JP2007158055A - Piezoelectric element, piezoelectric transducer, and electronic equipment using the same - Google Patents

Piezoelectric element, piezoelectric transducer, and electronic equipment using the same Download PDF

Info

Publication number
JP2007158055A
JP2007158055A JP2005351719A JP2005351719A JP2007158055A JP 2007158055 A JP2007158055 A JP 2007158055A JP 2005351719 A JP2005351719 A JP 2005351719A JP 2005351719 A JP2005351719 A JP 2005351719A JP 2007158055 A JP2007158055 A JP 2007158055A
Authority
JP
Japan
Prior art keywords
electrode group
electrode
piezoelectric element
electrodes
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005351719A
Other languages
Japanese (ja)
Other versions
JP5089039B2 (en
Inventor
Akihiro Iino
朗弘 飯野
Tetsuya Nobe
哲也 野邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2005351719A priority Critical patent/JP5089039B2/en
Publication of JP2007158055A publication Critical patent/JP2007158055A/en
Application granted granted Critical
Publication of JP5089039B2 publication Critical patent/JP5089039B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode structure for improving the utilization efficiency of a piezoelectric element by increasing the ratio of a part that becomes effective for drive, in a piezoelectric element utilizing a longitudinal piezoelectric effect, especially a layered piezoelectric element having a simple manufacturing process. <P>SOLUTION: The piezoelectric element comprises a first group of electrodes comprising a plurality of electrodes arranged in parallel on a first surface, a second group of electrodes comprising a plurality of electrodes arranged between adjacent electrodes for composing the first group of the electrodes, a third group of electrodes comprising a plurality of electrodes arranged in parallel to the second surface, and a fourth group of electrodes comprising a plurality of electrodes arranged between adjacent electrodes for composing the third group of electrodes. Electrodes for composing the first group of the electrodes arranged on the first surface and the second group of the electrodes do not overlap with electrodes, for composing the third group of the electrodes arranged on the second surface and the fourth group of the electrodes in a thickness direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は圧電素子を用いたアクチュエータ、センサ等の圧電トランスデューサ並びにそれを用いた電子機器に関する。   The present invention relates to a piezoelectric transducer such as an actuator or a sensor using a piezoelectric element, and an electronic device using the piezoelectric transducer.

近年、電子機器の小型・薄型化、高機能化、低消費電力化が進むにつれ、電子機器に搭載されるセンサ、トランス、アクチュエータ等のトランスデューサには圧電素子を用いたものが増えている。   In recent years, as electronic devices have been reduced in size, thickness, functionality, and power consumption, transducers such as sensors, transformers, and actuators mounted on electronic devices have increased in number.

圧電素子はPZT(チタン酸ジルコン酸鉛)やチタン酸バリウム等を原料とした焼結体を分極処理したものであり、要求されるトランスデューサの仕様によって分極方向に電界を印加した際の分極方向の歪(圧電縦効果)を利用するか、あるいは分極方向に電界を印加した際の分極方向と直交する方向の歪(圧電横効果)を利用するかが選択される。また、圧電素子の低電圧駆動や低インピーダンス化を図るため、圧電素子を複数枚積層した積層圧電素子の形態をとる場合も増えている。   The piezoelectric element is a sintered body made of PZT (lead zirconate titanate) or barium titanate as a raw material, and the polarization direction when an electric field is applied to the polarization direction according to the required transducer specifications. It is selected whether to use strain (piezoelectric longitudinal effect) or to use strain (piezoelectric lateral effect) in a direction orthogonal to the polarization direction when an electric field is applied in the polarization direction. In addition, in order to drive the piezoelectric element at a low voltage and reduce the impedance, there is an increasing number of cases in the form of a laminated piezoelectric element in which a plurality of piezoelectric elements are laminated.

しかしながらこのように圧電素子(圧電効果)の利用方法は限られており圧電トランスデューサの設計の自由度は低かった。また圧電縦効果を用いた積層圧電素子は長手方向に積層しなければならないため一体構造での製造は難しく、単板素子を接着剤で接着するかボルトとナット等の締結手段を用いるしかなかった。そこで、一方の面に電極を設けた圧電材シートを複数枚積層した後に一体的に焼結する製法(圧電横効果を用いた積層圧電素子の製造プロセス)を用いながらも圧電縦効果利用できる電極構造並びにそれを用いた積層圧電素子が考案されている(特許文献1)。
特許出願公開番号 特開2005−6495
However, the use method of the piezoelectric element (piezoelectric effect) is limited as described above, and the degree of freedom in designing the piezoelectric transducer is low. In addition, since the laminated piezoelectric element using the piezoelectric longitudinal effect has to be laminated in the longitudinal direction, it is difficult to manufacture the monolithic structure, and there is no choice but to bond the single plate element with an adhesive or use fastening means such as bolts and nuts. . Therefore, an electrode that can use the piezoelectric longitudinal effect while using a manufacturing method (a manufacturing process of a laminated piezoelectric element using a piezoelectric lateral effect) in which a plurality of piezoelectric material sheets provided with electrodes on one surface are laminated and then sintered integrally. A structure and a multilayer piezoelectric element using the same have been devised (Patent Document 1).
Patent application publication number JP-A-2005-6495

しかしながら特許文献1に示したように圧電素子の一つの面内に設けた電極間に電界を印加する方式では電極近辺の圧電素子は動作に寄与しないという欠点があった。そしてこの事柄は、この圧電素子をセンサに使用した場合には感度が低くなるということにもつながった。   However, as shown in Patent Document 1, the method in which an electric field is applied between electrodes provided in one surface of a piezoelectric element has a drawback that the piezoelectric element in the vicinity of the electrode does not contribute to the operation. This also led to a decrease in sensitivity when this piezoelectric element was used as a sensor.

本発明の目的は、圧電縦効果を利用できる圧電素子、特に積層圧電素子において、駆動に有効となる部分の比率を高めることにより圧電素子の利用効率を改善することにある。   An object of the present invention is to improve the use efficiency of a piezoelectric element by increasing the ratio of a portion that is effective for driving in a piezoelectric element that can utilize the piezoelectric longitudinal effect, particularly a laminated piezoelectric element.

そこで、上記課題を解決する為に本発明の圧電素子は第一の面に平行に配置された複数の電極からなる第一の電極群と、第一の電極群を構成する隣り合う電極の間に配置された複数の電極からなる第二の電極群と、圧電素子の第二の面に平行に配列された複数の電極からなる第三の電極群と、第三の電極群を構成する隣り合う電極の間に配置された複数の電極からなる第四の電極群と、を有する圧電素子であって、第一の面に配置された第一の電極群、第二の電極群と、第二の面に配置された第三の電極群、第四の電極群とは厚み方向に重ならない位置に配置されていることを特徴とするものである。   Therefore, in order to solve the above-described problem, the piezoelectric element of the present invention is provided between a first electrode group composed of a plurality of electrodes arranged in parallel to the first surface and an adjacent electrode constituting the first electrode group. A second electrode group composed of a plurality of electrodes arranged on the substrate, a third electrode group composed of a plurality of electrodes arranged in parallel with the second surface of the piezoelectric element, and a neighbor constituting the third electrode group A fourth electrode group comprising a plurality of electrodes disposed between the matching electrodes, the first electrode group disposed on the first surface, the second electrode group, The third electrode group and the fourth electrode group arranged on the second surface are arranged at positions that do not overlap in the thickness direction.

これによれば一方の面内の電極付近は他方の面内に設けた電極間の圧電効果が働くため駆動に有効となる部分を大きく出来る。   According to this, in the vicinity of the electrode in one surface, the piezoelectric effect between the electrodes provided in the other surface works, so that the portion effective for driving can be enlarged.

本発明の圧電素子は圧電縦効果が利用可能な積層圧電素子であるため小型でありながら低電圧で高出力が得られる。特に従来の積層圧電素子に比べて実際の駆動に有効となる部分の比率が高くなるためこの効果は更に高くなる。そして目的の積層圧電素子が複数得られる大きさの積層圧電素子を一体的に焼結して作製し、個々の積層圧電素子に分割する製造プロセスを経ることにより、積層圧電素子のコストを大幅に下げられる。そして個々の特性ばらつきが小さく信頼性に富んだ積層圧電素子が得られる。   Since the piezoelectric element of the present invention is a laminated piezoelectric element that can utilize the piezoelectric longitudinal effect, it is small in size and can provide a high output at a low voltage. In particular, since the ratio of the portion effective for actual driving is higher than that of the conventional multilayer piezoelectric element, this effect is further enhanced. The cost of the multilayer piezoelectric element is greatly increased through a manufacturing process in which the multilayer piezoelectric elements of a size that can provide a plurality of target multilayer piezoelectric elements are integrally sintered and divided into individual multilayer piezoelectric elements. Be lowered. A multilayer piezoelectric element with small individual characteristic variations and high reliability can be obtained.

また、本積層圧電素子をアクチュエータ、センサ等のトランスデューサに応用し、更にはこれを電子機器に搭載すれば小型、低消費電力で信頼性に富んだ電子機器を提供することができる。   In addition, if this multilayered piezoelectric element is applied to a transducer such as an actuator or a sensor and further mounted on an electronic device, a small electronic device with low power consumption and high reliability can be provided.

以下、図面を基にして本発明の実施例について説明する。
(実施の形態1)
図1は本発明の圧電素子1の電極構造を示した図である。圧電素子1は図1(e)に示した様に矩形形状である。圧電素子1を矢印100a、100b、100c、100dの方向から見た図が夫々図1(a)、(b)、(c)、(d)である。圧電素子1の上面(第一の面)の幅(長さの短い辺)に平行な方向には図1(b)に示すように長方形の電極2a、2b、2c、2d、2e、2f、2g、2hが平行に設けられている。電極2a、2b、2c、2d、2e、2f、2g、2hは第一の電極群を構成している。第一の電極群を構成する隣り合う電極の間には第二の電極群を構成する電極2i、2j、2k、2l、2m、2n、2o、2pが平行に設けられている。
Embodiments of the present invention will be described below with reference to the drawings.
(Embodiment 1)
FIG. 1 is a diagram showing an electrode structure of the piezoelectric element 1 of the present invention. The piezoelectric element 1 has a rectangular shape as shown in FIG. FIGS. 1A, 1B, 1C, and 1D show the piezoelectric element 1 viewed from the directions of arrows 100a, 100b, 100c, and 100d, respectively. In the direction parallel to the width (short side) of the upper surface (first surface) of the piezoelectric element 1, rectangular electrodes 2a, 2b, 2c, 2d, 2e, 2f, as shown in FIG. 2g and 2h are provided in parallel. The electrodes 2a, 2b, 2c, 2d, 2e, 2f, 2g, and 2h constitute a first electrode group. Between adjacent electrodes constituting the first electrode group, electrodes 2i, 2j, 2k, 2l, 2m, 2n, 2o and 2p constituting the second electrode group are provided in parallel.

圧電素子1の下面(第二の面)の幅(長さの短い辺)に平行な方向には図1(d)に示すように長方形の電極3a、3b、3c、3d、3e、3f、3g、3hが平行に設けられている。電極3a、3b、3c、3d、3e、3f、3g、3hは第三の電極群を構成している。第三の電極群を構成する隣り合う電極の間には第四の電極群を構成する電極3i、3j、3k、3l、3m、3n、3o、3pが平行に設けられている。   In the direction parallel to the width (short side) of the lower surface (second surface) of the piezoelectric element 1, rectangular electrodes 3a, 3b, 3c, 3d, 3e, 3f, as shown in FIG. 3g and 3h are provided in parallel. The electrodes 3a, 3b, 3c, 3d, 3e, 3f, 3g, and 3h constitute a third electrode group. Between the adjacent electrodes constituting the third electrode group, electrodes 3i, 3j, 3k, 3l, 3m, 3n, 3o, 3p constituting the fourth electrode group are provided in parallel.

そして第一の面に配置された第一の電極群、第二の電極群を構成する電極と、第二の面に配置された第三の電極群、第四の電極群を構成する電極とは厚み(図1(a)、(c)における長さの短い辺)方向に重ならない位置に配置されている。   And the first electrode group disposed on the first surface, the electrodes constituting the second electrode group, the third electrode group disposed on the second surface, the electrodes constituting the fourth electrode group, Are arranged at positions that do not overlap in the direction of the thickness (the shorter side in FIGS. 1A and 1C).

第一の電極群を構成する電極2a、2b、2c、2d、2e、2f、2g、2hの一端は圧電素子1の第一の側面まで達しており側面電極4aで短絡される。電極2a、2b、2c、2d、2e、2f、2g、2hの他端は圧電素子1の第二の側面までは達していない。   One ends of the electrodes 2a, 2b, 2c, 2d, 2e, 2f, 2g, and 2h constituting the first electrode group reach the first side surface of the piezoelectric element 1 and are short-circuited by the side surface electrode 4a. The other ends of the electrodes 2a, 2b, 2c, 2d, 2e, 2f, 2g and 2h do not reach the second side surface of the piezoelectric element 1.

第二の電極群を構成する電極2i、2j、2k、2l、2m、2n、2o、2pの一端は圧電素子1の第二の側面まで達しており側面電極5aで短絡される。電極2i、2j、2k、2l、2m、2n、2o、2pの他端は圧電素子1の第一の側面までは達していない。   One ends of the electrodes 2i, 2j, 2k, 2l, 2m, 2n, 2o, and 2p constituting the second electrode group reach the second side surface of the piezoelectric element 1 and are short-circuited by the side surface electrode 5a. The other ends of the electrodes 2i, 2j, 2k, 2l, 2m, 2n, 2o, and 2p do not reach the first side surface of the piezoelectric element 1.

第三の電極群を構成する電極3a、3b、3c、3d、3e、3f、3g、3hの一端は圧電素子1の第二の側面まで達しており、側面電極5bで短絡される。電極3a、3b、3c、3d、3e、3f、3g、3hの他端は圧電素子1の第一の側面には達していない。   One ends of the electrodes 3a, 3b, 3c, 3d, 3e, 3f, 3g, and 3h constituting the third electrode group reach the second side surface of the piezoelectric element 1, and are short-circuited by the side surface electrode 5b. The other ends of the electrodes 3a, 3b, 3c, 3d, 3e, 3f, 3g, and 3h do not reach the first side surface of the piezoelectric element 1.

第四の電極群を構成する電極3i、3j、3k、3l、3m、3n、3o、3pの一端は圧電素子1の第一の側面まで達しており側面電極4bで短絡される。電極2i、2j、2k、2l、2m、2n、2o、2pの他端は圧電素子1の第二の側面までは達していない。   One end of the electrodes 3i, 3j, 3k, 3l, 3m, 3n, 3o, and 3p constituting the fourth electrode group reaches the first side surface of the piezoelectric element 1 and is short-circuited by the side electrode 4b. The other ends of the electrodes 2i, 2j, 2k, 2l, 2m, 2n, 2o, and 2p do not reach the second side surface of the piezoelectric element 1.

このような電極構造とすることにより第一の電極群を構成する電極2a、2b、2c、2d、2e、2f、2g、2hへの通電は側面電極4aを介して、第二の電極群を構成する電極2i、2j、2k、2l、2m、2n、2o、2pへの通電は側面電極5aを介して、第三の電極群を構成する電極3a、3b、3c、3d、3e、3f、3g、3hへの通電は側面電極5bを介して、第四の電極群を構成する電極3i、3j、3k、3l、3m、3n、3o、3pへの通電は側面電極4bを介して行うことが出来る。   With such an electrode structure, the electrodes 2a, 2b, 2c, 2d, 2e, 2f, 2g, and 2h constituting the first electrode group are energized through the side electrode 4a to the second electrode group. Energization of the electrodes 2i, 2j, 2k, 2l, 2m, 2n, 2o, and 2p constituting the electrodes 3a, 3b, 3c, 3d, 3e, 3f, and the electrodes constituting the third electrode group is performed via the side surface electrode 5a. Energization to 3g and 3h is performed via the side electrode 5b, and energization to the electrodes 3i, 3j, 3k, 3l, 3m, 3n, 3o and 3p constituting the fourth electrode group is performed via the side electrode 4b. I can do it.

本構造では各電極の長さは圧電素子1の幅よりも短い(一端は圧電素子1の側面に達していない)ため圧電素子1の一部(両側面付近)に動作に寄与しない部分が発生する。そこで各電極の長さを圧電素子1の幅と同じとし、スルーホール電極を用いる方法を採用するか、圧電素子1の側面で絶縁体と導電体を使うことにより短絡したい電極だけを選択的に短絡する方法を使っても構わない。   In this structure, the length of each electrode is shorter than the width of the piezoelectric element 1 (one end does not reach the side surface of the piezoelectric element 1), so a part of the piezoelectric element 1 (near both side surfaces) does not contribute to the operation. To do. Therefore, the length of each electrode is made the same as the width of the piezoelectric element 1, and a method using a through-hole electrode is adopted, or only an electrode to be short-circuited is selectively selected by using an insulator and a conductor on the side surface of the piezoelectric element 1. You may use the method of short-circuiting.

図2は圧電素子1を側面から見て電極と分極方向の関係を示した図である。図2において図中の矢印200と同じ線で書かれた矢印は分極方向を示す。第二の電極群を構成する電極をGNDとして第一の電極群を構成する電極方向へ分極処理されている。また第四の電極群を構成する電極GNDとして第三の電極群を構成する電極方向へ分極処理されている。従って、第一の電極群と第二の電極群の間、並びに第三の電極群と第四の電極群の間に電圧を印加することで圧電素子1は矢印110の方向(第一の電極群、第二の電極群、第三の電極群、第四の電極群を構成する電極の配列方向)に伸縮する。   FIG. 2 is a diagram showing the relationship between the electrodes and the polarization direction when the piezoelectric element 1 is viewed from the side. In FIG. 2, an arrow written with the same line as the arrow 200 in the figure indicates the polarization direction. Polarization is performed in the direction of the electrodes constituting the first electrode group, with the electrodes constituting the second electrode group being GND. In addition, the electrode GND constituting the fourth electrode group is polarized in the direction of the electrode constituting the third electrode group. Accordingly, by applying a voltage between the first electrode group and the second electrode group, and between the third electrode group and the fourth electrode group, the piezoelectric element 1 moves in the direction of the arrow 110 (the first electrode group). Group, second electrode group, third electrode group, fourth electrode group).

例えば第二の電極群、第四の電極群をGNDとして第一の電極群と第三の電極群に+方向の電圧を印加すると圧電素子1は縮み、−方向の電圧を印加すると圧電素子1は延びる。第一の電極群並びに第二の電極群を構成する電極2b、2c、2jが位置する圧電素子の厚み方向には分極がされにくいが、第三の電極群と第四の電極群との間でなされる分極は電極2b、2c、2jが位置する圧電素子の厚み方向へ深部に渡って分極処理される。また第三の電極群並びに第四の電極群を構成する電極3a、3b、3iが位置する圧電素子の厚み方向には分極がされにくいが、第一の電極群と第二の電極群との間でなされる分極は電極3a、3b、3iが位置する圧電素子の厚み方向へ深部に渡って分極処理される。   For example, when the second electrode group and the fourth electrode group are set to GND and a positive voltage is applied to the first electrode group and the third electrode group, the piezoelectric element 1 contracts, and when a negative voltage is applied, the piezoelectric element 1 Extends. Although it is difficult to be polarized in the thickness direction of the piezoelectric element in which the electrodes 2b, 2c, and 2j constituting the first electrode group and the second electrode group are located, it is not between the third electrode group and the fourth electrode group. The polarization performed in (1) is polarized across the depth in the thickness direction of the piezoelectric element where the electrodes 2b, 2c, 2j are located. Moreover, although it is hard to polarize in the thickness direction of the piezoelectric element in which the electrodes 3a, 3b, 3i constituting the third electrode group and the fourth electrode group are located, the first electrode group and the second electrode group Polarization performed between the electrodes 3a, 3b, and 3i is polarized across the depth in the thickness direction of the piezoelectric element on which the electrodes 3a, 3b, and 3i are located.

このような電極構造とすることで圧電素子1の駆動に有効な部分を大きくとることが出来る。特に第三の電極群と第四の電極群を構成する電極を、第一の電極群と第二の電極群を構成する隣り合う電極の中間に配置することでこの効果は最大となる。   By adopting such an electrode structure, a large portion effective for driving the piezoelectric element 1 can be taken. In particular, this effect is maximized by arranging the electrodes constituting the third electrode group and the fourth electrode group between the adjacent electrodes constituting the first electrode group and the second electrode group.

また第一の電極群を構成する電極と、この電極と隣り合う第二の電極を構成する電極との間隔、並びに第三の電極群を構成する電極と、この電極と隣り合う第四の電極を構成する電極との間隔を圧電素子の厚みよりも大きくすることで基本的に圧電素子1の厚み方向ほぼ全体に渡って分極処理がされるようになる。   The distance between the electrode constituting the first electrode group and the electrode constituting the second electrode adjacent to this electrode, the electrode constituting the third electrode group, and the fourth electrode adjacent to this electrode By making the distance between the electrodes constituting the electrode larger than the thickness of the piezoelectric element, the polarization process is basically performed over almost the entire thickness direction of the piezoelectric element 1.

図2(b)は電極を有さない圧電素子101の上下を圧電素子1で挟み込むように重ねて接着した積層圧電素子102を側面から見て電極と分極方向の関係を示した図である。この場合の動作原理も基本的には圧電素子1の動作原理と同じである(矢印111の方向に伸縮)ので詳細は省くが、積層する各圧電素子の厚みを薄くすることで第一の電極群を構成する電極と第二の電極群を構成する電極の間隔、並びに第三の電極群を構成する電極と第四の電極群を構成する電極の間隔を狭くすることができるため駆動電圧を下げることが可能となる。   FIG. 2 (b) is a diagram showing the relationship between the electrodes and the polarization direction when the laminated piezoelectric element 102 which is stacked and bonded so that the upper and lower sides of the piezoelectric element 101 without electrodes are sandwiched between the piezoelectric elements 1 is viewed from the side. The operating principle in this case is also basically the same as the operating principle of the piezoelectric element 1 (extends and contracts in the direction of the arrow 111), and the details are omitted. However, the first electrode can be obtained by reducing the thickness of each piezoelectric element to be laminated. Since the distance between the electrodes constituting the group and the electrodes constituting the second electrode group and the distance between the electrodes constituting the third electrode group and the fourth electrode group can be reduced, the drive voltage can be reduced. Can be lowered.

そして、このような積層圧電素子を作製する際には複数の圧電素子がとれる大きさの圧電シート上に電極を印刷し、これを複数枚重ねて仮焼成した後で夫々の圧電素子の大きさに切断して本焼成した後、分極処理して個々の圧電素子を得る工程とすることで一度に大量の積層圧電素子を作製することが可能となる。ここで、夫々の圧電素子の大きさへ切断する工程は本焼成の後であっても構わない。   And when manufacturing such a laminated piezoelectric element, electrodes are printed on a piezoelectric sheet having a size capable of taking a plurality of piezoelectric elements, and a plurality of these are stacked and temporarily fired, and then the size of each piezoelectric element is obtained. A large number of laminated piezoelectric elements can be manufactured at a time by performing a polarization process to obtain individual piezoelectric elements after cutting into a main body and firing. Here, the step of cutting to the size of each piezoelectric element may be after the main firing.

次に図3を元にして本発明の圧電素子1、101を用いた圧電アクチュエータについて説明する。圧電素子1、101の一端は支持板7に固定されている。圧電素子1、101の他端にはステージとなる移動体6が固定されており、圧電素子1、101と移動体6とで圧電アクチュエータとして機能する。移動体6の上には稼動部材8が乗せられている。稼動部材8は例えば試料であり、微調整が要求される顕微鏡下での作業において圧電素子1、101を伸縮することで稼動部材8は矢印112の方向へ微動される。
このような構成とすることで精密位置決めが可能なステージが実現できる。
Next, a piezoelectric actuator using the piezoelectric elements 1 and 101 of the present invention will be described with reference to FIG. One ends of the piezoelectric elements 1 and 101 are fixed to the support plate 7. A movable body 6 serving as a stage is fixed to the other ends of the piezoelectric elements 1 and 101, and the piezoelectric elements 1 and 101 and the movable body 6 function as a piezoelectric actuator. An operating member 8 is placed on the moving body 6. The operating member 8 is, for example, a sample, and the operating member 8 is finely moved in the direction of an arrow 112 by expanding and contracting the piezoelectric elements 1 and 101 in a work under a microscope that requires fine adjustment.
With such a configuration, a stage capable of precise positioning can be realized.

(実施の形態2)
本発明の圧電素子を用いた圧電アクチュエータとして超音波モータについて説明する。図4は本発明の圧電素子9を振動体として用いたリニヤ型超音波モータの構成を示した図である。矩形形状の圧電素子9には突起10a、10b並びに突起状の支持部材11が設けられている。加圧部材12の軸部12aは案内板13の案内穴13aによって軸方向にのみ移動可能に案内されている。突起10a、10bの下には案内ローラー16a、16bに案内された移動体15が設けられている。支持部材11は加圧部材12のV溝部12bに係合する。加圧部材12は加圧手段14により加圧され、突起10a、10bと移動体15は接している。
(Embodiment 2)
An ultrasonic motor will be described as a piezoelectric actuator using the piezoelectric element of the present invention. FIG. 4 is a view showing a configuration of a linear ultrasonic motor using the piezoelectric element 9 of the present invention as a vibrating body. The rectangular piezoelectric element 9 is provided with protrusions 10 a and 10 b and a protrusion-shaped support member 11. The shaft portion 12a of the pressing member 12 is guided by the guide hole 13a of the guide plate 13 so as to be movable only in the axial direction. A movable body 15 guided by guide rollers 16a and 16b is provided under the protrusions 10a and 10b. The support member 11 is engaged with the V groove portion 12 b of the pressure member 12. The pressure member 12 is pressurized by the pressure means 14, and the protrusions 10a and 10b and the moving body 15 are in contact with each other.

圧電素子9は縦振動と屈曲振動を励振する。図5は圧電素子9の長辺方向に対する振動振幅の様子を示した図であり、図5(a)は縦振動の様子を、図5(b)は屈曲振動の様子を示したものである。縦振動、屈曲振動ともに圧電素子9の中央部が振動の節となり、この位置に支持部材11が設けられている。また、屈曲振動の腹の位置に突起10a、10bは設けられている。縦振動と屈曲振動を同時に励振することにより突起10a、10bは圧電素子9の長辺方向の変位と、これと直交する方向の変位からなる楕円運動を行い、移動体15を駆動する。ところで、移動体15を固定して振動体(圧電素子9)自体を駆動しても構わない。   The piezoelectric element 9 excites longitudinal vibration and bending vibration. 5A and 5B are diagrams showing the vibration amplitude in the long side direction of the piezoelectric element 9, FIG. 5A shows the state of longitudinal vibration, and FIG. 5B shows the state of bending vibration. . The central portion of the piezoelectric element 9 serves as a vibration node for both longitudinal vibration and bending vibration, and a support member 11 is provided at this position. Further, the protrusions 10a and 10b are provided at the positions of the antinodes of the bending vibration. By simultaneously exciting the longitudinal vibration and the bending vibration, the protrusions 10a and 10b perform an elliptical motion consisting of a displacement in the long side direction of the piezoelectric element 9 and a displacement in a direction perpendicular thereto, thereby driving the moving body 15. Incidentally, the movable body 15 may be fixed and the vibrating body (piezoelectric element 9) itself may be driven.

次に圧電素子9の電極構成を図6を元にして説明する。ここでは実施の形態1に示した圧電素子1との違いのみを示し、圧電素子9の詳細な動作については省略する。   Next, the electrode configuration of the piezoelectric element 9 will be described with reference to FIG. Here, only the difference from the piezoelectric element 1 shown in the first embodiment is shown, and the detailed operation of the piezoelectric element 9 is omitted.

圧電素子9の二つの辺の中央部を結ぶ線で分割される四つの領域には夫々第一の電極群、第二の電極群、第三の電極群が設けられる。即ち、電極18(18a、18b、18c)、21(21a、21b、21c)、24(24a、24b、24c)、27(27a、27b、27c)は夫々第一の電極群を構成する。電極19(19a,19b,19c)と短絡電極20からなる電極群、電極22(22a,22b,22c)と短絡電極23からなる電極群、電極25(25a,25b,25c)と短絡電極26からなる電極群、電極28(28a,28b,28c)と短絡電極29からなる電極群は夫々第二の電極群を構成する。   A first electrode group, a second electrode group, and a third electrode group are provided in four regions divided by a line connecting the central portions of the two sides of the piezoelectric element 9, respectively. That is, the electrodes 18 (18a, 18b, 18c), 21 (21a, 21b, 21c), 24 (24a, 24b, 24c), 27 (27a, 27b, 27c) constitute a first electrode group. From the electrode group consisting of the electrode 19 (19a, 19b, 19c) and the short-circuit electrode 20, the electrode group consisting of the electrode 22 (22a, 22b, 22c) and the short-circuit electrode 23, the electrode 25 (25a, 25b, 25c) and the short-circuit electrode 26 The electrode group consisting of the electrodes 28 (28a, 28b, 28c) and the short-circuit electrode 29 constitutes a second electrode group.

電極30(30a,30b,30c)、33(33a,33b,33c)、36(36a,36b,36c)、39(39a,39b,39c)は夫々第三の電極群を構成する。電極31(31a,31b,31c)と短絡電極32からなる電極群、電極34(34a,34b,34c)と短絡電極35からなる電極群、電極37(37a、37b、37c)と短絡電極38からなる電極群、電極40(40a,40b,40c)と短絡電極41からなる電極群は夫々第四の電極群を構成する。対角に位置する二組の第一の電極群と第二の電極群の間と、二組の第三の電極群と第四の電極群の間に交流電圧を印加することで圧電素子9には縦振動と屈曲振動が励振され突起10a、10bが楕円運動をすることにより移動体15は駆動される。他方の対角にある二組の第一の電極群と第二の電極群の間と、二組の第三の電極群と第四の電極群の間に交流電圧を印加すると、圧電素子9に励振される縦振動と屈曲振動の位相は逆転するため移動体15の移動方向は逆転する。   The electrodes 30 (30a, 30b, 30c), 33 (33a, 33b, 33c), 36 (36a, 36b, 36c), 39 (39a, 39b, 39c) constitute a third electrode group. From the electrode group consisting of the electrode 31 (31a, 31b, 31c) and the short-circuit electrode 32, the electrode group consisting of the electrode 34 (34a, 34b, 34c) and the short-circuit electrode 35, the electrode 37 (37a, 37b, 37c) and the short-circuit electrode 38 The electrode group consisting of the electrode group consisting of the electrode 40 (40a, 40b, 40c) and the short-circuit electrode 41 constitutes a fourth electrode group. The piezoelectric element 9 is obtained by applying an AC voltage between the two pairs of the first electrode group and the second electrode group located on the diagonal and between the two sets of the third electrode group and the fourth electrode group. In this case, longitudinal vibration and bending vibration are excited, and the movable body 15 is driven by the protrusions 10a and 10b having an elliptical motion. When an alternating voltage is applied between the two pairs of the first electrode group and the second electrode group on the other diagonal line and between the two sets of the third electrode group and the fourth electrode group, the piezoelectric element 9 Since the phases of the longitudinal vibration and the bending vibration excited by are reversed, the moving direction of the moving body 15 is reversed.

すなわち電極18と電極19の間、電極27と電極28の間、電極36と電極37の間、電極33と電極34の間に交流電圧を印加するか、電極24と電極25の間、電極21と電極22の間、電極30と電極31の間、電極39と電極40の間に交流電圧を印加することで移動体15の駆動が行われる。本実施の形態は本発明の圧電素子の駆動原理に基づいて超音波モータを実現するための電極パターンの一例を示したものであり、本発明の圧電素子の駆動原理に従えばいかなる電極パターンを構成しても構わない。   That is, an alternating voltage is applied between the electrode 18 and the electrode 19, between the electrode 27 and the electrode 28, between the electrode 36 and the electrode 37, between the electrode 33 and the electrode 34, or between the electrode 24 and the electrode 25, and between the electrode 21 and the electrode 21. The moving body 15 is driven by applying an AC voltage between the electrode 30 and the electrode 22, between the electrode 30 and the electrode 31, and between the electrode 39 and the electrode 40. This embodiment shows an example of an electrode pattern for realizing an ultrasonic motor based on the driving principle of the piezoelectric element of the present invention. Any electrode pattern can be formed according to the driving principle of the piezoelectric element of the present invention. You may comprise.

(実施の形態3)
本発明の圧電素子を用いた圧電トランスについて説明する。図10は本発明の圧電トランスのブロック図を示したものである。圧電トランスとなる積層圧電素子17は機能的に一次側素子と二次側素子に分けられる。一次側素子には第一の電極群42、第二の電極群43と第三の電極群44、第四の電極群45が設けられている。発振回路59から所定の周波数の交流電圧が第一の電極群42と第二の電極群43との間と、第三の電極群44と第四の電極群45との間に印加されると積層圧電素子17は一次側素子と二次側素子の間、すなわち積層圧電素子17の中間を節とする一次の縦振動を行う。
(Embodiment 3)
A piezoelectric transformer using the piezoelectric element of the present invention will be described. FIG. 10 shows a block diagram of the piezoelectric transformer of the present invention. The laminated piezoelectric element 17 serving as a piezoelectric transformer is functionally divided into a primary side element and a secondary side element. The primary element is provided with a first electrode group 42, a second electrode group 43, a third electrode group 44, and a fourth electrode group 45. When an alternating voltage having a predetermined frequency is applied from the oscillation circuit 59 between the first electrode group 42 and the second electrode group 43 and between the third electrode group 44 and the fourth electrode group 45. The laminated piezoelectric element 17 performs primary longitudinal vibration between the primary side element and the secondary side element, that is, the middle of the laminated piezoelectric element 17 as a node.

入力側である一次側素子の電極間、すなわち第一の電極群42と第二の電極群43との間と、第三の電極群44と第四の電極群45との間のインピーダンスと出力側である二次側素子の電極間、すなわちGNDとなる第二の電極群、第四の電極群と第五の電極群との間のインピーダンスの違いによって、入力電圧とは異なる電圧が得られる。一次側素子のインピーダンスを低くし二次側素子のインピーダンスを高くすることで入力電圧に対して高い出力電圧が得られる。   Impedance and output between the electrodes of the primary side element on the input side, that is, between the first electrode group 42 and the second electrode group 43, and between the third electrode group 44 and the fourth electrode group 45. A voltage different from the input voltage is obtained due to the difference in impedance between the electrodes of the secondary side element that is the side, that is, the second electrode group serving as GND, the fourth electrode group, and the fifth electrode group . A high output voltage with respect to the input voltage can be obtained by lowering the impedance of the primary side element and increasing the impedance of the secondary side element.

次に具体的に積層圧電素子17の構造を説明する。積層圧電素子17は図9に示したように圧電素子17a,17b,17cを積層した構造となっている。図7は圧電素子17a,17b,17cの電極構造を示した図であり、全て上面(図9における矢印100b)から見た図を示している。いずれの圧電素子も下面には電極を有していない。圧電素子17aは上面にも電極を有していない。   Next, the structure of the laminated piezoelectric element 17 will be specifically described. The laminated piezoelectric element 17 has a structure in which piezoelectric elements 17a, 17b, and 17c are laminated as shown in FIG. FIG. 7 is a view showing the electrode structure of the piezoelectric elements 17a, 17b, and 17c, and all are views seen from the upper surface (arrow 100b in FIG. 9). None of the piezoelectric elements has electrodes on the lower surface. The piezoelectric element 17a has no electrode on its upper surface.

圧電素子17b、17cの一次側素子には電極42,43,45,46が設けられている。一次側素子の電極構造は実施の形態1に示したものと同じであるため詳細な説明は省略する。電極42a,42b,42c,42dは第一の電極群を構成し、電極43a,43b,43c,43dは第二の電極群を構成し、電極45a、45b、45c,45dは第三の電極群を構成し、電極46a,46b,46c,46dは第四の電極群を構成する。   Electrodes 42, 43, 45, and 46 are provided on the primary side elements of the piezoelectric elements 17b and 17c. Since the electrode structure of the primary element is the same as that shown in the first embodiment, a detailed description thereof is omitted. The electrodes 42a, 42b, 42c and 42d constitute a first electrode group, the electrodes 43a, 43b, 43c and 43d constitute a second electrode group, and the electrodes 45a, 45b, 45c and 45d constitute a third electrode group. The electrodes 46a, 46b, 46c, and 46d constitute a fourth electrode group.

二次側素子の端部には長方形の電極44a、44bが設けられている。圧電素子17a,17b,17cは図9に示したように積層された後に各電極を短絡し、入力信号の印加、出力信号の取り出しを容易にするための短絡電極が設けられる。   Rectangular electrodes 44a and 44b are provided at the ends of the secondary elements. The piezoelectric elements 17a, 17b, and 17c are stacked as shown in FIG. 9, and short-circuited electrodes are provided to facilitate application of input signals and extraction of output signals.

図8は積層圧電素子17を側面から見た図である。図8(a)は図9における矢印100cから見た図である。図8(b)は矢印100bから見た図である。図8(c)は矢印100eから見た図である。図8(d)は矢印100aから見た図である。図8(e)は矢印100dから見た図である。第一の電極群を構成する電極42a,42b,42c,42dは短絡電極48a,48b,48c,48dで短絡された後、電極52a,52b,52c,52dを介して端子電極56aで短絡される。
第二の電極群を構成する電極43a,43b,43c,43dは短絡電極50a,50b,50c,50dで短絡された後、電極53a,53b,53c,53dを介して端子電極56bで短絡される。第三の電極群を構成する電極45a,45b,45c,45dは短絡電極49a,49b,49c,49dで短絡された後、電極55a,55b,55c,55dを介して端子電極58bで短絡される。第四の電極群を構成する電極46a,46b,46c,46dは短絡電極51a,51b,51c,51dで短絡された後、電極54a,54b,54c,54dを介して端子電極58aで短絡される。
FIG. 8 is a view of the laminated piezoelectric element 17 as viewed from the side. FIG. 8A is a view as seen from the arrow 100c in FIG. FIG. 8B is a view as seen from the arrow 100b. FIG. 8C is a view as seen from the arrow 100e. FIG. 8D is a diagram viewed from the arrow 100a. FIG. 8E is a view as seen from the arrow 100d. The electrodes 42a, 42b, 42c, and 42d constituting the first electrode group are short-circuited by the short-circuit electrodes 48a, 48b, 48c, and 48d, and then short-circuited by the terminal electrode 56a through the electrodes 52a, 52b, 52c, and 52d. .
The electrodes 43a, 43b, 43c, 43d constituting the second electrode group are short-circuited by the short-circuit electrodes 50a, 50b, 50c, 50d, and then short-circuited by the terminal electrode 56b via the electrodes 53a, 53b, 53c, 53d. . The electrodes 45a, 45b, 45c, 45d constituting the third electrode group are short-circuited by the short-circuit electrodes 49a, 49b, 49c, 49d, and then short-circuited by the terminal electrode 58b via the electrodes 55a, 55b, 55c, 55d. . The electrodes 46a, 46b, 46c, 46d constituting the fourth electrode group are short-circuited by the short-circuit electrodes 51a, 51b, 51c, 51d, and then short-circuited by the terminal electrode 58a through the electrodes 54a, 54b, 54c, 54d. .

一次側素子にある第一の電極群と第二の電極群の間、並びに第三の電極群と第四の電極群の間の分極方向は実施の形態1に示したものと同じである。二次側素子においては第二の電極群並びに第四の電極群をGNDとして第五の電極群を構成する電極44a,44bの間で分極処理がなされる。   The polarization directions between the first electrode group and the second electrode group in the primary element and between the third electrode group and the fourth electrode group are the same as those shown in the first embodiment. In the secondary side element, the second electrode group and the fourth electrode group are set to GND, and polarization processing is performed between the electrodes 44a and 44b constituting the fifth electrode group.

本発明の積層圧電素子17からなる圧電トランスは一次側素子も二次側素子も分極方向が同じ方向を向いているため圧電トランスを大出力で駆動しても破壊が起こりにくく信頼性に富んでいるとともに、高出力が得られる。
ところで、本実施の形態では昇圧型の圧電トランスを例に説明したが、降圧型の圧電トランスに本発明の電極構造を適用しても構わない。
The piezoelectric transformer composed of the laminated piezoelectric element 17 of the present invention has a high reliability because the primary side element and the secondary side element have the same polarization direction, so that even when the piezoelectric transformer is driven at a high output, the piezoelectric transformer is hardly broken. High output can be obtained.
In the present embodiment, the step-up type piezoelectric transformer has been described as an example. However, the electrode structure of the present invention may be applied to a step-down type piezoelectric transformer.

以上示したように、本発明の圧電素子は電圧を印加することにより駆動力を発生する。そして外部の力で変位が生じた際には電圧を発生する。従って、加速度センサ、ジャイロセンサ等の一般的な圧電センサの構造に本発明の圧電素子の電極を容易に適用できる。これにより設計の自由度が増すとともに圧電縦効果を用いた積層圧電素子の製造も容易となるため感度が高く、信頼性に富んだ圧電センサが実現できる。   As described above, the piezoelectric element of the present invention generates a driving force by applying a voltage. When displacement occurs due to external force, a voltage is generated. Therefore, the electrode of the piezoelectric element of the present invention can be easily applied to the structure of a general piezoelectric sensor such as an acceleration sensor or a gyro sensor. As a result, the degree of freedom in design increases and the manufacture of the laminated piezoelectric element using the piezoelectric longitudinal effect is facilitated, so that a piezoelectric sensor with high sensitivity and high reliability can be realized.

(実施の形態4)
本発明の圧電アクチュエータ、圧電センサ、圧電トランスのうち少なくとも一つを搭載した電子機器について説明する。
(Embodiment 4)
An electronic device equipped with at least one of the piezoelectric actuator, piezoelectric sensor, and piezoelectric transformer of the present invention will be described.

図11は本発明の圧電アクチュエータを搭載した電子機器のブロック図である。圧電素子63と移動体64とで圧電アクチュエータを構成する。電子機器におけるCPU等の制御回路61の指令がドライバ62に伝達されるとドライバ62は圧電素子63に駆動信号を出力する。移動体64は圧電素子63の駆動力を受け移動する。その際、移動体64の力を受け稼動部65移動する。例えば電子機器がカメラの場合にはズームを開始する指令が制御回路61から伝達されるとドライバ62は圧電素子63に駆動信号を印加し、移動体64を回転させる。ここで圧電アクチュエータの形態は超音波モータである。移動体64の力を受け、図示しないカムを介して稼動部65であるレンズを動かす。   FIG. 11 is a block diagram of an electronic device equipped with the piezoelectric actuator of the present invention. The piezoelectric element 63 and the moving body 64 constitute a piezoelectric actuator. When a command from a control circuit 61 such as a CPU in the electronic device is transmitted to the driver 62, the driver 62 outputs a drive signal to the piezoelectric element 63. The moving body 64 moves by receiving the driving force of the piezoelectric element 63. At that time, the operating unit 65 moves by receiving the force of the moving body 64. For example, when the electronic device is a camera, when a command to start zooming is transmitted from the control circuit 61, the driver 62 applies a drive signal to the piezoelectric element 63 to rotate the moving body 64. Here, the form of the piezoelectric actuator is an ultrasonic motor. Under the force of the moving body 64, the lens which is the operating portion 65 is moved through a cam (not shown).

図12は本発明の圧電センサを搭載した電子機器のブロック図である。圧電センサ66が曝された環境に応じて信号を信号処理回路67へ出力する。信号処理回路67で処理された信号は電子機器におけるCPU等の制御回路68へ入力され、制御部69を外部の環境に応じて制御する。例えば電子機器がHDDの場合、加速度センサとなる圧電センサ66が、HDDの落下を検知すると、信号処理回路67は圧電センサ66の出力信号を増幅するとともにデジタル信号に変換し制御回路68に伝達する、制御回路68はヘッドが媒体に接触しないようにヘッドを回避させるように制御部69であるアクチュエータを動かす。   FIG. 12 is a block diagram of an electronic device equipped with the piezoelectric sensor of the present invention. A signal is output to the signal processing circuit 67 according to the environment to which the piezoelectric sensor 66 is exposed. The signal processed by the signal processing circuit 67 is input to a control circuit 68 such as a CPU in the electronic device, and controls the control unit 69 according to the external environment. For example, when the electronic device is an HDD, when the piezoelectric sensor 66 serving as an acceleration sensor detects the fall of the HDD, the signal processing circuit 67 amplifies the output signal of the piezoelectric sensor 66, converts it into a digital signal, and transmits it to the control circuit 68. The control circuit 68 moves the actuator which is the control unit 69 so as to avoid the head so that the head does not contact the medium.

図13は本発明の圧電トランスを搭載した電子機器のブロック図である。電子機器は表示部77を有するパソコン等である。発振回路70からの信号を受けた圧電トランス71は共振し、入力電圧に対して極めて高い電圧の交流電圧を信号処理回路72に出力する。信号処理回路72は整流等の処理を行い液晶等の表示部77を明るくするためのバックライト73を点灯させる。メモリー74とCPU等の制御回路75からなる情報処理部の情報はドライバ76で表示部77で表示されるように信号処理される。バックライト73は圧電トランス71によって駆動される駆動部の一例であり、本発明の圧電トランス73は電子機器におけるいかなる駆動部の駆動にも適用できる。   FIG. 13 is a block diagram of an electronic device equipped with the piezoelectric transformer of the present invention. The electronic device is a personal computer or the like having a display unit 77. The piezoelectric transformer 71 that has received the signal from the oscillation circuit 70 resonates and outputs an AC voltage that is extremely higher than the input voltage to the signal processing circuit 72. The signal processing circuit 72 performs processing such as rectification, and turns on a backlight 73 for brightening the display unit 77 such as a liquid crystal. Information of the information processing unit including the memory 74 and a control circuit 75 such as a CPU is signal-processed so as to be displayed on the display unit 77 by the driver 76. The backlight 73 is an example of a drive unit driven by the piezoelectric transformer 71, and the piezoelectric transformer 73 of the present invention can be applied to drive any drive unit in an electronic device.

本発明の圧電素子、積層圧電素子を用いたアクチュエータ、センサ等のトランスデューサは小型で低電圧駆動が可能で、高信頼性を有し、高出力もしくは高感度という特性を有しコストも低く抑えられることからカメラ、時計、パソコン、携帯電話、HDDや光ディスクに代表される情報記録機器等の小型電子機器へ適用できるとともに、精密ステージやロボット等の製造装置への適用や、産業用や航空宇宙分野における精密計測機器への適用が可能である。   Transducers such as actuators and sensors using piezoelectric elements, laminated piezoelectric elements of the present invention are small and can be driven at low voltage, have high reliability, have high output or high sensitivity, and can be kept low in cost. Therefore, it can be applied to small electronic devices such as cameras, watches, personal computers, mobile phones, HDDs and optical discs, as well as to information recording devices such as precision stages and robots, industrial and aerospace fields. It can be applied to precision measuring equipment.

本発明の圧電素子の電極構造を示す図である。It is a figure which shows the electrode structure of the piezoelectric element of this invention. 本発明の圧電素子の分極構造を示す図である。It is a figure which shows the polarization structure of the piezoelectric element of this invention. 本発明の圧電アクチュエータ示す図である。It is a figure which shows the piezoelectric actuator of this invention. 本発明の圧電素子を用いたリニヤ型超音波モータを示す図である。It is a figure which shows the linear ultrasonic motor using the piezoelectric element of this invention. 本発明のリニヤ型超音波モータに用いられる圧電素子の振動の様子を示す別の図である。It is another figure which shows the mode of a vibration of the piezoelectric element used for the linear type | mold ultrasonic motor of this invention. 本発明のリニヤ型超音波モータに用いられる圧電素子の電極構造を示す図である。It is a figure which shows the electrode structure of the piezoelectric element used for the linear type | mold ultrasonic motor of this invention. 本発明の圧電トランスに用いられる圧電素子の電極構造を示す図である。It is a figure which shows the electrode structure of the piezoelectric element used for the piezoelectric transformer of this invention. 本発明の圧電トランスに用いられる圧電素子の側面図である。It is a side view of the piezoelectric element used for the piezoelectric transformer of this invention. 本発明の圧電トランスに用いられる圧電素子の構造を示す図である。It is a figure which shows the structure of the piezoelectric element used for the piezoelectric transformer of this invention. 本発明の圧電トランスのブロック図である。It is a block diagram of the piezoelectric transformer of the present invention. 本発明の圧電アクチュエータを搭載した電子機器のブロック図である。It is a block diagram of the electronic device carrying the piezoelectric actuator of this invention. 本発明の圧電センサを搭載した電子機器のブロック図である。It is a block diagram of the electronic device carrying the piezoelectric sensor of this invention. 本発明の圧電トランスを搭載した電子機器のブロック図である。It is a block diagram of the electronic device carrying the piezoelectric transformer of this invention.

符号の説明Explanation of symbols

1,9,63,101 圧電素子
2,3,18,19,21,22,25,27,28,30,33,34,36,37,38,39,40,42,43,44,45 電極
4 側面電極
20,23,26,29,32,35,38,41 短絡電極
17,102 積層圧電素子
6,15,64 移動体
8 稼動部材
10 突起
11 支持部材
13 案内板
14 加圧手段
1, 9, 63, 101 Piezoelectric element 2, 3, 18, 19, 21, 22, 25, 27, 28, 30, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45 Electrode 4 Side electrode 20, 23, 26, 29, 32, 35, 38, 41 Short-circuit electrode 17, 102 Laminated piezoelectric element 6, 15, 64 Moving body 8 Working member 10 Projection 11 Support member 13 Guide plate 14 Pressurizing means

Claims (10)

第一の面に平行に配置された複数の電極からなる第一の電極群と、
前記第一の電極群を構成する隣り合う電極の間に配置された複数の電極からなる第二の電極群と、
第二の面に平行に配列された複数の電極からなる第三の電極群と、
前記第三の電極群を構成する隣り合う電極の間に配置された複数の電極からなる第四の電極群と、を有する圧電素子であって、
前記第一の面に配置された前記第一の電極群、前記第二の電極群を構成する電極と、前記第二の面に配置された前記第三の電極群、前記第四の電極群を構成する電極とは厚み方向に重ならない位置に配置されていることを特徴とする圧電素子。
A first electrode group comprising a plurality of electrodes arranged in parallel to the first surface;
A second electrode group comprising a plurality of electrodes disposed between adjacent electrodes constituting the first electrode group;
A third electrode group consisting of a plurality of electrodes arranged parallel to the second surface;
A fourth electrode group composed of a plurality of electrodes arranged between adjacent electrodes constituting the third electrode group, and a piezoelectric element comprising:
The first electrode group disposed on the first surface, the electrodes constituting the second electrode group, the third electrode group disposed on the second surface, and the fourth electrode group A piezoelectric element, characterized in that the piezoelectric element is disposed at a position that does not overlap with the electrode in the thickness direction.
前記第三の電極群を構成する電極と前記第四の電極群を構成する電極は前記第一の電極群を構成する電極と前記第二の電極群を構成する電極の中間に配置されていることを特徴とする請求項1記載の圧電素子。 The electrodes constituting the third electrode group and the electrodes constituting the fourth electrode group are arranged between the electrodes constituting the first electrode group and the electrodes constituting the second electrode group. 2. The piezoelectric element according to claim 1, wherein 前記第一の電極群と前記第二の電極群の間と、前記第三の電極群と前記第四の電極群の間に電圧を印加することで前記第一の電極群、第二の電極群、第三の電極群、第四の電極群を構成する前記複数の電極の配列方向に歪を発生することを特徴とする請求項1記載の圧電素子。 By applying a voltage between the first electrode group and the second electrode group, and between the third electrode group and the fourth electrode group, the first electrode group and the second electrode group 2. The piezoelectric element according to claim 1, wherein strain is generated in an arrangement direction of the plurality of electrodes constituting the group, the third electrode group, and the fourth electrode group. 前記第一の電極群を構成する電極と、この電極と隣り合う前記第二の電極を構成する電極との間隔、並びに前記第三の電極群を構成する電極と、この電極と隣り合う前記第四の電極を構成する電極との間隔は前記圧電素子の厚みよりも大きいことを特徴とする請求項1記載の圧電素子。 The distance between the electrode constituting the first electrode group and the electrode constituting the second electrode adjacent to the electrode, the electrode constituting the third electrode group, and the first adjacent to the electrode 2. The piezoelectric element according to claim 1, wherein an interval between the four electrodes is larger than a thickness of the piezoelectric element. 請求項1記載の圧電素子を複数枚積層して構成されたことを特徴とする積層圧電素子。 2. A laminated piezoelectric element comprising a plurality of laminated piezoelectric elements according to claim 1. 前記第一の電極群、前記第二の電極群、前記第三の電極群、前記第四の電極群から構成される電極パターンを複数有することを特徴とする請求項1記載の圧電素子。 2. The piezoelectric element according to claim 1, comprising a plurality of electrode patterns including the first electrode group, the second electrode group, the third electrode group, and the fourth electrode group. 請求項1ないし6のうちいずれか1項に記載の圧電素子もしくは積層圧電素子によって駆動される稼動部材を有することを特徴とする圧電アクチュエータ。 A piezoelectric actuator comprising an operating member driven by the piezoelectric element or multilayer piezoelectric element according to claim 1. 請求項1ないし6のうちいずれか1項に記載の圧電素子もしくは積層圧電素子からの出力信号により情報を知らせることを特徴とする圧電センサ。 7. A piezoelectric sensor characterized in that information is notified by an output signal from the piezoelectric element or laminated piezoelectric element according to any one of claims 1 to 6. 請求項1ないし6のうちいずれか1項に記載の圧電素子もしくは積層圧電素子を用いたことを特徴とする圧電トランス。 7. A piezoelectric transformer using the piezoelectric element or laminated piezoelectric element according to claim 1. 請求項7ないし9のうちいずれか1項に記載の圧電アクチュエータ、圧電センサ、圧電トランスのうちの少なくとも一つを搭載したことを特徴とする電子機器。 10. An electronic device comprising at least one of the piezoelectric actuator, the piezoelectric sensor, and the piezoelectric transformer according to any one of claims 7 to 9.
JP2005351719A 2005-12-06 2005-12-06 Piezoelectric element, piezoelectric transducer and electronic device using them Expired - Fee Related JP5089039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005351719A JP5089039B2 (en) 2005-12-06 2005-12-06 Piezoelectric element, piezoelectric transducer and electronic device using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005351719A JP5089039B2 (en) 2005-12-06 2005-12-06 Piezoelectric element, piezoelectric transducer and electronic device using them

Publications (2)

Publication Number Publication Date
JP2007158055A true JP2007158055A (en) 2007-06-21
JP5089039B2 JP5089039B2 (en) 2012-12-05

Family

ID=38242017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005351719A Expired - Fee Related JP5089039B2 (en) 2005-12-06 2005-12-06 Piezoelectric element, piezoelectric transducer and electronic device using them

Country Status (1)

Country Link
JP (1) JP5089039B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414981A (en) * 1987-07-09 1989-01-19 Ube Industries Vertical effect type monomorph element and method of driving same
JPH10233538A (en) * 1997-02-21 1998-09-02 Matsushita Electric Ind Co Ltd Laminated piezoelectric element
JP2001345492A (en) * 2000-03-28 2001-12-14 Taiheiyo Cement Corp Piezoelectric element and method for using the same
JP2005006495A (en) * 2003-05-19 2005-01-06 Seiko Instruments Inc Ultrasonic motor, laminated piezoelectric element, and electronic equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414981A (en) * 1987-07-09 1989-01-19 Ube Industries Vertical effect type monomorph element and method of driving same
JPH10233538A (en) * 1997-02-21 1998-09-02 Matsushita Electric Ind Co Ltd Laminated piezoelectric element
JP2001345492A (en) * 2000-03-28 2001-12-14 Taiheiyo Cement Corp Piezoelectric element and method for using the same
JP2005006495A (en) * 2003-05-19 2005-01-06 Seiko Instruments Inc Ultrasonic motor, laminated piezoelectric element, and electronic equipment

Also Published As

Publication number Publication date
JP5089039B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP4794897B2 (en) Ultrasonic motor
KR101653826B1 (en) Ultrasonic motor and method for manufacturing the ultrasonic motor
JP4563490B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP5089039B2 (en) Piezoelectric element, piezoelectric transducer and electronic device using them
JP4641709B2 (en) Ultrasonic motor using laminated piezoelectric vibrator and electronic device using the same
JP4485238B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP4673420B2 (en) Multilayer piezoelectric vibrator, ultrasonic motor, and electronic device with ultrasonic motor
JP4628017B2 (en) Multilayer piezoelectric element, ultrasonic motor, electronic device, stage, and multilayer piezoelectric element manufacturing method
JP5357127B2 (en) Ultrasonic motor and electronic equipment and stage using the same
JP4974326B2 (en) Piezoelectric element, piezoelectric device and electronic apparatus
JP5216822B2 (en) Ultrasonic motor using laminated piezoelectric vibrator and electronic device using the same
JP4672999B2 (en) Ultrasonic motor, laminated piezoelectric element and electronic device
JP4818853B2 (en) Ultrasonic motor element
JP5080518B2 (en) Multilayer piezoelectric element, method for manufacturing multilayer piezoelectric element, and electronic apparatus provided with multilayer piezoelectric element
JP5144097B2 (en) Ultrasonic motor device
JP4313610B2 (en) Ultrasonic motor, method for manufacturing the same, and electronic apparatus equipped with ultrasonic motor
JP4818858B2 (en) Ultrasonic motor element
JP4745615B2 (en) Piezoelectric device and electronic apparatus using the same
JP5605980B2 (en) Ultrasonic motor and electronic device using the same
JP2005218243A (en) Ultrasonic motor and electronic apparatus with ultrasonic motor
JP2005295657A (en) Ultrasonic motor and electronic equipment fitted with ultrasonic motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080909

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5089039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees