JP2007300418A - Manufacturing method of lame-mode crystal resonator - Google Patents

Manufacturing method of lame-mode crystal resonator Download PDF

Info

Publication number
JP2007300418A
JP2007300418A JP2006126943A JP2006126943A JP2007300418A JP 2007300418 A JP2007300418 A JP 2007300418A JP 2006126943 A JP2006126943 A JP 2006126943A JP 2006126943 A JP2006126943 A JP 2006126943A JP 2007300418 A JP2007300418 A JP 2007300418A
Authority
JP
Japan
Prior art keywords
crystal
wafer
quartz
lame
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006126943A
Other languages
Japanese (ja)
Inventor
Tadataka Kamiyama
忠孝 上山
Masahiko Goto
正彦 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2006126943A priority Critical patent/JP2007300418A/en
Publication of JP2007300418A publication Critical patent/JP2007300418A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of improving the mechanical strength of a Lame-mode crystal resonator as a whole, with respect to the shape of the Lame-mode crystal resonator, in particular, realization of size reduction, high accuracy, and a low CI value. <P>SOLUTION: The manufacturing method of the Lame-mode crystal resonator for solving aforementioned tasks includes the steps of joining a crystal wafer to a glass material; thinning the thickness of the crystal wafer, in a state where the crystal wafer and the glass material are incorporated; forming an external shape in the integrated state when the thickness of the crystal wafer reaches a desired thickness; exfoliating the crystal wafer and the glass material that have integrated; and forming an exciting electrode for the crystal wafer to the crystal wafer, and a mechanical polishing method is adopted for the processing of thinning the thickness of the crystal wafer and an etching processing process is adopted for forming the exciting electrode. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ラーメモード水晶振動子の振動子形状を得るものであり、特に、小型化、高精度化を実現するための素子の実装構造を改善するもので、素子の電気的特性を維持しながら落下、衝撃に対する実装時の保持強度と簡略化を向上したラーメモード水晶振動子の製造方法に関するものである。   The present invention is to obtain a resonator shape of a lame mode crystal resonator, and in particular, to improve the device mounting structure for realizing miniaturization and high accuracy, and to maintain the electrical characteristics of the device. However, the present invention relates to a method for manufacturing a lame mode crystal resonator having improved holding strength and simplification during mounting against dropping and impact.

ラーメモード水晶振動子は小型で低周波数を実現する上で最適な振動モードを得ることができる。そのため低周波の振動子でありながら小型化を実現するということは、近年めざましい進化を遂げている携帯電話、携帯型の小型ゲーム機器などに広く利用される大きな市場がある。   The lame mode crystal resonator is small and can obtain an optimum vibration mode for realizing a low frequency. Therefore, the realization of miniaturization while being a low-frequency vibrator has a large market widely used for mobile phones, portable small game devices and the like that have made remarkable progress in recent years.

ラーメモード水晶振動子は数十μmの板厚の圧電基板により形成されており、ラーメモード水晶振動子を保持するためには振動の阻害にならないように、回転モーメントはあるが変位の無い振動の節を保持することが一般的である。図6に示すように四隅の接続部を介して支持と保持がなされている。この節からアームを引き出し保持部へ接続し、接続部を介してパッケージと実装して組立ることで振動子を得ている。このときのアーム部はなるべく細くすることにより振動の阻害を少なくし、等価直列抵抗を小さくすることができる。そのため、落下衝撃時に強い構造が必要となる。   The lame mode crystal unit is formed of a piezoelectric substrate with a thickness of several tens of μm. In order to hold the lame mode crystal unit, there is a rotational moment but no displacement so as not to hinder vibrations. It is common to keep clauses. As shown in FIG. 6, it is supported and held through the connecting portions at the four corners. From this node, the arm is pulled out and connected to the holding portion, and mounted on the package via the connecting portion and assembled to obtain a vibrator. At this time, by making the arm portion as thin as possible, the inhibition of vibration can be reduced and the equivalent series resistance can be reduced. Therefore, a strong structure is required at the time of drop impact.

要するに、従来は振動子を作製する際には等価抵抗値R1の上昇を避けるために振動の節となっている正方形の四隅に支持部を設けており、その関係で、振動部と支持部及び接続部は一体で形成されるため振動の節となっている四隅にはモーメント力が生じてしまう。そのために支持部の設計が適切でない場合、振動のエネルギーが支持部に漏れてしまい等価抵抗値R1が大きくなってしまう。更に等価抵抗値R1を小さくすること則ち、等価抵抗値R1の上昇を軽減する目的で四隅からの支持部の幅、及び厚みを小さくすると落下等の衝撃を受けた場合や過大な励振電流により振幅が大きくなった場合に破損するおそれがある。   In short, conventionally, when a vibrator is manufactured, support portions are provided at the four corners of a square serving as a node of vibration in order to avoid an increase in the equivalent resistance value R1, and accordingly, the vibration portion, the support portion, Since the connecting portions are integrally formed, moment forces are generated at the four corners that are vibration nodes. Therefore, if the support portion is not properly designed, vibration energy leaks to the support portion and the equivalent resistance value R1 becomes large. Furthermore, in order to reduce the equivalent resistance value R1, in order to reduce the increase in the equivalent resistance value R1, if the width and thickness of the support part from the four corners are reduced, it may be affected by an impact such as dropping or an excessive excitation current. There is a risk of damage if the amplitude increases.

上述のように、ラーメモード水晶振動子は正方形板の場合、四隅が節(回転ノード)となって面内で等体積的に振動する振動モードであることから、従来のラーメモード水晶振動子は等価抵抗値R1の良い(低い)振動子を得るために振動の節となっている四隅から支持部を引き出すことが最も有効な支持方法であり、実際の支持方法については、振動子の支持部には接続部を介してセラミックなどの基板に導電性接着剤を用いて固定しているのが現状である。   As described above, when the lame mode crystal resonator is a square plate, it is a vibration mode in which the four corners are nodes (rotation nodes) and vibrate in the same volume in the plane. In order to obtain a vibrator having a good (low) equivalent resistance value R1, it is the most effective support method to pull out the support portions from the four corners which are the nodes of vibration. The actual support method is as follows. At present, it is fixed to a substrate such as ceramic using a conductive adhesive via a connecting portion.

上述のプロセスの一例を図7に示すが、ウエハ洗浄、ライトエッチング、プロテクト蒸着膜(CrAu)、レジスト塗布、露光、現像、パターンニング、エッチング、レジスト剥離、CrAu剥離、洗浄、励振電極蒸着の一連の工程で素子が形成され、セラミック材質などのパッケージに導電性接着剤にて搭載されてラーメモード水晶振動子を得る。   An example of the above-described process is shown in FIG. 7, and a series of wafer cleaning, light etching, protective vapor deposition film (CrAu), resist coating, exposure, development, patterning, etching, resist stripping, CrAu stripping, cleaning, and excitation electrode deposition In this process, an element is formed and mounted on a package made of a ceramic material or the like with a conductive adhesive to obtain a lame mode crystal resonator.

特開2003−142979号公報JP 2003-142979 A 特開2001−313537号公報JP 2001-31537 A 特開2004−242256号公報JP 2004-242256 A 特開2005−244702号公報 なお出願人は前記した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を、本件出願時までに発見するに至らなかった。JP, 2005-244702, A In addition to the prior art literature specified by the above-mentioned prior art literature information, the applicant did not find the prior art literature relevant to the present invention by the time of this application.

上述する従来のラーメモード水晶振動子は振動部の辺比が整数の矩形板となるため、例えば振動部四隅を支持する場合には、振動の節は四隅となり振動変位が小さい部分であることから振動部の保持によるラーメモードの振動を阻害することは無い。   Since the conventional lame mode quartz crystal resonator described above is a rectangular plate with an integer ratio of the vibration part, for example, when supporting the four corners of the vibration part, the vibration nodes are the four corners and the vibration displacement is small. The vibration of the lame mode due to the holding of the vibration part is not hindered.

しかしながら、振動部と支持部と接続部が一体で形成される構造であるために、ラーメモード水晶振動子を容器に実装し収納すると、振動部と支持部とを接続する部分にはラーメモード振動の節から発生するモーメント力が生じるために、そのモーメント力の影響を受けて、接続部には屈曲振動が発生してしまう。   However, since the vibration part, the support part, and the connection part are integrally formed, when the lame mode crystal resonator is mounted and stored in the container, the part that connects the vibration part and the support part has a lame mode vibration. Since the moment force generated from this node is generated, bending vibration is generated in the connection portion under the influence of the moment force.

従って支持部及び接続部の形状を適切な設計値にしないと振動部の振動漏れが生じ、振動部を保持する支持部や接続部にまで不必要な振動が伝達することから、純粋なラーメモードの振動を阻害されるおそれがある。   Therefore, if the shape of the support part and the connection part is not set to appropriate design values, vibration of the vibration part will occur, and unnecessary vibration will be transmitted to the support part and connection part that hold the vibration part. There is a risk that the vibrations of the

加えて、振動部分を何らかの手段により容器に実装するために、支持部及び接続部が必要になってくる。そのために振動子という形態で考えると振動部に加えて支持部と接続部などが一体となった構造が必要となってくるために、全体的に小型化が難しくなっている現状にある。その一方で小型化を推進する上で振動部以外の支持部などを軽量化し脆弱な形状にすることにより、Q値を高く維持することはできるものの、従来のラーメモード水晶振動子の構造上水晶振動子の持つインピーダンス(CI値)を低く抑えることが難しいのが現状である。   In addition, in order to mount the vibrating part on the container by some means, a support part and a connection part are required. For this reason, when considered in the form of a vibrator, a structure in which a support part and a connection part are integrated in addition to the vibration part is required, so that it is difficult to reduce the overall size. On the other hand, in order to promote downsizing, it is possible to maintain a high Q value by reducing the weight of the supporting part other than the vibrating part and making it fragile. At present, it is difficult to keep the impedance (CI value) of the vibrator low.

そこで、振動部のみを薄くすることでCI値を抑える技術が知られている。その場合振動子の厚み加工をパウダービームにより実現する手法や、化学エッチング手法を用いる記載があるが、パウダービームは機械的な加工処理であることから、製造工程におけるコストの低減が難しいことと、量産化する上でもまた、加工時間を考えても多大の処理時間がかかることが見込まれている。また、振動部のみを薄くすることは機械的な強度不足を招くことも考えられ、実用上の使用に耐えにくいという課題も挙げられている。   Therefore, a technique for suppressing the CI value by reducing only the vibration part is known. In that case, there is a description that uses a powder beam to realize vibrator thickness processing and a chemical etching method, but since powder beam is a mechanical processing process, it is difficult to reduce costs in the manufacturing process, Considering the processing time, it is expected that a lot of processing time will be required for mass production. In addition, it is conceivable that making only the vibration part thin may cause insufficient mechanical strength, and there is a problem that it is difficult to withstand practical use.

そこで本発明は、矩形状の水晶素子に電荷を加えたときに、前記水晶素子の角部4点を節として、前記矩形状の長手方向に伸びたときには短手方向に伸縮し、かつ、前記矩形状の短手方向に伸びたときには長手方向に伸縮する輪郭振動の振動形態を生じる、LQ1Tカットあるいは、LQ2Tカットの水晶基板から成り、振動部、支持部、接続部で構成するラーメモード水晶振動子の製造方法おいて、 水晶ウエハとガラス材料を接合する工程と、前記の水晶とガラス材料が一体になった状態で水晶ウエハの厚みを薄くする工程と、前記水晶ウエハが所望の板厚みになったところで前記一体の状態で外形形状を成形する工程と、一体となっている前記水晶ウエハとガラス材料を剥離分離する工程と、前記水晶ウエハにラーメモード振動子の励振電極を形成する工程とから成り、水晶ウエハの板厚みを薄くする加工には機械研磨工法を用い、励振電極形成にはエッチング処理工程を用いたことを特徴とするラーメモード水晶振動子の製造方法である。   Therefore, the present invention provides a rectangular crystal element having an electric charge applied thereto, with the four corners of the crystal element serving as nodes, and when extending in the longitudinal direction of the rectangular shape, expands and contracts in the lateral direction, and A lame-mode crystal vibration consisting of an LQ1T-cut or LQ2T-cut quartz substrate, which forms a contour vibration that expands and contracts in the longitudinal direction when it extends in the short direction of the rectangular shape. In the manufacturing method of the child, the step of bonding the crystal wafer and the glass material, the step of reducing the thickness of the crystal wafer in a state where the crystal and the glass material are integrated, and the crystal wafer having a desired plate thickness Then, the step of forming the outer shape in the integrated state, the step of separating and separating the glass wafer and the glass material, and the excitation of the lame mode vibrator on the crystal wafer. A method of manufacturing a lame mode crystal resonator, comprising: a step of forming an electrode, wherein a mechanical polishing method is used for thinning a quartz wafer and an etching process is used for forming an excitation electrode It is.

要するに本発明は、水晶ウエハとガラス材料と一体的に貼合せ、一体の状態で水晶ウエハ、則ち水晶素子の厚みを薄くするものである。水晶ウエハは所望の厚みにまで薄くしたところで、ガラス材料を剥離し水晶素子の表面に励振電極を形成した後、個々のラーメモード水晶振動子の単位に分離することによりラーメモード水晶振動子を形成することで、特に厚み加工時の製造工程中における水晶素子の破損を大幅に低減することにより従来の課題を改善した。   In short, according to the present invention, a quartz wafer and a glass material are bonded together, and the thickness of the quartz wafer, that is, the quartz element is reduced in an integrated state. When the quartz wafer is thinned to the desired thickness, the glass material is peeled off, the excitation electrode is formed on the surface of the quartz element, and then separated into individual lame mode quartz crystal units to form a lame mode quartz crystal. By doing so, the problem of the prior art was improved by significantly reducing the damage of the quartz crystal element during the manufacturing process especially during the thickness processing.

上述のように本発明のラーメモード水晶振動子製造方法では全体の機械的強度を向上した製造方法を用いることで、製造工程での歩留まりを改善し製造コストを低減するものである。その結果ラーメモード水晶振動子の品質も向上することができる。   As described above, in the method of manufacturing a lame mode crystal resonator according to the present invention, the manufacturing method with improved overall mechanical strength is used to improve the yield in the manufacturing process and reduce the manufacturing cost. As a result, the quality of the lame mode crystal resonator can be improved.

以下、図面に従ってこの発明の実施例を説明する。なお、各図において同一の符号は同様の対象を示すものとする。
圧電素板を基板にした水晶素子1で、その基板の辺比の一方の寸法を1(L)としたとき、もう一方の寸法が整数比(1(L)〜n)を満たす板の四隅に無振動部を有することにラーメモード振動子の特徴がある。図1に示すように正方形板の場合は四隅が節となって向かい合う2辺Aが正方形の中心方向に変位したときはもう一方の2辺Bが正方形の外方向に変位し、また向かい合う2辺Aが正方形の外方向に変位したときはもう一方の2辺Bが正方形の中心方向に変位する振動形態である。
Embodiments of the present invention will be described below with reference to the drawings. In each figure, the same numerals indicate the same objects.
A crystal element 1 having a piezoelectric element plate as a substrate. When one dimension of the side ratio of the substrate is 1 (L), the other corners of the plate satisfy an integer ratio (1 (L) to n). The feature of the lame mode vibrator is that it has no vibration part. In the case of a square plate as shown in FIG. 1, when the two sides A facing each other with the corners at the four corners are displaced toward the center of the square, the other two sides B are displaced outwardly of the square, and the two sides facing each other When A is displaced in the outward direction of the square, the other two sides B are in a vibration form that is displaced in the center direction of the square.

従って、図1(a)と図1(b)の動作を繰り返す形態で振動する。この図1は正方形板の一次の振動モードと呼ぶ。また図1(c)には振動板の寸法概念を示す。そして図2にはその振動モードの模式図を示している。また、図3については、基本形を元にして高次の振動モードを例にしたものである。考え方は図1の基本形と同様であり、図3(a)は二次(モード)の場合を示し、図3(b)は三次(モード)の場合を示したものである。なお、図1と図3に示す△マークはラーメモード振動子2の無振動部を表すものである。   Therefore, it vibrates in the form of repeating the operations of FIG. 1 (a) and FIG. 1 (b). This FIG. 1 is called a primary vibration mode of a square plate. FIG. 1C shows a dimensional concept of the diaphragm. FIG. 2 shows a schematic diagram of the vibration mode. FIG. 3 shows an example of a high-order vibration mode based on the basic shape. The concept is the same as the basic form of FIG. 1, FIG. 3 (a) shows the case of the secondary (mode), and FIG. 3 (b) shows the case of the tertiary (mode). In FIG. 1 and FIG. 3, the Δ mark represents the non-vibrating part of the lame mode vibrator 2.

ここで本発明の製造工程の流れを図4に示す。矩形状の水晶素子1に電荷を加えたときに、水晶素子1の角部4点を節として、矩形状の長手方向に伸びたときには短手方向に伸縮し、かつ、矩形状の短手方向に伸びたときには長手方向に伸縮する輪郭振動の振動形態を生じる、LQ1Tカットあるいは、LQ2Tカットの水晶基板から成り、振動部、支持部、接続部で構成するラーメモード水晶振動子の製造方法おいて、水晶ウエハとガラス材料を接合する工程と、前記の水晶とガラス材料が一体になった状態で水晶ウエハの厚みを薄くする工程と、前記水晶ウエハが所望の板厚みになったところで前記一体の状態で外形形状を成形する工程と、一体となっている前記水晶ウエハとガラス材料を剥離分離する工程と、前記水晶ウエハにラーメモード振動子2の励振電極を形成する工程とから成り、水晶ウエハの板厚みを薄くする加工には機械研磨工法を用い、外形形成にはエッチング処理工程を用いたことを特徴とするラーメモード水晶振動子の製造方法である。   Here, the flow of the manufacturing process of the present invention is shown in FIG. When a charge is applied to the rectangular crystal element 1, the four corners of the crystal element 1 are nodes, and when extending in the longitudinal direction of the rectangular shape, it expands and contracts in the short direction, and the rectangular short direction In a manufacturing method of a lame mode quartz crystal resonator comprising a quartz substrate of LQ1T cut or LQ2T cut, which produces a vibration form of contour vibration that expands and contracts in the longitudinal direction when it is stretched in the direction of A step of bonding the quartz wafer and the glass material, a step of reducing the thickness of the quartz wafer in a state where the quartz crystal and the glass material are integrated, and the integration of the quartz wafer when the quartz wafer has a desired plate thickness. A step of forming an outer shape in a state, a step of peeling and separating the glass wafer and the glass material, and a step of forming an excitation electrode of the lame mode vibrator 2 on the crystal wafer. Made, using a mechanical polishing method for processing of thinning the plate thickness of the crystal wafer, the outer shape forming is a manufacturing method of the Lame mode quartz crystal resonator characterized by using an etching process.

実際の処理方法としては、ウエハ洗浄、ライトエッチング、プロテクト蒸着膜(CrAu)、レジスト塗布、露光、現像、パターンニング、エッチング、レジスト剥離、CrAu剥離、洗浄、励振電極蒸着の一連の工程で素子が形成されるが、本願の主眼は水晶ウエハとガラス材料を一体に貼合せ一例として研磨装置により水晶ウエハの板厚を薄くするものである。
この場合水晶ウエハとガラス材料の貼合せには、直接接合などの手法を用いるが特に制約があるものでは無い。また所望の板厚まで水晶ウエハを薄く加工できたところで、ラーメモード水晶振動子の外形を得るために、水晶ウエハにレジストを形成しエッチング処理により外形形成を行う。また、蒸着により水晶ウエハ上に励振電極(引出し電極も含む)を形成するが、ここでは全体の概念図は図示していない。
As an actual processing method, an element is formed in a series of processes including wafer cleaning, light etching, protective vapor deposition film (CrAu), resist coating, exposure, development, patterning, etching, resist stripping, CrAu stripping, cleaning, and excitation electrode deposition. Although formed, the main point of the present application is to reduce the plate thickness of the quartz wafer by a polishing apparatus as an example of laminating the quartz wafer and the glass material integrally.
In this case, a technique such as direct bonding is used for bonding the quartz wafer and the glass material, but there is no particular limitation. When the quartz wafer has been thinned to a desired thickness, a resist is formed on the quartz wafer and an outer shape is formed by etching to obtain the outer shape of the lame mode crystal resonator. Further, although the excitation electrode (including the extraction electrode) is formed on the quartz wafer by vapor deposition, the overall conceptual diagram is not shown here.

上記の流れの製造工程で得られる水晶素子1の形状変化については、図5(a)では水晶ウエハとガラス材料を接合する工程と、前記の水晶とガラス材料が一体になった状態で水晶ウエハの厚みを薄くする。ガラス材料が補強となり、水晶素子の板厚を薄くする過程での割れを改善する。
続いて図5(b)に示すように所望の板厚みになったところで一体の状態で外形形状を成形し、その後一体となっている前記水晶ウエハとガラス材料を剥離分離する。その後図5(c)に示すようにラーメモード水晶振動子2を構成する励振電極を水晶素子の表裏に形成しラーメモード振動子2を完成させる。
Regarding the change in the shape of the crystal element 1 obtained in the manufacturing process of the above flow, in FIG. 5A, in the crystal wafer in a state where the crystal wafer and the glass material are united with each other, Reduce the thickness. Glass material is reinforced to improve cracking in the process of thinning the quartz element.
Subsequently, as shown in FIG. 5B, when the desired plate thickness is reached, the outer shape is formed in an integrated state, and then the integrated quartz wafer and glass material are separated and separated. Thereafter, as shown in FIG. 5C, excitation electrodes constituting the lame mode crystal resonator 2 are formed on the front and back of the crystal element to complete the lame mode resonator 2.

水晶素子の板厚を薄くする工程で水晶素子1に対する機械的な強度を向上することにより、ラーメモード水晶振動子2の素子の脆弱性を改善し、製造工程中での素子の破損を改善した機械的強度を向上することができる。   By improving the mechanical strength of the quartz element 1 in the process of reducing the thickness of the quartz element, the vulnerability of the element of the lame mode quartz crystal resonator 2 was improved, and the damage of the element during the manufacturing process was improved. Mechanical strength can be improved.

ラーメモード水晶振動子の一次の形態を示す平面図である。It is a top view which shows the primary form of a lame mode crystal oscillator. 図1に示す振動形態モードの模式図である。It is a schematic diagram of the vibration mode shown in FIG. 図1の基本形を基に、高次モードの場合の振動形態を示す平面図である。It is a top view which shows the vibration form in the case of a high-order mode based on the basic form of FIG. 本発明のラーメモード振動子の製造の流れを示すフロー図である。It is a flowchart which shows the flow of manufacture of the lame mode vibrator | oscillator of this invention. 本発明の素子形成のフローで得られる素子形状の概念図である。It is a conceptual diagram of the element shape obtained by the flow of element formation of this invention. 従来例として示すラーメモード水晶振動子形態の概念図である。It is a conceptual diagram of the lame mode crystal resonator form shown as a conventional example. ラーメモード振動子の素子を形成する製造プロセスを示すフロー図である。It is a flowchart which shows the manufacturing process which forms the element of a lame mode vibrator.

符号の説明Explanation of symbols

1 水晶素子
2 ラーメモード水晶振動子
1 Crystal element 2 Lame mode crystal resonator

Claims (2)

矩形状の水晶素子に電荷を加えたときに、前記水晶素子の角部4点を節として、前記矩形状の長手方向に伸びたときには短手方向に伸縮し、かつ、前記矩形状の短手方向に伸びたときには長手方向に伸縮する輪郭振動の振動形態を生じる、LQ1Tカットあるいは、LQ2Tカットの水晶基板から成り、振動部、支持部、接続部で構成するラーメモード水晶振動子の製造方法おいて、
水晶ウエハとガラス材料を接合する工程と、前記の水晶とガラス材料が一体になった状態で水晶ウエハの厚みを薄くする工程と、前記水晶ウエハが所望の板厚みになったところで前記一体の状態で外形形状を成形する工程と、一体となっている前記水晶ウエハとガラス材料を剥離分離する工程と、前記水晶ウエハに励振電極を形成する工程とから成るラーメモード水晶振動子の製造方法。
When a charge is applied to a rectangular crystal element, the four corners of the crystal element are nodes, and when extending in the longitudinal direction of the rectangular shape, the rectangular crystal element expands and contracts in the short direction, and the rectangular short shape A method for manufacturing a lame mode quartz crystal resonator comprising an LQ1T-cut or LQ2T-cut quartz substrate, which generates a vibration pattern of contour vibration that expands and contracts in the longitudinal direction when stretched in the direction, and comprises a vibrating part, a supporting part, and a connecting part. And
The step of bonding the crystal wafer and the glass material, the step of reducing the thickness of the crystal wafer in a state where the crystal and the glass material are integrated, and the integrated state when the crystal wafer has a desired plate thickness A method of manufacturing a lame mode quartz crystal resonator, comprising: forming an outer shape with the step of: separating and separating the integrated quartz wafer and glass material; and forming an excitation electrode on the quartz wafer.
請求項1の記載において、水晶ウエハの板厚みを薄くする加工には機械研磨工法を用い、励振電極形成にはエッチング処理工程を用いたことを特徴とするラーメモード水晶振動子の製造方法。 2. The method of manufacturing a lame mode crystal resonator according to claim 1, wherein a mechanical polishing method is used for processing to reduce the thickness of the quartz wafer, and an etching process is used for forming the excitation electrode.
JP2006126943A 2006-04-28 2006-04-28 Manufacturing method of lame-mode crystal resonator Pending JP2007300418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006126943A JP2007300418A (en) 2006-04-28 2006-04-28 Manufacturing method of lame-mode crystal resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006126943A JP2007300418A (en) 2006-04-28 2006-04-28 Manufacturing method of lame-mode crystal resonator

Publications (1)

Publication Number Publication Date
JP2007300418A true JP2007300418A (en) 2007-11-15

Family

ID=38769538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006126943A Pending JP2007300418A (en) 2006-04-28 2006-04-28 Manufacturing method of lame-mode crystal resonator

Country Status (1)

Country Link
JP (1) JP2007300418A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163654A (en) * 1997-11-28 1999-06-18 Matsushita Electric Ind Co Ltd Manufacture of reinforced piezo-electric substrate
JP2003142979A (en) * 2001-10-31 2003-05-16 River Eletec Kk Crystal vibrator and its manufacturing method
JP2003179452A (en) * 2001-12-10 2003-06-27 Matsushita Electric Ind Co Ltd Manufacturing method of piezoelectric resonator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163654A (en) * 1997-11-28 1999-06-18 Matsushita Electric Ind Co Ltd Manufacture of reinforced piezo-electric substrate
JP2003142979A (en) * 2001-10-31 2003-05-16 River Eletec Kk Crystal vibrator and its manufacturing method
JP2003179452A (en) * 2001-12-10 2003-06-27 Matsushita Electric Ind Co Ltd Manufacturing method of piezoelectric resonator

Similar Documents

Publication Publication Date Title
JP4533934B2 (en) Vibrating piece and method of manufacturing vibrator
JP4967707B2 (en) Piezoelectric vibrator and manufacturing method thereof
JP4324182B2 (en) Integrated filter in which thin film bulk acoustic resonator and surface acoustic wave resonator are integrated, and manufacturing method thereof
JP2011055474A (en) Piezoelectric micro speaker having piston diaphragm and method of manufacturing the same
JP2009022003A (en) Method of manufacturing crystal vibrator
KR20170136967A (en) One type of quartz crystal resonator with round blank structure and its processing technology
JP2009239860A (en) Piezoelectric vibration piece and manufacturing method thereof
US9066184B2 (en) Acoustic sensor and fabrication method thereof
JP2017530569A (en) New piezoelectric quartz chip with double-sided convex structure and its processing
JP2008113238A (en) Piezoelectric vibrator, and manufacturing method and electronic components of piezoelectric vibrator
JPWO2018235339A1 (en) Resonator and resonance device
CN104811881A (en) Piezoelectric loudspeaker and method for forming same
KR101892651B1 (en) One type of quartz crystal blank with single convex structure
JP4855816B2 (en) Method for manufacturing a lame mode crystal resonator
JP2007300418A (en) Manufacturing method of lame-mode crystal resonator
JP5005251B2 (en) Method for manufacturing a lame mode crystal resonator
JP4890912B2 (en) Method for manufacturing a lame mode crystal resonator
JP4938308B2 (en) Lame mode quartz crystal holding structure
JP4938320B2 (en) Lame mode quartz crystal
JP4938321B2 (en) Lame mode quartz crystal
JP2006311230A (en) Manufacturing method of lame mode crystal vibrator
JP2004236008A (en) Piezo-electric oscillating member, piezo-electric device using the same, and cell phone unit and electric apparatus using piezo-electric device
JP2013081022A (en) Crystal oscillator and manufacturing method of the same
JP4712472B2 (en) Lame mode quartz crystal
JP5099385B2 (en) Vibrating piece and vibrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120207