JP5080518B2 - Multilayer piezoelectric element, method for manufacturing multilayer piezoelectric element, and electronic apparatus provided with multilayer piezoelectric element - Google Patents

Multilayer piezoelectric element, method for manufacturing multilayer piezoelectric element, and electronic apparatus provided with multilayer piezoelectric element Download PDF

Info

Publication number
JP5080518B2
JP5080518B2 JP2009057744A JP2009057744A JP5080518B2 JP 5080518 B2 JP5080518 B2 JP 5080518B2 JP 2009057744 A JP2009057744 A JP 2009057744A JP 2009057744 A JP2009057744 A JP 2009057744A JP 5080518 B2 JP5080518 B2 JP 5080518B2
Authority
JP
Japan
Prior art keywords
piezoelectric element
short
laminated
electrodes
laminated piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009057744A
Other languages
Japanese (ja)
Other versions
JP2009136146A (en
Inventor
朗弘 飯野
聖士 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2009057744A priority Critical patent/JP5080518B2/en
Publication of JP2009136146A publication Critical patent/JP2009136146A/en
Application granted granted Critical
Publication of JP5080518B2 publication Critical patent/JP5080518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、積層圧電素子、超音波モータ及び積層圧電素子の製造方法、並びに超音波モータを備えた電子機器に関する。   The present invention relates to a multilayer piezoelectric element, an ultrasonic motor, a method for manufacturing the multilayer piezoelectric element, and an electronic apparatus including the ultrasonic motor.

弾性体の共振モードを利用した超音波モータは制御性に優れ、近年特に精密位置決め用アクチュエータとしても注目されている。特に、各種ステージ用のアクチュエータとしてはリニヤ型の超音波モータが要求される場合が多く、多くのタイプが提案され研究されている。その中でも、矩形板の縦(伸縮)振動と屈曲振動の合成振動を利用した超音波モータは様々なものが研究されている(例えば、特許文献1参照。)。これらの中でも、例えば特許文献1に示す様に矩形状の圧電素子単板を厚み方向に分極処理すると共に4分割された電極を設け、対角と成る電極を組とし、一組の電極に駆動信号を印加することで圧電素子からなる振動体に縦振動と屈曲振動を励振し、これと接する移動体を駆動する原理のものは様々な用途に実用化も進められている。   An ultrasonic motor using the resonance mode of an elastic body has excellent controllability, and has recently attracted attention as a precision positioning actuator in recent years. In particular, linear actuators are often required as actuators for various stages, and many types have been proposed and studied. Among them, various ultrasonic motors using a combined vibration of a longitudinal (extension / contraction) vibration and a bending vibration of a rectangular plate have been studied (for example, see Patent Document 1). Among these, for example, as shown in Patent Document 1, a rectangular piezoelectric element single plate is polarized in the thickness direction and provided with four divided electrodes, and the diagonal electrodes are used as a set and driven by a set of electrodes. The principle of driving a moving body in contact with a vibration body made of a piezoelectric element by applying a signal to excite longitudinal vibration and bending vibration has been put into practical use for various applications.

特許2980541号公報(第7−8頁、第1図)Japanese Patent No. 2980541 (pages 7-8, FIG. 1)

しかしながら従来の構造では振動体の駆動に極めて高い電圧を必要とし、大きな昇圧回路を必要とする為、駆動回路の大型化、複雑化を招き駆動回路の価格も高価なものになってしまった。そしてこの場合、小型な機器、特にバッテリーで駆動される用途への適用は難しかった。また、振動体の構造としては圧電素子の厚みが薄いと十分な出力が得られないと共に、機械的強度も低く破損につながる恐れもあった。逆に厚みを厚くすると分極電圧が極めて高く、製造プロセスが複雑になる等の問題があった。そして、本構成では圧電素子の圧電横効果を用いているために大きな出力が得られなかった。   However, the conventional structure requires a very high voltage for driving the vibrating body, and requires a large booster circuit, which increases the size and complexity of the drive circuit and makes the drive circuit expensive. In this case, it is difficult to apply to a small device, particularly a battery-driven application. Further, as the structure of the vibrating body, if the thickness of the piezoelectric element is thin, sufficient output cannot be obtained, and mechanical strength is low, which may lead to damage. On the other hand, when the thickness is increased, the polarization voltage is extremely high, and the manufacturing process becomes complicated. In this configuration, since the piezoelectric lateral effect of the piezoelectric element is used, a large output cannot be obtained.

そこで、本発明の第1の態様は、同一面内に複数の内部電極を有する圧電素子を複数積層した積層圧電素子であって、前記積層圧電素子の側面には、内部電極を前記圧電素子の積層方向で短絡する外部電極と、前記同一面内の複数の内部電極同士を短絡する外部電極と、を有することを特徴とする積層圧電素子にある。   Therefore, a first aspect of the present invention is a laminated piezoelectric element in which a plurality of piezoelectric elements having a plurality of internal electrodes are laminated in the same plane, and the internal electrodes are arranged on the side surfaces of the laminated piezoelectric elements. The multilayer piezoelectric element includes an external electrode that is short-circuited in the stacking direction and an external electrode that short-circuits the plurality of internal electrodes in the same plane.

本発明の第2の態様は、同一面内に複数の内部電極を有する圧電素子を複数積層した積層圧電素子であって、前記同一面内の複数の内部電極同士を短絡するとともに前記圧電素子の積層方向において複数の圧電素子の内部電極同士を短絡する外部電極を有することを特徴とする積層圧電素子にある。 According to a second aspect of the present invention , there is provided a laminated piezoelectric element in which a plurality of piezoelectric elements having a plurality of internal electrodes are laminated in the same plane, wherein the plurality of internal electrodes in the same plane are short-circuited and A laminated piezoelectric element having an external electrode for short-circuiting internal electrodes of a plurality of piezoelectric elements in a lamination direction .

本発明の第3の態様は、第1の態様の積層圧電素子の製造方法であって、複数の圧電素子を積層した積層圧電素子の製造方法であって、複数の内部電極が設けられた同一の圧電素子シート材を面内方向に位置をずらしながら積層し、個々の積層圧電素子形状に分割した後で、前記分割した面に前記積層圧電素子の内部電極を前記圧電素子の積層方向で短絡する外部電極と、同一面内の複数の内部電極同士を短絡する外部電極と、を設ける工程を有することを特徴とする積層圧電素子の製造方法にある。   A third aspect of the present invention is a method for manufacturing a laminated piezoelectric element according to the first aspect, and is a method for producing a laminated piezoelectric element in which a plurality of piezoelectric elements are laminated, wherein the same is provided with a plurality of internal electrodes. The piezoelectric element sheet material is laminated while shifting the position in the in-plane direction, divided into individual laminated piezoelectric element shapes, and then the internal electrodes of the laminated piezoelectric elements are short-circuited in the lamination direction of the piezoelectric elements on the divided surfaces. There is provided a method for manufacturing a laminated piezoelectric element comprising a step of providing an external electrode to be connected and an external electrode for short-circuiting a plurality of internal electrodes in the same plane.

本発明の第4の態様は、第1又は第2の態様の積層圧電素子を備えた電子機器にある。 According to a fourth aspect of the present invention, there is provided an electronic apparatus including the laminated piezoelectric element according to the first or second aspect.

本発明によれば、複数の圧電素子の界面に設けられた内部電極は同一形状であり、内部電極を短絡する外部電極は少なくとも三つ有することにより、同じ形状の内部電極のみを用いているために製造時のばらつきが発生しにくい。そして外部電極の一つを共通電極(GND)とし、例えば他の二つの外部電極の何れかに信号を印加して二つの異なる振動の位相を変えるか、あるいは他の二つの外部電極に別々の信号を印加することで二つの振動を独立に励振する等の様々な駆動方法が可能となる。   According to the present invention, the internal electrodes provided at the interfaces of the plurality of piezoelectric elements have the same shape, and by using at least three external electrodes that short-circuit the internal electrodes, only the internal electrodes having the same shape are used. In addition, variations during manufacturing are less likely to occur. One of the external electrodes is a common electrode (GND), for example, a signal is applied to one of the other two external electrodes to change the phase of two different vibrations, or the other two external electrodes are separated. Various driving methods such as exciting two vibrations independently by applying a signal become possible.

また、この振動体構造により、複数の内部電極が設けられた同一の圧電素子シート材を面内方向に位置をずらしながら積層し、個々の振動体形状に分割した後で、前記分割した面に外部電極を設けるという製造方法が採れるため製造プロセスが簡単で、しかも短い時間に大量の振動体を作製可能な為、大幅に製造コストを引き下げられる。   In addition, with this vibrating body structure, the same piezoelectric element sheet material provided with a plurality of internal electrodes is stacked while shifting the position in the in-plane direction, divided into individual vibrating body shapes, and then on the divided surfaces. Since a manufacturing method of providing an external electrode can be adopted, the manufacturing process is simple, and a large amount of vibrating bodies can be manufactured in a short time, so that the manufacturing cost can be greatly reduced.

また、外部電極どうしの間には電極を有さない圧電素子を設けることにより、製造時の外部電極どうしの短絡の防止や、この外部電極で短絡された内部電極が設けられた部分の分極時の影響が少なくなる。   In addition, by providing a piezoelectric element that does not have electrodes between the external electrodes, it is possible to prevent short-circuiting of the external electrodes during manufacturing, or when polarizing the portion where the internal electrode short-circuited by this external electrode is provided. Less influence.

さらに、外部電極のうち少なくとも一つは同一面内に存在する複数の内部電極を短絡するようにすることにより、内部電極の形状は同じであっても実際には異なる内部電極を有した場合と同等になり様々な振動の励振が可能となる。   Further, by short-circuiting a plurality of internal electrodes existing in the same plane among at least one of the external electrodes, even when the internal electrodes have the same shape but actually have different internal electrodes It becomes equivalent and can excite various vibrations.

また、前記複数の外部電極を短絡する複数の導通手段を有し、少なくとも一つの導通手段は、分極時に接地した外部電極と分極時に電位を加えた外部電極を短絡させれば一度の分極で済むと共に、分極方向が異なる部分での圧電特性の違いや分極方向が異なる境界部での応力集中による強度低下等を防ぐことが出来る。   Also, it has a plurality of conduction means for short-circuiting the plurality of external electrodes, and at least one conduction means can be polarized once if the external electrode grounded during polarization and the external electrode applied with a potential during polarization are short-circuited. At the same time, it is possible to prevent differences in piezoelectric characteristics at portions with different polarization directions, strength reduction due to stress concentration at boundaries with different polarization directions, and the like.

また、振動体は矩形形状であり、駆動信号を印加する外部電極を選択することにより前記振動体に励振する縦振動と屈曲振動の位相を逆転させ移動体の移動方向を切り替えるようにすれば駆動回路が簡単になる。   The vibrating body has a rectangular shape, and can be driven by switching the moving direction of the moving body by reversing the phases of longitudinal vibration and bending vibration excited by the vibrating body by selecting an external electrode to which a driving signal is applied. The circuit becomes simple.

また、振動体は矩形形状であり、複数の外部電極は第一の駆動信号もしくは第二の駆動信号が印加され、第一の駆動信号により振動体には縦振動が励振され、第二の駆動信号により振動体には屈曲振動が励振されるようにすれば、縦振動と屈曲振動を独立に励振可能であり、移動体の速度、推進力等を広範囲に渡って可変可能となり、更には高精度な位置決め制御が可能となる。   The vibrating body has a rectangular shape, and the first drive signal or the second drive signal is applied to the plurality of external electrodes, and longitudinal vibration is excited in the vibrator by the first drive signal, so that the second drive If bending vibration is excited in the vibrating body by the signal, longitudinal vibration and bending vibration can be excited independently, and the speed and driving force of the moving body can be varied over a wide range. Accurate positioning control is possible.

また、これらの振動体を用いた超音波モータを備えた電子機器は、その小型・薄型化、低消費電力化が可能となる。   In addition, an electronic device including an ultrasonic motor using these vibrators can be reduced in size, thickness, and power consumption.

以上のように、本発明によれば、簡単な製造プロセスで作製可能な積層圧電素子を振動体として用いるため低電圧で駆動でき、小型で高出力が得られると共に安価な超音波モータが実現できる。特に積層素子全体を一体的に焼結して作製することにより製品個々の特性ばらつきが小さく、信頼性が高く、内部損失が小さくて効率の高い超音波モータが得られる。そしてこれを用いた電子機器の小型、薄型化並びに低消費電力化が実現できる。   As described above, according to the present invention, since a laminated piezoelectric element that can be manufactured by a simple manufacturing process is used as a vibrating body, it can be driven at a low voltage, and a small and high output and an inexpensive ultrasonic motor can be realized. . In particular, by integrally sintering the entire laminated element, it is possible to obtain an ultrasonic motor with small product characteristic variations, high reliability, low internal loss, and high efficiency. And the electronic device using this can be reduced in size, thickness and power consumption.

本発明にかかわるリニヤ型超音波モータの構成例を示す図である。It is a figure which shows the structural example of the linear type | mold ultrasonic motor concerning this invention. 本発明にかかわる積層圧電素子の振動モードを示す図である。It is a figure which shows the vibration mode of the laminated piezoelectric element concerning this invention. 本発明の実施の形態1にかかわる積層圧電素子の構成を示す図である。It is a figure which shows the structure of the laminated piezoelectric element concerning Embodiment 1 of this invention. 本発明にかかわる積層圧電素子の製法を示す図である。It is a figure which shows the manufacturing method of the laminated piezoelectric element concerning this invention. 本発明の実施の形態2にかかわる積層圧電素子の構成を示す図である。It is a figure which shows the structure of the laminated piezoelectric element concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかわる積層圧電素子の構成を示す図である。It is a figure which shows the structure of the laminated piezoelectric element concerning Embodiment 3 of this invention. 本発明の実施の形態4にかかわる積層圧電素子の構成を示す図である。It is a figure which shows the structure of the laminated piezoelectric element concerning Embodiment 4 of this invention. 本発明の実施の形態5にかかわる積層圧電素子の構成を示す図である。It is a figure which shows the structure of the laminated piezoelectric element concerning Embodiment 5 of this invention. 本発明の実施の形態5にかかわる積層圧電素子の別の構成を示す図である。It is a figure which shows another structure of the laminated piezoelectric element concerning Embodiment 5 of this invention. 本発明の実施の形態5にかかわる積層圧電素子の別の構成を示す図である。It is a figure which shows another structure of the laminated piezoelectric element concerning Embodiment 5 of this invention. 本発明にかかわる超音波モータを用いた電子機器を示すブロック図である。It is a block diagram which shows the electronic device using the ultrasonic motor concerning this invention.

本発明の実施の形態を図面を基に説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は本発明の積層圧電素子1を振動体として用いたリニヤ型超音波モータの構成例を示したものである。矩形状の積層圧電素子1には突起2a,2b並びに凹部を有する支持部材3が設けられている。加圧部材4の軸部4aは段部を有し、案内板5の案内穴5aで、軸方向にのみ移動可能に案内されている。突起2a,2bの下には案内部材8a,8bに案内された移動体7が設けられ、支持部材3は加圧部材4の凹部に係合し、加圧部材4を加圧手段6で加圧することにより突起2a,2bと移動体7は接している。   FIG. 1 shows a configuration example of a linear ultrasonic motor using the laminated piezoelectric element 1 of the present invention as a vibrating body. A rectangular laminated piezoelectric element 1 is provided with a support member 3 having protrusions 2a and 2b and a recess. The shaft portion 4a of the pressure member 4 has a stepped portion and is guided by the guide hole 5a of the guide plate 5 so as to be movable only in the axial direction. Under the projections 2a and 2b, a moving body 7 guided by the guide members 8a and 8b is provided. The support member 3 engages with the recess of the pressure member 4, and the pressure member 4 is added by the pressure means 6. The protrusions 2a and 2b and the moving body 7 are in contact with each other by pressing.

ところで、積層圧電素子1は縦振動と屈曲振動を励振する。例えば、図2に積層圧電素子1の長手方向に対する振動振幅の様子を示したものであり、図2(a)は縦振動の様子を図2(b)は屈曲振動の様子を示したものである。縦振動、屈曲振動共に積層圧電素子1の中央部が振動の節となり、この位置に支持部材3が設けられている。また屈曲振動の腹の位置に突起2a,2bが設けられている。この縦振動と屈曲振動を同時に励振することにより突起2a,2bは積層振動子1の長手方向の変位と、これと直交する幅方向の変位からなる楕円運動を行い移動体7を駆動する。ところで、二つの振動モードはその次数に制限を与えられるものではなく、他のモードを用いても構わない。また、移動体7を固定し、振動体自体を駆動させても構わない。   By the way, the laminated piezoelectric element 1 excites longitudinal vibration and bending vibration. For example, FIG. 2 shows the state of vibration amplitude with respect to the longitudinal direction of the multilayer piezoelectric element 1, FIG. 2 (a) shows the state of longitudinal vibration, and FIG. 2 (b) shows the state of bending vibration. is there. The central portion of the laminated piezoelectric element 1 serves as a vibration node for both longitudinal vibration and bending vibration, and the support member 3 is provided at this position. Protrusions 2a and 2b are provided at the antinodes of bending vibration. By simultaneously exciting the longitudinal vibration and the bending vibration, the protrusions 2a and 2b drive the moving body 7 by performing an elliptical motion consisting of a displacement in the longitudinal direction of the laminated vibrator 1 and a displacement in the width direction perpendicular thereto. By the way, the two vibration modes are not limited in their orders, and other modes may be used. Further, the moving body 7 may be fixed and the vibrating body itself may be driven.

(実施の形態1)
具体的に積層圧電素子9の構成例を図3を基に説明する。図3(a),図3(c)はそれぞれ矩形形状からなり、積層圧電素子9を表裏から見た図であり、図3(d),図3(e)は断面図である。即ち図3(d),図3(e)に示す様に、内部電極10a、10bもしくは内部電極10c、10dを一方の面に有する圧電素子9a、9bを交互に積層した構造となっている。内部電極10a、10b、10c、10dは圧電素子9a、9bの長手方向にほぼ二分した形状となっており、積層圧電素子9の一つの面方向にのみ張り出しており、積層圧電素子9の側面で外部電極11a、11b、11c、11d、11eで短絡されている。外部電極11a、11b、11c、11dは積層圧電素子9の面内の向かい合う辺の中心を結ぶ線で分けられる四つの領域それぞれにおいて内部電極10a、10bを短絡している。外部電極1 1eは内部電極10c、10d全てを短絡している。
(Embodiment 1)
A specific configuration example of the laminated piezoelectric element 9 will be described with reference to FIG. 3 (a) and 3 (c) are each a rectangular shape, and are views of the laminated piezoelectric element 9 seen from the front and back, and FIGS. 3 (d) and 3 (e) are cross-sectional views. That is, as shown in FIGS. 3D and 3E, the internal electrodes 10a and 10b or the piezoelectric elements 9a and 9b having the internal electrodes 10c and 10d on one surface are alternately laminated. The internal electrodes 10a, 10b, 10c, and 10d are substantially bisected in the longitudinal direction of the piezoelectric elements 9a and 9b, projecting only in one surface direction of the multilayer piezoelectric element 9, and on the side surface of the multilayer piezoelectric element 9 The external electrodes 11a, 11b, 11c, 11d, and 11e are short-circuited. The external electrodes 11a, 11b, 11c, and 11d short-circuit the internal electrodes 10a and 10b in each of four regions divided by lines connecting the centers of opposite sides in the plane of the multilayer piezoelectric element 9. The external electrode 11e shorts all the internal electrodes 10c and 10d.

ここで外部電極11eをGNDとして外部電極11a、11b、11c、11dに高電圧を加えることで積層方向に分極処理がなされる。   Here, the external electrode 11e is set to GND, and a high voltage is applied to the external electrodes 11a, 11b, 11c, and 11d to perform polarization processing in the stacking direction.

本積層圧電素子9の駆動方法であるが、例えば次の二通りがある。外部電極11a、11dと外部電極11eの間に、もしくは外部電極11b、11cと外部電極11eの間に駆動信号を印加することで積層圧電素子9の面内の向かい合う辺の中心を結ぶ線で分けられる四つの領域の対角にある二つの領域が伸縮することで積層圧電素子9に縦振動と屈曲振動が励振される。駆動信号を印加する領域を切り替えることで縦振動と屈曲信号の位相が逆転し、移動体7の移動方向も変化する。別の方法としては外部電極11eをGNDとして外部電極11a、11dと外部電極11b、11cの間に位相の異なる駆動信号、例えば90度もしくは−90度異なる信号を印加することで積層圧電素子9に縦振動と屈曲振動が励振される。位相を逆転させることで縦振動と屈曲信号の位相が逆転し、移動体7の移動方向も逆となる。   The method for driving the present laminated piezoelectric element 9 includes, for example, the following two methods. Divided by lines connecting the centers of opposite sides of the multilayer piezoelectric element 9 by applying a drive signal between the external electrodes 11a, 11d and the external electrode 11e or between the external electrodes 11b, 11c and the external electrode 11e. The longitudinal and bending vibrations are excited in the laminated piezoelectric element 9 by expanding and contracting two regions diagonally to the four regions. By switching the region to which the drive signal is applied, the phases of the longitudinal vibration and the bending signal are reversed, and the moving direction of the moving body 7 is also changed. As another method, the external electrode 11e is set to GND, and drive signals having different phases are applied between the external electrodes 11a and 11d and the external electrodes 11b and 11c, for example, signals different from each other by 90 degrees or −90 degrees to the laminated piezoelectric element 9. Longitudinal vibration and bending vibration are excited. By reversing the phase, the phases of the longitudinal vibration and the bending signal are reversed, and the moving direction of the moving body 7 is also reversed.

ところで、この積層圧電素子9の製法を図4に示すが、例えば積層圧電素子9が複数取れる大きさの圧電素子のシート12上に複数の積層圧電素子分の電極10を印刷等によって設ける。このシート12を複数枚重ねた後で電極を有さない圧電素子を最後に重ねて積層し、仮燒結してバインダーを飛ばした後、個々の積層圧電素子9にダイシング等によって分割され本焼成される。そして外部電極11a、11b、11c、11d、11eが付けられた後、分極処理がなされ完成となる。このように、同一のシート12のみを積層すれば良いため、各シートの電極付けの工程も含め、全て同一作業の繰り返しとなり、製造時間の大幅な短縮並びに電極付けマスク等の治具も少なくて済む。   Incidentally, a manufacturing method of the laminated piezoelectric element 9 is shown in FIG. 4. For example, electrodes 10 corresponding to a plurality of laminated piezoelectric elements are provided on a sheet 12 of piezoelectric elements having a size capable of taking a plurality of laminated piezoelectric elements 9 by printing or the like. After stacking a plurality of sheets 12, the piezoelectric elements without electrodes are stacked one after the other, temporarily sintered, and the binder is blown off, and then divided into individual laminated piezoelectric elements 9 by dicing or the like, and then fired. The Then, after the external electrodes 11a, 11b, 11c, 11d, and 11e are attached, a polarization process is performed to complete. Since only the same sheet 12 needs to be laminated in this way, all the same operations are repeated including the electrode attaching process of each sheet, and the manufacturing time is greatly shortened and the number of jigs such as an electrode attaching mask is reduced. That's it.

ここでダイシングによる分割部を点線50で示したが、内部電極10の一方の辺が交互に点線50に位置し、分割後には内部電極10a、10b、10c、10dを構成する様に交互にシート12は位置をずらして重ねられる。実際にはシート12上の電極10は実際の内部電極10a、10b、10c、10dの大きさよりも若干大きなものが設けられており、分割時の寸法の誤差が生じても分割面に張り出す様に設定される。そしてこの様に最上面に電極を有さない圧電素子9cを積層することで、最上面、最下面の圧電素子は駆動力を生じない為、振動のバランスがとれるため、不要振動が発生しにくい。   Here, the dicing portions are indicated by dotted lines 50, but one side of the internal electrode 10 is alternately positioned on the dotted line 50, and after the division, the sheets are alternately formed so as to constitute the internal electrodes 10a, 10b, 10c, and 10d. 12 are stacked with the position shifted. Actually, the electrode 10 on the sheet 12 is slightly larger than the actual internal electrodes 10a, 10b, 10c, and 10d, so that even if a dimensional error occurs during division, the electrode 10 protrudes from the division surface. Set to In this way, by stacking the piezoelectric elements 9c having no electrodes on the uppermost surface, the piezoelectric elements on the uppermost surface and the lowermost surface do not generate a driving force, so that vibrations are balanced, and unnecessary vibrations are unlikely to occur. .

また、ここで積層圧電素子9は金属等の弾性体と接合して振動体を構成しても構わないし、各圧電素子の電極の短絡も積層圧電素子の側面に限るものではなく、スルーホール等を用いても構わない。   Here, the laminated piezoelectric element 9 may be bonded to an elastic body such as a metal to constitute a vibrating body, and the short circuit of the electrodes of each piezoelectric element is not limited to the side surface of the laminated piezoelectric element, but a through hole or the like. May be used.

(実施の形態2)
次に、実施の形態1の変形例を以下に示す。ここでは積層圧電素子13の積層方向に伸縮する為、圧電縦効果が使え大きな出力が得られる。
(Embodiment 2)
Next, a modification of the first embodiment is shown below. Here, since the laminated piezoelectric element 13 expands and contracts in the stacking direction, the piezoelectric longitudinal effect can be used and a large output can be obtained.

図5(a),図5(c)はそれぞれ矩形形状からなる実施の形態2の積層圧電素子13を表裏から見た図であり、図5(d),図5(e)は断面図である。即ち、図5(d),図5(e)に示す様に内部電極14a、14bもしくは内部電極14c、14dを一方の面に有する圧電素子13a、13bを交互に積層した構造となっている。
内部電極14a、14b、14c、14dは圧電素子13a、13bの長手方向にほぼ二分した形状となっており、積層圧電素子13の一つの面方向にのみ張り出しており、積層圧電素子13の側面で外部電極15a、15b、15c、15d、15eで短絡されている。外部電極15a、15b、15c、15dは積層圧電素子13の面内の向かい合う辺の中心を結ぶ線で分けられる四つの領域それぞれにおいて内部電極14a、14bを短絡している。外部電極15eは内部電極14c、14d全てを短絡している。
5 (a) and 5 (c) are views of the laminated piezoelectric element 13 according to the second embodiment having a rectangular shape as viewed from the front and back sides, and FIGS. 5 (d) and 5 (e) are cross-sectional views. is there. That is, as shown in FIGS. 5D and 5E, the piezoelectric elements 13a and 13b having the internal electrodes 14a and 14b or the internal electrodes 14c and 14d on one surface are alternately stacked.
The internal electrodes 14 a, 14 b, 14 c, and 14 d are substantially bisected in the longitudinal direction of the piezoelectric elements 13 a and 13 b, and project only in one surface direction of the laminated piezoelectric element 13. The external electrodes 15a, 15b, 15c, 15d, and 15e are short-circuited. The external electrodes 15a, 15b, 15c, and 15d short-circuit the internal electrodes 14a and 14b in each of four regions divided by lines connecting the centers of opposite sides in the plane of the multilayer piezoelectric element 13. The external electrode 15e short-circuits all the internal electrodes 14c and 14d.

ここで外部電極15eをGNDとして外部電極15a、15b、15c、15dに高電圧を加えることで積層方向に分極処理がなされる。   Here, the external electrode 15e is set to GND, and a high voltage is applied to the external electrodes 15a, 15b, 15c, and 15d to perform polarization processing in the stacking direction.

本積層圧電素子13の駆動方法であるが、例えば次の二通りがある。外部電極15a、15dと外部電極15eの間に、もしくは外部電極15b、15cと外部電極15eの間に駆動信号を印加することで積層圧電素子13の面内の向かい合う辺の中心を結ぶ線で分けられる四つの領域の対角にある二つの領域が伸縮し、積層圧電素子13に縦振動と屈曲振動が励振される。駆動信号を印加する領域を切り替えることで縦振動と屈曲信号の位相が逆転し、移動体7の移動方向も変化する。別の方法としては外部電極15eをGNDとして外部電極15a、15dと外部電極15b、15cの間に位相の異なる駆動信号、例えば90度もしくは−90度異なる信号を印加することで積層圧電素子13に縦振動と屈曲振動が励振される。位相を逆転させることで縦振動と屈曲信号の位相が逆転し、移動体7の移動方向も逆となる。   The method for driving the present laminated piezoelectric element 13 includes, for example, the following two methods. Divided by lines connecting the centers of opposite sides of the laminated piezoelectric element 13 by applying a drive signal between the external electrodes 15a, 15d and the external electrode 15e or between the external electrodes 15b, 15c and the external electrode 15e. Two regions at the diagonal of the four regions are expanded and contracted, and longitudinal vibration and bending vibration are excited in the laminated piezoelectric element 13. By switching the region to which the drive signal is applied, the phases of the longitudinal vibration and the bending signal are reversed, and the moving direction of the moving body 7 is also changed. As another method, the external electrode 15e is set to GND and drive signals having different phases are applied between the external electrodes 15a and 15d and the external electrodes 15b and 15c, for example, signals different from each other by 90 degrees or -90 degrees to the laminated piezoelectric element 13. Longitudinal vibration and bending vibration are excited. By reversing the phase, the phases of the longitudinal vibration and the bending signal are reversed, and the moving direction of the moving body 7 is also reversed.

(実施の形態3)
実施の形態3に示す積層圧電素子16の構成を図6に示すが、基本的には実施の形態1に示したものと共通であり、違いは外部電極17a、17b、17c、17dと分極方向、駆動方法のみであるため、相違点のみを述べ共通点の説明を省略する。
(Embodiment 3)
The configuration of the laminated piezoelectric element 16 shown in the third embodiment is shown in FIG. 6, but is basically the same as that shown in the first embodiment, with the difference being the external electrodes 17a, 17b, 17c, 17d and the polarization direction. Since only the driving method is used, only the differences are described and the description of the common points is omitted.

外部電極17eは積層圧電素子16の一つの面の幅方向中央部で内部電極10a、10bと短絡される。外部電極17eで短絡される圧電素子部分の両側の部分では外部電極17a、17bによって内部電極10aが、外部電極17c、17dによって内部電極10bが短絡される。また積層圧電素子16の反対の面では外部電極17fによって内部電極10c、10dが短絡される。   The external electrode 17e is short-circuited with the internal electrodes 10a and 10b at the center in the width direction of one surface of the multilayer piezoelectric element 16. At both sides of the piezoelectric element portion short-circuited by the external electrode 17e, the internal electrode 10a is short-circuited by the external electrodes 17a and 17b, and the internal electrode 10b is short-circuited by the external electrodes 17c and 17d. On the opposite surface of the laminated piezoelectric element 16, the internal electrodes 10c and 10d are short-circuited by the external electrode 17f.

ここで、外部電極17fをGNDとして外部電極17a、17b、17c、17d、17eに電圧を加えることにより分極処理を行う。この場合の駆動方法としては、外部電極17fをGNDとして外部電極17eに第一の駆動信号を印加することにより縦振動を励振する。また外部電極17a、17dもしくは外部電極17b、17cに第二の駆動信号を印加することにより屈曲振動が励振され、移動体7を駆動する。どちらの外部電極に信号を印加するかによって縦振動と屈曲信号の位相が反転し、移動体7の移動方向も変わる。   Here, polarization is performed by applying a voltage to the external electrodes 17a, 17b, 17c, 17d, and 17e with the external electrode 17f as GND. As a driving method in this case, longitudinal vibration is excited by applying a first drive signal to the external electrode 17e with the external electrode 17f as GND. Further, by applying a second drive signal to the external electrodes 17a and 17d or the external electrodes 17b and 17c, bending vibration is excited, and the moving body 7 is driven. Depending on which external electrode the signal is applied to, the phases of the longitudinal vibration and the bending signal are reversed, and the moving direction of the moving body 7 also changes.

別な駆動方法としては、外部電極17fをGNDとして外部電極17a、17d、17eにプラス方向の、外部電極17b、17cにマイナス方向の電圧を加えることにより分極処理を行う。この場合の駆動方法としては、外部電極17fを共通電極(GND)として外部電極17a、17b、17c、17dと外部電極17eの間に位相の異なる第一及び第二の駆動信号、例えば90度もしくは−90度異なる信号を印加することで積層圧電素子16に縦振動と屈曲振動が励振される。位相を逆転させることで縦振動と屈曲信号の位相が逆転し、移動体7の移動方向も逆となる。この位相は任意であり、0度と180度の切り替えを行っても構わない。   As another driving method, the external electrode 17f is set to GND and a positive voltage is applied to the external electrodes 17a, 17d and 17e, and a negative voltage is applied to the external electrodes 17b and 17c. As a driving method in this case, first and second driving signals having different phases between the external electrodes 17a, 17b, 17c and 17d and the external electrode 17e, for example, 90 degrees or By applying signals different by −90 degrees, longitudinal vibration and bending vibration are excited in the laminated piezoelectric element 16. By reversing the phase, the phases of the longitudinal vibration and the bending signal are reversed, and the moving direction of the moving body 7 is also reversed. This phase is arbitrary, and switching between 0 degree and 180 degrees may be performed.

また分極方向に付いても任意であり、分極方向に応じて駆動信号の位相を逆転すれば同じ振動が励振される。   The polarization direction is arbitrary, and the same vibration is excited if the phase of the drive signal is reversed according to the polarization direction.

(実施の形態4)
図7は本発明の積層圧電素子の別の例を示したものである。図7(a),図7(c)はそれぞれ矩形形状からなる実施の形態4の積層圧電素子18を表裏から見た図であり、図7(d),図7(e)は断面図である。即ち図7(d)、図7(e)に示す様に内部電極19a、19b、19cもしくは内部電極19d、19e、19fを一方の面に有する圧電素子18a、18bを交互に積層した構造となっている。内部電極19a、19b、19c、19d、19e、19fは圧電素子18a、18bの長手方向にほぼ三等分した形状となっており、積層圧電素子18の一つの面方向にのみ張り出しており、積層圧電素子18の側面で外部電極20a、20b、20c、20d、20e、21a、21b、21c、21d、21eで短絡されている。外部電極20eは積層圧電素子18の一方の面内で内部電極19bを短絡している。外部電極20a、20bは積層圧電素子18を長手方向に2分する領域で電極19aを短絡する。外部電極20c、20dは積層圧電素子18を長手方向に2分する領域で電極19cを短絡する。
(Embodiment 4)
FIG. 7 shows another example of the laminated piezoelectric element of the present invention. 7 (a) and 7 (c) are views of the laminated piezoelectric element 18 according to the fourth embodiment having a rectangular shape as viewed from the front and back sides, and FIGS. 7 (d) and 7 (e) are cross-sectional views. is there. That is, as shown in FIGS. 7 (d) and 7 (e), piezoelectric elements 18a and 18b having internal electrodes 19a, 19b and 19c or internal electrodes 19d, 19e and 19f on one surface are alternately laminated. ing. The internal electrodes 19a, 19b, 19c, 19d, 19e, and 19f are substantially equally divided into three in the longitudinal direction of the piezoelectric elements 18a and 18b, and project only in one surface direction of the laminated piezoelectric element 18, The side surfaces of the piezoelectric element 18 are short-circuited by external electrodes 20a, 20b, 20c, 20d, 20e, 21a, 21b, 21c, 21d, and 21e. The external electrode 20e short-circuits the internal electrode 19b within one surface of the laminated piezoelectric element 18. The external electrodes 20a and 20b short-circuit the electrode 19a in a region that bisects the laminated piezoelectric element 18 in the longitudinal direction. The external electrodes 20c and 20d short-circuit the electrode 19c in a region that bisects the laminated piezoelectric element 18 in the longitudinal direction.

また、他方の面で外部電極21eは積層圧電素子18の一方の面内で内部電極19eを短絡している。外部電極21a、21bは積層圧電素子18を長手方向に2分する領域で電極19dを短絡する。外部電極21c、21dは積層圧電素子18を長手方向に2分する領域で電極19fを短絡する。例えば外部電極20aと20bが短絡しない様に、その隙間に位置する場所に電極を有さない圧電素子18cを入れても構わない。   Further, the external electrode 21e is short-circuited to the internal electrode 19e in one surface of the multilayer piezoelectric element 18 on the other surface. The external electrodes 21a and 21b short-circuit the electrode 19d in a region that bisects the laminated piezoelectric element 18 in the longitudinal direction. The external electrodes 21c and 21d short-circuit the electrode 19f in a region that bisects the laminated piezoelectric element 18 in the longitudinal direction. For example, a piezoelectric element 18c that does not have an electrode may be inserted at a location located in the gap so that the external electrodes 20a and 20b are not short-circuited.

ここで、外部電極21a、21b,21c,21d,21eをGNDとして外部電極20a、20b、20c、20d、20eに高電圧を加えることで、積層方向に分極処理がなされる。   Here, the external electrodes 21a, 21b, 21c, 21d, and 21e are set to GND, and a high voltage is applied to the external electrodes 20a, 20b, 20c, 20d, and 20e, whereby polarization processing is performed in the stacking direction.

本積層圧電素子13の駆動方法であるが、例えば外部電極21c、21b、21e、20b、20cを図示しない導通手段により短絡し、GNDとして外部電極20eと図示しない導通手段により短絡された外部電極20a、20d、21a、21dとの間に位相の異なる駆動信号、即ち第一の駆動信号と第二の駆動信号、例えば90度もしくは−90度異なる信号を印加することで積層圧電素子18に縦振動と屈曲振動が励振される。位相を逆転させることで縦振動と屈曲信号の位相が逆転し、移動体7の移動方向も逆となる。   This multilayer piezoelectric element 13 is driven by, for example, the external electrodes 21c, 21b, 21e, 20b, and 20c being short-circuited by a conduction means (not shown), and the external electrode 20a shorted by a conduction means (not shown) as the GND. , 20d, 21a, and 21d, by applying a drive signal having a different phase, that is, a first drive signal and a second drive signal, for example, a signal different by 90 degrees or −90 degrees, longitudinal vibrations to the laminated piezoelectric element 18 And bending vibration is excited. By reversing the phase, the phases of the longitudinal vibration and the bending signal are reversed, and the moving direction of the moving body 7 is also reversed.

本発明によれば、圧電縦効果を用いるので大きな出力が得られると共に、分極方向が同じ方向で良い為、工程が簡単になると共に高い電圧まで破壊せずに使用できる。また分極方向の違いにより生じる特性ばらつきも生じない。   According to the present invention, since the piezoelectric longitudinal effect is used, a large output can be obtained and the polarization direction can be the same direction. Therefore, the process can be simplified and a high voltage can be used without being destroyed. Also, there is no characteristic variation caused by the difference in polarization direction.

(実施の形態5)
図8は本発明の積層圧電素子の別の例を示したものである。図8(a)、図8(c)はそれぞれ矩形形状からなる実施の形態4の例に対応する積層圧電素子22を表裏から見た図であり、図8(d),図8(e)は断面図である。即ち、図8(d),図8(e)に示す様に、内部電極23a、23b、23cもしくは内部電極23d、23e、23fを一方の面に有する圧電素子22a、22bを交互に積層した構造となっている。内部電極23b、23eは圧電素子22a、22bの長手方向の中央部に設けられ、その両側には内部電極23a、23c、23d、23fが設けられ、積層圧電素子22の一つの面方向にのみ張り出しており、積層圧電素子22の側面で外部電極24a、24b、2 4c、24d、24e、24fで短絡されている。外部電極24eは積層圧電素子22の一方の面内で内部電極23bを短絡している。外部電極24a、24bは積層圧電素子18を幅方向に2分する領域で電極23aを短絡する。外部電極24c、24dは積層圧電素子18を幅方向に2分する領域で電極23cを短絡する。また他方の面で外部電極24fは内部電極23d、23e、23fを短絡している。
(Embodiment 5)
FIG. 8 shows another example of the laminated piezoelectric element of the present invention. FIGS. 8 (a) and 8 (c) are views of the laminated piezoelectric element 22 corresponding to the example of Embodiment 4 having a rectangular shape, as seen from the front and back sides, and FIGS. 8 (d) and 8 (e). Is a cross-sectional view. That is, as shown in FIGS. 8D and 8E, a structure in which piezoelectric elements 22a and 22b having internal electrodes 23a, 23b and 23c or internal electrodes 23d, 23e and 23f on one surface are alternately laminated. It has become. The internal electrodes 23b and 23e are provided at the center in the longitudinal direction of the piezoelectric elements 22a and 22b. The internal electrodes 23a, 23c, 23d and 23f are provided on both sides of the internal electrodes 23b and 23e. In addition, the side surfaces of the laminated piezoelectric element 22 are short-circuited by external electrodes 24a, 24b, 24c, 24d, 24e, 24f. The external electrode 24e short-circuits the internal electrode 23b within one surface of the laminated piezoelectric element 22. The external electrodes 24a and 24b short-circuit the electrode 23a in a region that bisects the laminated piezoelectric element 18 in the width direction. The external electrodes 24c and 24d short-circuit the electrode 23c in a region that bisects the laminated piezoelectric element 18 in the width direction. On the other side, the external electrode 24f short-circuits the internal electrodes 23d, 23e, and 23f.

ここで、外部電極24fをGNDとして外部電極24a、24b、24eにプラス方向の高電圧を、外部電極24b、24cにマイナス方向の高電圧を加えることで加えることで積層方向に分極処理がなされる。   Here, the external electrode 24f is set to GND, and a high voltage in the positive direction is applied to the external electrodes 24a, 24b, and 24e, and a high voltage in the negative direction is applied to the external electrodes 24b and 24c, whereby the polarization process is performed in the stacking direction. .

本積層圧電素子22の駆動方法であるが、例えば外部電極24fをGNDとして外部電極24eと外部電極24a、24b、24c、24dとの間に位相の異なる駆動信号、即ち第一の駆動信号と第二の駆動信号、例えば90度もしくは-90度異なる信号を印加することで積層圧電素子18に縦振動と屈曲振動が励振される。位相を逆転させることで縦振動と屈曲信号の位相が逆転し、移動体7の移動方向も変化する。   This laminated piezoelectric element 22 is driven by, for example, a driving signal having a different phase between the external electrode 24e and the external electrodes 24a, 24b, 24c, and 24d with the external electrode 24f as GND, that is, the first drive signal and the first drive signal. By applying two drive signals, for example, signals different by 90 degrees or −90 degrees, longitudinal vibration and bending vibration are excited in the laminated piezoelectric element 18. By reversing the phase, the phases of the longitudinal vibration and the bending signal are reversed, and the moving direction of the moving body 7 also changes.

また本実施の形態の変形例を図9、図10を用いて説明する。図9、図10は図8(a)に対応させて示したものであり、即ち図9、図10は積層圧電素子22の一方の面の外部電極の違いだけを示したものである。図9において、外部電極25eは積層圧電素子22の幅方向中央部に設けられ、内部電極23a、23b、23cを短絡させる。外部電極25a、25bは外部電極25eの両側で内部電極23aを短絡する。外部電極26c、26dは外部電極25eの両側で内部電極23cを短絡する。ここで、外部電極25a、25b、25c,25d,25eは図8における外部電極24a、24b、24c、24d、24eに相当させて分極、駆動させれば良い。   A modification of the present embodiment will be described with reference to FIGS. FIGS. 9 and 10 are shown corresponding to FIG. 8A, that is, FIGS. 9 and 10 show only the difference in the external electrodes on one surface of the laminated piezoelectric element 22. FIG. In FIG. 9, the external electrode 25e is provided at the center in the width direction of the laminated piezoelectric element 22, and short-circuits the internal electrodes 23a, 23b, and 23c. The external electrodes 25a and 25b short-circuit the internal electrode 23a on both sides of the external electrode 25e. The external electrodes 26c and 26d short-circuit the internal electrode 23c on both sides of the external electrode 25e. Here, the external electrodes 25a, 25b, 25c, 25d and 25e may be polarized and driven corresponding to the external electrodes 24a, 24b, 24c, 24d and 24e in FIG.

図10において外部電極26eは積層圧電素子22の幅方向および長手方向中央部に設けられ、内部電極23a、23b、23cを短絡させる。外部電極26a、26bは外部電極26eの両側で内部電極23aを短絡する。外部電極26c、26dは外部電極26eの両側で内部電極23cを短絡する。ここで、外部電極26a、26b、26c,26d,26eを図8における外部電極24a、24b、24c、24d、24eに相当させて分極、駆動させれば良い。   In FIG. 10, the external electrode 26e is provided at the center in the width direction and the longitudinal direction of the laminated piezoelectric element 22, and short-circuits the internal electrodes 23a, 23b, and 23c. The external electrodes 26a and 26b short-circuit the internal electrode 23a on both sides of the external electrode 26e. The external electrodes 26c and 26d short-circuit the internal electrode 23c on both sides of the external electrode 26e. Here, the external electrodes 26a, 26b, 26c, 26d, and 26e may be polarized and driven corresponding to the external electrodes 24a, 24b, 24c, 24d, and 24e in FIG.

本実施の形態は同様の実施の形態をとる実施の形態3の場合と比べ、振動を効率的に励振出来るという大きな特徴を有する。縦振動の励振に効果的な節部、即ち積層圧電素子22の長手方向中央部に電極を有している。そして図9の場合には、屈曲振動を励振する圧電素子の電極23bは駆動に用いていないため、実質上の隙間となり、内部電極23a、23b、23c及び23d,23e,23fの間の隙間を小さくしても分極時や駆動信号印加の際の影響は受けない。従って電極23a、23b、23c、23d、23e、23f全てを用いて行う縦振動の励振の効率が良い。また、この電極23b,23eの部分は屈曲振動の励振にはあまり寄与しないからこの部分を使わないことにより無駄な電力を消費せずに済む。
(実施の形態6)
本発明の超音波モータを用いて電子機器を構成した例を図11を基に説明する。
This embodiment has a great feature that vibration can be efficiently excited as compared with the third embodiment which takes the same embodiment. An electrode is provided at a node effective for excitation of longitudinal vibration, that is, at the center in the longitudinal direction of the laminated piezoelectric element 22. In the case of FIG. 9, since the electrode 23b of the piezoelectric element that excites bending vibration is not used for driving, it becomes a substantial gap, and the gap between the internal electrodes 23a, 23b, 23c and 23d, 23e, 23f is reduced. Even if it is made smaller, it is not affected by polarization or drive signal application. Therefore, the excitation efficiency of the longitudinal vibration performed using all the electrodes 23a, 23b, 23c, 23d, 23e, and 23f is good. In addition, since the portions of the electrodes 23b and 23e do not contribute much to the excitation of bending vibration, it is not necessary to consume useless power by not using these portions.
(Embodiment 6)
An example in which an electronic apparatus is configured using the ultrasonic motor of the present invention will be described with reference to FIG.

図11は本発明の駆動回路により駆動される超音波モータ100を電子機器の駆動源に適用したブロック図を示したものであり、積層圧電素子1、9、13、16、18,22と積層圧電素子1、9、16、19に接合された摩擦部材2により摩擦駆動される移動体7と移動体7と一体に動作する伝達機構32と、伝達機構32の動作に基づいて動作する出力機構33からなる。ここでは移動体を回転体とし、移動体を回転動作させる例について説明する。   FIG. 11 is a block diagram in which an ultrasonic motor 100 driven by a drive circuit of the present invention is applied to a drive source of an electronic device. The multilayer piezoelectric elements 1, 9, 13, 16, 18, and 22 are laminated. The moving body 7 frictionally driven by the friction member 2 joined to the piezoelectric elements 1, 9, 16, and 19, the transmission mechanism 32 that operates integrally with the moving body 7, and the output mechanism that operates based on the operation of the transmission mechanism 32 33. Here, an example in which the moving body is a rotating body and the moving body is rotated will be described.

ここで、伝達機構32は例えば歯車列、摩擦車等の伝達車を用いる。出力機構33としては、プリンタにおいては紙送り機構、カメラにおいてはシャッタ駆動機構、レンズ駆動機構、フィルム巻き上げ機構等を、また電子機器や計測器においては指針等を、ロボットにおいてはアーム機構、工作機械においては歯具送り機構や加工部材送り機構等を用いる。   Here, the transmission mechanism 32 uses a transmission wheel such as a gear train and a friction wheel, for example. The output mechanism 33 includes a paper feed mechanism in a printer, a shutter drive mechanism, a lens drive mechanism, a film winding mechanism in a camera, a pointer in an electronic device and a measuring instrument, an arm mechanism in a robot, and a machine tool. In this case, a tooth tool feeding mechanism, a processing member feeding mechanism, or the like is used.

尚、本実施の形態における電子機器としては電子時計、計測器、カメラ、プリンタ、印刷機、ロボット、工作機、ゲーム機、光情報機器、医療機器、移動装置等を実現できる。さらに移動体7に出力軸を設け、出力軸からのトルクを伝達するための動力伝達機構を有する構成とすれば、超音波モータ駆動装置を実現できる。   Note that an electronic timepiece, a measuring instrument, a camera, a printer, a printing machine, a robot, a machine tool, a game machine, an optical information device, a medical device, a moving device, and the like can be realized as the electronic device in this embodiment. Furthermore, if the moving body 7 is provided with an output shaft and has a power transmission mechanism for transmitting torque from the output shaft, an ultrasonic motor driving device can be realized.

1、9、13、16、18、22 積層圧電素子
2 摩擦部材
3 支持部材
4 加圧部材
6 加圧手段
7 移動体
10、14、19、23 内部電極
11、15、17、20、21、24、25、26 外部電極
DESCRIPTION OF SYMBOLS 1, 9, 13, 16, 18, 22 Multilayer piezoelectric element 2 Friction member 3 Support member 4 Pressurization member 6 Pressurization means 7 Moving body 10, 14, 19, 23 Internal electrode 11, 15, 17, 20, 21, 24, 25, 26 External electrode

Claims (6)

同一面内に複数の内部電極を有する圧電素子を複数積層した積層圧電素子であって、
前記積層圧電素子の側面には、内部電極を前記圧電素子の積層方向で短絡する外部電極と、前記同一面内の複数の内部電極同士を短絡する外部電極と、
を有することを特徴とする積層圧電素子。
A laminated piezoelectric element obtained by laminating a plurality of piezoelectric elements having a plurality of internal electrodes in the same plane,
On the side surface of the multilayer piezoelectric element, an external electrode that short-circuits an internal electrode in the stacking direction of the piezoelectric element, and an external electrode that short-circuits a plurality of internal electrodes in the same plane,
A laminated piezoelectric element comprising:
同一面内に複数の内部電極を有する圧電素子を複数積層した積層圧電素子であって、
前記同一面内の複数の内部電極同士を短絡するとともに前記圧電素子の積層方向において複数の圧電素子の内部電極同士を短絡する外部電極を有することを特徴とする積層圧電素子。
A laminated piezoelectric element obtained by laminating a plurality of piezoelectric elements having a plurality of internal electrodes in the same plane,
A multilayer piezoelectric element comprising: an external electrode that short-circuits the plurality of internal electrodes in the same plane and short-circuits the internal electrodes of the plurality of piezoelectric elements in the stacking direction of the piezoelectric elements.
前記積層圧電素子は電極を有さない圧電素子が積層されていることを特徴とする請求項1又は2記載の積層圧電素子 The laminated piezoelectric element according to claim 1 or 2, wherein the laminated piezoelectric element is laminated with a piezoelectric element having no electrode . 前記複数の外部電極を短絡する複数の導通手段を有し、少なくとも一つの前記導通手段は、分極時に接地した外部電極と分極時に電位を加えた外部電極を短絡することを特徴とする請求項1乃至3の何れか一項に記載の積層圧電素子A plurality of conducting means for short-circuiting the plurality of external electrodes, at least one of said conducting means, according to claim 1, characterized in that short-circuiting the external electrodes plus potential during polarization the external electrode which is grounded when the polarization 4. The laminated piezoelectric element according to any one of items 1 to 3 . 複数の圧電素子を積層した積層圧電素子の製造方法であって、複数の内部電極が設けられた同一の圧電素子シート材を面内方向に位置をずらしながら積層し、個々の積層圧電素子形状に分割した後で、前記分割した面に前記積層圧電素子の内部電極を前記圧電素子の積層方向で短絡する外部電極と、同一面内の複数の内部電極同士を短絡する外部電極と、を設ける工程を有することを特徴とする積層圧電素子の製造方法 A method of manufacturing a laminated piezoelectric element in which a plurality of piezoelectric elements are laminated, wherein the same piezoelectric element sheet material provided with a plurality of internal electrodes is laminated while shifting the position in the in-plane direction to form individual laminated piezoelectric element shapes. A step of providing an external electrode for short-circuiting the internal electrodes of the multilayer piezoelectric element in the stacking direction of the piezoelectric elements and an external electrode for short-circuiting a plurality of internal electrodes in the same plane after the division. A method for producing a laminated piezoelectric element comprising: 請求項1乃至4の何れか一項に記載の積層圧電素子を備えた電子機器 An electronic device comprising the laminated piezoelectric element according to claim 1 .
JP2009057744A 2009-03-11 2009-03-11 Multilayer piezoelectric element, method for manufacturing multilayer piezoelectric element, and electronic apparatus provided with multilayer piezoelectric element Expired - Lifetime JP5080518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009057744A JP5080518B2 (en) 2009-03-11 2009-03-11 Multilayer piezoelectric element, method for manufacturing multilayer piezoelectric element, and electronic apparatus provided with multilayer piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009057744A JP5080518B2 (en) 2009-03-11 2009-03-11 Multilayer piezoelectric element, method for manufacturing multilayer piezoelectric element, and electronic apparatus provided with multilayer piezoelectric element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003140798A Division JP4313610B2 (en) 2003-05-19 2003-05-19 Ultrasonic motor, method for manufacturing the same, and electronic apparatus equipped with ultrasonic motor

Publications (2)

Publication Number Publication Date
JP2009136146A JP2009136146A (en) 2009-06-18
JP5080518B2 true JP5080518B2 (en) 2012-11-21

Family

ID=40867483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009057744A Expired - Lifetime JP5080518B2 (en) 2009-03-11 2009-03-11 Multilayer piezoelectric element, method for manufacturing multilayer piezoelectric element, and electronic apparatus provided with multilayer piezoelectric element

Country Status (1)

Country Link
JP (1) JP5080518B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101525660B1 (en) * 2013-04-09 2015-06-10 삼성전기주식회사 Piezo actuator and vibrator including the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3311446B2 (en) * 1993-11-30 2002-08-05 オリンパス光学工業株式会社 Ultrasonic motor
JP3370178B2 (en) * 1994-03-30 2003-01-27 三井化学株式会社 Multilayer piezoelectric element and method of manufacturing the same
JP4510179B2 (en) * 1998-08-07 2010-07-21 セイコーインスツル株式会社 Ultrasonic motor and electronic equipment with ultrasonic motor
JP4313610B2 (en) * 2003-05-19 2009-08-12 セイコーインスツル株式会社 Ultrasonic motor, method for manufacturing the same, and electronic apparatus equipped with ultrasonic motor

Also Published As

Publication number Publication date
JP2009136146A (en) 2009-06-18

Similar Documents

Publication Publication Date Title
JP3792864B2 (en) Ultrasonic motor and electronic equipment with ultrasonic motor
JP2004297951A (en) Ultrasonic vibrator and ultrasonic motor
JP4697929B2 (en) Multilayer piezoelectric element and vibration wave drive device
JP4328113B2 (en) Ultrasonic motor
JP5080518B2 (en) Multilayer piezoelectric element, method for manufacturing multilayer piezoelectric element, and electronic apparatus provided with multilayer piezoelectric element
JP4641709B2 (en) Ultrasonic motor using laminated piezoelectric vibrator and electronic device using the same
JP4628017B2 (en) Multilayer piezoelectric element, ultrasonic motor, electronic device, stage, and multilayer piezoelectric element manufacturing method
JP4313610B2 (en) Ultrasonic motor, method for manufacturing the same, and electronic apparatus equipped with ultrasonic motor
JP4918122B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP5357127B2 (en) Ultrasonic motor and electronic equipment and stage using the same
US7642697B2 (en) Ultrasonic motor and electronic device using the same
JP4563490B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP2009044838A (en) Ultrasonic actuator and method for manufacturing piezoelectric displacement portion
US7501743B2 (en) Piezoelectric ultrasonic motor for 2-dimensional positioning
JP4672999B2 (en) Ultrasonic motor, laminated piezoelectric element and electronic device
JPH05175567A (en) Laminated actuator
JP4634174B2 (en) Ultrasonic motor and electronic device using the same
JP5216822B2 (en) Ultrasonic motor using laminated piezoelectric vibrator and electronic device using the same
JP4454930B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP2008067539A (en) Ultrasonic actuator and method of manufacturing its vibrator
JP5411196B2 (en) Piezoelectric device and electronic apparatus using the same
JP4628872B2 (en) Piezoelectric stator element and micro ultrasonic motor using the same
JP5144097B2 (en) Ultrasonic motor device
JP5605980B2 (en) Ultrasonic motor and electronic device using the same
JP4745615B2 (en) Piezoelectric device and electronic apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090317

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5080518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term