JP2007158458A - Lame-mode quartz crystal resonator - Google Patents

Lame-mode quartz crystal resonator Download PDF

Info

Publication number
JP2007158458A
JP2007158458A JP2005347087A JP2005347087A JP2007158458A JP 2007158458 A JP2007158458 A JP 2007158458A JP 2005347087 A JP2005347087 A JP 2005347087A JP 2005347087 A JP2005347087 A JP 2005347087A JP 2007158458 A JP2007158458 A JP 2007158458A
Authority
JP
Japan
Prior art keywords
vibration
piezoelectric element
crystal resonator
lame
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005347087A
Other languages
Japanese (ja)
Inventor
Tadataka Kamiyama
忠孝 上山
Masahiko Goto
正彦 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2005347087A priority Critical patent/JP2007158458A/en
Publication of JP2007158458A publication Critical patent/JP2007158458A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shape of a Lame-mode quartz crystal resonator, in particular, to obtain a shape of a piezoelectric element for improving a mount state of the piezoelectric element for achieving downsizing and high accuracy and enhancing the mount strength against a fall and a shock while maintaining the electric characteristic of the piezoelectric element. <P>SOLUTION: The Lame-mode quartz crystal resonator comprises a crystal substrate of the LQ1T-cut or the LQ2T-cut causing a vibration mode of contour vibration in which the crystal substrate is contracted in a short side direction when the crystal substrate is elongated in the long side direction of a rectangle and the crystal substrate is contracted in the long side direction when the crystal substrate is elongated in the short direction of the rectangle by using four corner points of the piezoelectric element for nodes in the case that electric charges are applied to the rectangular piezoelectric element comprising a vibration part, a support part, and a connection part in order to solve the above problem. In the Lame-mode quartz crystal resonator, a hole through which the element is inserted is provided in the support part and the element is mounted by impregnating a support member to the hole. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ラーメモード水晶振動子の振動子形状に関するものであり、特に、小型化、高精度化を実現するための素子の実装状態を改善するもので、素子の電気的特性を維持しながら落下、衝撃に対する実装強度を向上した素子形状に関するものである。   The present invention relates to a resonator shape of a lame mode crystal resonator, and in particular, to improve the mounting state of an element for realizing miniaturization and high accuracy while maintaining the electrical characteristics of the element. The present invention relates to an element shape with improved mounting strength against dropping and impact.

ラーメモード振動子は小型で低周波数を実現する上で最適な振動モードを得ることができる。そのため低周波の振動子でありながら小型化を実現するということは、近年めざましい進化を遂げている携帯電話、携帯型の小型ゲーム機器などに広く利用される大きな市場がある。   The lame mode vibrator is small and can obtain an optimum vibration mode for realizing a low frequency. Therefore, the realization of miniaturization while being a low-frequency vibrator has a large market widely used for mobile phones, portable small game devices and the like that have made remarkable progress in recent years.

ラーメモード振動子は数十μmの板厚の圧電基板により形成されており、ラーメモード振動子を保持するためには振動の阻害にならないように、振動の節を保持することが一般的である。図7に示すように四隅の接続部を介して支持と保持がなされている。この節からアームを引き出し保持部へ接続し、接続部を介してパッケージと実装して組立ることで振動子を得ている。このときのアーム部はなるべく細くすることにより振動の阻害を少なくし、等価直列抵抗を小さくすることができる。そのため、落下衝撃時に強い構造が必要となる。   The lame mode vibrator is formed of a piezoelectric substrate having a thickness of several tens of μm. In order to hold the lame mode vibrator, it is common to hold a vibration node so as not to hinder vibration. . As shown in FIG. 7, it is supported and held through the connecting portions at the four corners. From this node, the arm is pulled out and connected to the holding portion, and mounted on the package via the connecting portion and assembled to obtain a vibrator. At this time, by making the arm portion as thin as possible, the inhibition of vibration can be reduced and the equivalent series resistance can be reduced. Therefore, a strong structure is required at the time of drop impact.

要するに、従来は振動子を作製する際には等価抵抗値R1の上昇を避けるために振動の節となっている正方形の四隅に支持部を設けており、その関係で、振動部と支持部及び接続部は一体で形成されるため振動の節となっている四隅にはモーメント力が生じてしまう。そのために支持部の設計が適切でない場合、振動のエネルギーが支持部に漏れてしまい等価抵抗値R1が大きくなってしまう。更に等価抵抗値R1を小さくすること則ち、等価抵抗値R1の上昇を軽減する目的で四隅からの支持部2の幅、及び厚みを小さくすると落下等の衝撃を受けた場合や過大な励振電流により振幅が大きくなった場合に破損するおそれがある。   In short, conventionally, when a vibrator is manufactured, support portions are provided at the four corners of a square serving as a node of vibration in order to avoid an increase in the equivalent resistance value R1, and accordingly, the vibration portion, the support portion, Since the connecting portions are integrally formed, moment forces are generated at the four corners that are vibration nodes. Therefore, if the support portion is not properly designed, vibration energy leaks to the support portion and the equivalent resistance value R1 becomes large. Further, in order to reduce the equivalent resistance value R1, in order to reduce the increase in the equivalent resistance value R1, if the width and thickness of the support part 2 from the four corners are reduced, an impact such as dropping or excessive excitation current may occur. There is a risk of damage when the amplitude increases due to the above.

上述のように、ラーメモード水晶振動子は正方形板の場合、四隅が節となって面内で等体積的に振動する振動モードであることから、従来のラーメモード水晶振動子は等価抵抗値R1の良い(低い)振動子を得るために振動の節となっている四隅から支持部を引き出すことが最も有効な支持方法であり、実際の支持方法については、振動子の支持部には接続部を介してセラミックなどの基板に導電性接着剤を用いて固定しているのが現状である。   As described above, when the lame mode crystal resonator is a square plate, the conventional lame mode crystal resonator has an equivalent resistance value R1 because it is a vibration mode in which four corners become nodes and vibrate in the same volume in a plane. To obtain a good (low) vibrator, the most effective support method is to pull out the support parts from the four corners that are the nodes of vibration. For the actual support method, the support part of the vibrator is connected to the connection part. At present, it is fixed to a substrate such as ceramic using a conductive adhesive.

上述のプロセスの一例を図8に示すが、ウエハー洗浄、ライトエッチング、プロテクト蒸着膜(CrAu)、レジスト塗布、露光、現像、パターニング、エッチング、レジスト剥離、CrAu剥離、洗浄、励振電極蒸着の一連の工程で素子が形成され、セラミック材質などのパッケージに導電性接着剤にて搭載されてラーメモード振動子を得る。   An example of the above-described process is shown in FIG. 8. A series of wafer cleaning, light etching, protective vapor deposition film (CrAu), resist coating, exposure, development, patterning, etching, resist stripping, CrAu stripping, cleaning, excitation electrode deposition An element is formed in the process and is mounted on a package made of a ceramic material or the like with a conductive adhesive to obtain a lame mode vibrator.

特開2003−142979号公報JP 2003-142979 A 特開2001−313537号公報JP 2001-31537 A 特開2004−242256号公報JP 2004-242256 A 特開2005−244702号公報 なお出願人は前記した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を、本件出願時までに発見するに至らなかった。JP, 2005-244702, A In addition to the prior art literature specified by the above-mentioned prior art literature information, the applicant did not find the prior art literature relevant to the present invention by the time of this application.

上述する従来のラーメモード水晶振動子は振動部の辺比が整数の矩形板となるため、例えば振動部四隅を支持する場合には、振動の節は四隅となり振動変位が小さい部分であることから振動部の保持によるラーメモードの振動を阻害することは無い。   Since the conventional lame mode quartz crystal resonator described above is a rectangular plate with an integer ratio of the vibration part, for example, when supporting the four corners of the vibration part, the vibration nodes are the four corners and the vibration displacement is small. The vibration of the lame mode due to the holding of the vibration part is not hindered.

しかしながら、振動部と支持部と接続部が一体で形成される構造であるために、ラーメモード水晶振動子を容器に実装し収納すると、振動部と支持部とを接続する部分にはラーメモード振動の節から発生するモーメント力が生じるために、そのモーメント力の影響を受けて、接続部には屈曲振動が発生してしまう。   However, since the vibration part, the support part, and the connection part are integrally formed, when the lame mode crystal resonator is mounted and stored in the container, the part that connects the vibration part and the support part has a lame mode vibration. Since the moment force generated from this node is generated, bending vibration is generated in the connection portion under the influence of the moment force.

従って支持部及び接続部の形状を適切な設計値にしないと振動部の振動漏れが生じ、振動部を保持する支持部や接続部にまで不必要な振動が伝達することから、純粋なラーメモードの振動を阻害されるおそれがある。   Therefore, if the shape of the support part and the connection part is not set to appropriate design values, vibration of the vibration part will occur, and unnecessary vibration will be transmitted to the support part and connection part that hold the vibration part. There is a risk that the vibrations of the

加えて、振動部分を何らかの手段により容器に実装するために、支持部及び接続部が必要になってくる。そのために振動子という形態で考えると振動部に加えて支持部と接続部などが一体となった構造が必要となってくるために、全体的に小型化が難しくなっている現状にある。その一方で小型化を推進する上で振動部以外の支持部などを軽量化し脆弱な形状にすることにより、従来のラーメモード振動子の構造上、落下や衝撃に対する強度不足などのおそれも考えられる。   In addition, in order to mount the vibrating part on the container by some means, a support part and a connection part are required. For this reason, when considered in the form of a vibrator, a structure in which a support part and a connection part are integrated in addition to the vibration part is required, so that it is difficult to reduce the overall size. On the other hand, in order to promote downsizing, the support part other than the vibration part is made lighter and has a fragile shape, so there is a possibility that the structure of the conventional lame mode vibrator may be insufficient in strength against dropping or impact. .

前述の実装についてその一例を示すと、従来のラーメモード振動子の製造プロセスでは、図7のB−B断面部を拡大する図9(a)に示すように、素子とパッケージとの間に介在する接合部材(導電性接着剤)だけの実装では下電極の接着でしか素子を固着、導通することができない。   As an example of the above-described mounting, in the conventional manufacturing process of the lame mode vibrator, as shown in FIG. 9A in which the BB cross section of FIG. 7 is enlarged, it is interposed between the element and the package. If only the bonding member (conductive adhesive) is mounted, the element can be fixed and conducted only by adhesion of the lower electrode.

また、図9(b)に示すように素子形成を行う製造プロセスに用いるプロテクト膜(CrAu膜)を、励振電極に流用することで工程の簡略化を試みるが、素子の側面に電極を形成できないことから、下電極と上電極が側面で導通できないために、素子の充分な固着と導通が難しい。それは、素子の外形全体をエッチング処理で形成することから、素子の側面である厚み方向、則ち素子の下部から上部にかけては、(水晶)素子のみとなり導通のための金属が形成できていないためであり、プロテクト膜に使用している素子上下面のCrAu膜のみでは導電接着剤が有効に接着せず、素子の上部の引き出し電極との接続は十分に行えないという課題がある。   In addition, as shown in FIG. 9B, a protection film (CrAu film) used in a manufacturing process for forming an element is used as an excitation electrode to simplify the process. However, an electrode cannot be formed on the side surface of the element. For this reason, since the lower electrode and the upper electrode cannot conduct on the side surfaces, it is difficult to sufficiently fix and conduct the element. This is because the entire outer shape of the element is formed by etching treatment, so that only the (crystal) element is formed in the thickness direction that is the side of the element, that is, from the lower part to the upper part of the element, and metal for conduction cannot be formed. Thus, only the CrAu film on the upper and lower surfaces of the element used for the protection film does not effectively adhere the conductive adhesive, and there is a problem that the connection with the lead electrode on the upper part of the element cannot be performed sufficiently.

そこで上述の課題を改善するために本発明は、振動部、支持部、接続部から成る矩形状の圧電素子(素板)に電荷を加えた場合に前記圧電素子の角部4点を節として、前記矩形状の長手方向に伸びたときには短手方向に伸縮し、かつ、前記矩形状の短手方向に伸びたときには長手方向に伸縮する輪郭振動の振動形態を生じる、LQ1Tカットあるいは、LQ2Tカットの水晶基板から成るラーメモード水晶振動子において、前記支持部には素子を貫通する穴を設け、前記穴に保持部材を注入し前記素子を実装したラーメモード水晶振動子である。   Therefore, in order to improve the above-described problems, the present invention has four corners of the piezoelectric element as nodes when a charge is applied to a rectangular piezoelectric element (element plate) including a vibration part, a support part, and a connection part. An LQ1T cut or an LQ2T cut that generates a vibration form of contour vibration that expands and contracts in the short direction when extending in the longitudinal direction of the rectangular shape and expands and contracts in the longitudinal direction when extending in the short direction of the rectangular shape. In the lame mode quartz crystal resonator formed of the quartz substrate, the support portion is provided with a hole penetrating the element, and a holding member is injected into the hole to mount the element.

そして上述するラーメモード水晶振動子の細部の構成として、穴形状はエッチングプロセスにより前記圧電素子の外形形成時に同時に処理するもので、前記接続部には2個以上を形成し、前記穴形態は丸や、多角形構造となっていることを特徴とするラーメモード水晶振動子により課題を解決する。   As a detailed configuration of the above-described lame mode crystal resonator, the hole shape is processed simultaneously when forming the outer shape of the piezoelectric element by an etching process. Two or more holes are formed in the connection portion, and the hole shape is round. In addition, the problem is solved by a lame mode crystal resonator characterized by a polygonal structure.

上述のように本発明は、ラーメモード水晶振動子の製造方法でエッチング溶液を用い、LQ1Tカットあるいは、LQ2Tカット水晶基板はウェットエッチングによる加工方法により、支持部における実装強度と、接合部材による実装効率を高めるために、素子の支持部箇所に穴形状をエッチングプロセスにより圧電素子の外形形成時に同時に処理し、貫通した穴を形成し、接合部材を注入することで、落下、衝撃に対する機械的強度を高める。同時に、素子の実装強度を確保し落下衝撃時の電気的特性の変動を低減する。その結果、耐衝撃性を強化することにより、ラーメモード振動子の品質の向上と製造歩留まりの向上、更には製造プロセスの簡略化を実現できる。   As described above, the present invention uses an etching solution in the manufacturing method of the lame mode crystal resonator, and the LQ1T cut or LQ2T cut crystal substrate is processed by wet etching, so that the mounting strength at the support portion and the mounting efficiency by the bonding member are used. In order to increase the mechanical strength of the element, the hole shape is processed at the same time when the outer shape of the piezoelectric element is formed by an etching process, a through hole is formed, and a bonding member is injected to increase the mechanical strength against dropping and impact. Increase. At the same time, the mounting strength of the element is ensured, and fluctuations in electrical characteristics during a drop impact are reduced. As a result, by improving the impact resistance, it is possible to improve the quality of the lame mode vibrator, improve the manufacturing yield, and simplify the manufacturing process.

以下、図面に従ってこの発明の実施例を説明する。なお、各図において同一の符号は同様の対象を示すものとする。
圧電素板を基板にした圧電素子で、その基板の辺比の一方の寸法を1としたとき、もう一方の寸法が整数比(1〜n)を満たす板に無数に存在する振動モードをラーメモード振動子と呼んでいる。図1に示すように正方形板の場合は四隅が節となって向かい合う2辺Aが正方形の中心方向に変位したときはもう一方の2辺Bが正方形の外方向に変位し、また向かい合う2辺Aが正方形の外方向に変位したときはもう一方の2辺Bが正方形の中心方向に変位する振動形態である。
Embodiments of the present invention will be described below with reference to the drawings. In each figure, the same numerals indicate the same objects.
A piezoelectric element using a piezoelectric element as a substrate. When one dimension of the side ratio of the substrate is 1, the number of vibration modes that exist innumerably on a plate satisfying the integer ratio (1 to n) of the other dimension is determined. This is called a mode oscillator. In the case of a square plate as shown in FIG. 1, when the two sides A facing each other with the corners at the four corners are displaced toward the center of the square, the other two sides B are displaced outwardly of the square, and the two sides facing each other When A is displaced in the outward direction of the square, the other two sides B are in a vibration form that is displaced in the center direction of the square.

従って、図1(a)と図1(b)の動作を繰り返す形態で振動する。この図1は正方形板の最低次の振動モードと呼ぶ。また図1(c)には振動板の寸法概念を示す。そして図2にはその振動モードの模式図を示している。また、図3については、基本形を元にして高次の振動モードを例にしたものである。考え方は図1の基本形と同様であり、図3(a)は二次の場合を示し、図3(b)は三次の場合を示したものである。   Therefore, it vibrates in the form of repeating the operations of FIG. 1 (a) and FIG. 1 (b). This FIG. 1 is called the lowest order vibration mode of a square plate. FIG. 1C shows a dimensional concept of the diaphragm. FIG. 2 shows a schematic diagram of the vibration mode. FIG. 3 shows an example of a high-order vibration mode based on the basic shape. The idea is the same as the basic form of FIG. 1, FIG. 3 (a) shows the secondary case, and FIG. 3 (b) shows the tertiary case.

さて本発明の特徴として、図4に示す斜視図を一例として説明する。高次の振動形態を持つ素子の、接続部3に穴5をあけた形態を持つラーメモード振動子である。図3と照合して見てみると具体的な動作としては振動部4、支持部2、接続部3から成る矩形状の圧電素子に電荷を加えた場合に前記圧電素子の角部を節として、前記矩形状の長手方向に伸びたときには短手方向に伸縮し、かつ、前記矩形状の短手方向に伸びたときには長手方向に伸縮する輪郭振動の振動形態を生じる、LQ1Tカットあるいは、LQ2Tカットの水晶基板から成るラーメモード水晶振動子において、実装時強度を向上させるために前記接続部3に穴5を設けたラーメモード水晶振動子である。   Now, as a feature of the present invention, a perspective view shown in FIG. 4 will be described as an example. It is a lame mode vibrator having a form in which a hole 5 is formed in a connection part 3 of an element having a higher-order vibration form. When compared with FIG. 3, the specific operation is as follows. When a charge is applied to a rectangular piezoelectric element composed of the vibration part 4, the support part 2, and the connection part 3, the corners of the piezoelectric element are taken as nodes. An LQ1T cut or an LQ2T cut that generates a vibration form of contour vibration that expands and contracts in the short direction when extending in the longitudinal direction of the rectangular shape and expands and contracts in the longitudinal direction when extending in the short direction of the rectangular shape. In the lame mode quartz crystal resonator formed of the quartz substrate, the connection portion 3 is provided with a hole 5 in order to improve the mounting strength.

そして上述するラーメモード水晶振動子の細部の構成として、穴形状はエッチングプロセスにより前記圧電素子の外形形成時に同時に処理するもので、前記穴5は、前記各接続部3に2個以上で形成されており、前記穴形態は丸や、多角形構造となっているラーメモード水晶振動子であることを特徴とする。なお、接続部3の周辺には、振動部4に形成する励振電極から延びる引き出し電極端があり、接続部3を経由して実装基板に電気的な接続がなされている。図4には励振電極と接続部3周辺に配置する引き出し電極は図示していない。   As a detailed configuration of the above-described lame mode crystal resonator, the hole shape is processed simultaneously with the outer shape formation of the piezoelectric element by an etching process, and the hole 5 is formed by two or more in each connection portion 3. The hole shape is a lame mode crystal resonator having a round or polygonal structure. In addition, there is a lead electrode end extending from the excitation electrode formed in the vibration part 4 around the connection part 3, and is electrically connected to the mounting substrate via the connection part 3. FIG. 4 does not show the excitation electrode and the extraction electrode disposed around the connection portion 3.

要するに、本発明の特徴を図5に接続部3の要部を拡大して説明するが、図5(a)は図4で示す接続部3のA−Aの断面図で実装前の状態を示している。素子の厚み方向に貫通する穴が形成されており、支持部主面には引き出し電極が形成されている。一方、図5(b)は実装後のA−Aの断面の状態を示したもので、セラミック容器などに実装した場合、実装面(素子の下部)に塗布する保持部材が素子に形成する穴5に注入され素子の上部にまで充分に保持部材が満ちている様子を伺うことができる。   In short, the features of the present invention will be described in FIG. 5 by enlarging the main part of the connection part 3. FIG. 5 (a) is a cross-sectional view taken along line AA of the connection part 3 shown in FIG. Show. A hole penetrating in the thickness direction of the element is formed, and a lead electrode is formed on the main surface of the support portion. On the other hand, FIG. 5B shows a cross-sectional state of AA after mounting. When mounted on a ceramic container or the like, the hole formed in the element by the holding member applied to the mounting surface (lower part of the element). It can be seen that the holding member is sufficiently filled up to the upper part of the element injected into the element 5.

上述の本発明のプロセス工程図を図6に示すが、従来のプロセス工程と大きく異なる点は、素子の外形成形エッチングプロセスと、素子に励振電極や引き出し電極を形成するプロセスの2工程が必要であったが、素子外形を形成するエッチングプロセス工程で、素子を実装する箇所に素子の厚み方向にも貫通する穴を形成し、固着と導通の効果を高めた素子構造にすることに大きな特徴がある。なお、図6で示す電極パターンニング工程では、素子形成に用いるプロテクト(蒸着)膜から電極膜を生成するための分離作業を意味するものである。   FIG. 6 shows the process diagram of the present invention described above. The major difference from the conventional process steps is that two steps are required: an element outer shape etching process and a process of forming excitation electrodes and extraction electrodes on the element. However, in the etching process step for forming the outer shape of the element, a major feature is that an element structure in which the effect of fixing and conduction is enhanced by forming a hole penetrating in the thickness direction of the element at a place where the element is mounted is also provided. is there. Note that the electrode patterning step shown in FIG. 6 means a separation operation for generating an electrode film from a protection (vapor deposition) film used for element formation.

その結果、同時に接続部3周囲に存在する引き出し電極(図示しない)も、素子の上下部とで保持部材が穴を介して導通していることから、実装強度を向上すると同時に引き出し電極との導通具合も向上することができる。なお、保持部材としては導電性接着剤やはんだなどを想定するが、バンプによる実装の場合でも穴5部からバンプ材料が溢れ出すことで、結果的には素子の上下面を確実に捉え実装強度を増すことになる。   As a result, the lead electrode (not shown) present around the connection portion 3 is also electrically connected to the upper and lower portions of the element through the hole, so that the mounting strength is improved and the lead electrode is electrically connected. The condition can also be improved. As the holding member, conductive adhesive, solder, etc. are assumed, but even when mounting with bumps, the bump material overflows from the hole 5 part, and as a result, the upper and lower surfaces of the element are reliably captured and the mounting strength Will be increased.

上述するプロセス工程は、湿式のエッチング処理工程を用い、エッチング液は酸性フッ化アンモニウム(NHF・HF)と、フッ化水素酸(HF)の混合液を温めた温度環境の下でラーメモード水晶振動子の素子を製造するものである。 The process described above uses a wet etching process, and the etching solution is a lame mode under a temperature environment in which a mixed solution of ammonium acid fluoride (NH 4 F · HF) and hydrofluoric acid (HF) is warmed. It manufactures the element of the crystal oscillator.

なお、接続部3に形成する穴5の形態については、丸、多角形など問うものでは無く、少なくとも接続部3のパッケージにラーメモード振動子の素子を実装する部分に形成するものである。また、穴5については素子の一部に切り欠きを設けたものであったも同様の効果を奏することは言うまでも無い。   The shape of the hole 5 formed in the connection portion 3 is not limited to a circle or a polygon, but is formed at least in a portion where the element of the lame mode vibrator is mounted on the package of the connection portion 3. Needless to say, the hole 5 is provided with a notch in a part of the element, but the same effect can be obtained.

ラーメモード水晶振動子の1次の形態を示す平面図である。It is a top view which shows the primary form of a lamé mode crystal oscillator. 図1に示す振動形態を解析するモードである。This is a mode for analyzing the vibration form shown in FIG. 図1の基本形を基に、高次の場合の振動形態を示す平面図である。It is a top view which shows the vibration form in the case of a higher order based on the basic form of FIG. 本発明のラーメモード振動子の形態を示す斜視図である。It is a perspective view which shows the form of the lame mode vibrator | oscillator of this invention. 本発明の接続部(要部)の状態を示した部分断面図である。It is the fragmentary sectional view which showed the state of the connection part (principal part) of this invention. 本発明の素子を形成する製造プロセスを示すフロー図である。It is a flowchart which shows the manufacturing process which forms the element of this invention. 従来例として示すラーメモード水晶振動子形態の概念図である。It is a conceptual diagram of the lame mode crystal resonator form shown as a conventional example. ラーメモード振動子の素子を形成する製造プロセスを示すフロー図である。It is a flowchart which shows the manufacturing process which forms the element of a lame mode vibrator. 従来例の実装状態を示す部分断面図である。It is a fragmentary sectional view which shows the mounting state of a prior art example.

符号の説明Explanation of symbols

1 圧電素板(圧電素子)
2 支持部
3 接続部
4 振動部
5 穴
1 Piezoelectric element (piezoelectric element)
2 Support part 3 Connection part 4 Vibration part 5 Hole

Claims (3)

振動部、支持部、接続部から成る矩形状の圧電素子に電荷を加えた場合に前記圧電素子の角部4点を節として、前記矩形状の長手方向に伸びたときには短手方向に伸縮し、かつ、前記矩形状の短手方向に伸びたときには長手方向に伸縮する輪郭振動の振動形態を生じる、LQ1Tカットあるいは、LQ2Tカットの水晶基板から成るラーメモード水晶振動子において、
前記接続部には圧電素子を貫通する穴を設け、前記穴に保持部材を注入し前記素子を実装することを特徴とするラーメモード水晶振動子。
When a charge is applied to a rectangular piezoelectric element composed of a vibrating part, a support part, and a connecting part, the four corners of the piezoelectric element are nodes, and when extending in the longitudinal direction of the rectangular shape, the piezoelectric element expands and contracts in the short direction In addition, in the lame mode quartz crystal resonator formed of a quartz substrate of LQ1T cut or LQ2T cut, which generates a vibration form of contour vibration that expands and contracts in the longitudinal direction when extending in the short direction of the rectangular shape,
A lame mode crystal resonator, wherein a hole penetrating a piezoelectric element is provided in the connecting portion, and a holding member is injected into the hole to mount the element.
請求項1に記載の穴形状は、少なくとも前記支持部に2個以上形成されていることを特徴とするラーメモード水晶振動子。 2. The lame mode crystal resonator according to claim 1, wherein at least two hole shapes are formed in the support portion. 請求項1に記載の穴形態は丸や、多角形構造となっていることを特徴とするラーメモード水晶振動子。 The lamellar mode crystal resonator according to claim 1, wherein the hole form is a circle or a polygonal structure.
JP2005347087A 2005-11-30 2005-11-30 Lame-mode quartz crystal resonator Pending JP2007158458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005347087A JP2007158458A (en) 2005-11-30 2005-11-30 Lame-mode quartz crystal resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005347087A JP2007158458A (en) 2005-11-30 2005-11-30 Lame-mode quartz crystal resonator

Publications (1)

Publication Number Publication Date
JP2007158458A true JP2007158458A (en) 2007-06-21

Family

ID=38242282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005347087A Pending JP2007158458A (en) 2005-11-30 2005-11-30 Lame-mode quartz crystal resonator

Country Status (1)

Country Link
JP (1) JP2007158458A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004242256A (en) * 2003-02-10 2004-08-26 River Eletec Kk Crystal resonator
JP2004328338A (en) * 2003-04-24 2004-11-18 Kyocera Corp Crystal vibrator and mounting structure thereof
JP2005051637A (en) * 2003-07-31 2005-02-24 Kyocera Kinseki Corp Piezoelectric vibrator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004242256A (en) * 2003-02-10 2004-08-26 River Eletec Kk Crystal resonator
JP2004328338A (en) * 2003-04-24 2004-11-18 Kyocera Corp Crystal vibrator and mounting structure thereof
JP2005051637A (en) * 2003-07-31 2005-02-24 Kyocera Kinseki Corp Piezoelectric vibrator

Similar Documents

Publication Publication Date Title
JP4967707B2 (en) Piezoelectric vibrator and manufacturing method thereof
JP2007013910A (en) Piezoelectric resonator
JP2007214941A (en) Piezoelectric vibration chip and piezoelectric device
WO2016052260A1 (en) Resonance device
JP2009188483A (en) Piezoelectric device, and surface-mounted type piezoelectric oscillator
JP5652122B2 (en) Vibrating piece, vibrating device and electronic device
US10516382B2 (en) Piezoelectric vibration member, method of manufacturing the same, and piezoelectric vibrator
JP2008113238A (en) Piezoelectric vibrator, and manufacturing method and electronic components of piezoelectric vibrator
JP2007006375A (en) Piezoelectric resonator and manufacturing method thereof
JP7185861B2 (en) Resonator
JP2018125656A (en) Tuning fork type vibrator
US10305446B2 (en) Piezoelectric oscillator and method of making the same
JP2007158458A (en) Lame-mode quartz crystal resonator
JP4938308B2 (en) Lame mode quartz crystal holding structure
JP2010268439A (en) Surface mounting crystal vibrator
JP4855816B2 (en) Method for manufacturing a lame mode crystal resonator
JP4938320B2 (en) Lame mode quartz crystal
JP2011193316A (en) Piezoelectric resonator element and piezoelectric device
JP4890912B2 (en) Method for manufacturing a lame mode crystal resonator
JP5005251B2 (en) Method for manufacturing a lame mode crystal resonator
CN106160694B (en) Piezoelectric vibration component, the method and piezoelectric vibrator for manufacturing piezoelectric vibration component
JP4712430B2 (en) Lame mode quartz crystal
JP4938321B2 (en) Lame mode quartz crystal
JP2006311230A (en) Manufacturing method of lame mode crystal vibrator
JP4712472B2 (en) Lame mode quartz crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A02 Decision of refusal

Effective date: 20101109

Free format text: JAPANESE INTERMEDIATE CODE: A02