JP2007159310A - Power supply apparatus - Google Patents

Power supply apparatus Download PDF

Info

Publication number
JP2007159310A
JP2007159310A JP2005353127A JP2005353127A JP2007159310A JP 2007159310 A JP2007159310 A JP 2007159310A JP 2005353127 A JP2005353127 A JP 2005353127A JP 2005353127 A JP2005353127 A JP 2005353127A JP 2007159310 A JP2007159310 A JP 2007159310A
Authority
JP
Japan
Prior art keywords
load
power
thermoelectric generator
capacitor
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005353127A
Other languages
Japanese (ja)
Other versions
JP5060724B2 (en
Inventor
Hideo Yamaguchi
栄雄 山口
Hirotoshi Asai
宏俊 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa University
Original Assignee
Kanagawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa University filed Critical Kanagawa University
Priority to JP2005353127A priority Critical patent/JP5060724B2/en
Publication of JP2007159310A publication Critical patent/JP2007159310A/en
Application granted granted Critical
Publication of JP5060724B2 publication Critical patent/JP5060724B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply apparatus for extracting the maximum power from a thermoelectric power generator and stably supplying power to a load for requiring large power. <P>SOLUTION: The power supply apparatus has the thermoelectric power generator 11 for utilizing a thermoelectric element, a capacitor 13 charged by power generated from the thermoelectric power generator 11, and the load 14 supplied with power discharged from the capacitor 13. The thermoelectric power generator 11 and the load 14 are intermittently connected by a switch 12. A resistance of the load 14 is equivalently converted into a high resistance by a duty ratio of a pulse from a pulse generator 16, and controlled so as to be equal to an internal resistance of the thermoelectric power generator 11. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、外部の温度差を利用して発電する熱電素子を利用した熱電発電器から負荷に電力を供給するための電力供給装置に関する。   The present invention relates to an electric power supply device for supplying electric power to a load from a thermoelectric generator using a thermoelectric element that generates electricity using an external temperature difference.

従来より、外部の温度差による熱エネルギから熱電対を用いて発電し、その発電により得られる電気エネルギを利用して電子時計などの小型の携帯電子機器を駆動する電力供給装置が知られている。たとえば、複数の熱電対を電気的に直列に設けた熱電発電器の発電電圧を計測して、その発電電圧に応じて負荷手段への電力の供給および供給停止を制御する制御手段を設け、この制御手段は、熱電発電器から負荷手段へ所定時間以上連続して電力を供給したときに、発電電圧を補正して計測する補正手段を設けることにより、熱電発電器が負荷手段へ連続的に電力を供給するときに発生するペルチェ効果による発電電圧の低下を補正して、本来の発電電圧に相当する電圧を想定して負荷への電力の供給および停止を制御する構成が提案されている(たとえば特許文献1参照)。
特開2000−125578号公報((0013)、(0018)、(0022)〜(0034)および図1など)
2. Description of the Related Art Conventionally, there is known a power supply device that generates power using a thermocouple from heat energy due to an external temperature difference, and drives a small portable electronic device such as an electronic timepiece using electric energy obtained by the power generation. . For example, the power generation voltage of a thermoelectric generator in which a plurality of thermocouples are electrically connected in series is measured, and control means for controlling the supply and stop of power supply to the load means according to the power generation voltage is provided. The control means includes a correction means for correcting and measuring the generated voltage when power is continuously supplied from the thermoelectric generator to the load means for a predetermined time or longer, so that the thermoelectric generator continuously supplies power to the load means. A configuration has been proposed in which a decrease in the generated voltage due to the Peltier effect that occurs when supplying power is corrected, and the supply and stop of power to the load are controlled assuming a voltage corresponding to the original generated voltage (for example, Patent Document 1).
JP 2000-125578 A ((0013), (0018), (0022) to (0034) and FIG. 1 etc.)

特許文献1による電力供給装置は、熱電発電器が負荷電流を流し続けることにより発生するペルチェ効果を用いて、発電電圧の低下を補正して計測することにより、熱電発電器の発電電圧に応じて負荷手段への電力の供給および供給停止を最適に制御でき、負荷手段は熱電発電器の発電電力を最も有効に利用することができる。しかし、熱電発電器から最大負荷電力を取り出す点についての考慮はなされていない。
ところで、電気回路理論で周知のように、内部抵抗の大きい電圧源から最大負荷電力を取り出す条件は、負荷抵抗の抵抗値を電圧源の内部抵抗の値と一致させることである。この条件を図5および図6により説明する。
一般に電圧源は、図5に示すように起電力Esと直列抵抗Rsの直列回路で表わされる。この起電力Esに負荷抵抗RLをつないだとき、負荷抵抗RLに消費される電力PL、即ち起電力Esから取り出しうる電力は、
PL=(Es)2×RL/(Rs+RL)2・・・(数1)
であることが知られている。
図6の曲線aは負荷抵抗RLを変化させたときの負荷抵抗RLにおける負荷電圧VLの関係、曲線bは負荷抵抗RLにおける消費電力(取り出せる電力)PLの関係である。図6の曲線bに示すように、負荷抵抗RLを変化させると負荷電力PLが変化し、ある負荷抵抗RLの値で最大となる。このときの負荷抵抗RLの値は周知のように直列抵抗Rsと等しい値、すなわち、RL=Rsのときで、最大負荷電力PLmaxは、
PLmax=(Es)2/(4RL)=(Es)2/(4Rs)・・・(数2)
である。このとき、負荷抵抗RLの電圧VLは起電力Esの電圧の1/2、すなわち、VL=Es/2となる。
負荷抵抗RLが電圧源の内部抵抗Rsよりも大きい場合は、最大負荷電力PLmaxを取り出すことはできないが、負荷抵抗RLが大きいと消費電力が小さいので重大な問題になることは少ない。一方、負荷抵抗RLが電圧源の内部抵抗Rsより小さい場合は、最大負荷電力PLmaxを取り出すことはできず、しかも、負荷抵抗RLが小さいと素子内部における消費電力が大きくなるので、最大負荷電力PLmaxを取り出せないことは重大な問題になる。
一般に、熱電発電器の内部抵抗は比較的大きいので、使用したい負荷抵抗の値より大きいことが多い。また、負荷抵抗は一定の値であることはなく、負荷の種類によって大きく変わる。また、同じ負荷でも使用中に大きく変動する。さらに、熱電発電器の起電力と内部抵抗も熱の供給状況に従って変化する。したがって、熱電発電器に目的とする負荷を直接接続しても発電器の発電能力のごく一部しか利用できないことになり、熱電発電器に単に負荷手段を連結するだけでは最大負荷電力を取り出すことはできない。
最大負荷電力を取り出すためには負荷抵抗を内部抵抗と同じになるように変換すればよい。しかし、熱電発電器の負荷は直流負荷のため変圧器のような交流用インピーダンス変換器を使用することはできない。
The electric power supply device according to Patent Document 1 uses the Peltier effect generated when the thermoelectric generator keeps flowing the load current, and corrects and measures the decrease in the generated voltage, thereby depending on the generated voltage of the thermoelectric generator. Supply and stop of power supply to the load means can be optimally controlled, and the load means can use the power generated by the thermoelectric generator most effectively. However, no consideration is given to taking out the maximum load power from the thermoelectric generator.
As is well known in electrical circuit theory, the condition for extracting the maximum load power from a voltage source having a large internal resistance is to make the resistance value of the load resistance coincide with the value of the internal resistance of the voltage source. This condition will be described with reference to FIGS.
In general, the voltage source is represented by a series circuit of an electromotive force Es and a series resistance Rs as shown in FIG. When the load resistance RL is connected to the electromotive force Es, the power PL consumed by the load resistance RL, that is, the power that can be extracted from the electromotive force Es is
PL = (Es) 2 × RL / (Rs + RL) 2 (Equation 1)
It is known that
A curve a in FIG. 6 is a relationship of the load voltage VL at the load resistor RL when the load resistor RL is changed, and a curve b is a relationship of the power consumption (retrievable power) PL at the load resistor RL. As shown by a curve b in FIG. 6, when the load resistance RL is changed, the load power PL is changed, and becomes maximum at a certain load resistance RL. As is well known, the value of the load resistance RL at this time is equal to the series resistance Rs, that is, when RL = Rs, the maximum load power PLmax is
PLmax = (Es) 2 / (4RL) = (Es) 2 / (4Rs) (Equation 2)
It is. At this time, the voltage VL of the load resistor RL becomes 1/2 of the voltage of the electromotive force Es, that is, VL = Es / 2.
When the load resistance RL is larger than the internal resistance Rs of the voltage source, the maximum load power PLmax cannot be taken out. However, when the load resistance RL is large, the power consumption is small, so there is little serious problem. On the other hand, when the load resistance RL is smaller than the internal resistance Rs of the voltage source, the maximum load power PLmax cannot be taken out. Moreover, if the load resistance RL is small, the power consumption inside the element increases, so the maximum load power PLmax Inability to take out becomes a serious problem.
In general, since the internal resistance of a thermoelectric generator is relatively large, it is often larger than the value of the load resistance to be used. Further, the load resistance is not a constant value, and varies greatly depending on the type of load. Also, even during the same load, it varies greatly during use. Furthermore, the electromotive force and internal resistance of the thermoelectric generator also change according to the heat supply status. Therefore, even if the target load is directly connected to the thermoelectric generator, only a part of the power generation capacity of the generator can be used, and the maximum load power can be extracted simply by connecting the load means to the thermoelectric generator. I can't.
In order to extract the maximum load power, the load resistance may be converted to be the same as the internal resistance. However, since the load of the thermoelectric generator is a DC load, an AC impedance converter such as a transformer cannot be used.

本発明はこのような課題を解決するもので、熱電発電器から最大負荷電力を取り出しながら、大電力を要求する負荷に安定した電力を供給することができる電力供給装置を提供することを目的とする。   This invention solves such a subject, and it aims at providing the electric power supply apparatus which can supply the stable electric power to the load which requires large electric power, taking out the maximum load electric power from a thermoelectric generator. To do.

請求項1に記載の本発明の電力供給装置は、熱電素子を利用した熱電発電器から負荷に電力を供給するための電力供給装置であって、前記熱電発電器と、前記熱電発電器の発電電力により充電されるコンデンサと、前記コンデンサの放電電力が供給される負荷手段と、前記コンデンサの放電サイクルを制御する制御手段とを有することを特徴とする。
請求項2に記載の本発明は、請求項1に記載の電力供給装置において、前記制御手段は前記コンデンサの充電および放電を切り換えるスイッチと、前記コンデンサの端子電圧を計測する電圧計測回路17と、前記スイッチの切り換えを制御する制御信号を発生する制御回路とを有しており、前記制御信号は前記コンデンサの端子電圧を前記熱電発電器の発生電圧の1/2になるように前記スイッチの切り換えを制御することを特徴とする。
請求項3に記載の本発明は、請求項2に記載の電力供給装置において、前記制御信号がパルス信号であり、前記パルス信号のパルス幅に応じて前記スイッチの切り換えを制御することを特徴とする。
請求項4に記載の本発明は、請求項1に記載の電力供給装置において、前記制御手段は前記コンデンサの充電および放電を切り換えるスイッチと前記スイッチの切り換えを制御するパルス信号を発生する制御回路を有しており、前記パルス信号のパルス幅に応じて前記負荷手段の負荷抵抗を等価的に高い抵抗値に変換して前記熱電発電器の内部抵抗と等しくすることを特徴とする。
請求項5に記載の本発明の電力供給装置は、熱電素子を利用した熱電発電器から負荷に電力を供給するための電力供給装置であって、前記熱電発電器と、前記熱電発電器に並列に接続されたコンデンサと、前記コンデンサに並列に接続された負荷手段と、前記熱電発電器を前記負荷手段に間欠的に接続するスイッチ手段とを有することを特徴とする。
請求項6に記載の本発明は、請求項5に記載の電力供給装置において、前記スイッチ手段は前記負荷手段の負荷抵抗と前記熱電発電器の内部抵抗が等しくなるように前記熱電発電器を前記負荷手段に間欠的に接続することを特徴とする。
The power supply device of the present invention according to claim 1 is a power supply device for supplying power to a load from a thermoelectric generator using a thermoelectric element, and the thermoelectric generator and the power generation of the thermoelectric generator It has a capacitor charged by electric power, load means to which discharge power of the capacitor is supplied, and control means for controlling the discharge cycle of the capacitor.
According to a second aspect of the present invention, in the power supply apparatus according to the first aspect, the control means switches a switch for switching charging and discharging of the capacitor, a voltage measuring circuit 17 for measuring a terminal voltage of the capacitor, A control circuit for generating a control signal for controlling the switching of the switch, and the control signal switches the switch so that the terminal voltage of the capacitor is ½ of the generated voltage of the thermoelectric generator. It is characterized by controlling.
According to a third aspect of the present invention, in the power supply device according to the second aspect, the control signal is a pulse signal, and the switching of the switch is controlled according to the pulse width of the pulse signal. To do.
According to a fourth aspect of the present invention, in the power supply apparatus according to the first aspect, the control means includes a switch for switching charging and discharging of the capacitor and a control circuit for generating a pulse signal for controlling switching of the switch. And the load resistance of the load means is converted into an equivalently high resistance value according to the pulse width of the pulse signal to equalize the internal resistance of the thermoelectric generator.
The power supply device of the present invention according to claim 5 is a power supply device for supplying power to a load from a thermoelectric generator using a thermoelectric element, and is parallel to the thermoelectric generator and the thermoelectric generator. A capacitor connected to the capacitor; load means connected in parallel to the capacitor; and switch means for intermittently connecting the thermoelectric generator to the load means.
According to a sixth aspect of the present invention, in the power supply apparatus according to the fifth aspect, the switch means sets the thermoelectric generator so that a load resistance of the load means is equal to an internal resistance of the thermoelectric generator. It is characterized by being intermittently connected to the load means.

本発明によれば、熱電発電器から最大負荷電力を取り出しながら、大電力を要求する負荷に安定した電力を供給することができる。   According to the present invention, it is possible to supply stable power to a load that requires high power while taking out the maximum load power from the thermoelectric generator.

本発明の第1の実施の形態による電力供給装置は、熱電素子を利用した熱電発電器の発電電力によりコンデンサを充電し、コンデンサに充電した電力を、放電サイクルを制御しながら負荷に放電するものである。本実施の形態によれば、熱電発電器から最大電力を取り出しながら、大電力を要求する負荷に安定した電力を供給することができる。
本発明の第2の実施の形態は、第1の実施の形態による電力供給装置において、コンデンサの充電および放電を切り換えるスイッチの切り換えを、コンデンサの端子電圧が熱電発電器の発生電圧の1/2になるように制御するものである。本実施の形態によれば、熱電発電器から最大電力を取り出しながら、大電力を要求する負荷に安定した電力を供給することができる。
本発明の第3の実施の形態は、第2の実施の形態による電力供給装置において、パルス信号のパルス幅に応じてスイッチの切り換えを制御するものである。本実施の形態によれば、熱電発電器から最大電力を取り出しながら、大電力を要求する負荷に安定した電力を供給することができる。
本発明の第4の実施の形態は、第1の実施の形態による電力供給装置において、パルス信号のパルス幅に応じて負荷抵抗を等価的に高い抵抗値に変換して熱電発電器の内部抵抗と等しくするものである。本実施の形態によれば、熱電発電器から最大電力を取り出すことができる。
本発明の第5の実施の形態による電力供給装置は、熱電素子を利用した熱電発電器にコンデンサおよび負荷手段を並列に接続し、熱電発電器を負荷手段に間欠的に接続するものである。本実施の形態によれば、熱電発電器から最大電力を取り出しながら、大電力を要求する負荷に安定した電力を供給することができる。
本発明の第6の実施の形態は、第5の実施の形態による電力供給装置において、負荷手段の負荷抵抗と熱電発電器の内部抵抗が等しくなるように熱電発電器を負荷手段に間欠的に接続するものである。本実施の形態によれば、熱電発電器の内部抵抗が負荷手段の負荷抵抗より大きくても、負荷抵抗の値を等価的に高い抵抗値に変換して熱電発電器の内部抵抗と等しくすることができるので、熱電発電器から最大電力を取り出しながら、大電力を要求する負荷に安定した電力を供給することができる。
The power supply device according to the first embodiment of the present invention charges a capacitor with the generated power of a thermoelectric generator using a thermoelectric element, and discharges the power charged in the capacitor to a load while controlling a discharge cycle. It is. According to the present embodiment, it is possible to supply stable power to a load that requires high power while taking out the maximum power from the thermoelectric generator.
According to the second embodiment of the present invention, in the power supply apparatus according to the first embodiment, switching of the switch for switching between charging and discharging of the capacitor is performed, and the terminal voltage of the capacitor is ½ of the generated voltage of the thermoelectric generator. It controls to become. According to the present embodiment, it is possible to supply stable power to a load that requires high power while taking out the maximum power from the thermoelectric generator.
The third embodiment of the present invention controls switching of the switch in accordance with the pulse width of the pulse signal in the power supply apparatus according to the second embodiment. According to the present embodiment, it is possible to supply stable power to a load that requires high power while taking out the maximum power from the thermoelectric generator.
According to the fourth embodiment of the present invention, in the power supply apparatus according to the first embodiment, the load resistance is converted into an equivalently high resistance value according to the pulse width of the pulse signal, and the internal resistance of the thermoelectric generator is changed. Is equal to According to the present embodiment, the maximum power can be extracted from the thermoelectric generator.
The power supply apparatus according to the fifth embodiment of the present invention is such that a capacitor and load means are connected in parallel to a thermoelectric generator using a thermoelectric element, and the thermoelectric generator is intermittently connected to the load means. According to the present embodiment, it is possible to supply stable power to a load that requires high power while taking out the maximum power from the thermoelectric generator.
According to a sixth embodiment of the present invention, in the power supply apparatus according to the fifth embodiment, the thermoelectric generator is intermittently connected to the load means so that the load resistance of the load means is equal to the internal resistance of the thermoelectric generator. To connect. According to the present embodiment, even if the internal resistance of the thermoelectric generator is larger than the load resistance of the load means, the value of the load resistance is converted into an equivalently high resistance value to be equal to the internal resistance of the thermoelectric generator. Therefore, it is possible to supply stable power to a load that requires high power while taking out the maximum power from the thermoelectric generator.

以下、本発明の実施例について、図面とともに詳細に説明する。
まず、本発明の原理について説明する。なお、以下の説明では直流について説明する。
電源の電圧が一定の時、負荷に供給する電力を変えるには、負荷の重さ(負荷抵抗の値)を変えなくてはならない。しかし、実際には、負荷抵抗の値を電源の要求に合わせて自由に変えることはできない。一方、負荷抵抗は一定であっても、負荷をスイッチングして負荷と電源を間欠的に接続することによって負荷への供給電力の大きさを変えるチョッパ技術がある。チョッパ技術は、例えば、電車のモータへ与える電力を状況に応じて大幅に変える制御に使われている。モータへの電圧の供給は断続的になるが、モータの巻き線のインダクタンスやモータにつながった電車の質量による慣性で積分効果が出るために滑らかな動きになる。このように、電源の電圧が一定のままで負荷への電力を変えることは負荷抵抗を変えることと同じである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
First, the principle of the present invention will be described. In the following description, direct current will be described.
In order to change the power supplied to the load when the voltage of the power source is constant, the weight of the load (the value of the load resistance) must be changed. However, in practice, the value of the load resistance cannot be freely changed according to the power supply requirements. On the other hand, even if the load resistance is constant, there is a chopper technology that changes the magnitude of power supplied to the load by switching the load and intermittently connecting the load and the power source. The chopper technology is used, for example, for control that greatly changes the electric power supplied to the motor of the train depending on the situation. Although the voltage supply to the motor is intermittent, the integration effect is produced by the inertia due to the inductance of the winding of the motor and the mass of the train connected to the motor, so that the movement is smooth. In this way, changing the power to the load while the voltage of the power supply remains constant is the same as changing the load resistance.

そこで、本発明においては、熱電発電器を負荷に接続した際に、負荷をスイッチングして間欠的に接続させ、低い抵抗値の負荷抵抗を等価的に高い抵抗値に変換して最大電力を取り出すようにする。すなわち、熱電発電器の電圧および内部抵抗が変化したり、負荷抵抗の抵抗値が変化しても、常に負荷抵抗の値を等価的に内部抵抗Rsに一致させて電源から最大電力を取り出すようにする。
ここで、理想電圧源の電圧をEとし、負荷抵抗をRLとし、負荷の接続を、全期間Tの内ONの期間をTon、OFFの期間をToffとする。また、Ton/T(T=Ton+Toff)の値をデューティ比D(0≦D≦1)とする。Tonのとき、負荷抵抗RLの電力Ponは、Pon=E2/RLとなり、Toffのとき、負荷抵抗RLの電力Poffは、Poff=0となる。したがって、負荷の平均電力Pavは、
Pav=(Pon+Poff)×D=Pon×D=E2×D/RL・・・(数3)
で表される。
一方、スイッチングしないで連続的につないだ負荷抵抗により(数3)で表されるPavと同じ電力を得る負荷抵抗の値をRxとすると、
Px=E2/Rx=Pav=E2×D/RL・・・(数4)
であるから、
Rx=RL/D・・・(数5)
となる。デューティ比Dは0≦D≦1であるので、デューティ比Dの値を適切に制御すると負荷抵抗RLの値を見かけ上大きい値Rxに変換できる。
なお、電源と負荷抵抗RLを単純にスイッチングして接続すると、負荷抵抗RLに加わる電圧も大きく変動するので正常に動作しない。そこで、何らかの積分機能を設けて負荷抵抗RLの瞬間的な変動をなくすように平滑することが必要である。このためには、図2に示すように、負荷抵抗RLにコンデンサCを並列に接続して積分、平滑する。コンデンサCの静電容量Cは、C×RL>>Tになるように選ぶ。
Therefore, in the present invention, when the thermoelectric generator is connected to the load, the load is switched and intermittently connected, and the load resistance having a low resistance value is converted into an equivalently high resistance value to extract the maximum power. Like that. That is, even if the voltage and internal resistance of the thermoelectric generator change or the resistance value of the load resistance changes, the value of the load resistance is equivalently matched with the internal resistance Rs so that the maximum power is taken out from the power source. To do.
Here, it is assumed that the voltage of the ideal voltage source is E, the load resistance is RL, the connection of the load is Ton for the ON period of all the periods T, and Toff is the OFF period. The value of Ton / T (T = Ton + Toff) is assumed to be the duty ratio D (0 ≦ D ≦ 1). When Ton, the power Pon of the load resistor RL is Pon = E 2 / RL, and when Toff, the power Poff of the load resistor RL is Poff = 0. Therefore, the average power Pav of the load is
Pav = (Pon + Poff) × D = Pon × D = E 2 × D / RL (Equation 3)
It is represented by
On the other hand, when the load resistance value that obtains the same power as Pav represented by (Equation 3) by the load resistance connected continuously without switching is Rx,
Px = E 2 / Rx = Pav = E 2 × D / RL (Equation 4)
Because
Rx = RL / D (Expression 5)
It becomes. Since the duty ratio D is 0 ≦ D ≦ 1, when the value of the duty ratio D is appropriately controlled, the value of the load resistance RL can be converted into an apparently large value Rx.
If the power supply and the load resistor RL are simply switched and connected, the voltage applied to the load resistor RL also fluctuates greatly, so that it does not operate normally. Therefore, it is necessary to provide some integration function to smooth the load resistance RL so as to eliminate instantaneous fluctuations. For this purpose, as shown in FIG. 2, a capacitor C is connected in parallel to the load resistor RL to integrate and smooth. The capacitance C of the capacitor C is selected so that C × RL >> T.

図1は以上の原理に従って構成した本発明の実施例にかかる電力供給装置の全体構成を示す概念的ブロック図である。熱電発電器11は多数の熱電対を電気的に直列に接続して構成された熱電素子を利用した熱電発電器で、与えられる温度差に応じて熱電発電して発電電圧Vsとして出力する。熱電発電器11は一端が接地され、他端は静電容量Cの出力調整用のコンデンサ13に並列に接続される。
負荷14は、一端が接地され、他端はスイッチ12を介してコンデンサ13に並列に接続される。負荷14は、負荷抵抗RLを有する。スイッチ12はコンデンサ13の放電サイクルを制御する制御回路15で接続が切り換えられる。パルス発生器16は、電圧計測回路17で計測されたコンデンサ13の電圧をもとにパルス幅が制御されたパルスを発生し、制御回路15はこのパルスによりコンデンサ13の放電サイクルを制御するようにスイッチ12の動作を制御する。 コンデンサ13は、前述したように、積分、平滑の機能を有するが、その他にコンデンサ13自体を充電して蓄電する機能を有する。すなわち、発電電力が負荷14に供給する電力より大きいときは電力に余剰が生ずるので、コンデンサ13を充電して電力を一時的に蓄電する。その後負荷14が予定より多い電力を要求したときに、コンデンサに蓄電されている電力を発電電力と合わせて供給することができる。
FIG. 1 is a conceptual block diagram showing the overall configuration of a power supply apparatus according to an embodiment of the present invention configured according to the above principle. The thermoelectric generator 11 is a thermoelectric generator using a thermoelectric element configured by electrically connecting a large number of thermocouples in series. The thermoelectric generator 11 generates thermoelectric power according to a given temperature difference and outputs it as a generated voltage Vs. One end of the thermoelectric generator 11 is grounded, and the other end is connected in parallel to a capacitor 13 for adjusting the output of the capacitance C.
One end of the load 14 is grounded, and the other end is connected in parallel to the capacitor 13 via the switch 12. The load 14 has a load resistance RL. The connection of the switch 12 is switched by a control circuit 15 that controls the discharge cycle of the capacitor 13. The pulse generator 16 generates a pulse whose pulse width is controlled based on the voltage of the capacitor 13 measured by the voltage measuring circuit 17, and the control circuit 15 controls the discharge cycle of the capacitor 13 by this pulse. The operation of the switch 12 is controlled. As described above, the capacitor 13 has functions of integration and smoothing, but also has a function of charging and storing the capacitor 13 itself. That is, when the generated power is larger than the power supplied to the load 14, a surplus is generated in the power, so that the capacitor 13 is charged to temporarily store the power. Thereafter, when the load 14 requests more power than planned, the power stored in the capacitor can be supplied together with the generated power.

負荷14から最大負荷電力PLmaxを取り出すには、先に述べたように負荷抵抗RLを熱電発電器11の内部抵抗Rsと等しくすれば良い。前述したように、熱電発電器11の内部抵抗Rsは負荷抵抗RLより大きいので、デューティ比Dを用いて(数5)により負荷抵抗RLを大きな抵抗値Rxに変換する。この結果、(数5)は(数6)のように表される。
Rs=Rx=RL/D・・・(数6)
したがって、
D=RL/Rs・・・(数7)
となるようにDを制御すれば、負荷抵抗RLを大きな抵抗値Rxに変換することができる。
In order to extract the maximum load power PLmax from the load 14, the load resistance RL may be made equal to the internal resistance Rs of the thermoelectric generator 11 as described above. As described above, since the internal resistance Rs of the thermoelectric generator 11 is larger than the load resistance RL, the load resistance RL is converted into a large resistance value Rx using the duty ratio D (Equation 5). As a result, (Equation 5) is expressed as (Equation 6).
Rs = Rx = RL / D (Expression 6)
Therefore,
D = RL / Rs (Expression 7)
If D is controlled so as to be, the load resistance RL can be converted into a large resistance value Rx.

前述したように、負荷抵抗RLは一定の値であることはなく、負荷の種類によって大きく変わる。また、同じ負荷でも使用中に大きく変動する。さらに、熱電発電器11の起電力Esと内部抵抗Rsも熱の供給状況に従って変化する。したがって、最適のデューティ比Dを予め求めることはできない。そこで、デューティ比Dを制御するには、電圧計測回路17でコンデンサ11の端子電圧Vcを計測し、この端子電圧Vcで制御回路15の動作を制御して、コンデンサ13の端子電圧Vcが熱電発電器11の発生電圧Vsの1/2になるように、スイッチ12のON、OFFのタイミングを制御する。
このように、スイッチ12を切り換えるタイミングを調整し、負荷抵抗RLが小さく、大電力を要求する負荷14に電力供給する場合は、熱電発電器11を連続して使用するのではなく、短時間使用してVcが少し低下した時点で負荷14の使用を停止し、再充電によりVcを回復させ、VcがVsの1/2まで回復した時点で再び負荷14を接続するようにする。
As described above, the load resistance RL does not have a constant value and varies greatly depending on the type of load. Also, even during the same load, it varies greatly during use. Furthermore, the electromotive force Es and the internal resistance Rs of the thermoelectric generator 11 also change according to the heat supply status. Therefore, the optimum duty ratio D cannot be obtained in advance. Therefore, in order to control the duty ratio D, the voltage measuring circuit 17 measures the terminal voltage Vc of the capacitor 11, and the operation of the control circuit 15 is controlled by this terminal voltage Vc, so that the terminal voltage Vc of the capacitor 13 is the thermoelectric power generation. The ON / OFF timing of the switch 12 is controlled so as to be ½ of the generated voltage Vs of the device 11.
In this way, when the timing for switching the switch 12 is adjusted and the load resistance RL is small and power is supplied to the load 14 that requires high power, the thermoelectric generator 11 is not used continuously, but is used for a short time. Then, the use of the load 14 is stopped when Vc drops a little, Vc is recovered by recharging, and the load 14 is connected again when Vc recovers to ½ of Vs.

図3は図1における熱電発電器11、スイッチ12、コンデンサ13および負荷14の接続部の等価回路である。図3に示すように、コンデンサC、スイッチS、負荷抵抗RLからなる回路は、スイッチSのデューティ比Dを介してコンデンサCの両端で抵抗値Rxに等価変換される。起電力Esと直列抵抗Rsの直列回路から成る熱電発電器11に負荷抵抗Rxをつないだときの負荷電力PLは、(数8)で表される。
Es2×RL/D
PL =―――――――――――――・・・(数8)
(Rs+RL/D)2
スイッチSが連続ONのときは、デューティ比D=1であるので、(数8)は
PL=Es2×RL/(Rs+RL)2・・・(数9)
となる。
FIG. 3 is an equivalent circuit of a connection portion of the thermoelectric generator 11, the switch 12, the capacitor 13, and the load 14 in FIG. As shown in FIG. 3, a circuit composed of a capacitor C, a switch S, and a load resistor RL is equivalently converted to a resistance value Rx at both ends of the capacitor C via a duty ratio D of the switch S. The load power PL when the load resistance Rx is connected to the thermoelectric generator 11 composed of a series circuit of the electromotive force Es and the series resistance Rs is expressed by (Equation 8).
Es 2 × RL / D
PL = ―――――――――――――― ・ ・ ・ (Equation 8)
(Rs + RL / D) 2
Since the duty ratio D = 1 when the switch S is continuously ON, (Equation 8) is expressed as PL = Es 2 × RL / (Rs + RL) 2 (Equation 9)
It becomes.

図4に負荷電力PLとデューティ比Dの関係を示す。負荷電力PLはデューティ比Dを0から大きくしていくと急激に大きくなり、あるデューティ比RL/Rsで最大になった後、徐々に小さくなっていく。最大負荷電力PLmaxは、変換された負荷抵抗Rxが熱電発電器11の直列抵抗Rsに等しくなるとき、すなわちデューティ比DがD=RL/Rx=RL/Rsのときである。
最大負荷電力PLmaxを取り出し得るデューティ比DはD=RL/Rx=RL/Rsであるが、デューティ比DがD=RL/Rx=RL/Rsとなるのは、コンデンサ13の端子電圧Vcが熱電発電器11の発生電圧Vsの1/2になるときであるが、1/2の近辺では負荷電力PLの低下は小さい。したがって、コンデンサ13の端子電圧Vcが熱電発電器11の発生電圧Vsの1/2をずれても、デューティ比DがD=RL/Rx=RL/Rsの近辺であれば熱電発電器11から最大負荷電力PLmaxを取り出すことができる。
図4の例では、最大負荷電力PLmaxは、RxがRsに等しくなるとき、すなわち、D=RL/Rx=0.2のときであり、負荷電力PLが最大値2.5Wとなる。一方、スイッチSが連続ONであるD=1のときは負荷電力PL=1.39Wである。
FIG. 4 shows the relationship between the load power PL and the duty ratio D. The load power PL increases rapidly when the duty ratio D is increased from 0, and gradually increases after reaching a maximum at a certain duty ratio RL / Rs. The maximum load power PLmax is when the converted load resistance Rx becomes equal to the series resistance Rs of the thermoelectric generator 11, that is, when the duty ratio D is D = RL / Rx = RL / Rs.
The duty ratio D from which the maximum load power PLmax can be extracted is D = RL / Rx = RL / Rs. The duty ratio D becomes D = RL / Rx = RL / Rs because the terminal voltage Vc of the capacitor 13 is a thermoelectric Although it is when it becomes 1/2 of the generated voltage Vs of the generator 11, the decrease in the load power PL is small in the vicinity of 1/2. Therefore, even if the terminal voltage Vc of the capacitor 13 deviates by half of the generated voltage Vs of the thermoelectric generator 11, if the duty ratio D is in the vicinity of D = RL / Rx = RL / Rs, the maximum from the thermoelectric generator 11 The load power PLmax can be taken out.
In the example of FIG. 4, the maximum load power PLmax is when Rx is equal to Rs, that is, when D = RL / Rx = 0.2, and the load power PL has a maximum value of 2.5W. On the other hand, when the switch S is continuously ON and D = 1, the load power PL = 1.39 W.

つぎに、デューティ比の制御方法について説明する。
パルス発生器16はパルス幅T1、パルス周期Tのパルスを発生する。パルス発生器16が発生したパルスは制御回路15に供給され、スイッチ12の接続を切り換え制御する。そこで、パルス幅T1を、負荷14を接続する時間Tonとなるように、パルス周期Tを、負荷14を接続する時間Tonと切り離す時間Toffの和(=Ton+Toff)となるように設定すると、制御回路15は、パルス発生器16が発生したパルス幅T1のパルスによりスイッチ12の接続を切り換えて、コンデンサ13の放電サイクルを設定する。パルス幅T1の時間は負荷14をコンデンサ13に接続してコンデンサ13を放電状態とし、T−T1の時間はスイッチ12を開放して負荷14をコンデンサ13から切り離し、コンデンサ13を熱電発電器11に接続して充電状態に制御する。したがって、デューティ比DはT1/Tで表される。パルス幅T1を変化させたとき、すなわち、デューティ比Dを変化させたときは、負荷14の負荷抵抗RLが等価的に高い抵抗値Rxに変換されるので、熱電発電器11の内部抵抗Rsと等しくすることができる。
Next, a method for controlling the duty ratio will be described.
The pulse generator 16 generates a pulse having a pulse width T 1 and a pulse period T. The pulse generated by the pulse generator 16 is supplied to the control circuit 15 to switch and control the connection of the switch 12. Therefore, when the pulse width T 1 is set to be the time Ton for connecting the load 14 and the pulse period T is set to be the sum of the time Toff for disconnecting from the time Ton for connecting the load 14 (= Ton + Toff), the control is performed. The circuit 15 switches the connection of the switch 12 by the pulse having the pulse width T 1 generated by the pulse generator 16 and sets the discharge cycle of the capacitor 13. During the time of the pulse width T 1 , the load 14 is connected to the capacitor 13 so that the capacitor 13 is discharged, and during the time T−T 1 , the switch 12 is opened to disconnect the load 14 from the capacitor 13. 11 to control the charging state. Therefore, the duty ratio D is represented by T 1 / T. When the pulse width T 1 is changed, that is, when the duty ratio D is changed, the load resistance RL of the load 14 is equivalently converted to a high resistance value Rx, so that the internal resistance Rs of the thermoelectric generator 11 is changed. Can be equal.

本発明によれば、負荷14がコンデンサ13へ間欠的に接続されるので、負荷14を連続運転することはできないが、間欠的に熱電発電器11から最大電力を供給することができるので、フラッシュライトやパルスモータなど間欠駆動する各種の機器への電力供給装置として利用できる。   According to the present invention, since the load 14 is intermittently connected to the capacitor 13, the load 14 cannot be continuously operated, but the maximum power can be intermittently supplied from the thermoelectric generator 11. It can be used as a power supply device for various devices such as lights and pulse motors that are intermittently driven.

本発明の電力供給装置は、電子時計などの小型の携帯電子機器を駆動するための電源、フラッシュライトの電源、あるいは、パルスモータを使用する各種のモータ制御装置などに直流電力を供給するための電源装置などに適用して好適である。   The power supply device of the present invention is for supplying DC power to a power source for driving a small portable electronic device such as an electronic watch, a power source for a flashlight, or various motor control devices using a pulse motor. It is suitable for application to a power supply device.

本発明の実施例にかかる電力供給装置の全体構成を示す概念的ブロック図The conceptual block diagram which shows the whole structure of the electric power supply apparatus concerning the Example of this invention 本発明の実施例にかかる電力供給装置の負荷抵抗およびコンデンサの積分、平滑作用を説明する回路図The circuit diagram explaining the integration of the load resistance and capacitor | condenser of a power supply device concerning the Example of this invention, and a smoothing effect 本発明の実施例にかかる電力供給装置の要部の等価回路図The equivalent circuit schematic of the principal part of the electric power supply apparatus concerning the Example of this invention 図3の等価回路における負荷電力とデューティ比の関係を示す特性図Characteristic diagram showing the relationship between load power and duty ratio in the equivalent circuit of FIG. 内部抵抗の大きい電圧源から最大負荷電力を取り出す条件を説明する回路図Circuit diagram explaining conditions for extracting maximum load power from voltage source with large internal resistance 図5の回路における負荷電力および負荷電圧と負荷抵抗との関係を示す特性図FIG. 5 is a characteristic diagram showing the relationship between load power and load voltage and load resistance in the circuit of FIG.

符号の説明Explanation of symbols

11 熱電発電器
12 スイッチ
13 コンデンサ
14 負荷
15 制御回路
16 パルス発生器
17 電圧計測回路
11 Thermoelectric Generator 12 Switch 13 Capacitor 14 Load 15 Control Circuit 16 Pulse Generator 17 Voltage Measurement Circuit

Claims (6)

熱電素子を利用した熱電発電器から負荷に電力を供給するための電力供給装置であって、前記熱電発電器と、前記熱電発電器の発電電力により充電されるコンデンサと、前記コンデンサの放電電力が供給される負荷手段と、前記コンデンサの放電サイクルを制御する制御手段とを有することを特徴とする電力供給装置。   A power supply device for supplying power to a load from a thermoelectric generator using a thermoelectric element, wherein the thermoelectric generator, a capacitor charged by power generated by the thermoelectric generator, and discharge power of the capacitor are An electric power supply apparatus comprising: a load means to be supplied; and a control means for controlling a discharge cycle of the capacitor. 前記制御手段は前記コンデンサの充電および放電を切り換えるスイッチと、前記コンデンサの端子電圧を計測する電圧計測回路と、前記スイッチの切り換えを制御する制御信号を発生する制御回路とを有しており、前記制御信号は前記コンデンサの端子電圧を前記熱電発電器の発生電圧の1/2になるように前記スイッチの切り換えを制御することを特徴とする請求項1に記載の電力供給装置。   The control means includes a switch for switching charging and discharging of the capacitor, a voltage measuring circuit for measuring a terminal voltage of the capacitor, and a control circuit for generating a control signal for controlling switching of the switch, The power supply device according to claim 1, wherein the control signal controls switching of the switch so that a terminal voltage of the capacitor is ½ of a generated voltage of the thermoelectric generator. 前記制御信号がパルス信号であり、前記パルス信号のパルス幅に応じて前記スイッチの切り換えを制御することを特徴とする請求項2に記載の電力供給装置。   The power supply device according to claim 2, wherein the control signal is a pulse signal, and the switching of the switch is controlled according to a pulse width of the pulse signal. 前記制御手段は前記コンデンサの充電および放電を切り換えるスイッチと前記スイッチの切り換えを制御するパルス信号を発生する制御回路を有しており、前記パルス信号のパルス幅に応じて前記負荷手段の負荷抵抗を等価的に高い抵抗値に変換して前記熱電発電器の内部抵抗と等しくすることを特徴とする請求項1に記載の電力供給装置。   The control means includes a switch for switching charging and discharging of the capacitor and a control circuit for generating a pulse signal for controlling switching of the switch, and the load resistance of the load means is set according to the pulse width of the pulse signal. The power supply device according to claim 1, wherein the power supply device is equivalently converted into a high resistance value to be equal to an internal resistance of the thermoelectric generator. 熱電素子を利用した熱電発電器から負荷に電力を供給するための電力供給装置であって、前記熱電発電器と、前記熱電発電器に並列に接続されたコンデンサと、前記コンデンサに並列に接続された負荷手段と、前記熱電発電器を前記負荷手段に間欠的に接続するスイッチ手段とを有することを特徴とする電力供給装置。 A power supply device for supplying power to a load from a thermoelectric generator using a thermoelectric element, the thermoelectric generator, a capacitor connected in parallel to the thermoelectric generator, and connected in parallel to the capacitor A power supply apparatus comprising: a load means; and a switch means for intermittently connecting the thermoelectric generator to the load means. 前記スイッチ手段は前記負荷手段の負荷抵抗と前記熱電発電器の内部抵抗が等しくなるように前記熱電発電器を前記負荷手段に間欠的に接続することを特徴とする請求項5に記載の電力供給装置。
6. The power supply according to claim 5, wherein the switch means intermittently connects the thermoelectric generator to the load means so that a load resistance of the load means and an internal resistance of the thermoelectric generator are equal. apparatus.
JP2005353127A 2005-12-07 2005-12-07 Power supply Expired - Fee Related JP5060724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005353127A JP5060724B2 (en) 2005-12-07 2005-12-07 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005353127A JP5060724B2 (en) 2005-12-07 2005-12-07 Power supply

Publications (2)

Publication Number Publication Date
JP2007159310A true JP2007159310A (en) 2007-06-21
JP5060724B2 JP5060724B2 (en) 2012-10-31

Family

ID=38242945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005353127A Expired - Fee Related JP5060724B2 (en) 2005-12-07 2005-12-07 Power supply

Country Status (1)

Country Link
JP (1) JP5060724B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207178A (en) * 2012-03-29 2013-10-07 Isuzu Motors Ltd Control apparatus for thermoelectric conversion element
JP2014095938A (en) * 2012-11-07 2014-05-22 Yanmar Co Ltd Maximum power tracking control configuration
WO2014180368A1 (en) * 2013-12-13 2014-11-13 中兴通讯股份有限公司 Terminal heat-dissipation system and method
WO2015146411A1 (en) * 2014-03-26 2015-10-01 株式会社Kelk Thermoelectric power generation apparatus and thermoelectric power generation method
JP2016013028A (en) * 2014-06-30 2016-01-21 ダイハツ工業株式会社 Power generation system
JP2019022436A (en) * 2017-07-17 2019-02-07 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Thermoelectric generator with starting circuit
JP2020536486A (en) * 2017-10-04 2020-12-10 カラジェン インコーポレイテッドCalagen, Inc. Oscillator-driven thermoelectric power generation
WO2021065514A1 (en) * 2019-10-01 2021-04-08 株式会社Kelk Thermoelectric power generation device
KR20210088299A (en) * 2020-01-06 2021-07-14 주식회사 케이티앤지 Aerosol generating device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61142963A (en) * 1984-12-14 1986-06-30 Matsushita Electric Ind Co Ltd Power source
JPH0764658A (en) * 1993-08-26 1995-03-10 Hitachi Ltd Power conversion system
US6130377A (en) * 1998-01-20 2000-10-10 Carlos Avila Rivera Thermoelectric battery and power plant using the same
JP2007097335A (en) * 2005-09-29 2007-04-12 Yamaha Corp Power supply circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61142963A (en) * 1984-12-14 1986-06-30 Matsushita Electric Ind Co Ltd Power source
JPH0764658A (en) * 1993-08-26 1995-03-10 Hitachi Ltd Power conversion system
US6130377A (en) * 1998-01-20 2000-10-10 Carlos Avila Rivera Thermoelectric battery and power plant using the same
JP2007097335A (en) * 2005-09-29 2007-04-12 Yamaha Corp Power supply circuit

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207178A (en) * 2012-03-29 2013-10-07 Isuzu Motors Ltd Control apparatus for thermoelectric conversion element
JP2014095938A (en) * 2012-11-07 2014-05-22 Yanmar Co Ltd Maximum power tracking control configuration
WO2014180368A1 (en) * 2013-12-13 2014-11-13 中兴通讯股份有限公司 Terminal heat-dissipation system and method
CN104717871A (en) * 2013-12-13 2015-06-17 中兴通讯股份有限公司 Terminal cooling system and cooling method
US10193046B2 (en) 2014-03-26 2019-01-29 Kelk Ltd. Thermoelectric generating device and thermoelectric generating method
JP2015188278A (en) * 2014-03-26 2015-10-29 株式会社Kelk Thermoelectric power generation device and thermoelectric power generation method
KR101862736B1 (en) * 2014-03-26 2018-05-30 가부시키가이샤 케르쿠 Thermoelectric generator and thermoelectric generator method
WO2015146411A1 (en) * 2014-03-26 2015-10-01 株式会社Kelk Thermoelectric power generation apparatus and thermoelectric power generation method
JP2016013028A (en) * 2014-06-30 2016-01-21 ダイハツ工業株式会社 Power generation system
JP2019022436A (en) * 2017-07-17 2019-02-07 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Thermoelectric generator with starting circuit
JP2020536486A (en) * 2017-10-04 2020-12-10 カラジェン インコーポレイテッドCalagen, Inc. Oscillator-driven thermoelectric power generation
JP7249353B2 (en) 2017-10-04 2023-03-30 カラジェン インコーポレイテッド Oscillator-driven thermoelectric generator
WO2021065514A1 (en) * 2019-10-01 2021-04-08 株式会社Kelk Thermoelectric power generation device
DE112020004000T5 (en) 2019-10-01 2022-06-30 Kelk Ltd. THERMOELECTRIC GENERATOR
US11957054B2 (en) 2019-10-01 2024-04-09 Kelk Ltd. Thermoelectric generator
KR20210088299A (en) * 2020-01-06 2021-07-14 주식회사 케이티앤지 Aerosol generating device
KR102397451B1 (en) * 2020-01-06 2022-05-12 주식회사 케이티앤지 Aerosol generating device

Also Published As

Publication number Publication date
JP5060724B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5060724B2 (en) Power supply
CN101247083B (en) Switching regulator
US8564249B2 (en) Charging unit with two power source inputs
JP2020507303A (en) Battery system
US20090015211A1 (en) Method and related device for charging at the same voltage two or more capacitors connected in series
EP3002863A1 (en) Single inductor dc-dc converter with regulated output, energy storage and energy harvesting system
EP3286816B1 (en) A power supply system
JP2009207239A (en) Charging controller for solar cells
JP2010259165A (en) Power supply device, electronic device, and capacitor capacitance estimation method
WO2018074144A1 (en) Power supply circuit
JP4030550B2 (en) Power supply
KR101883708B1 (en) Constant on-time(cot) control in isolated converter
JP4352319B2 (en) Power supply device
JP2008099503A (en) Power converter with electric double-layer capacitor applied, and charging method of the electric double-layer capacitor
JP2006296118A (en) Charger
EP3278439B1 (en) Constant on-time (cot) control in isolated converter
KR101901576B1 (en) Constant on-time(cot) control in isolated converter
JP2005176430A (en) Power control system and electronic apparatus using the power control system
JP2005341769A (en) Charger and charging control method
JP2001178013A (en) Charging circuit and charging control method thereof
WO2023145741A1 (en) Boost circuit and boost system
JP6425555B2 (en) Step-down charging system and power supply
KR101901575B1 (en) Constant on-time(cot) control in isolated converter
KR101915057B1 (en) Constant on-time(cot) control in isolated converter
JP2011188640A (en) Charging circuit and charging method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees