JP2008096366A - Quota control rod arrangement bwr reactor core with adjunct - Google Patents

Quota control rod arrangement bwr reactor core with adjunct Download PDF

Info

Publication number
JP2008096366A
JP2008096366A JP2006280916A JP2006280916A JP2008096366A JP 2008096366 A JP2008096366 A JP 2008096366A JP 2006280916 A JP2006280916 A JP 2006280916A JP 2006280916 A JP2006280916 A JP 2006280916A JP 2008096366 A JP2008096366 A JP 2008096366A
Authority
JP
Japan
Prior art keywords
nuclear fuel
mox
cycle
fuel assembly
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006280916A
Other languages
Japanese (ja)
Other versions
JP5252522B2 (en
JP2008096366A5 (en
Inventor
Toshihisa Shirakawa
白川利久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006280916A priority Critical patent/JP5252522B2/en
Publication of JP2008096366A publication Critical patent/JP2008096366A/en
Publication of JP2008096366A5 publication Critical patent/JP2008096366A5/ja
Application granted granted Critical
Publication of JP5252522B2 publication Critical patent/JP5252522B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To reduce costs by reducing the number of control rods and by facilitating regular inspections. <P>SOLUTION: Control rods left by removing every other control rods from a conventional control rod arrangement serve as quota control rods 101. Instead of the control rods thus removed, unburned cruciform flammable poison rods 201, one-cycle burned cruciform flammable poison rods 202, and two-cycle burned cruciform flammable poison rods 203 are loaded. Furthermore, MOX dense nuclear fuel assemblies are loaded. The number of control rods and the number of control rod driving devices are reduced by combining the MOX dense nuclear fuel assemblies and the cruciform flammable poison rods. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、沸騰水型原子炉(BWR)の炉心に関する。   The present invention relates to a boiling water reactor (BWR) core.

図1は沸騰水型原子炉の炉心構造図である(非特許文献1)。核燃料物質を内包している核燃料集合体(30)の下端は炉心支持板(1)に装着されている着脱可能な核燃料支持金具(2)により支持され、上端はチャンネルボックス(35)を介して上部格子板(3)にもたれかけさせている。上部格子板(3)の格子の間の4体の核燃料集合体(30)の中央には上下に操作できる制御棒(100)があり原子炉を制御する。制御棒駆動装置(非特許文献2)を図2に示す。制御棒駆動装置は原子炉圧力容器底部の下にある。
図3は、炉心高さ中央部の従来型の核燃料集合体(30)を配置せる運転開始直前炉心平面図である。1印の位置には未燃焼従来型の核燃料集合体(11)、2印の位置には1サイクル燃焼従来型の核燃料集合体(12)、3印の位置には2サイクル燃焼従来型の核燃料集合体(13)、4印の位置には3サイクル燃焼従来型の核燃料集合体(14)が装荷されている。十字点線は従来の制御棒(100)の配置を示す。通常、原子炉運転時には大部分の制御棒(100)は炉心の下に引き抜かれている。
従来型の核燃料集合体(30)と制御棒(100)を配置せる炉心平面拡大図を図4に示した。原子炉では、核燃料集合体(30)は制御棒側漏洩水通路(51)と制御棒と反対側漏洩水通路(52)を挟んで格子状に配列されている。核燃料棒(31)の間は冷却水通路(49)となっている。核燃料棒(31)のうち数本は可燃性毒物としてガドリニウム(Gd)の酸化物が添加された可燃性毒物添加核燃料棒(32)である。また、数本の核燃料棒(31)の代わりに水棒(36)を配する場合がある。
:原子力安全研究協会(編)、1998年「軽水炉燃料のふるまい」。 :原子力安全研究協会(編)、平成4年「軽水炉発電所のあらまし」。
FIG. 1 is a structural diagram of the core of a boiling water reactor (Non-Patent Document 1). The lower end of the nuclear fuel assembly (30) containing the nuclear fuel material is supported by a detachable nuclear fuel support fitting (2) attached to the core support plate (1), and the upper end via a channel box (35). It leans against the upper grid plate (3). At the center of the four nuclear fuel assemblies (30) between the lattices of the upper lattice plate (3), there is a control rod (100) that can be operated up and down to control the nuclear reactor. A control rod drive (Non-Patent Document 2) is shown in FIG. The control rod drive is below the bottom of the reactor pressure vessel.
FIG. 3 is a plan view of the core immediately before the start of operation in which a conventional nuclear fuel assembly (30) at the center of the core height is arranged. Unburned conventional nuclear fuel assembly (11) at the 1 mark position, 1 cycle burning conventional nuclear fuel assembly (12) at the 2 mark position, and 2-cycle burning conventional nuclear fuel fuel at the 3 mark position The assembly (13) is marked with a three-cycle combustion conventional nuclear fuel assembly (14). The cross-dotted line indicates the arrangement of the conventional control rod (100). Usually, most of the control rods (100) are pulled out under the core during the operation of the reactor.
FIG. 4 shows an enlarged plan view of the core in which the conventional nuclear fuel assembly (30) and the control rod (100) are arranged. In the nuclear reactor, the nuclear fuel assemblies (30) are arranged in a lattice pattern with the control rod side leakage water passage (51) and the leakage water passage (52) opposite to the control rod interposed therebetween. A cooling water passage (49) is provided between the nuclear fuel rods (31). Several of the nuclear fuel rods (31) are combustible poison-added nuclear fuel rods (32) to which an oxide of gadolinium (Gd) is added as a combustible poison. In some cases, a water rod (36) is arranged instead of several nuclear fuel rods (31).
: Nuclear Safety Research Association (ed.), 1998 “Light Water Reactor Fuel Behavior”. : Nuclear Safety Research Association (ed.), 1992 "Summary of light water reactor power plant".

近年、電力料金の低減が求められている。その一貫としてBWRによる発電コストの低減が求められている。
図5は加圧水型原子炉(PWR)の炉心配置図である(非特許文献3)。燃料集合体(BWRの核燃料集合体(30)相当)の内、千鳥格子状の位置の燃料集合体にのみ制御棒クラスタ(BWRの制御棒(100)同様に中性子を吸収して原子炉を制御する)が挿入できるようになっている。PWRの反応度制御は制御棒クラスタの他にホウ酸水を冷却材の中に混入させることにより達成している。運転末期においてもホウ酸水は冷却水の中に含有されている。
一方、BWRでは図3に見るようにどの核燃料集合体も2面が制御棒(100)に面している。BWRの制御棒はPWRの制御棒に比べて過剰に装荷されていると考えられる。建設コストがその分高くなると考えられる。
:コロナ社、1975年、著者都甲「原子動力」。
In recent years, there has been a demand for a reduction in power charges. As part of this, reduction of power generation cost by BWR is required.
FIG. 5 is a core layout diagram of a pressurized water reactor (PWR) (Non-patent Document 3). Of the fuel assemblies (equivalent to the nuclear fuel assemblies (30) of the BWR), only the fuel assemblies in the staggered grid position absorb the neutrons in the same manner as the control rods (100) of the BWR. Control) can be inserted. The PWR reactivity control is achieved by mixing boric acid water in the coolant in addition to the control rod cluster. Even at the end of the operation, boric acid water is contained in the cooling water.
On the other hand, in BWR, as shown in Fig. 3, two sides of each nuclear fuel assembly face the control rod (100). BWR control rods are thought to be overloaded compared to PWR control rods. The construction cost will increase accordingly.
: Corona, 1975, author Toko “Atomic Power”.

現行BWRの核燃料集合体(30)に装荷されている可燃性毒物添加核燃料棒(32)に添加されている天然のGdには中性子を強く吸収する同位元素ガドリ155(Gd155)やガドリ157(Gd157)と、中性子吸収作用の小さい同位元素ガドリ156(Gd156)やガドリ158(Gd158)が含まれている。核分裂性物質が多く含まれている燃焼初期でもGdが添加されていれば無限増倍係数(k∞)を小さくできるため原子炉停止余裕を満足しつつ核分裂性物質を多く含有させることができるため長期間燃焼させることができる。Gd155やGd157は中性子を吸収すると中性子吸収作用の小さいGd156やGd158になるため燃焼が進み核分裂性物質が少なくなった運転末期でもk∞を抑制することはない。
可燃性毒物をうまく利用すれば制御棒(100)の敷設体数を現行の約1/4に減らすことができる。
The natural Gd added to the flammable poison-added nuclear fuel rod (32) loaded in the current BWR nuclear fuel assembly (30) includes the isotopes Gadori 155 (Gd155) and Gadori 157 (Gd157 ) And isotopes Gadori 156 (Gd156) and Gadori 158 (Gd158) having a small neutron absorption action. Infinite combustion multiplication factor (k∞) can be reduced if Gd is added even in the early stage of combustion, which contains a lot of fissile material, so that more fissile material can be contained while satisfying the reactor shutdown margin. Can be burned for a long time. When Gd155 or Gd157 absorbs neutrons, it becomes Gd156 or Gd158, which has a small neutron absorption action, so it does not suppress k∞ even at the end of operation when combustion progresses and the amount of fissile material decreases.
If the flammable poison is used well, the number of control rods (100) installed can be reduced to about 1/4 of the current number.

原子炉停止余裕を満たしつつ、御棒(100)の体数を現行の約1/4に減らすことにより制御棒駆動装置が減ったことと定期検査が容易になったこととによりコスト低減ができる。   Costs can be reduced by reducing the number of rods (100) to about 1/4 of the current number while reducing the number of control rod drive units and making periodic inspections easier while satisfying the reactor shutdown margin. .

建設コストが安くその結果、発電コストの安いBWR炉心が提供できた。   As a result, the construction cost was low, and as a result, a BWR core with low power generation cost could be provided.

図6は未燃焼MOX稠密核燃料集合体(130)の断面図である。ウラン(U)とプルトニウム(Pu)の混合酸化物であるMOXを核燃料とするMOX核燃料棒(231)を稠密に配列することにより水による中性子減速作用を抑制しPuを効率良く燃焼させる。MOX核燃料棒(231)を稠密に配列した核燃料集合体は、燃焼が進展してもPuが効率よく燃焼するためk∞の減少は緩やかである。低減速炉ではこの特徴を生かしてMOX稠密核燃料集合体が考えられている(非特許文献4)。更に、運転中での高温水での低密度から運転停止して低温水での高密度に変化しても水の占有割合が低いため水の変化量が小さいが故に中性子減速作用の変化量が小さくk∞の変動幅も小さい。したがって、制御棒の反応度調節度合いは小さくて済む。制御棒の本数を減らせる可能性が高い。
図7は、運転開始直前本発明の補助付クオータ制御棒配置BWR炉心の概観図である。炉心中央の従来の制御棒(100)から1体置きに残しクオータ制御棒(101)とし、他の制御棒(100)とこれに付随する駆動装置を除外し、代わりに未燃焼十字型可燃性毒物棒(201) 、1サイクル燃焼十字型可燃性毒物棒(202)、2サイクル燃焼十字型可燃性毒物棒(203)を装荷する。
クオータ制御棒(101)の周りのN印の位置に4体の未燃焼MOX稠密核燃料集合体(130)を装荷する。N印の位置で未燃焼MOX稠密核燃料集合体(130)が1サイクル燃えて1サイクル燃焼MOX稠密核燃料集合体(131)になったものをE印の位置に配置換えし、そのE印中央に未燃焼十字型可燃性毒物棒(201)を新規に装荷する。E印の位置での1サイクル燃焼MOX稠密核燃料集合体(131)とその中央での未燃焼十字型可燃性毒物棒(201)が1サイクル燃えて2サイクル燃焼MOX稠密核燃料集合体(132)及び1サイクル燃焼十字型可燃性毒物棒(202)となったものをF印の位置及びその中央に配置換えする。F印の位置での2サイクル燃焼MOX稠密核燃料集合体(132) とその中央での1サイクル燃焼十字型可燃性毒物棒(202)が1サイクル燃えて3サイクル燃焼MOX稠密核燃料集合体(133)と2サイクル燃焼十字型可燃性毒物棒(203)となったものをG印の位置及びその中央に配置換えする。G印の位置で3サイクル燃焼MOX稠密核燃料集合体(133)が1サイクル燃えて4サイクル燃焼MOX稠密核燃料集合体(134)となったものを炉心外周のZ印の位置に配置換えする。3サイクル燃焼MOX稠密核燃料集合体(134) の大部分と十字型可燃性毒物棒(203)と4サイクル燃焼MOX稠密核燃料集合体(135) が1サイクル燃えたものは炉心外に取出す。本発明の補助付クオータ制御棒配置BWR炉心は上記炉心構成と運転計画を特徴とする。なお、3サイクル燃焼MOX稠密核燃料集合体(133)にはU235がかなり少なくなっているため2サイクル燃焼十字型可燃性毒物棒(203)は装荷せずに済ませることもできる。なお、F印またはG印の位置及びその中央では2サイクル燃焼MOX稠密核燃料集合体(132) と1サイクル燃焼十字型可燃性毒物棒(202)が1サイクル燃えた後は、配置換えせずに3サイクル燃焼MOX稠密核燃料集合体(133)と2サイクル燃焼十字型可燃性毒物棒(203)とすることもできる。
上記炉心構成と運転計画により、制御棒および駆動装置は約1/4になる。未燃焼十字型可燃性毒物棒(201)は、カドミウム(Cd)またはホウ素(B)またはエルビウム(Er)またはディスプロシウム(Dy)といった可燃性毒物または酸化カドミウム(CdO)または酸化エルビウム(Er2O3)または酸化ディスプロシウム(Dy2O3)または炭化ホウ素(B4C)またはホウ化ジルコニウム(B12Zr)のような化合物を添加したジルコニウム合金製の十字型板である。未燃焼十字型可燃性毒物棒(201)には前記可燃性毒物を運転末期でも燃え残っているように多く添加する。1サイクル燃焼十字型可燃性毒物棒(202)にも前記可燃性毒物が運転末期でも若干燃え残っているようにする。CdやBはGdほどには熱中性子吸収断面積が大きくはないため消耗速度が遅く運転末期でも燃え残る。
図8は本発明の炉心の作用を示す図である。原子炉運転時の冷却水温度は高いため密度が小さい。したがって、高速中性子を減速させる作用が小さい。その結果、運転時の熱中性子束は小さい。一方、可燃性毒物は熱中性子吸収断面積は大きいがそれに比べて高速中性子吸収断面積は非常に小さい。したがって、中性子吸収断面積と中性子束の積にほぼ比例する反応度抑制効果は、運転時に小さく停止時に大きい。運転時に可燃性毒物が残っていても反応度抑制効果が小さいため出力低下への悪影響は小さい。一方、停止時に可燃性毒物が残っていれば反応度抑制効果が大きいためキセノンの消滅や蒸気ボイドの消滅や燃料温度の低下による反応度増加を相殺してくれる。
図9は未燃焼MOX稠密核燃料集合体(130)〜3サイクル燃焼MOX稠密核燃料集合体(133)とクオータ制御棒(101)と未燃焼十字型可燃性毒物棒(201)〜2サイクル燃焼十字型可燃性毒物棒(203)の平面配置関係を拡大した図である。左上方のクオータ制御棒(101)の周りには4体の未燃焼MOX稠密核燃料集合体(130)を装荷する。右下方には未燃焼十字型可燃性毒物棒(201)を装荷しその周りには4体の1サイクル燃焼MOX稠密核燃料集合体(131)を装荷する。右上方には1サイクル燃焼十字型可燃性毒物棒(202)を装荷しその周りには4体の2サイクル燃焼MOX稠密核燃料集合体(132)を装荷する。左下方には2サイクル燃焼十字型可燃性毒物棒(203)を装荷しその周りには4体の3サイクル燃焼MOX稠密核燃料集合体(133)を装荷する。
更に定期検査等の長期間原子炉停止時に停止余裕を増すためには、PWRで実績のあるホウ酸水を冷却水の中に注入することもできる。PWRでは蒸気発生器チューブが破損しても原子炉の運転はある程度続行されると考えられる。その間ホウ酸を含む水はタービンにも行く。したがって、BWRの冷却水中にホウ酸水が混入していても原子炉やタービンへの悪影響は少なく運転は可能である。ホウ酸水濃度を薄めるためには使用済み燃料貯蔵庫にホウ酸水を移し、代わりに純水を原子炉の炉心に注入すればよい。五硼酸ナトリウムの水溶液を冷却水の中に注入することによっても停止余裕を上げることができる。
制御棒の体数が大幅に減少できるため、制御棒駆動装置を原子炉圧力容器の上に敷設することが可能になる。その結果、制御棒駆動装置の点検がし易くなり点検時間と費用を通しても発電コスト低減になる。
:日本原子力学会誌,2006年,Vol48,大久保努他「低減速炉の技術開発の進捗および課題」。
FIG. 6 is a cross-sectional view of an unburned MOX dense nuclear fuel assembly (130). By closely arranging MOX nuclear fuel rods (231) using MOX, which is a mixed oxide of uranium (U) and plutonium (Pu), as a nuclear fuel, the neutron moderating action by water is suppressed and Pu is burned efficiently. In the nuclear fuel assembly in which the MOX nuclear fuel rods (231) are densely arranged, Pu is burned efficiently even if the combustion progresses, and the decrease in k∞ is slow. In low-speed reactors, MOX dense nuclear fuel assemblies have been considered taking advantage of this feature (Non-patent Document 4). Furthermore, even if the operation is stopped from low density with high-temperature water during operation and the density changes with low-temperature water, the amount of change in water is small and the amount of change in neutron moderating action is small. The fluctuation range of k∞ is also small. Therefore, the degree of control degree adjustment of the control rod is small. There is a high possibility that the number of control rods can be reduced.
FIG. 7 is a schematic view of the BWR core with the auxiliary quota control rod arrangement of the present invention immediately before the start of operation. A quarter control rod (101) is left out from the conventional control rod (100) in the center of the core, leaving the other control rod (100) and the drive unit attached to it as a substitute. A poison rod (201), a one-cycle combustion cross-shaped flammable poison rod (202), and a two-cycle combustion cross-shaped flammable poison rod (203) are loaded.
Four unburned MOX dense nuclear fuel assemblies (130) are loaded at the position of the N mark around the quota control rod (101). The unburned MOX dense nuclear fuel assembly (130) burned for one cycle at the position of N and replaced with the one-cycle combustion MOX dense nuclear fuel assembly (131) at the position of E mark. A new unburned cross-shaped flammable poison rod (201) is loaded. A one-cycle combustion MOX dense nuclear fuel assembly (131) at the position of E and an unburned cross-shaped flammable poison rod (201) in the center burns for one cycle and a two-cycle combustion MOX dense nuclear fuel assembly (132) and The one that becomes a one-cycle burning cross-shaped flammable poison rod (202) is rearranged to the position of the F mark and the center thereof. Two-cycle combustion MOX dense nuclear fuel assembly (132) at the position of F and one-cycle combustion cross-shaped flammable poison rod (202) at the center burns one cycle and three-cycle combustion MOX dense nuclear fuel assembly (133) And the two-cycle burning cross-shaped flammable poison rod (203) is rearranged to the position of the G mark and the center. The three-cycle combustion MOX dense nuclear fuel assembly (133) burned by one cycle at the position of G and changed to the four-cycle combustion MOX dense nuclear fuel assembly (134) is relocated to the position of the Z mark on the outer periphery of the core. Most of the three-cycle combustion MOX dense nuclear fuel assembly (134), the cross-shaped combustible poison rod (203), and the four-cycle combustion MOX dense nuclear fuel assembly (135) burned for one cycle are taken out of the core. The auxiliary quarter control rod arrangement BWR core of the present invention is characterized by the above core configuration and operation plan. The 3-cycle combustion MOX dense nuclear fuel assembly (133) has considerably less U235, so the 2-cycle combustion cross-shaped flammable poison rod (203) can be dispensed with. In addition, at the position of the F mark or G mark and in the center, after the two-cycle combustion MOX dense nuclear fuel assembly (132) and the one-cycle combustion cross-shaped flammable poison rod (202) burn for one cycle, do not rearrange them. A three-cycle combustion MOX dense nuclear fuel assembly (133) and a two-cycle combustion cross-shaped flammable poison rod (203) can also be used.
Depending on the core configuration and operation plan, the number of control rods and drive units will be about 1/4. Unburnt cross-shaped flammable poison rod (201) is cadmium (Cd) or boron (B) or erbium (Er) or dysprosium (Dy) flammable poison or cadmium oxide (CdO) or erbium oxide (Er2O3) Alternatively, it is a cross-shaped plate made of a zirconium alloy to which a compound such as dysprosium oxide (Dy2O3), boron carbide (B4C) or zirconium boride (B12Zr) is added. A large amount of the flammable poison is added to the unburned cross-shaped flammable poison rod 201 so that it remains unburned even at the end of the operation. The flammable poison is left on the one-cycle combustion cross-shaped flammable poison rod (202) to be slightly burned even at the end of operation. Cd and B have a thermal neutron absorption cross section that is not as large as Gd, so the consumption rate is slow and they remain burned even at the end of operation.
FIG. 8 shows the operation of the core of the present invention. The density of the cooling water during operation of the reactor is low due to its high temperature. Therefore, the action of slowing down fast neutrons is small. As a result, the thermal neutron flux during operation is small. On the other hand, combustible poisons have a large thermal neutron absorption cross section, but a fast neutron absorption cross section is very small. Therefore, the reactivity suppression effect that is substantially proportional to the product of the neutron absorption cross section and the neutron flux is small during operation and large during stoppage. Even if flammable poisons remain during operation, the effect on reducing the output is small because the effect of suppressing reactivity is small. On the other hand, if flammable poisons remain at the time of stoppage, the reactivity suppression effect is great, so the increase in reactivity due to the disappearance of xenon, the disappearance of vapor voids, and the decrease in fuel temperature is offset.
Figure 9 shows an unburned MOX dense nuclear fuel assembly (130) to 3-cycle combustion MOX dense nuclear fuel assembly (133), a quota control rod (101), an unburned cruciform flammable poison rod (201) to a 2-cycle combustion cruciform It is the figure which expanded the plane arrangement | positioning relationship of the combustible poison stick | rod (203). Four unburned MOX dense nuclear fuel assemblies (130) are loaded around the upper left quarter control rod (101). An unburned cross-shaped flammable poison rod (201) is loaded at the lower right, and four 1-cycle combustion MOX dense nuclear fuel assemblies (131) are loaded around it. A 1-cycle combustion cross-shaped flammable poison rod (202) is loaded on the upper right, and four 2-cycle combustion MOX dense nuclear fuel assemblies (132) are loaded around it. A two-cycle combustion cross-shaped flammable poison rod (203) is loaded in the lower left, and four three-cycle combustion MOX dense nuclear fuel assemblies (133) are loaded around it.
Furthermore, in order to increase the shutdown margin when the reactor is shut down for a long period of time such as periodic inspections, boric acid water that has been proven in PWR can be injected into the cooling water. In PWR, the reactor operation is expected to continue to some extent even if the steam generator tube is damaged. Meanwhile, water containing boric acid goes to the turbine. Therefore, even if boric acid water is mixed in the cooling water of the BWR, operation is possible with little adverse effect on the reactor and turbine. In order to reduce the concentration of boric acid water, the boric acid water is transferred to the spent fuel storage, and pure water is injected into the reactor core instead. The stop margin can also be increased by injecting an aqueous solution of sodium pentaborate into the cooling water.
Since the number of control rods can be significantly reduced, the control rod drive can be laid on the reactor pressure vessel. As a result, the control rod drive device can be easily inspected, and the power generation cost can be reduced through inspection time and cost.
: Journal of the Atomic Energy Society of Japan, 2006, Vol48, Tsutomu Okubo et al.

図10は運転開始直前本発明の配置組み換え不要補助付クオータ制御棒配置BWR炉心の概観図である。クオータ制御棒(101)の周りのN印の位置に未燃焼MOX稠密核燃料集合体(130)、E印の位置に1サイクル燃焼MOX稠密子核燃料集合体(131)、F印の位置に2サイクル燃焼MOX稠密燃料集合体(132)、G印の位置に3サイクル燃焼MOX稠密核燃料集合体(133)とする。クオータ制御棒(101)は炉心中央の制御棒(100)を中心にして千鳥格子状に配置し、他の制御棒(100)は除外しこれに付随する制御棒駆動装置も除外し、代わりに未燃焼十字型可燃性毒物棒(201)を装荷した。未燃焼十字型可燃性毒物棒(201)の周りに未燃焼MOX稠密核燃料集合体(130)、1サイクル燃焼MOX稠密核燃料集合体(131)、2サイクル燃焼MOX稠密核燃料集合体(132)、3サイクル燃焼MOX稠密核燃料集合体(133)を装荷する。
1サイクル分の運転が終了すると、3サイクル燃焼MOX稠密核燃料集合体(133)は4サイクル燃焼しているから使用済み核燃料集合体として炉心から取出し、代わりに新規の未燃焼MOX稠密核燃料集合体(130)をこの位置に装荷できるため、核燃料集合体の組み換えが不要となり、炉心構成のための時間が短縮されて原子力発電所の稼働率が向上し、強いては発電コストの低減になる。
なお、未燃焼十字型可燃性毒物棒(201)の周りに装荷する未燃焼MOX稠密核燃料集合体(130)には別途可燃性毒物を添加するかまたはプルトニウムの割合を減らすことにより、原子炉停止余裕を大きくすることができる。
FIG. 10 is a schematic view of a BWR core having a quota control rod arrangement with auxiliary arrangement unnecessary for reorganization according to the present invention immediately before the start of operation. Unburned MOX dense nuclear fuel assembly (130) at the position of N around the quota control rod (101), 1 cycle combustion MOX dense nuclear fuel assembly (131) at the position of E, 2 cycles at the position of F mark It is assumed that the combustion MOX dense fuel assembly (132) is a three-cycle combustion MOX dense nuclear fuel assembly (133) at the position indicated by G. The quota control rods (101) are arranged in a staggered pattern centered on the control rod (100) in the center of the core, the other control rods (100) are excluded, and the associated control rod drive is also excluded. Was loaded with an unburned cross-shaped flammable poison rod (201). Around the unburned cross-shaped flammable poison rod (201), unburned MOX dense nuclear fuel assembly (130), 1 cycle burning MOX dense nuclear fuel assembly (131), 2 cycle burning MOX dense nuclear fuel assembly (132), 3 Cycle combustion MOX dense nuclear fuel assembly (133) is loaded.
When the operation for one cycle is completed, the three-cycle combustion MOX dense nuclear fuel assembly (133) burns four cycles, so it is taken out from the core as a spent nuclear fuel assembly. Instead, a new unburned MOX dense nuclear fuel assembly ( 130) can be loaded at this position, so no recombination of nuclear fuel assemblies is required, the time required for core configuration is shortened, the operating rate of the nuclear power plant is improved, and power generation costs are reduced.
In addition, the unburned MOX dense nuclear fuel assembly (130) loaded around the unburned cross-shaped flammable poison rod (201) was shut down by adding a flammable poison separately or reducing the plutonium ratio. The margin can be increased.

近年、炭酸ガスによる地球温暖化抑止と石油高騰の抑止対策として原子力が注目されだしている。中でも、MOX核燃料棒を稠密に配列した核燃料集合体で構成されるBWRは高転換炉となり得るため、本発明のBWRの炉心は現行炉心にすぐにもバックフィットされる。   In recent years, nuclear power has begun to attract attention as a measure to prevent global warming caused by carbon dioxide gas and oil prices. Among them, since a BWR composed of a nuclear fuel assembly in which MOX nuclear fuel rods are densely arranged can be a high conversion reactor, the core of the BWR of the present invention is immediately back-fitted to the current core.

従来の沸騰水型原子炉の炉心構造の概観図。Overview of the core structure of a conventional boiling water reactor. 制御棒駆動装置。Control rod drive. 炉心高さ中央部の従来型の核燃料集合体(30)を配置せる運転開始直前炉心平面図。The core top view just before the start of operation which arrange | positions the conventional nuclear fuel assembly (30) of a core height center part. 従来型の核燃料集合体(30)と制御棒(100)を配置せる炉心平面図。FIG. 3 is a plan view of a core in which a conventional nuclear fuel assembly (30) and a control rod (100) are arranged. 加圧水型原子炉(PWR)の炉心配置図。Core layout of pressurized water reactor (PWR). 未燃焼MOX稠密核燃料集合体(130)の断面図。Sectional drawing of an unburned MOX dense nuclear fuel assembly (130). 運転開始直前本発明の補助付クオータ制御棒配置BWR炉心の概観図。FIG. 3 is a schematic view of an auxiliary quarter control rod arrangement BWR core according to the present invention immediately before the start of operation. 本発明の炉心の作用を示す図。The figure which shows the effect | action of the core of this invention. 未燃焼MOX稠密核燃料集合体(130)〜3サイクル燃焼MOX稠密核燃料集合体(133)とクオータ制御棒(101)と未燃焼十字型可燃性毒物棒(201)〜2サイクル燃焼十字型可燃性毒物棒(203)の平面配置関係を拡大した図。Unburned MOX Dense Nuclear Fuel Assembly (130)-3-cycle Combustion MOX Dense Nuclear Fuel Assembly (133), Quarter Control Rod (101), Unburnt Cross Combustible Toxic Bar (201)-2-cycle Combustion Cross Combustible Toxic The figure which expanded the plane arrangement | positioning relationship of the stick | rod (203). 運転開始直前本発明の配置組み換え不要補助付クオータ制御棒配置BWR炉心の概観図。FIG. 3 is a schematic view of a BWR core having a quota control rod arrangement with auxiliary arrangement unnecessary according to the present invention immediately before the start of operation.

符号の説明Explanation of symbols

1は炉心支持板。
2は核燃料支持金具。
3は上部格子板。
11は未燃焼従来型の核燃料集合体。
12は1サイクル燃焼従来型の核燃料集合体。
13は2サイクル燃焼従来型の核燃料集合体。
14は3サイクル燃焼従来型の核燃料集合体。
30は従来型の核燃料集合体。
31は核燃料棒。
32は可燃性毒物添加核燃料棒。
35はチャンネルボックス。
36は水棒。
49は冷却水通路。
51は制御棒側漏洩水通路。
52は制御棒と反対側漏洩水通路。
100は制御棒。
101はクオータ制御棒。
130は未燃焼MOX稠密核燃料集合体。
131は1サイクル燃焼MOX稠密核燃料集合体。
132は2サイクル燃焼MOX稠密核燃料集合体。
133は3サイクル燃焼MOX稠密核燃料集合体。
134は4サイクル燃焼MOX稠密核燃料集合体。
201は未燃焼十字型可燃性毒物棒。
202は1サイクル燃焼十字型可燃性毒物棒。
203は2サイクル燃焼十字型可燃性毒物棒。
231はMOX核燃料棒。
1 is a core support plate.
2 is a nuclear fuel support bracket.
3 is the upper grid plate.
11 is an unburned conventional nuclear fuel assembly.
12 is a one-cycle combustion conventional nuclear fuel assembly.
13 is a two-cycle combustion conventional nuclear fuel assembly.
14 is a three-cycle combustion conventional nuclear fuel assembly.
30 is a conventional nuclear fuel assembly.
31 is a nuclear fuel rod.
32 is a flammable poison-added nuclear fuel rod.
35 is a channel box.
36 is a water rod.
49 is a cooling water passage.
51 is a control rod side leakage water passage.
52 is the leaking water passage opposite to the control rod.
100 is a control rod.
101 is a quota control rod.
130 is an unburned MOX dense nuclear fuel assembly.
131 is a one-cycle combustion MOX dense nuclear fuel assembly.
132 is a 2-cycle combustion MOX dense nuclear fuel assembly.
133 is a three-cycle combustion MOX dense nuclear fuel assembly.
134 is a 4-cycle combustion MOX dense nuclear fuel assembly.
201 is an unburned cross-shaped flammable poison stick.
202 is a one-cycle burning cross-shaped flammable poison rod.
203 is a two-cycle burning cross-shaped flammable poison rod.
231 is a MOX nuclear fuel rod.

Claims (2)

炉心中央の従来の制御棒(100)から1体置きに残しクオータ制御棒(101)とし、他の制御棒(100)とこれに付随する駆動装置を除外し、代わりに未燃焼十字型可燃性毒物棒(201) 、1サイクル燃焼十字型可燃性毒物棒(202)、2サイクル燃焼十字型可燃性毒物棒(203)を装荷する。
クオータ制御棒(101)の周りのN印の位置に4体の未燃焼MOX稠密核燃料集合体(130)を装荷する。N印の位置で未燃焼MOX稠密核燃料集合体(130)が1サイクル燃えて1サイクル燃焼MOX稠密核燃料集合体(131)になったものをE印の位置に配置換えし、E印中央に未燃焼十字型可燃性毒物棒(201)を新規に装荷する。E印の位置での1サイクル燃焼MOX稠密核燃料集合体(131)とその中央での未燃焼十字型可燃性毒物棒(201)が1サイクル燃えて2サイクル燃焼MOX稠密核燃料集合体(132)及び1サイクル燃焼十字型可燃性毒物棒(202)となったものをF印の位置及びその中央に配置換えする。F印の位置での2サイクル燃焼MOX稠密核燃料集合体(132) とその中央での1サイクル燃焼十字型可燃性毒物棒(202)が1サイクル燃えて3サイクル燃焼MOX稠密核燃料集合体(133)と2サイクル燃焼十字型可燃性毒物棒(203)となったものをG印の位置及びその中央に配置換えする。G印の位置で3サイクル燃焼MOX稠密核燃料集合体(133)が1サイクル燃えて4サイクル燃焼MOX稠密核燃料集合体(134)となったものを炉心外周のZ印の位置に配置換えする。3サイクル燃焼MOX稠密核燃料集合体(134) の大部分と十字型可燃性毒物棒(203)と4サイクル燃焼MOX稠密核燃料集合体(135) が1サイクル燃えたものは炉心外に取出す。上記炉心構成と運転計画を特徴とする補助付クオータ制御棒配置BWR炉心。
A quarter control rod (101) is left out from the conventional control rod (100) in the center of the core, leaving the other control rod (100) and the drive unit attached to it as a substitute. A poison rod (201), a one-cycle combustion cross-shaped flammable poison rod (202), and a two-cycle combustion cross-shaped flammable poison rod (203) are loaded.
Four unburned MOX dense nuclear fuel assemblies (130) are loaded at the position of the N mark around the quota control rod (101). The unburned MOX dense nuclear fuel assembly (130) burned for one cycle at the position of N and changed to the one-cycle combustion MOX dense nuclear fuel assembly (131) at the position of E, A new burning cross-shaped flammable poison rod (201) is loaded. A one-cycle combustion MOX dense nuclear fuel assembly (131) at the position of E and an unburned cross-shaped flammable poison rod (201) in the center burns one cycle, and a two-cycle combustion MOX dense nuclear fuel assembly (132) and The one that becomes a one-cycle burning cross-shaped flammable poison rod (202) is rearranged to the position of the F mark and the center thereof. Two-cycle combustion MOX dense nuclear fuel assembly (132) at the position of F and one-cycle combustion cross-shaped flammable poison rod (202) at the center burns one cycle and three-cycle combustion MOX dense nuclear fuel assembly (133) And the two-cycle burning cross-shaped flammable poison rod (203) is rearranged to the position of the G mark and the center. The three-cycle combustion MOX dense nuclear fuel assembly (133) burned by one cycle at the position of G and changed to the four-cycle combustion MOX dense nuclear fuel assembly (134) is relocated to the position of the Z mark on the outer periphery of the core. Most of the three-cycle combustion MOX dense nuclear fuel assembly (134), the cross-shaped flammable poison rod (203) and the four-cycle combustion MOX dense nuclear fuel assembly (135) burned for one cycle are taken out of the core. BWR core with auxiliary quota control rod arrangement characterized by the above core configuration and operation plan.
カドミウム(Cd)またはホウ素(B)またはエルビウム(Er)またはディスプロシウム(Dy)といった可燃性毒物または酸化カドミウム(CdO)または酸化エルビウム(Er2O3)または酸化ディスプロシウム(Dy2O3)または炭化ホウ素(B4C)またはホウ化ジルコニウム(B12Zr)のような化合物を添加したジルコニウム合金製の十字型板からなる未燃焼十字型可燃性毒物棒(201)。 Combustible poisons such as cadmium (Cd) or boron (B) or erbium (Er) or dysprosium (Dy) or cadmium oxide (CdO) or erbium oxide (Er2O3) or dysprosium oxide (Dy2O3) or boron carbide (B4C) ) Or an unburned cross-shaped flammable poison rod (201) comprising a cross-shaped plate made of a zirconium alloy to which a compound such as zirconium boride (B12Zr) is added.
JP2006280916A 2006-10-16 2006-10-16 Auxiliary quota control rod arrangement BWR core Expired - Fee Related JP5252522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006280916A JP5252522B2 (en) 2006-10-16 2006-10-16 Auxiliary quota control rod arrangement BWR core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006280916A JP5252522B2 (en) 2006-10-16 2006-10-16 Auxiliary quota control rod arrangement BWR core

Publications (3)

Publication Number Publication Date
JP2008096366A true JP2008096366A (en) 2008-04-24
JP2008096366A5 JP2008096366A5 (en) 2009-10-01
JP5252522B2 JP5252522B2 (en) 2013-07-31

Family

ID=39379349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006280916A Expired - Fee Related JP5252522B2 (en) 2006-10-16 2006-10-16 Auxiliary quota control rod arrangement BWR core

Country Status (1)

Country Link
JP (1) JP5252522B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799414B2 (en) 2010-09-03 2017-10-24 Atomic Energy Of Canada Limited Nuclear fuel bundle containing thorium and nuclear reactor comprising same
US10176898B2 (en) 2010-11-15 2019-01-08 Atomic Energy Of Canada Limited Nuclear fuel containing a neutron absorber
US10950356B2 (en) 2010-11-15 2021-03-16 Atomic Energy Of Canada Limited Nuclear fuel containing recycled and depleted uranium, and nuclear fuel bundle and nuclear reactor comprising same
CN115394458A (en) * 2022-08-26 2022-11-25 中国核动力研究设计院 Ultra-high flux reactor core based on rod bundle type fuel assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556258A (en) * 1978-06-30 1980-01-17 Tokyo Shibaura Electric Co Operation system of nuclear reactor
JPS5676092A (en) * 1979-11-26 1981-06-23 Tokyo Shibaura Electric Co Method of exchanging control rod
JPS6315194A (en) * 1986-07-08 1988-01-22 株式会社東芝 Control rod for nuclear reactor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556258A (en) * 1978-06-30 1980-01-17 Tokyo Shibaura Electric Co Operation system of nuclear reactor
JPS5676092A (en) * 1979-11-26 1981-06-23 Tokyo Shibaura Electric Co Method of exchanging control rod
JPS6315194A (en) * 1986-07-08 1988-01-22 株式会社東芝 Control rod for nuclear reactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799414B2 (en) 2010-09-03 2017-10-24 Atomic Energy Of Canada Limited Nuclear fuel bundle containing thorium and nuclear reactor comprising same
US10176898B2 (en) 2010-11-15 2019-01-08 Atomic Energy Of Canada Limited Nuclear fuel containing a neutron absorber
US10950356B2 (en) 2010-11-15 2021-03-16 Atomic Energy Of Canada Limited Nuclear fuel containing recycled and depleted uranium, and nuclear fuel bundle and nuclear reactor comprising same
CN115394458A (en) * 2022-08-26 2022-11-25 中国核动力研究设计院 Ultra-high flux reactor core based on rod bundle type fuel assembly

Also Published As

Publication number Publication date
JP5252522B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP2002122687A (en) Nuclear reactor core and method of operating nuclear reactor
JP2006113069A (en) Use of boron or enriched boron isotope 10b for uranium dioxide
US20100054389A1 (en) Mixed oxide fuel assembly
Uchikawa et al. Conceptual design of innovative water reactor for flexible fuel cycle (FLWR) and its recycle characteristics
JP2010038852A (en) Core and fuel assembly of light water reactor
WO2018074341A1 (en) Fuel assembly and reactor core of boiling water nuclear reactor loaded with same
JP5252522B2 (en) Auxiliary quota control rod arrangement BWR core
KR102615657B1 (en) Nuclear fuel containing neutron absorber mixture
KR101776860B1 (en) Burnable absorber rods for Excess Reactivity Flattening of reactor core
JP2017534864A (en) Fuel assemblies for nuclear boiling water reactors
JP5312754B2 (en) Light water reactor core
JP2006029797A (en) Nuclear fuel assembly
JP2007086078A (en) Nuclear fuel assembly
Pinem et al. Neutronic and thermal hydraulics analysis of control rod effect on the operation safety of TRIGA 2000 reactor
Khodarev Liquid metal fast breeder reactors
JP2007163245A (en) Nuclear reactor loaded with spontaneous neutron emission nuclear fuel
JP2019178896A (en) Fuel assembly
JP2006064678A (en) Fuel assembly arrangement method, fuel rod, and fuel assembly of nuclear reactor
JP2012127749A (en) High conversion sauna-type nuclear reactor
Oka et al. Light water reactor design
JP2006184174A (en) Fuel assembly of boiling water reactor
Melese-d'Hospital et al. Status of gas-cooled fast breeder reactor programs
JP5090687B2 (en) PWR nuclear fuel rod-based BWR square nuclear fuel assembly manufacturing method and nuclear fuel assembly
JP4800659B2 (en) ABWR core with high conversion ratio that can be a breeding reactor
Lopez Fuel assembly with inert matrix fuel rods as reload options for Laguna Verde NPP

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees