JP2006296118A - Charger - Google Patents

Charger Download PDF

Info

Publication number
JP2006296118A
JP2006296118A JP2005115502A JP2005115502A JP2006296118A JP 2006296118 A JP2006296118 A JP 2006296118A JP 2005115502 A JP2005115502 A JP 2005115502A JP 2005115502 A JP2005115502 A JP 2005115502A JP 2006296118 A JP2006296118 A JP 2006296118A
Authority
JP
Japan
Prior art keywords
voltage
charger
battery
external power
control element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005115502A
Other languages
Japanese (ja)
Inventor
Yoshihito Kawakami
佳人 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005115502A priority Critical patent/JP2006296118A/en
Publication of JP2006296118A publication Critical patent/JP2006296118A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charger applied to arbitrary external power supplies, and efficiently suppressing a temperature rise. <P>SOLUTION: The charger 2 has a switching voltage dropping converter comprising a switch element 5, a synchronous rectifier 3, an inductor 6 and a capacitor 7, a charge controlling element 8, a detection resistor 9 for regulating a constant current, and a control circuit 16, and is supplied with DC power from the external power supply 1. When a difference between voltages from the external power supply 1 and a battery 10 is sufficient to drive the charge controlling element 8, an output voltage from the voltage dropping converter is controlled so as to make a voltage applied across the charge controlling element 8 become the minimum voltage for driving the voltage across the charge controlling element 8 i. e. a voltage between a source and a drain. The charger is achieved, minimizes a power loss in the charge controlling element, and reduces the quantity of generated heat. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はバッテリ駆動の各種電子機器内に設けられ、外部電源から電力が供給され、バッテリの充電を行う充電器に関するものである。   The present invention relates to a charger that is provided in various battery-driven electronic devices and that is supplied with electric power from an external power source and charges the battery.

近年、バッテリを有する携帯機器等の電子機器に設けられる充電器には、急速かつ高効率な充電機能が要求されている。   In recent years, a charger provided in an electronic device such as a portable device having a battery is required to have a rapid and highly efficient charging function.

従来、充電器としては、図2に示すような回路構成の装置が用いられていた。図2において、充電器19は、電流制限機能を有する外部電源17より電力が供給されており、PチャネルMOSFETからなる逆流防止用スイッチ素子4と、PチャネルMOSFETからなる充電制御素子8と、定電流制御用検出抵抗9と、制御回路18とから構成されている。制御回路18は、外部電源検出回路11と、充電制御素子制御回路13と、充電電流とバッテリ電圧とを検出する充電検出回路14とで構成される。   Conventionally, as a charger, an apparatus having a circuit configuration as shown in FIG. 2 has been used. In FIG. 2, a charger 19 is supplied with electric power from an external power source 17 having a current limiting function, and includes a backflow prevention switch element 4 made of a P-channel MOSFET, a charge control element 8 made of a P-channel MOSFET, and a constant voltage. It comprises a current control detection resistor 9 and a control circuit 18. The control circuit 18 includes an external power supply detection circuit 11, a charge control element control circuit 13, and a charge detection circuit 14 that detects a charging current and a battery voltage.

外部電源17から供給された直流電流は、逆流防止用スイッチ素子4、充電制御素子8および定電流制御用検出抵抗9を介してバッテリ10を充電する。逆流防止用スイッチ素子4は外部電源検出回路11によって制御される。具体的には、逆流防止用スイッチ素子4は外部電源17から電力供給されることによるバッテリ10への充電動作中はオン状態となる。また、外部電源17からの電力供給がない場合にはバッテリ10からの放電電流が逆流しないようにオフ状態となる。したがって、以下に示す充電器19の充電動作説明においては、逆流防止用スイッチ素子4はオン状態である。   The direct current supplied from the external power source 17 charges the battery 10 via the backflow prevention switch element 4, the charge control element 8, and the constant current control detection resistor 9. The backflow prevention switch element 4 is controlled by the external power supply detection circuit 11. Specifically, the backflow prevention switch element 4 is turned on during the charging operation of the battery 10 by being supplied with electric power from the external power supply 17. Further, when there is no power supply from the external power supply 17, the battery is turned off so that the discharge current from the battery 10 does not flow backward. Therefore, in the following description of the charging operation of the charger 19, the backflow prevention switch element 4 is in the ON state.

図4は、外部電源17の出力特性Xと充電器19の出力特性Yを示したものである。図4に示すように、外部電源17は所定の電圧Vaを出力する定電圧出力機能と、出力電流を所定値Iaに制限をかける電流制限機能とを有している。   FIG. 4 shows the output characteristic X of the external power source 17 and the output characteristic Y of the charger 19. As shown in FIG. 4, the external power supply 17 has a constant voltage output function for outputting a predetermined voltage Va and a current limiting function for limiting the output current to a predetermined value Ia.

また、充電制御素子8は、充電制御素子制御回路13から与えられるゲート電圧が変化することによってソース−ドレイン間のインピーダンスが制御され、次の3つの状態をとる。第1の状態はオン状態である。また、第2の状態は、バッテリ10への充電電流が定電流制御用検出抵抗9に流れることによってその両端に生じる電圧を充電検出回路14によって検出し、定電流制御用検出抵抗9での電圧降下が、一定値となるように制御される定電流化状態である。このときに流れる定電流制御された充電電流がIcである。さらに、第3の状態は、バッテリ10の電圧を充電検出回路14で検出し、バッテリ10の電圧を所定値Vcに安定化するように制御される定電圧化状態である。図4では、充電器の定電流化状態と定電圧化状態を示し、斜線部が充電器による電力損失Zを意味する。   Further, the charge control element 8 takes the following three states by controlling the impedance between the source and the drain by changing the gate voltage supplied from the charge control element control circuit 13. The first state is an on state. Further, in the second state, a voltage generated at both ends of the charging current flowing to the constant current control detection resistor 9 is detected by the charge detection circuit 14 and the voltage at the constant current control detection resistor 9 is detected. This is a constant current state in which the drop is controlled to be a constant value. The constant current controlled charging current flowing at this time is Ic. Further, the third state is a constant voltage state in which the voltage of the battery 10 is detected by the charge detection circuit 14 and controlled so as to stabilize the voltage of the battery 10 to a predetermined value Vc. In FIG. 4, the constant current state and the constant voltage state of the charger are shown, and the shaded portion indicates the power loss Z due to the charger.

図5は、充電器の充電動作によるバッテリ10の電圧Vbおよびバッテリ10への充電電流Ibの時間変化と、充電制御素子8の両端電圧Vyの時間変化とを表す動作波形図である。以下に、図2に示す先行技術の充電器の動作を図5の充電動作波形図を用いて説明する。   FIG. 5 is an operation waveform diagram showing the time change of the voltage Vb of the battery 10 and the charging current Ib to the battery 10 and the time change of the both-ends voltage Vy of the charge control element 8 due to the charging operation of the charger. The operation of the prior art charger shown in FIG. 2 will be described below with reference to the charging operation waveform diagram of FIG.

まず、期間T11はバッテリ10を急速に充電する期間である。この期間T11では、外部電源17の電流制限機能を利用して、バッテリ10が定電流Iaで充電される。このとき、PチャネルMOSFETからなる充電制御素子8はオン状態となっている。またこのとき、バッテリ電圧Vbは時間の経過とともに上昇していく。このとき充電制御素子8のソース・ドレイン間の電圧は、バッテリ10に流れる定電流IaとMOSのON抵抗で決定される。   First, the period T11 is a period in which the battery 10 is rapidly charged. In this period T11, the battery 10 is charged with the constant current Ia using the current limiting function of the external power supply 17. At this time, the charge control element 8 made of a P-channel MOSFET is in an on state. At this time, the battery voltage Vb rises with time. At this time, the voltage between the source and drain of the charge control element 8 is determined by the constant current Ia flowing through the battery 10 and the ON resistance of the MOS.

次に、期間T12は充電制御素子8が定電流制御用検出抵抗9での電圧降下に基づき充電制御素子制御回路13によって制御され、充電制御素子8が定電流制御素子として動作する定電流化状態にあり、バッテリ10が定電流Icで充電される期間である。この期間T12はバッテリ電圧がVd以上Vc未満となる区間である。この期間T12では、バッテリ10の過電圧保護のために、期間T11での定電流Iaの値よりも小さく設定された電流Icで定電流充電される。バッテリ電圧Vbはさらに上昇する。このとき充電制御素子8のソース・ドレイン間の電圧は、外部電源17とバッテリ電圧10の電位差で決定される。   Next, in the period T12, the charge control element 8 is controlled by the charge control element control circuit 13 based on the voltage drop at the constant current control detection resistor 9, and the charge control element 8 operates as a constant current control element. In this period, the battery 10 is charged with the constant current Ic. This period T12 is a section in which the battery voltage is not less than Vd and less than Vc. In this period T12, for the overvoltage protection of the battery 10, constant current charging is performed with the current Ic set smaller than the value of the constant current Ia in the period T11. Battery voltage Vb further increases. At this time, the voltage between the source and drain of the charge control element 8 is determined by the potential difference between the external power supply 17 and the battery voltage 10.

最後に、期間T13はバッテリ10の電圧を充電検出回路14で検出し、充電制御素子制御回路13に伝達することによって、充電制御素子8が定電圧制御素子として動作する定電圧化状態にある期間である。この期間T13では、バッテリ10電圧VbがVcと等しくなったことを検出し、バッテリの電圧Vbを一定電圧Vcに保持している。そして充電電流Ibが徐々に少なくなる。すなわち、期間T12および期間T13では、充電器19はシリーズレギュレータとして動作する。
特許第3312422号
Finally, in the period T13, the charge detection circuit 14 detects the voltage of the battery 10 and transmits it to the charge control element control circuit 13, whereby the charge control element 8 is in a constant voltage state in which it operates as a constant voltage control element. It is. In this period T13, it is detected that the battery 10 voltage Vb is equal to Vc, and the battery voltage Vb is held at a constant voltage Vc. The charging current Ib gradually decreases. That is, in the period T12 and the period T13, the charger 19 operates as a series regulator.
Japanese Patent No. 3312422

上記のような先行技術の充電器において、図5に示すように充電制御素子8が充電電流を制御する際に、充電制御素子8の両端電圧すなわち、ソース・ドレイン間の電圧が駆動可能な約0.2〜0.3Vより十分大きいことから、大きな電力損失が発生し、充電中の発熱量増加に伴う表面温度上昇による周辺機器への悪影響を与えるおそれがある。これを抑えるためには、充電電流値を大きく設定できず、充電時間が長くなるという問題があった。   In the prior art charger as described above, when the charging control element 8 controls the charging current as shown in FIG. 5, the voltage across the charging control element 8, that is, the voltage between the source and drain can be driven. Since it is sufficiently larger than 0.2 to 0.3 V, a large power loss occurs, which may adversely affect peripheral devices due to an increase in surface temperature accompanying an increase in the amount of heat generated during charging. In order to suppress this, there is a problem that the charging current value cannot be set large and the charging time becomes long.

そこで、充電時間短縮のために、充電初期には、充電制御素子8をオン状態にして充電電流制御を行わず、外部電源17の電流制限機能を利用して大きな電流で充電を行うことにより、充電時間の短縮を図っていた。そのため、特定の外部電源以外の外部電源を利用することができないという問題があった。   Therefore, in order to shorten the charging time, at the initial stage of charging, the charging control element 8 is turned on and charging current control is not performed. The charging time was shortened. Therefore, there is a problem that an external power source other than a specific external power source cannot be used.

本発明の目的は、充電制御素子の発熱を少なくして周辺機器への悪影響を抑えつつ、充電電流を大きくして充電時間を短縮することができる充電器を提供することである。   An object of the present invention is to provide a charger capable of reducing a charging time by increasing a charging current while suppressing adverse effects on peripheral devices by reducing heat generation of a charging control element.

また、本発明の他の目的は、電流制限機能を有する外部電源を使用する必要がなく、充電時間を短縮することができる充電器を提供することである。   Another object of the present invention is to provide a charger that can shorten the charging time without using an external power source having a current limiting function.

また、本発明のさらに他の目的は、高効率な充電器を提供することである。   Still another object of the present invention is to provide a highly efficient charger.

上記課題を解決するために、本発明の充電器は、外部電源から電力が供給される直流電圧変換器と、直流電圧変換器を電源としてバッテリに充電電流を供給する充電制御素子と、充電制御素子の両端電圧を検出する電圧検出回路によって、充電制御素子の両端電圧が駆動可能な最小の電圧となるように直流電圧変換器の出力電圧を制御するとともに、バッテリに所定の充電電流が流れるように充電制御素子を駆動する機能を備えている。   In order to solve the above problems, a charger according to the present invention includes a DC voltage converter to which power is supplied from an external power source, a charge control element that supplies a charging current to a battery using the DC voltage converter as a power source, and charge control. The voltage detection circuit that detects the voltage across the element controls the output voltage of the DC voltage converter so that the voltage across the charge control element is the minimum voltage that can be driven, and a predetermined charging current flows through the battery. Has a function of driving the charge control element.

この構成によれば、電圧検出回路の検出する充電制御素子の両端電圧が充電制御素子を駆動可能な最小の電圧となるように直流電圧変換器の出力電圧を制御するので、充電制御素子の電力損失を最小にし、その発熱を最小限に抑えることができる。したがって、充電制御素子によって制御される充電電流を増加させることが可能となる。その結果、比較的大きな充電電流も充電制御素子によって制御された状態でバッテリに流すことができ、充電時間を短縮することができる。また、大きな充電電流の制御を充電制御素子で行うので、電流制限機能を有する外部電源を使用する必要がなくなる。   According to this configuration, the output voltage of the DC voltage converter is controlled so that the voltage across the charge control element detected by the voltage detection circuit becomes the minimum voltage that can drive the charge control element. Loss can be minimized and heat generation can be minimized. Therefore, the charging current controlled by the charging control element can be increased. As a result, a relatively large charging current can be passed through the battery in a state controlled by the charging control element, and the charging time can be shortened. In addition, since a large charge current is controlled by the charge control element, it is not necessary to use an external power supply having a current limiting function.

上記の充電器においては、直流電圧変換器は、例えば、外部電源に一端が接続されたスイッチ素子と、スイッチ素子の他端に一端が接続され他端が接地された整流器と、スイッチ素子の他端に一端が接続され他端が直流電圧変換器の出力端となるインダクタとからなる降圧コンバータからなる。この降圧コンバータは、スイッチング制御回路でスイッチ素子のオンオフ動作のデューティ比を変化させ出力電圧の制御を行う。   In the above charger, the DC voltage converter includes, for example, a switch element having one end connected to an external power source, a rectifier having one end connected to the other end of the switch element and the other end grounded, and other switch elements. The step-down converter comprises an inductor connected to one end and the other end serving as an output end of the DC voltage converter. This step-down converter controls the output voltage by changing the duty ratio of the on / off operation of the switch element by the switching control circuit.

ここで、電圧検出回路において充電制御素子の両端電圧を検出し、充電制御素子が駆動可能な電位差である場合には、スイッチング制御回路でスイッチ素子及び、同期整流器を交互にオンオフ動作させることによって充電制御素子が駆動可能な最小の電圧となるように、直流電圧変換器の出力電圧を制限する。   Here, the voltage detection circuit detects the voltage across the charge control element, and if the charge control element has a potential difference that can be driven, the switch control circuit and the synchronous rectifier are alternately turned on and off by the switching control circuit. The output voltage of the DC voltage converter is limited so that the control element can be driven to the minimum voltage.

この構成によれば、スイッチング式の降圧コンバータを使用し、前記充電制御素子での電力損失を最小限にするため高効率である。   According to this configuration, a switching step-down converter is used, and the power loss in the charge control element is minimized, so that the efficiency is high.

本発明の充電器は、充電制御に直流電圧変換手段、例えばスイッチング式の降圧コンバータを充電素子の両端電圧を制御することに用いることで、高効率で発熱量が少ないという優れた効果を有する。また制御回路内に充電電流制御素子の両端電圧を制御し、充電電流の制御を行うシステムを有するため、電圧・電流制限機能を有さない外部電源の利用が可能となり、様々な外部電源からの充電が可能となる効果を有する。   The charger of the present invention has an excellent effect of high efficiency and a small amount of heat generation by using a DC voltage conversion means, for example, a switching step-down converter, for controlling the voltage across the charging element for charge control. In addition, since the control circuit has a system that controls the voltage across the charging current control element and controls the charging current, it is possible to use an external power supply that does not have a voltage / current limiting function. It has the effect that charging is possible.

以下、本発明の充電器に係る好適な実施の形態について添付の図面を参照しつつ説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of a charger according to the invention will be described with reference to the accompanying drawings.

(実施の形態1)
図1は、本発明に係る実施の形態1の充電器の構成を示す回路図である。図1において、充電器2は、特に電流制限機能が必要とされない外部電源1より電力が供給されている。この充電器2は、PチャネルMOSFETからなる逆流防止用スイッチ素子4と、PチャネルMOSFETからなるスイッチ素子5と、NチャネルMOSFETからなる同期整流器3と、インダクタ6と、コンデンサ7と、充電制御素子8と、定電流制御用検出抵抗9と、制御回路16とから構成されている。制御回路16は、外部電源検出回路11と、電圧検出回路12と、充電制御素子制御回路13と、充電電流およびバッテリ電圧を検出する充電検出回路14と、スイッチング制御回路15とで構成される。
(Embodiment 1)
FIG. 1 is a circuit diagram showing a configuration of the charger according to the first embodiment of the present invention. In FIG. 1, the charger 2 is supplied with electric power from an external power source 1 that does not particularly require a current limiting function. The charger 2 includes a backflow prevention switch element 4 made of a P-channel MOSFET, a switch element 5 made of a P-channel MOSFET, a synchronous rectifier 3 made of an N-channel MOSFET, an inductor 6, a capacitor 7, and a charge control element. 8, a constant current control detection resistor 9, and a control circuit 16. The control circuit 16 includes an external power supply detection circuit 11, a voltage detection circuit 12, a charge control element control circuit 13, a charge detection circuit 14 that detects a charging current and a battery voltage, and a switching control circuit 15.

逆流防止用スイッチ素子4は、外部電源検出回路11によって制御され、外部電源1から電力供給されることによるバッテリ10への充電動作中はオン状態となり、外部電源1からの電力供給がない場合にはバッテリ10からの放電電流が逆流しないようにオフ状態となる。したがって、以下に示す充電器2の充電動作説明においては、逆流防止用スイッチ素子4は常にオン状態にある。   The backflow prevention switch element 4 is controlled by the external power supply detection circuit 11 and is turned on during the charging operation to the battery 10 by being supplied with power from the external power supply 1, and when no power is supplied from the external power supply 1. Is turned off so that the discharge current from the battery 10 does not flow backward. Therefore, in the following description of the charging operation of the charger 2, the backflow prevention switch element 4 is always in the on state.

PチャネルMOSFETからなるスイッチ素子5と、NチャネルMOSFETからなる同期整流器3と、インダクタ6と、コンデンサ7とは、スイッチング式の降圧コンバータを構成している。降圧コンバータは、スイッチ素子5と同期整流器3とが交互にオンオフ動作することにより、インダクタ6を介してコンデンサ7から直流電力を出力する。同期整流器3とスイッチ素子5とのオンオフ動作が周期的に繰り返されている時、その1周期に占めるスイッチ素子5のオン時間の割合(以下、この割合をデューティ比と記述する。)を調整することにより、降圧コンバータの出力電圧を制御することができる。   The switch element 5 made of a P-channel MOSFET, the synchronous rectifier 3 made of an N-channel MOSFET, the inductor 6 and the capacitor 7 constitute a switching step-down converter. The step-down converter outputs DC power from the capacitor 7 via the inductor 6 when the switch element 5 and the synchronous rectifier 3 are alternately turned on and off. When the ON / OFF operation of the synchronous rectifier 3 and the switch element 5 is repeated periodically, the ratio of the ON time of the switch element 5 to one cycle (hereinafter, this ratio is described as a duty ratio) is adjusted. Thus, the output voltage of the step-down converter can be controlled.

図3は、充電器の充電動作によってバッテリ10の電圧Vbおよびバッテリ10への充電電流Ibの時間変化と、充電制御素子の両端電圧Vxの時間変化を表す動作波形図である。以下に、本発明の実施の形態1による充電器2の充電動作を、図3に示す動作波形図を用いて説明する。   FIG. 3 is an operation waveform diagram showing the time change of the voltage Vb of the battery 10 and the charging current Ib to the battery 10 and the time change of the both-ends voltage Vx of the charge control element by the charging operation of the charger. Hereinafter, the charging operation of the charger 2 according to the first embodiment of the present invention will be described with reference to the operation waveform diagram shown in FIG.

図3の期間T1は、充電器2は定電流化状態にあり、電流値Iaでバッテリ10を定電流充電する期間である。このとき、充電制御素子8は、充電検出回路14により検出された充電電流の値に基づき、充電制御素子制御回路13によって制御され、定電流動作する。バッテリ電圧Vbは徐々に上昇していく。また制御回路16における電圧検出回路12で充電制御素子8の両端電圧Vxを検出し、充電制御素子8の両端電圧Vx、すなわちソース・ドレイン間電圧を駆動可能な最小の電圧(一定値)となるようにスイッチング制御回路15を制御する。これによって、充電制御素子8で損失する電力を最小限にし、充電制御素子8の発熱を最小限にすることができる。充電時間短縮のためには、充電器2の熱的負担の許容される範囲内で、期間T1の電流値Iaは大きく設定することが望ましい。また高効率な電力変換特性を有する降圧コンバータを用い、充電制御素子8での電力損失を最小とすることにより、電流値Iaを大きく設定でき、充電時間を短くすることが可能となる。この期間T1は、充電が進んでバッテリ10の電圧Vbが電圧値Vdに至るまでの期間であり、バッテリ電圧Vbが電圧値Vdに至ると期間T2へ移行する。   A period T1 in FIG. 3 is a period in which the battery charger 2 is in a constant current state and the battery 10 is charged with a constant current at the current value Ia. At this time, the charge control element 8 is controlled by the charge control element control circuit 13 based on the value of the charge current detected by the charge detection circuit 14 and operates at a constant current. The battery voltage Vb gradually increases. Further, the voltage detection circuit 12 in the control circuit 16 detects the voltage Vx across the charge control element 8, and the voltage Vx across the charge control element 8, that is, the minimum voltage (a constant value) that can drive the source-drain voltage. Thus, the switching control circuit 15 is controlled. As a result, power lost in the charge control element 8 can be minimized, and heat generation of the charge control element 8 can be minimized. In order to shorten the charging time, it is desirable to set the current value Ia in the period T1 large within the allowable range of the thermal burden on the charger 2. Further, by using a step-down converter having high-efficiency power conversion characteristics and minimizing the power loss in the charge control element 8, the current value Ia can be set large and the charging time can be shortened. This period T1 is a period from when charging proceeds until the voltage Vb of the battery 10 reaches the voltage value Vd, and when the battery voltage Vb reaches the voltage value Vd, the period T2 is entered.

期間T2では、充電器2が定電圧化状態にあり、充電制御素子8は、充電検出回路14によって検出されたバッテリ電圧の値に基づき、充電制御素子制御回路13によって制御され、定電圧動作することでバッテリ電圧Vbは電圧値Vcに制限されながら充電される。このとき、充電電流Ibは徐々に減少していく。またスイッチング制御回路15は、前述のT1の期間と同様に充電制御素子8の両端電圧、すなわちソース・ドレイン間の電圧が駆動可能な最小の電圧(一定値)となるようにデューティ比を制御する。やがてバッテリ10の電圧が満充電電圧に近い値になり、完全に満充電電圧に達した時点で充電を終了する。   In the period T2, the charger 2 is in a constant voltage state, and the charge control element 8 is controlled by the charge control element control circuit 13 based on the value of the battery voltage detected by the charge detection circuit 14, and operates at a constant voltage. Thus, the battery voltage Vb is charged while being limited to the voltage value Vc. At this time, the charging current Ib gradually decreases. Further, the switching control circuit 15 controls the duty ratio so that the voltage across the charge control element 8, that is, the voltage between the source and the drain becomes the minimum drivable voltage (constant value) as in the above-described period T1. . Eventually, when the voltage of the battery 10 reaches a value close to the full charge voltage and reaches the full charge voltage completely, the charging is terminated.

本発明に係る充電器は、スイッチング式の降圧コンバータを用い、充電制御素子の両端電圧、すなわちソース・ドレイン間の電圧が駆動可能な最小電圧となるように制御することによって、高効率で充電時間が短く、電流制限機能を有さない外部電源が使用可能な充電器として有用である。   The charger according to the present invention uses a switching step-down converter, and controls the voltage across the charge control element, that is, the voltage between the source and the drain to be the minimum driveable voltage, so that the charging time is high efficiency. Is useful as a charger that can use an external power source that is short and does not have a current limiting function.

本発明の実施の形態1の充電器の構成を示す回路図である。It is a circuit diagram which shows the structure of the charger of Embodiment 1 of this invention. 充電器の先行技術の構成を示す回路図である。It is a circuit diagram which shows the structure of the prior art of a charger. 本発明の実施の形態1における充電器の動作を示す充電電流Ibと充電電圧(バッテリ電圧)Vbと充電制御素子の両端電圧Vxの波形図である。It is a wave form diagram of charging current Ib, charging voltage (battery voltage) Vb, and the both-ends voltage Vx of a charge control element which show operation | movement of the charger in Embodiment 1 of this invention. 先行技術における外部電源と充電器の出力特性を示す特性図である。It is a characteristic view which shows the output characteristic of the external power supply and charger in a prior art. 充電器の先行技術の動作を示す充電電流Ibと充電電圧(バッテリ電圧)Vbと充電制御素子の両端電圧Vyの波形図である。It is a wave form diagram of charge current Ib, charge voltage (battery voltage) Vb, and both-ends voltage Vy of a charge control element which show operation of the prior art of a charger.

符号の説明Explanation of symbols

1 外部電源(電流制限機能なし)
2 充電器(本発明の充電器)
3 同期整流器
4 逆流防止用スイッチ素子
5 スイッチ素子
6 インダクタ
7 コンデンサ
8 充電制御素子
9 定電流制御用検出抵抗
10 バッテリ
11 外部電源検出回路
12 電圧検出回路
13 充電制御素子制御回路
14 充電検出回路
15 スイッチング制御回路
16 制御回路(本発明の制御回路)
17 外部電源(電流制限機能あり)
18 制御回路(先行技術の制御回路)
19 充電器(先行技術の充電器)
1 External power supply (no current limiting function)
2 Charger (charger of the present invention)
DESCRIPTION OF SYMBOLS 3 Synchronous rectifier 4 Switch element for backflow prevention 5 Switch element 6 Inductor 7 Capacitor 8 Charge control element 9 Detection resistor for constant current control 10 Battery 11 External power supply detection circuit 12 Voltage detection circuit 13 Charge control element control circuit 14 Charge detection circuit 15 Switching Control circuit 16 Control circuit (control circuit of the present invention)
17 External power supply (with current limiting function)
18 Control circuit (prior art control circuit)
19 Charger (prior art charger)

Claims (2)

外部電源から電力が供給される直流電圧変換器と、
前記直流電圧変換器を電源としてバッテリに充電電流を供給する充電制御素子と、
前記充電制御素子の両端電圧が前記充電制御素子を駆動可能な最小の電圧となるように前記直流電圧変換器の出力電圧を制御するとともに、前記バッテリに所定の充電電流が流れるように前記充電制御素子を駆動する制御回路とを備えた充電器。
A DC voltage converter to which power is supplied from an external power source;
A charge control element for supplying a charging current to the battery using the DC voltage converter as a power source;
The output control of the DC voltage converter is controlled so that the voltage across the charge control element is a minimum voltage that can drive the charge control element, and the charge control is performed so that a predetermined charge current flows through the battery. A charger comprising a control circuit for driving the element.
前記直流電圧変換器は、前記外部電源に一端が接続されたスイッチ素子と、前記スイッチ素子の他端に一端が接続され他端が接地された整流器と、前記スイッチ素子の他端に一端が接続され他端が前記直流電圧変換器の出力端となるインダクタとからなる降圧コンバータからなり、
前記制御回路は前記スイッチ素子のオンオフ動作のデューティ比を変化させることにより、前記直流電圧変換器の出力電圧を制御する請求項1記載の充電器。
The DC voltage converter includes a switch element having one end connected to the external power source, a rectifier having one end connected to the other end of the switch element and the other end grounded, and one end connected to the other end of the switch element. And the other end is composed of a step-down converter composed of an inductor serving as an output terminal of the DC voltage converter,
The charger according to claim 1, wherein the control circuit controls an output voltage of the DC voltage converter by changing a duty ratio of an on / off operation of the switch element.
JP2005115502A 2005-04-13 2005-04-13 Charger Pending JP2006296118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005115502A JP2006296118A (en) 2005-04-13 2005-04-13 Charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005115502A JP2006296118A (en) 2005-04-13 2005-04-13 Charger

Publications (1)

Publication Number Publication Date
JP2006296118A true JP2006296118A (en) 2006-10-26

Family

ID=37416077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005115502A Pending JP2006296118A (en) 2005-04-13 2005-04-13 Charger

Country Status (1)

Country Link
JP (1) JP2006296118A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011182529A (en) * 2010-02-26 2011-09-15 Sanyo Electric Co Ltd Charging apparatus, program
WO2011118118A1 (en) * 2010-03-26 2011-09-29 パナソニック株式会社 Charging device
JP2012124865A (en) * 2010-12-10 2012-06-28 Fujitsu Telecom Networks Ltd Power amplifier circuit and charge/discharge control device
JP2015533075A (en) * 2012-11-01 2015-11-16 クゥアルコム・インコーポレイテッドQualcomm Incorporated Preventing battery charger input voltage boosting when the input adapter is removed
CN112151888A (en) * 2020-09-25 2020-12-29 上海航天计算机技术研究所 Carrier rocket lithium battery intelligent management equipment
CN117458676B (en) * 2023-12-22 2024-04-30 广东省洛仑兹技术股份有限公司 Charging control method, device, equipment and storage medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011182529A (en) * 2010-02-26 2011-09-15 Sanyo Electric Co Ltd Charging apparatus, program
WO2011118118A1 (en) * 2010-03-26 2011-09-29 パナソニック株式会社 Charging device
JP2012124865A (en) * 2010-12-10 2012-06-28 Fujitsu Telecom Networks Ltd Power amplifier circuit and charge/discharge control device
JP2015533075A (en) * 2012-11-01 2015-11-16 クゥアルコム・インコーポレイテッドQualcomm Incorporated Preventing battery charger input voltage boosting when the input adapter is removed
CN112151888A (en) * 2020-09-25 2020-12-29 上海航天计算机技术研究所 Carrier rocket lithium battery intelligent management equipment
CN112151888B (en) * 2020-09-25 2022-02-15 上海航天计算机技术研究所 Carrier rocket lithium battery intelligent management equipment
CN117458676B (en) * 2023-12-22 2024-04-30 广东省洛仑兹技术股份有限公司 Charging control method, device, equipment and storage medium

Similar Documents

Publication Publication Date Title
JP5984999B2 (en) DC / DC converter and power supply device using the same
US8564249B2 (en) Charging unit with two power source inputs
JP5174390B2 (en) Power supply device and electronic apparatus equipped with the same
US8508963B2 (en) Step-down switching regulator capable of providing high-speed response with compact structure
CN100490287C (en) Switching power supply and its control circuit, and electronic apparatus employing such switching power supply
CN107408892B (en) Semiconductor device is used in power supply control
JP3647811B2 (en) DC-DC converter circuit
WO2011055472A1 (en) Dc-dc converter
JP2007252185A (en) Switching type voltage regulator capable of low rill mode operation
KR20090132497A (en) Dc-dc converter
JP2008079360A (en) Boosting converter and semiconductor integrated circuit
JP2012161117A (en) Dc/dc converter, and power supply device and electronic apparatus using the same
CN110875686B (en) Electronic converter and method of operating an electronic converter
JP5380057B2 (en) Boost switching power supply
JP2001078370A (en) Charger and charging control circuit
JP2006333616A (en) Switching regulator control circuit/control method and power supply/electronic apparatus using them
JP5060724B2 (en) Power supply
JP2010154706A (en) Control circuit and method of switching regulator, and switching regulator using the same
US20160065074A1 (en) Dc-dc converter and control method for the same
JP2006296118A (en) Charger
US8497719B2 (en) Slew rate PWM controlled charge pump for limited in-rush current switch driving
US10038381B2 (en) Area-friendly method for providing duty cycle inverse to supply voltage
JP4352319B2 (en) Power supply device
US20120032659A1 (en) Power supply device
JP3929454B2 (en) Charger and charge control method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061005