で再使用するには核分裂の妨げとなる。SFの中のプルトニウム(Pu) を熱中性子主体の軽水炉で繰り返し使用することは困難である。Puの同位元素であるプルトニウム240(Pu240)やプルトニウム242(Pu242)の含有量が多くなった謂わば劣化プルトニウム(DPu)は熱中性子主体の軽水炉で使用するには核分裂の妨げとなる。
DUやDPuは高速中性子によって核分裂をするが、ボイド反応度係数が正になる傾向が高いため安全性に問題がある。ボイド反応度係数を負にするため色々な工夫がなされている所である。
MAもDPuと同様に高速中性子によって核分裂をするが、ボイド反応度係数が正になる傾向が高いため安全性に問題がある。
DUやDPuやMAは蓄積されていく一方である。結局、SFを燃焼消滅させねばならない。
Spent nuclear fuel (SF) from which solid waste such as gaseous waste and cladding tube has been removed from spent nuclear fuel assemblies from light water reactors using uranium (U) oxide (UOX) as nuclear fuel Among them, U is recessive uranium (DU) including uranium 234 (U234) and uranium 236 (U236) in addition to uranium 235 (U235). U234 and U236 interfere with fission in order to be reused in a light water reactor mainly composed of thermal neutrons. It is difficult to use plutonium (Pu) in SF repeatedly in a light water reactor mainly composed of thermal neutrons. So-called depleted plutonium (DPu), which has increased content of plutonium 240 (Pu240) and plutonium 242 (Pu242), which are Pu isotopes, hinders fission when used in light water reactors mainly composed of thermal neutrons.
DU and DPu are fissioned by fast neutrons, but there is a safety problem because the void reactivity coefficient tends to be positive. Various measures have been taken to make the void reactivity coefficient negative.
MA also fission with fast neutrons like DPu, but there is a safety problem because the void reactivity coefficient tends to be positive.
DU, DPu, and MA are being accumulated. Eventually, SF must be burned off.

SFは熱中性子に対しては核分裂しないが高速中性子に対しては核分裂をする。水のような冷却材は高速中性子を減速させる作用があるから、SFの近くに冷却材が少なければ高速中性子主体の原子炉になり得る。SFからの除熱はSFを溶融金属の形にすればSF自身が冷却材の役目もする。
安全性の観点からボイド反応度係数を負もしくは非常に小さな値にすれば出力の急上昇はないが、もっと確実に実効増倍係数keffが上昇するような事象が生じ難いように冷却材と核燃料とを分離する。
SF does not fission for thermal neutrons but fission for fast neutrons. A coolant such as water has the effect of slowing down fast neutrons, so if there are few coolants near the SF, it can be a fast neutron-based reactor. For heat removal from SF, if SF is in the form of molten metal, SF itself also acts as a coolant.
If the void reactivity coefficient is set to a negative or very small value from the viewpoint of safety, the output will not increase rapidly, but the coolant and nuclear fuel will not be able to cause an event that increases the effective multiplication factor keff more reliably. Isolate.

従来は核燃料と冷却材が接していて相互作用を及ぼしていた。その結果、核燃料を保護するため冷却水温度の上限を低く設定せざるをえなかった。本発明では核燃料と冷却材は分離したため、核燃料を融点以上の高温にすることができるため高温蒸気を得ることができてエネルギー効率が上がり、発電コストが低下する。
本発明では被覆管が不要でコストが下がる。
中性子減速作用のある冷却材が核燃料に接していないため核分裂エネルギー閾値が高いPu242またはPu240でも高速中性子により充分核分裂を継続できる。
In the past, nuclear fuel and coolant were in contact and interacted. As a result, the upper limit of the cooling water temperature had to be set low in order to protect the nuclear fuel. In the present invention, since the nuclear fuel and the coolant are separated, the nuclear fuel can be heated to a temperature higher than the melting point, so that high temperature steam can be obtained, energy efficiency is increased, and power generation cost is reduced.
In the present invention, a cladding tube is not required and the cost is reduced.
Since a coolant with a neutron moderating action is not in contact with nuclear fuel, it can continue fission sufficiently with fast neutrons even with Pu242 or Pu240 having a high fission energy threshold.

安全性を損なうことなくかつ、発電コストを大幅に上げることもなくDuやDPuやMA
を燃焼消滅させる原子炉が提供できた。
Du, DPu, and MA without compromising safety and without significantly increasing power generation costs
Reactor that burns and extinguishes can be provided.

図2は本発明の冷却材分離型溶融核燃料原子炉の運転時における概観図である。核燃料容器(43)の中にUやDPuやMAを鉄やジルコニウムと混合して融点が低くなった液体上の高温の溶融核燃料(44)と核分裂生成物気体(FP)を含む気体雰囲気(42)が存在している。核燃料容器(43)は耐圧冷却材容器(71)の中に納められている。核燃料容器(43)と耐圧冷却材容器(71)の間には断熱材隔壁(55)があって冷却水(53)と二相流水(56)を分けている。給水管(60)から冷却水(53)領域に入ってきた水は、断熱材隔壁(55)底部から実線矢印のように流れて二相流水(56)領域に入り、核燃料容器(43)の壁を介して溶融核燃料(44)から熱を吸収して上部に流れ破線開き矢印のように流れて蒸気(52)領域に出る。蒸気(52)は中性子吸収材伝熱フィン(41)から更に熱を吸収して蒸気管(51)からタービンへ出て行く。中性子吸収材伝熱フィン(41)は核燃料容器(43)を貫通して溶融核燃料液面(45)に至り溶融核燃料(44)からの熱を蒸気(52)に伝える。本原子炉の出力制御はハフニウムや焼結炭化硼素でできた中性子吸収触手(33)の開閉により実施する。通常運転時には中性子吸収触手(33)は中性子反射材でできた制御棒案内管(32)の中に閉じていて表面積が小さいため中性子吸収効果は小さい。制御棒案内管(32)は鉄やジルコニウムの中性子反射材でできているため、中性子は中性子吸収触手(33)に至らず溶融核燃料(44)の中に反射される。多数本の中性子吸収触手(33)は束ねられて制御棒案内管(32)の中を通って制御棒駆動機構兼FP排気機構(31)のモータ(M)により上下操作されることにより開閉される。気体雰囲気(42)の中のFPは制御棒駆動機構兼FP排気機構(31)により外部に排気される。冷却水(53)は中性子反射材の役目もする。
給水管(60)からの水が止まるような事象が生じると、図3に示すようになる。冷却水液面(54)が下がり中性子を反射させることが少なくなるため核燃料容器(43)から中性子は多く漏洩するため核燃料の反応が低下し出力を下げる。一方、水位の低下はニ相流水(56)の低下を齎し核燃料容器(43)からの除熱が下がることになるから、溶融核燃料(44)の温度は上昇し溶融核燃料(44)の体積は増え、溶融核燃料(44)の密度は減少し核燃料の反応が低下し出力を下げる。溶融核燃料(44)の体積増加は溶融核燃料液面(45)の液位上昇をも齎し中性子漏洩が増え核燃料の反応が低下し出力を下げる。更に、中性子吸収材でできた中性子吸収材伝熱フィン(41)の先端は溶融核燃料(44)の中に没し中性子を吸収するため核燃料の反応が低下し出力を下げる。中性子吸収材伝熱フィン(41)の代替としてヒートパイプによる除熱も有望である。制御棒駆動機構兼FP排気機構(31)のモータ(M)により中性子吸収触手(33)が制御棒案内管(32)から押し出されると広がり表面積が増えるため中性子吸収作用が強まり核燃料の反応が低下し出力を下げる。
非常時給水管(131)からの注水により核燃料容器(43)壁の健全性は保たれるが、万一、核燃料容器(43)壁が破れても溶融核燃料(44)は耐圧冷却材容器(71)の中に分散されるため核燃料の反応は更に低下し出力も更に低下し、耐圧冷却材容器(71)の広い壁は熱を吸収する。
タービン停止の場合には蒸気が3方弁等により復水器(7)に自動的に流れるようにしておけば耐圧冷却材容器(71)の中の蒸気圧力が過度に上昇することはない。
FIG. 2 is a schematic view of the coolant separated molten nuclear fuel reactor of the present invention during operation. Gas atmosphere containing high-temperature molten nuclear fuel (44) and fission product gas (FP) on a liquid with a low melting point by mixing U, DPu, or MA with iron or zirconium in a nuclear fuel container (43) ) Exists. The nuclear fuel container (43) is housed in the pressure-resistant coolant container (71). There is a heat insulating material partition wall (55) between the nuclear fuel container (43) and the pressure-resistant coolant container (71), which separates the cooling water (53) and the two-phase flowing water (56). Water entering the cooling water (53) region from the water supply pipe (60) flows from the bottom of the heat insulating partition wall (55) as indicated by the solid line arrow and enters the two-phase flow water (56) region, and enters the nuclear fuel container (43). Heat is absorbed from the molten nuclear fuel (44) through the wall, flows upward, flows as shown by broken arrows, and exits to the vapor (52) region. The steam (52) further absorbs heat from the neutron absorber heat transfer fin (41) and goes out from the steam pipe (51) to the turbine. The neutron absorber heat transfer fin (41) penetrates the nuclear fuel container (43) to the molten nuclear fuel liquid level (45) and transfers heat from the molten nuclear fuel (44) to the vapor (52). The reactor power is controlled by opening and closing a neutron absorbing tentacle (33) made of hafnium or sintered boron carbide. During normal operation, the neutron absorption tentacle (33) is closed in the control rod guide tube (32) made of neutron reflector and has a small surface area, so the neutron absorption effect is small. Since the control rod guide tube (32) is made of iron or zirconium neutron reflector, neutrons do not reach the neutron absorbing tentacle (33) but are reflected into the molten nuclear fuel (44). Numerous neutron absorbing tentacles (33) are bundled and passed through the control rod guide tube (32) and opened and closed by being operated up and down by the motor (M) of the control rod drive mechanism and FP exhaust mechanism (31). The The FP in the gas atmosphere (42) is exhausted to the outside by the control rod drive mechanism / FP exhaust mechanism (31). The cooling water (53) also serves as a neutron reflector.
When an event occurs in which water from the water supply pipe (60) stops, the result is as shown in FIG. Since the coolant level (54) falls and less neutrons are reflected, more neutrons leak from the nuclear fuel container (43), so the reaction of the nuclear fuel is reduced and the output is reduced. On the other hand, the decrease in the water level leads to a decrease in the two-phase flow water (56) and the heat removal from the nuclear fuel container (43) decreases, so the temperature of the molten nuclear fuel (44) rises and the volume of the molten nuclear fuel (44) becomes The density of the molten nuclear fuel (44) increases, the reaction of the nuclear fuel decreases and the output decreases. The increase in the volume of the molten nuclear fuel (44) also leads to an increase in the liquid level of the molten nuclear fuel liquid level (45), neutron leakage increases, and the reaction of the nuclear fuel decreases and the output decreases. Furthermore, the tip of the neutron absorber heat transfer fin (41) made of a neutron absorber is immersed in the molten nuclear fuel (44) and absorbs neutrons, so that the reaction of the nuclear fuel is reduced and the output is reduced. As an alternative to the neutron absorber heat transfer fin (41), heat removal with a heat pipe is also promising. When the neutron absorbing tentacle (33) is pushed out of the control rod guide tube (32) by the motor (M) of the control rod drive mechanism and FP exhaust mechanism (31), the surface area increases and the neutron absorption action increases and the reaction of nuclear fuel decreases. Then lower the output.
Although the soundness of the nuclear fuel container (43) wall is maintained by water injection from the emergency water supply pipe (131), even if the nuclear fuel container (43) wall is torn, the molten nuclear fuel (44) will remain in the pressure-resistant coolant container (71 The reaction of nuclear fuel further decreases and the output further decreases, and the wide wall of the pressure-resistant coolant container (71) absorbs heat.
When the turbine is stopped, the steam pressure in the pressure-resistant coolant container (71) does not rise excessively if steam is automatically flowed to the condenser (7) by a three-way valve or the like.

本発明により、使用済み核燃料の処分において扱い難かったDUやDPuやMAを有効に利用消滅できるようになる。最終処分地の問題も軽減される。強いては発電コスト低減になる。   According to the present invention, DU, DPu, and MA, which are difficult to handle in disposal of spent nuclear fuel, can be effectively utilized and extinguished. The problem of the final disposal site is also reduced. If this is the case, power generation costs will be reduced.

は従来の沸騰水型原子力発電装置の概観図である。Fig. 2 is an overview of a conventional boiling water nuclear power plant. は本発明の冷却材分離型溶融核燃料原子炉の運転時における概観図である。FIG. 2 is an overview diagram of the coolant separated molten nuclear fuel reactor of the present invention during operation. は冷却材分離型溶融核燃料原子炉の事故時の状況での概観図である。Fig. 2 is an overview of the situation at the time of the accident of the coolant-separated molten nuclear fuel reactor.

符号の説明Explanation of symbols

1は原子炉圧力容器。
2は固体核燃料棒。
3は制御棒。
4は給水ポンプ。
5はタービン。
6は発電機。
7は復水器。
31は制御棒駆動機構兼FP排気機構。
32は制御棒案内管。
33は中性子吸収触手。
41は中性子吸収材伝熱フィン。
42は気体雰囲気。
43は核燃料容器。
44は溶融核燃料。
45は溶融核燃料液面。
51は蒸気管。
52は蒸気。
53は冷却水。
54は冷却水液面。
55は断熱材隔壁。
56はニ相流水。
60は給水管。
71は耐圧冷却材容器。
131は非常時吸収管。
1 is a reactor pressure vessel.
2 is a solid nuclear fuel rod.
3 is a control rod.
4 is a water supply pump.
5 is a turbine.
6 is a generator.
7 is a condenser.
31 is a control rod drive mechanism and FP exhaust mechanism.
32 is a control rod guide tube.
33 is a neutron absorbing tentacle.
41 is a neutron absorber heat transfer fin.
42 is a gas atmosphere.
43 is a nuclear fuel container.
44 is a molten nuclear fuel.
45 is a molten nuclear fuel liquid level.
51 is a steam pipe.
52 is steam.
53 is cooling water.
54 is a coolant level.
55 is a heat insulating partition.
56 is two-phase running water.
60 is a water supply pipe.
71 is a pressure-resistant coolant container.
131 is an emergency absorption tube.

Claims (1)

高温の溶融核燃料(44)と核分裂生成物気体(FP)を含む気体雰囲気(42)が存在している核燃料容器(43)を納める耐圧冷却材容器(71)と核燃料容器(43)の間には断熱材隔壁(55)を設け冷却水(53)と二相流水(56)を分け、核燃料容器(43)の上には溶融核燃料(44)の熱を蒸気(52)に伝える中性子吸収材からなる中性子吸収材伝熱フィン(41)を設け、中性子反射材でできた制御棒案内管(32)の中を通り制御棒駆動機構兼FP排気機構(31)のモータ(M)による上下操作により開閉される中性子吸収触手(33)により出力制御することを特徴とする冷却材分離型溶融核燃料原子炉。
Between the pressure-resistant coolant container (71) and the nuclear fuel container (43) containing the nuclear fuel container (43) in which a gas atmosphere (42) containing high-temperature molten nuclear fuel (44) and fission product gas (FP) exists. Has a partition wall (55) and separates cooling water (53) and two-phase flow water (56), and on the nuclear fuel container (43), the heat of molten nuclear fuel (44) is transferred to the steam (52). The neutron absorber heat transfer fin (41) is made of, and passes through the control rod guide tube (32) made of neutron reflector to move up and down by the motor (M) of the control rod drive mechanism and FP exhaust mechanism (31) A coolant-separated molten nuclear fuel reactor, whose output is controlled by a neutron absorption tentacle (33) opened and closed by
JP2006084496A 2006-03-27 2006-03-27 Coolant separation type fused nuclear fuel reactor Pending JP2007256230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006084496A JP2007256230A (en) 2006-03-27 2006-03-27 Coolant separation type fused nuclear fuel reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006084496A JP2007256230A (en) 2006-03-27 2006-03-27 Coolant separation type fused nuclear fuel reactor

Publications (1)

Publication Number Publication Date
JP2007256230A true JP2007256230A (en) 2007-10-04

Family

ID=38630615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006084496A Pending JP2007256230A (en) 2006-03-27 2006-03-27 Coolant separation type fused nuclear fuel reactor

Country Status (1)

Country Link
JP (1) JP2007256230A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141853A1 (en) 2013-03-14 2014-09-18 株式会社フジクラ Cooling system for stored nuclear fuel
JP2015102436A (en) * 2013-11-26 2015-06-04 株式会社 トリウムテックソリューション Molten salt nuclear fuel module
JP2016512887A (en) * 2013-03-15 2016-05-09 サザーランド クック エルウッド Accelerator-driven subcritical reactor system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141853A1 (en) 2013-03-14 2014-09-18 株式会社フジクラ Cooling system for stored nuclear fuel
JP5608835B1 (en) * 2013-03-14 2014-10-15 株式会社フジクラ Storage nuclear fuel cooling system
JP2016512887A (en) * 2013-03-15 2016-05-09 サザーランド クック エルウッド Accelerator-driven subcritical reactor system
JP2015102436A (en) * 2013-11-26 2015-06-04 株式会社 トリウムテックソリューション Molten salt nuclear fuel module
WO2015079781A1 (en) * 2013-11-26 2015-06-04 株式会社 トリウムテックソリューション Molten-salt nuclear fuel module

Similar Documents

Publication Publication Date Title
CA2849175A1 (en) Dual fluid reactor
KR101317962B1 (en) Reactor
CN103236276A (en) Control rod for liquid heavy metal cooling reactor
CN102568624A (en) High-temperature supercritical nuclear reactor
JPH032277B2 (en)
JP2007256230A (en) Coolant separation type fused nuclear fuel reactor
JP5090946B2 (en) BWR nuclear fuel rods and nuclear fuel assemblies
JP2002181976A (en) Nuclear reactor and nuclear plant equipped with the same
Hejzlar et al. Design strategy and constraints for medium-power lead-alloy–cooled actinide burners
JP2010276564A (en) 920k superheated steam boiling water reactor
Oka et al. Conceptual design of a fast breeder reactor cooled by supercritical steam
JP2008096366A (en) Quota control rod arrangement bwr reactor core with adjunct
JP2007163245A (en) Nuclear reactor loaded with spontaneous neutron emission nuclear fuel
JP7136449B2 (en) Plutonium extinction molten salt reactor, power generation system using the same, and operation method of plutonium extinction molten salt reactor
JP4467995B2 (en) Boiling water reactor
JP2003139881A (en) Reactor cooled with supercritical pressure water, channel box, water rod and fuel assembly
JP2012127749A (en) High conversion sauna-type nuclear reactor
Pope et al. Experimental Breeder Reactor II
JP2015059791A (en) Fast reactor core and fast reactor comprising the core
US20220344064A1 (en) High-burnup Fast Reactor Metal Fuel
JP2000505554A (en) Method and reactor for generating energy in a process for controlling fission
Nakamura et al. High power transient characteristics and capability of NSRR
RU2694812C1 (en) Heterogeneous channel nuclear reactor on thermal neutrons
JP2005114600A (en) Boiling water generating superheated steam type reactor
JP2017090176A (en) Parallel plate transuranium nuclear fuel assembly