JP4855816B2 - Method for manufacturing a lame mode crystal resonator - Google Patents
Method for manufacturing a lame mode crystal resonator Download PDFInfo
- Publication number
- JP4855816B2 JP4855816B2 JP2006097476A JP2006097476A JP4855816B2 JP 4855816 B2 JP4855816 B2 JP 4855816B2 JP 2006097476 A JP2006097476 A JP 2006097476A JP 2006097476 A JP2006097476 A JP 2006097476A JP 4855816 B2 JP4855816 B2 JP 4855816B2
- Authority
- JP
- Japan
- Prior art keywords
- crystal element
- vibration
- lame mode
- crystal resonator
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013078 crystal Substances 0.000 title claims description 55
- 238000000034 method Methods 0.000 title claims description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000011521 glass Substances 0.000 claims description 15
- 239000010453 quartz Substances 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 11
- 238000000059 patterning Methods 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 8
- 238000001039 wet etching Methods 0.000 claims description 6
- 238000012545 processing Methods 0.000 description 7
- 238000005530 etching Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Landscapes
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Description
本発明は、ラーメモード水晶振動子の製造方法に関するものであり、特に、小型化、高精度化、低CI値を実現し、ラーメモード水晶振動子全体の機械的強度を向上する製造方法に関するものである。 The present invention relates to a method for manufacturing a lame mode crystal resonator, and more particularly, to a method for improving the mechanical strength of the entire lame mode crystal resonator by realizing miniaturization, high accuracy, and low CI value. It is.
ラーメモード水晶振動子は小型で低周波数を実現する上で最適な振動モードを得ることができる。そのため低周波の振動子でありながら小型化を実現するということは、近年めざましい進化を遂げている携帯電話、携帯型の小型ゲーム機器などに広く利用される大きな市場がある。 The lame mode crystal resonator is small and can obtain an optimum vibration mode for realizing a low frequency. Therefore, the realization of miniaturization while being a low-frequency vibrator has a large market widely used in mobile phones, portable small game devices and the like that have made remarkable progress in recent years.
ラーメモード水晶振動子は数十μmの板厚の圧電基板により形成されており、ラーメモード水晶振動子を保持するためには振動の阻害にならないように、回転モーメントはあるが変位の無い振動の節を保持することが一般的である。図6に示すように四隅の接続部を介して支持と保持がなされている。この節からアームを引き出し保持部へ接続し、接続部を介してパッケージと実装して組立ることで振動子を得ている。このときのアーム部はなるべく細くすることにより振動の阻害を少なくし、等価直列抵抗を小さくすることができる。そのため、落下衝撃時に強い構造が必要となる。 The lame mode crystal unit is formed of a piezoelectric substrate with a thickness of several tens of μm. In order to hold the lame mode crystal unit, there is a rotational moment but no displacement so as not to hinder vibrations. It is common to keep clauses. As shown in FIG. 6, it is supported and held through the connecting portions at the four corners. From this node, the arm is pulled out and connected to the holding portion, and mounted on the package via the connecting portion and assembled to obtain a vibrator. At this time, by making the arm portion as thin as possible, the inhibition of vibration can be reduced and the equivalent series resistance can be reduced. Therefore, a strong structure is required at the time of drop impact.
要するに、従来は振動子を作製する際には等価抵抗値R1の上昇を避けるために振動の節となっている正方形の四隅に支持部を設けており、その関係で、振動部と支持部及び接続部は一体で形成されるため振動の節となっている四隅にはモーメント力が生じてしまう。そのために支持部の設計が適切でない場合、振動のエネルギーが支持部に漏れてしまい等価抵抗値R1が大きくなってしまう。更に等価抵抗値R1を小さくすること則ち、等価抵抗値R1の上昇を軽減する目的で四隅からの支持部の幅、及び厚みを小さくすると落下等の衝撃を受けた場合や過大な励振電流により振幅が大きくなった場合に破損するおそれがある。 In short, conventionally, when a vibrator is manufactured, support portions are provided at the four corners of a square serving as a node of vibration in order to avoid an increase in the equivalent resistance value R1, and accordingly, the vibration portion, the support portion, Since the connecting portions are integrally formed, moment forces are generated at the four corners that are vibration nodes. Therefore, if the design of the support portion is not appropriate, vibration energy leaks to the support portion, and the equivalent resistance value R1 increases. Furthermore, in order to reduce the equivalent resistance value R1, in order to reduce the increase in the equivalent resistance value R1, if the width and thickness of the support part from the four corners are reduced, it may be affected by an impact such as dropping or an excessive excitation current. There is a risk of damage if the amplitude increases.
上述のように、ラーメモード水晶振動子は正方形板の場合、四隅が節(回転ノード)となって面内で等体積的に振動する振動モードであることから、従来のラーメモード水晶振動子は等価抵抗値R1の良い(低い)振動子を得るために振動の節となっている四隅から支持部を引き出すことが最も有効な支持方法であり、実際の支持方法については、振動子の支持部には接続部を介してセラミックなどの基板に導電性接着剤を用いて固定しているのが現状である。 As described above, when the lame mode crystal resonator is a square plate, it is a vibration mode in which the four corners are nodes (rotation nodes) and vibrate in the same volume in the plane. In order to obtain a vibrator having a good (low) equivalent resistance value R1, it is the most effective support method to pull out the support portions from the four corners which are the nodes of vibration. The actual support method is as follows. At present, it is fixed to a substrate such as ceramic using a conductive adhesive via a connecting portion.
上述のプロセスの一例を図7に示すが、ウエハー洗浄、ライトエッチング、プロテクト蒸着膜(CrAu)、レジスト塗布、露光、現像、パターニング、エッチング、レジスト剥離、CrAu剥離、洗浄、励振電極蒸着の一連の工程で素子が形成され、セラミック材質などのパッケージに導電性接着剤にて搭載されてラーメモード水晶振動子を得る。 An example of the above-described process is shown in FIG. 7. A series of wafer cleaning, light etching, protective vapor deposition film (CrAu), resist coating, exposure, development, patterning, etching, resist stripping, CrAu stripping, cleaning, excitation electrode deposition An element is formed in the process, and is mounted on a package made of a ceramic material or the like with a conductive adhesive to obtain a lame mode crystal resonator.
上述する従来のラーメモード水晶振動子は振動部の辺比が整数の矩形板となるため、例えば振動部四隅を支持する場合には、振動の節は四隅となり振動変位が小さい部分であることから振動部の保持によるラーメモードの振動を阻害することは無い。 Since the conventional lame mode quartz crystal resonator described above is a rectangular plate with an integer ratio of the vibration part, for example, when supporting the four corners of the vibration part, the vibration nodes are the four corners and the vibration displacement is small. The vibration of the lame mode due to the holding of the vibration part is not hindered.
しかしながら、振動部と支持部と接続部が一体で形成される構造であるために、ラーメモード水晶振動子を容器に実装し収納すると、振動部と支持部とを接続する部分にはラーメモード振動の節から発生するモーメント力が生じるために、そのモーメント力の影響を受けて、接続部には屈曲振動が発生してしまう。 However, since the vibration part, the support part, and the connection part are integrally formed, when the lame mode crystal resonator is mounted and stored in the container, the part that connects the vibration part and the support part has a lame mode vibration. Since the moment force generated from the node is generated, bending vibration is generated at the connecting portion under the influence of the moment force.
従って支持部及び接続部の形状を適切な設計値にしないと振動部の振動漏れが生じ、振動部を保持する支持部や接続部にまで不必要な振動が伝達することから、純粋なラーメモードの振動を阻害されるおそれがある。 Therefore, if the shape of the support part and the connection part is not set to appropriate design values, vibration of the vibration part will occur, and unnecessary vibration will be transmitted to the support part and connection part that hold the vibration part. There is a risk that the vibrations of the
加えて、振動部分を何らかの手段により容器に実装するために、支持部及び接続部が必要になってくる。そのために振動子という形態で考えると振動部に加えて支持部と接続部などが一体となった構造が必要となってくるために、全体的に小型化が難しくなっている現状にある。その一方で小型化を推進する上で振動部以外の支持部などを軽量化し脆弱な形状にすることにより、Q値を高く維持することはできるものの、従来のラーメモード水晶振動子の構造上水晶振動子の持つインピーダンス(CI値)を低く抑えることが難しいのが現状である。 In addition, in order to mount the vibrating part on the container by some means, a support part and a connection part are required. For this reason, when considered in the form of a vibrator, a structure in which a support part and a connection part are integrated in addition to the vibration part is required, so that it is difficult to reduce the overall size. On the other hand, in order to promote downsizing, it is possible to maintain a high Q value by reducing the weight of the supporting part other than the vibrating part and making it fragile. At present, it is difficult to keep the impedance (CI value) of the vibrator low.
そこで、振動部のみを薄くすることでCI値を抑える技術が知られている。その場合振動子の厚み加工をパウダービームにより実現する手法や、化学エッチング手法を用いる記載があるが、パウダービームは機械的な加工処理であることから、製造工程におけるコストの低減が難しいことと、量産化する上でもまた、加工時間を考えても多大の処理時間がかかることが見込まれている。また、振動部のみを薄くすることは機械的な強度不足を招くことも考えられ、実用上の使用に耐えにくいという課題も挙げられている。 Therefore, a technique for suppressing the CI value by reducing only the vibration part is known. In that case, there is a description that uses a powder beam to realize the thickness processing of the vibrator and a chemical etching method, but since the powder beam is a mechanical processing process, it is difficult to reduce the cost in the manufacturing process, Considering the processing time, it is expected that a lot of processing time will be required for mass production. In addition, it is conceivable that making only the vibration part thin may cause insufficient mechanical strength, and there is a problem that it is difficult to withstand practical use.
そこで本発明は、矩形状の水晶素子に電荷を加えたときに、前記水晶素子の角部4点を節として、前記矩形状の長手方向に伸びたときには短手方向に縮み、かつ、前記矩形状の短手方向に伸びたときには長手方向に縮む輪郭振動の振動形態を生じる、LQ1Tカットあるいは、LQ2Tカットの水晶基板から成り、振動部、支持部、接続部で構成するラーメモード水晶振動子の製造方法おいて、前記水晶素子の主面にガラスの平板を接合する工程と、前記水晶素子の接続部を除く部位全てのガラスを除去する工程と、前記水晶素子にパターンニングする工程と、前記水晶素子に電極を形成する工程とにより構成されるラーメモード水晶振動子の製造方法である。このとき、ガラスの除去工程と水晶素子にパターンニングする工程にはウェットエッチング工法が用いられる。 Therefore, the present invention is such that when a charge is applied to a rectangular crystal element, the four corners of the crystal element are nodes, and when extending in the longitudinal direction of the rectangular shape, the rectangular crystal element contracts in the short direction, and the rectangular element An LQ1T-cut or LQ2T-cut quartz substrate that produces a vibration form of contour vibration that shrinks in the longitudinal direction when it extends in the short direction of the shape. In the manufacturing method, a step of bonding a flat plate of glass to the main surface of the crystal element, a step of removing all glass except the connection portion of the crystal element, a step of patterning the crystal element, A method for manufacturing a lame mode quartz crystal resonator comprising a step of forming an electrode on a crystal element. At this time, a wet etching method is used for the glass removing step and the step of patterning the crystal element.
そこで本願発明者は、ガラスと水晶素子の各々のエッチング条件で最も効率的な処理条件を探し当てたものである。また、本願発明者は今日までのラーメモード水晶振動子の支持構造の改善と共に、電気的な諸特性の維持向上と、機械的な強度、耐衝撃性強度を維持向上したラーメモード水晶振動子の実現により従来の課題を改善した。 Therefore, the inventor of the present application has searched for the most efficient processing conditions for the etching conditions of the glass and the crystal element. In addition, the present inventor has improved the support structure of the lame mode quartz crystal resonator to date, and has improved the maintenance of various electrical characteristics, and maintained and improved the mechanical strength and impact resistance strength of the lame mode crystal resonator. Realization has improved the conventional problems.
上述のように本発明のラーメモード水晶振動子の製造方法を用いることにより、ラーメモード水晶振動子の構成要素である、接続部の機械的な強度を向上しながら、本来の電気的特性には影響を与えずにラーメモード水晶振動子の製造を実現することができる。その結果、製造工程での歩留まりを改善し、製造コストの低減と量産化時の時間短縮を実現することができる。 As described above, by using the manufacturing method of the lame mode crystal resonator of the present invention, while improving the mechanical strength of the connecting portion, which is a component of the lame mode crystal resonator, the original electrical characteristics are not improved. The production of the lame mode crystal resonator can be realized without any influence. As a result, the yield in the manufacturing process can be improved, and the manufacturing cost can be reduced and the time required for mass production can be reduced.
以下、図面に従ってこの発明の実施例を説明する。なお、各図において同一の符号は同様の対象を示すものとする。
圧電素板を基板にした水晶素子1で、その基板の辺比の一方の寸法を1(L)としたとき、もう一方の寸法が整数比(1(L)〜n)を満たす板の四隅に無振動部を有することにラーメモード振動子の特徴がある。図1に示すように正方形板の場合は四隅が節となって向かい合う2辺Aが正方形の中心方向に変位したときはもう一方の2辺Bが正方形の外方向に変位し、また向かい合う2辺Aが正方形の外方向に変位したときはもう一方の2辺Bが正方形の中心方向に変位する振動形態である。
Embodiments of the present invention will be described below with reference to the drawings. In each figure, the same numerals indicate the same objects.
A
従って、図1(a)と図1(b)の動作を繰り返す形態で振動する。この図1は正方形板の最低次の振動モードと呼ぶ。また図1(c)には振動板の寸法概念を示す。そして図2にはその振動モードの模式図を示している。また、図3については、基本形を元にして高次の振動モードを例にしたものである。考え方は図1の基本形と同様であり、図3(a)は二次(モード)の場合を示し、図3(b)は三次(モード)の場合を示したものである。なお、図1と図3に示す△マークはラーメモード振動子の無振動部を表すものである。 Therefore, it vibrates in the form of repeating the operations of FIG. 1A and FIG. This FIG. 1 is called the lowest order vibration mode of a square plate. FIG. 1C shows a dimensional concept of the diaphragm. FIG. 2 shows a schematic diagram of the vibration mode. FIG. 3 shows an example of a high-order vibration mode based on the basic shape. The concept is the same as the basic form of FIG. 1, FIG. 3 (a) shows the case of the secondary (mode), and FIG. 3 (b) shows the case of the tertiary (mode). 1 and 3 indicate a non-vibrating portion of the lame mode vibrator.
図4に本発明のラーメモード水晶振動子の概念形状を示す。図4(a)は斜視図であり、図4(b)はA−A断面での部分断面図である。矩形状の水晶素子に電荷を加えたときに、水晶素子の角部4点を節として、矩形状の長手方向に伸びたときには短手方向に縮み、かつ、矩形状の短手方向に伸びたときには長手方向に縮む輪郭振動の振動形態を生じる、LQ1Tカットあるいは、LQ2Tカットの水晶基板から成り、振動部1、支持部2、接続部3で構成するラーメモード水晶振動子において、水晶素子の接続部にガラス4材が接合された形態を有することを描画したものである。図4(a)では支持部の形状を一例でありその他の支持形状であっても同様の効果を奏する。
FIG. 4 shows a conceptual shape of the lame mode crystal resonator of the present invention. 4A is a perspective view, and FIG. 4B is a partial cross-sectional view taken along the line AA. When a charge is applied to a rectangular crystal element, the four corners of the crystal element are nodes, and when it extends in the longitudinal direction of the rectangular shape, it contracts in the lateral direction and extends in the rectangular lateral direction. Connection of crystal elements in a lame mode crystal resonator composed of an LQ1T-cut or LQ2T-cut quartz substrate that sometimes produces a vibration form of contour vibration that shrinks in the longitudinal direction, which is composed of a
図5については、本発明のラーメモード水晶振動子の素子外形を得るフロー図を示したものである。上述のラーメモード水晶振動子を得る手法としては、矩形状の水晶素子に電荷を加えたときに、水晶素子の角部4点を節として、矩形状の長手方向に伸びたときには短手方向に縮み、かつ、矩形状の短手方向に伸びたときには長手方向に縮む輪郭振動の振動形態を生じる、LQ1Tカットあるいは、LQ2Tカットの水晶基板から成り、振動部1、支持部2、接続部3で構成するラーメモード水晶振動子の製造方法おいて、水晶素子の主面にガラス4の平板を接合する工程と、水晶素子の接続部を除く部位全てのガラス4を除去する工程と、水晶素子にパターンニングする工程と、水晶素子に電極を形成する工程とにより構成されるラーメモード水晶振動子の製造方法である。 FIG. 5 shows a flow chart for obtaining the element outline of the lame mode crystal resonator of the present invention. As a method for obtaining the above-mentioned lame mode crystal resonator, when a charge is applied to a rectangular crystal element, the corners of the four corners of the crystal element are nodes, and when extending in the longitudinal direction of the rectangular shape, It consists of a quartz substrate of LQ1T cut or LQ2T cut that produces a vibration form of contour vibration that shrinks and contracts in the longitudinal direction when it extends in the short direction of the rectangular shape. In the manufacturing method of the lame mode crystal resonator to be configured, the step of bonding the flat plate of the glass 4 to the main surface of the crystal element, the step of removing all the glass 4 except the connecting portion of the crystal element, This is a method for manufacturing a lame mode quartz crystal resonator comprising a patterning step and a step of forming an electrode on a quartz element.
このとき、ガラス4の除去工程と水晶素子にパターンニングする工程にはウェットエッチング工法が用いられるが、ガラス4を部分的に除去するときに用いるウェットエッチング液と、水晶素子のパターンニングを行うのに用いるウェットエッチング液には、双方で処理速度が異なることから、ガラス4を処理する場合には水晶素子を処理するものに比べてウェットエッチング液濃度が薄いものが用いられる。なお、上述する工程の中で、ガラス4平板との接合に関連する以外のラーメモード水晶振動子の素子形状得る工程については従来工程に準じて形成するものである。 At this time, a wet etching method is used for the glass 4 removal step and the patterning step for the crystal element. However, the wet etching solution used for partially removing the glass 4 and the crystal element patterning are performed. Since the processing speeds of the wet etching liquid used in the above are different from each other, when the glass 4 is processed, a liquid having a lower wet etching liquid concentration than that used for processing the crystal element is used. In addition, in the process mentioned above, the process of obtaining the element shape of the lame mode crystal resonator other than the process related to the bonding with the glass 4 flat plate is formed according to the conventional process.
1 振動部
2 支持部
3 接続部
4 ガラス
DESCRIPTION OF
Claims (2)
前記水晶素子の主面にガラスの平板を接合する工程と、前記水晶素子の接続部を除く部位全てのガラスを除去する工程と、前記水晶素子にパターンニングする工程と、前記水晶素子に電極を形成する工程とにより構成されることを特徴とするラーメモード水晶振動子の製造方法。 When a charge is applied to the rectangular crystal element, the corners of the four corners of the crystal element are nodes, and when extending in the longitudinal direction of the rectangular shape, it contracts in the short direction, and the rectangular short direction resulting in vibration form of contour vibration shrinks in the longitudinal direction when elongated in, LQ1T cut or made from a quartz substrate LQ2T cut vibrating portion, the supporting portion, the manufacturing method Oite of Lame mode quartz crystal resonator constituting the connection portion,
A step of bonding a flat plate of glass to the main surface of the crystal element, a step of removing all glass except the connection portion of the crystal element, a step of patterning the crystal element, and an electrode on the crystal element A method of manufacturing a lame mode quartz crystal resonator, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006097476A JP4855816B2 (en) | 2006-03-31 | 2006-03-31 | Method for manufacturing a lame mode crystal resonator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006097476A JP4855816B2 (en) | 2006-03-31 | 2006-03-31 | Method for manufacturing a lame mode crystal resonator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007274347A JP2007274347A (en) | 2007-10-18 |
JP4855816B2 true JP4855816B2 (en) | 2012-01-18 |
Family
ID=38676684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006097476A Expired - Fee Related JP4855816B2 (en) | 2006-03-31 | 2006-03-31 | Method for manufacturing a lame mode crystal resonator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4855816B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6110663B2 (en) * | 2012-12-28 | 2017-04-05 | 京セラクリスタルデバイス株式会社 | Manufacturing method of crystal unit |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06291587A (en) * | 1992-07-08 | 1994-10-18 | Matsushita Electric Ind Co Ltd | Piezoelectric vibrator |
JP3114521B2 (en) * | 1993-10-01 | 2000-12-04 | 株式会社村田製作所 | Ladder type filter |
JPH08162875A (en) * | 1994-11-30 | 1996-06-21 | Murata Mfg Co Ltd | Manufacture of piezoelectric resonance component |
JP3141723B2 (en) * | 1995-04-11 | 2001-03-05 | 株式会社村田製作所 | Resonator and resonance component using width mode |
JP2001313537A (en) * | 2000-04-28 | 2001-11-09 | River Eletec Kk | Piezoelectric element and its manufacturing method |
JP2003101362A (en) * | 2001-09-21 | 2003-04-04 | Piedekku Gijutsu Kenkyusho:Kk | Contour piezoelectric quartz resonator and method of manufacturing the same |
JP2003110400A (en) * | 2001-09-26 | 2003-04-11 | Piedekku Gijutsu Kenkyusho:Kk | Contour crystal oscillator |
JP2003115747A (en) * | 2001-10-04 | 2003-04-18 | Piedekku Gijutsu Kenkyusho:Kk | Lame mode crystal oscillator |
JP2003142979A (en) * | 2001-10-31 | 2003-05-16 | River Eletec Kk | Crystal vibrator and its manufacturing method |
JP2003101378A (en) * | 2002-09-17 | 2003-04-04 | Piedekku Gijutsu Kenkyusho:Kk | Lame mode quartz resonator |
JP4319846B2 (en) * | 2003-02-10 | 2009-08-26 | リバーエレテック株式会社 | Crystal oscillator |
JP2004336677A (en) * | 2003-05-02 | 2004-11-25 | Yukio Yokoyama | Complex profile mode quartz oscillator |
JP2005109886A (en) * | 2003-09-30 | 2005-04-21 | Seiko Epson Corp | Piezoelectric device, manufacturing method thereof, cellular telephone apparatus using the same, and electronic apparatus using the same |
JP4597548B2 (en) * | 2004-02-27 | 2010-12-15 | 京セラキンセキ株式会社 | Crystal oscillator |
-
2006
- 2006-03-31 JP JP2006097476A patent/JP4855816B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007274347A (en) | 2007-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4533934B2 (en) | Vibrating piece and method of manufacturing vibrator | |
JP4930381B2 (en) | Piezoelectric vibration device | |
JP4967707B2 (en) | Piezoelectric vibrator and manufacturing method thereof | |
JP5316748B2 (en) | Manufacturing method of vibrating piece | |
JP2007013910A (en) | Piezoelectric resonator | |
JP2017530569A (en) | New piezoelectric quartz chip with double-sided convex structure and its processing | |
JP2007274610A (en) | Quartz-crystal vibrator, and package thereof | |
JP2007006375A (en) | Piezoelectric resonator and manufacturing method thereof | |
JP4855816B2 (en) | Method for manufacturing a lame mode crystal resonator | |
JP4890912B2 (en) | Method for manufacturing a lame mode crystal resonator | |
JP5005251B2 (en) | Method for manufacturing a lame mode crystal resonator | |
JP4938308B2 (en) | Lame mode quartz crystal holding structure | |
JP4938320B2 (en) | Lame mode quartz crystal | |
JP4712472B2 (en) | Lame mode quartz crystal | |
JP4938321B2 (en) | Lame mode quartz crystal | |
JP4712430B2 (en) | Lame mode quartz crystal | |
JP2017528012A (en) | Piezoelectric quartz chip with single-sided convex structure | |
JP5099385B2 (en) | Vibrating piece and vibrator | |
JP2007300418A (en) | Manufacturing method of lame-mode crystal resonator | |
JP2006186462A (en) | Quartz crystal resonator | |
JP2006311230A (en) | Manufacturing method of lame mode crystal vibrator | |
JP4724447B2 (en) | Lame mode quartz crystal | |
JP5045822B2 (en) | Piezoelectric vibrating piece and piezoelectric device | |
JP2007158458A (en) | Lame-mode quartz crystal resonator | |
JP2007067776A (en) | Lame-mode quartz crystal vibrator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110621 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110822 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111018 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111027 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141104 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4855816 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141104 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141104 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |