JP4485238B2 - Ultrasonic motor and electronic device with ultrasonic motor - Google Patents

Ultrasonic motor and electronic device with ultrasonic motor Download PDF

Info

Publication number
JP4485238B2
JP4485238B2 JP2004105359A JP2004105359A JP4485238B2 JP 4485238 B2 JP4485238 B2 JP 4485238B2 JP 2004105359 A JP2004105359 A JP 2004105359A JP 2004105359 A JP2004105359 A JP 2004105359A JP 4485238 B2 JP4485238 B2 JP 4485238B2
Authority
JP
Japan
Prior art keywords
piezoelectric element
vibrating body
vibration
ultrasonic motor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004105359A
Other languages
Japanese (ja)
Other versions
JP2005295656A (en
Inventor
陽子 篠原
朗弘 飯野
聖士 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2004105359A priority Critical patent/JP4485238B2/en
Publication of JP2005295656A publication Critical patent/JP2005295656A/en
Application granted granted Critical
Publication of JP4485238B2 publication Critical patent/JP4485238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、励振力を効率よく利用できるように内部電極を配置した矩形形状の積層圧電素子から構成された超音波モータおよびそれを備えた電子機器に関する。   The present invention relates to an ultrasonic motor constituted by a rectangular laminated piezoelectric element in which internal electrodes are arranged so that an excitation force can be efficiently used, and an electronic apparatus including the ultrasonic motor.

近年、矩形状の圧電振動板の伸縮振動と屈曲振動を用いた超音波駆動装置が、各種開発されている。このような超音波駆動装置は、2つの異なる振動モードを組み合わせ、振動の特定位置に発生する楕円運動を移動体に伝達させ、移動体を直線もしくは回転運動するものである。このような超音波駆動装置は、特に、簡易な構成であるため小型化が容易であることから、各種用途への応用が期待されている。その一例として、一体に焼結された積層圧電素子を振動体とし、振動体全体を駆動源として用いる超音波モータが開発されている。   In recent years, various types of ultrasonic driving devices using a stretching vibration and a bending vibration of a rectangular piezoelectric diaphragm have been developed. Such an ultrasonic driving device combines two different vibration modes, transmits an elliptical motion generated at a specific position of vibration to the moving body, and moves the moving body linearly or rotationally. Such an ultrasonic drive device is expected to be applied to various applications because it has a simple configuration and can be easily reduced in size. As an example, an ultrasonic motor has been developed in which an integrally sintered laminated piezoelectric element is used as a vibration body and the entire vibration body is used as a drive source.

この超音波モータは、積層圧電素子に二種類の異なる振動(伸縮振動および屈曲振動)を同時に発生させ、振動の特定位置に発生する楕円運動を駆動源とするものである。この二種類の振動を励振するため、積層圧電素子内部に、振動の種類に応じた数種類の内部電極を設置している。そして、この内部電極に駆動信号を印加するため、積層圧電素子側面に短絡電極を設け、これを内部電極に導通させることで、駆動信号を積層圧電素子表面から内部電極まで導く構造となっている(例えば、特許文献1参照。)。
特開2000−116162号公報
This ultrasonic motor simultaneously generates two different types of vibration (stretching vibration and bending vibration) in a laminated piezoelectric element, and uses an elliptical motion generated at a specific position of the vibration as a drive source. In order to excite these two types of vibration, several types of internal electrodes corresponding to the type of vibration are provided inside the multilayer piezoelectric element. In order to apply a drive signal to this internal electrode, a short-circuit electrode is provided on the side surface of the laminated piezoelectric element, and this is connected to the internal electrode, thereby leading the drive signal from the surface of the laminated piezoelectric element to the internal electrode. (For example, refer to Patent Document 1).
JP 2000-116162 A

しかしながら、上記超音波モータでは、内部電極の種類毎に異なる駆動信号を供給するため、一つの短絡電極は一種類の内部電極のみに導通し、他種類の内部電極とは短絡させない配置とする必要があった。そのため、いずれの種類の内部電極も全面に設けることができず、他種類の内部電極同士が導通する短絡電極が設けられる位置に、必ず余白部を設けることが必要であった。しかし、この余白部は圧電素子の励振に寄与しないため、余白部を設置することで、圧電素子の発生させる振動が小さくなるという問題があった。   However, in the above-described ultrasonic motor, since different driving signals are supplied for each type of internal electrode, one short-circuited electrode needs to be placed only in one type of internal electrode and not short-circuited with other types of internal electrodes. was there. For this reason, neither type of internal electrode can be provided on the entire surface, and it is necessary to always provide a blank portion at a position where a short-circuit electrode for conducting conduction between other types of internal electrodes is provided. However, since this blank portion does not contribute to the excitation of the piezoelectric element, there is a problem that the vibration generated by the piezoelectric element is reduced by installing the blank portion.

そこで、本発明は、圧電素子を効率よく励振する位置に内部電極を配置すると共に、目的の振動の励振への寄与が小さい部分に余白部を設けることで、高効率かつ高出力化を図る、超音波モータおよび超音波モータ付き電子機器を提供することを目的とする。   Therefore, the present invention aims at high efficiency and high output by arranging the internal electrode at a position where the piezoelectric element is efficiently excited, and providing a blank portion in a portion where the contribution to the excitation of the target vibration is small. An object is to provide an ultrasonic motor and an electronic device with an ultrasonic motor.

上述の課題を解決するために、本発明の超音波モータは、圧電素子を励振する内部電極および内部電極と導通する短絡電極の位置を規定することで、圧電素子の励振力に最も影響する位置に内部電極が必ず配置されると共に、目的の振動の励振への寄与が小さい部分に余白部を設けた圧電素子を振動体として用いたものである。
このような構造の圧電素子を用いることで、圧電素子を効率よく励振し、超音波モータの高効率化かつ高出力化が可能となる。また、このような圧電素子を備えた超音波モータを電子機器の駆動源に用いることで、電子機器の低消費電力化、高出力化が可能となる。
In order to solve the above-described problems, the ultrasonic motor of the present invention defines the position of the internal electrode that excites the piezoelectric element and the position of the short-circuit electrode that is electrically connected to the internal electrode, so that the position that most affects the excitation force of the piezoelectric element. The piezoelectric element in which the internal electrode is always disposed and the blank portion is provided in the portion where the contribution to the excitation of the target vibration is small is used as the vibrating body.
By using the piezoelectric element having such a structure, it is possible to efficiently excite the piezoelectric element and to increase the efficiency and output of the ultrasonic motor. In addition, by using an ultrasonic motor provided with such a piezoelectric element as a drive source of an electronic device, it is possible to reduce the power consumption and output of the electronic device.

励振力に最も影響する位置に内部電極が必ず配置されると共に、目的の振動の励振への寄与が小さい部分に余白部を設けた積層圧電素子を振動子とすることで、振動体を効率よく励振することができ、前記積層圧電素子を用いて構成した超音波モータの高効率化および高出力化が可能となる。また、簡易な構成であることから小型化および製造が容易となる。また、これらの振動体を備えた超音波モータを電子機器の駆動源に用いることにより電子機器の小型化、薄型化、低消費電力化が可能となる。   The internal electrode is always placed at the position that most affects the excitation force, and the vibrator is made efficient by using a laminated piezoelectric element with a blank portion in the part where the contribution to the excitation of the target vibration is small. It is possible to excite, and it is possible to increase the efficiency and output of the ultrasonic motor configured using the laminated piezoelectric element. Moreover, since it is a simple structure, size reduction and manufacture become easy. In addition, by using an ultrasonic motor provided with these vibrators as a drive source for an electronic device, the electronic device can be reduced in size, thickness, and power consumption.

以下、本発明について図面を参照しつつ詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。
(実施の形態1)
図1は、本発明の超音波モータ1000を説明する図である。なお、図1は、超音波モータ1000の斜視図、図2は積層圧電素子からなる振動体10の振動振幅を説明する図である。図3は、振動体10の具体的な構造、分極方向および電極の配置を説明する図であり、図3(a)は振動体10の三面図、図3(b)、(c)、(d)、(e)はそれぞれ、振動体10を構成する圧電素子11、12、13、14の分極方向および内部電極の配置を示している。
Hereinafter, the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the following embodiment.
(Embodiment 1)
FIG. 1 is a diagram illustrating an ultrasonic motor 1000 according to the present invention. 1 is a perspective view of the ultrasonic motor 1000, and FIG. 2 is a diagram for explaining the vibration amplitude of the vibrating body 10 made of a laminated piezoelectric element. FIG. 3 is a diagram illustrating a specific structure, polarization direction, and electrode arrangement of the vibrating body 10, and FIG. 3A is a three-view diagram of the vibrating body 10, and FIGS. d) and (e) show the polarization directions of the piezoelectric elements 11, 12, 13, and 14 constituting the vibrating body 10 and the arrangement of internal electrodes, respectively.

超音波モータ1000は、図1に示すように、矩形状で複数枚の圧電素子11、12、13、14を積層して一体形成した振動体10と、振動体10に設けられた支持部材40および突起30から構成されている。さらに、突起30の下には案内部材50により移動方向が規定された移動体60が設けられ、支持部材40に係合された加圧部材(図示省略)により、突起30は移動体60と加圧接触する構成となっている。図1においては、この支持方法、加圧方法を簡略して示したが、支持部材40と係合する部材等において、振動体10を移動体60の移動方向への動きを規制すると共に、振動体10と移動体60の間に接触圧が生じるように支持部材40に加圧力を与える構成とすれば、その方法に限定を与えるものではない。   As shown in FIG. 1, the ultrasonic motor 1000 includes a vibrating body 10 in which a plurality of piezoelectric elements 11, 12, 13, and 14 are stacked and integrally formed, and a support member 40 provided on the vibrating body 10. And a protrusion 30. Further, a moving body 60 whose moving direction is defined by the guide member 50 is provided under the protrusion 30, and the protrusion 30 is added to the moving body 60 by a pressure member (not shown) engaged with the support member 40. The structure is in pressure contact. In FIG. 1, the support method and the pressurization method are illustrated in a simplified manner. However, in the member engaged with the support member 40, the vibration body 10 is restricted from moving in the moving direction of the moving body 60 and is vibrated. If the pressure is applied to the support member 40 so that a contact pressure is generated between the body 10 and the moving body 60, the method is not limited.

次に、振動体10の振動について説明する。振動体10は伸縮振動と屈曲振動を励振する。図2は圧電素子の積層方向上方から振動体10を見た図であり、図2(a)は屈曲振動の形状を、図2(b)は伸縮振動の形状を示している。伸縮振動では振動体10の中央部が、屈曲振動では振動体10の中央部とその左右の3箇所が振動の節となっている。伸縮振動、屈曲振動ともに振動の節となる振動体10の中央部の側面に、支持部材40が設けられ、屈曲振動の腹の位置に突起30が設けられている。この伸縮振動と屈曲振動を同時に励振することにより、突起30は振動体10の長手方向の変位と、長手方向と直交する幅方向の変位からなる楕円運動を行い、移動体60を駆動する。なお、ここでは1次モードの伸縮振動と、2次モードの屈曲振動を用いて説明したが、各々の振動モードについては、その次数に制限をあたえられるものではなく、異なる振動モードを用いても動作可能である。   Next, the vibration of the vibrating body 10 will be described. The vibrating body 10 excites stretching vibration and bending vibration. 2A and 2B are views of the vibrating body 10 as viewed from above in the stacking direction of the piezoelectric elements. FIG. 2A shows the shape of bending vibration and FIG. 2B shows the shape of stretching vibration. In the stretching vibration, the central portion of the vibrating body 10 is a vibration node, and in the bending vibration, the central portion of the vibrating body 10 and three places on the left and right are the nodes of vibration. A support member 40 is provided on the side surface of the central portion of the vibrating body 10 that serves as a vibration node for both stretching vibration and bending vibration, and a protrusion 30 is provided at the position of the antinode of bending vibration. By simultaneously exciting the stretching vibration and bending vibration, the protrusion 30 performs an elliptical motion including displacement in the longitudinal direction of the vibrating body 10 and displacement in the width direction orthogonal to the longitudinal direction, and drives the moving body 60. Here, the first-order mode stretching vibration and the second-order bending vibration have been described, but the order of each vibration mode is not limited, and different vibration modes may be used. It is possible to operate.

次に、振動体10の具体的な構造、分極方向および電極の配置について説明する。振動体10は4種類の圧電素子11、12、13、14を厚み方向に積層して構成する。ここでは圧電素子を積層する順を14、12、13、11、13、11、13、12、13としている。なお、圧電素子を積層する順序は、圧電素子14を一番上にする以外は、圧電素子11と圧電素子13の組、圧電素子12と圧電素子13の組について、組単位であれば、積層する順序を変更しても、また、組数を変更しても、構成可能である。構成例の一例を挙げると、圧電素子14、12、13、11、13という順序、また、圧電素子14、12、13、11、13、12、13という順序で積層しても、振動体10を構成可能である。   Next, the specific structure, polarization direction, and electrode arrangement of the vibrating body 10 will be described. The vibrating body 10 is configured by stacking four types of piezoelectric elements 11, 12, 13, and 14 in the thickness direction. Here, the order of stacking the piezoelectric elements is 14, 12, 13, 11, 13, 11, 13, 12, 13. Note that the order of stacking the piezoelectric elements is that the unit of the piezoelectric element 11 and the piezoelectric element 13 and the group of the piezoelectric element 12 and the piezoelectric element 13 are stacked except for the piezoelectric element 14 being the top. It can be configured by changing the order in which they are performed or changing the number of sets. As an example of the configuration example, even if the piezoelectric elements 14, 12, 13, 11, and 13 are stacked in the order of the piezoelectric elements 14, 12, 13, 11, 13, 12, and 13, the vibrating body 10 Can be configured.

ここで、各々の圧電素子について個別に説明する。各々の圧電素子の表面には、図3に示すような内部電極もしくは上面電極が形成され、裏面には電極は形成されていない。圧電素子11は全体にわたって厚み方向に分極処理されている。上述したように、圧電素子11は圧電素子13と必ず一対となり、圧電素子13の上に圧電素子11が積層されるため、圧電素子11は、圧電素子11の表面に設けられた内部電極81と圧電素子13の表面に設けられた内部電極83との間に設けられることになる。そこで内部電極81と内部電極83の間に駆動信号を印加すると、圧電素子11は長手方向に伸縮振動を励振する。   Here, each piezoelectric element will be described individually. An internal electrode or a top electrode as shown in FIG. 3 is formed on the surface of each piezoelectric element, and no electrode is formed on the back surface. The piezoelectric element 11 is polarized in the thickness direction throughout. As described above, the piezoelectric element 11 is always paired with the piezoelectric element 13, and the piezoelectric element 11 is laminated on the piezoelectric element 13, so that the piezoelectric element 11 is connected to the internal electrode 81 provided on the surface of the piezoelectric element 11. It is provided between the internal electrode 83 provided on the surface of the piezoelectric element 13. Therefore, when a drive signal is applied between the internal electrode 81 and the internal electrode 83, the piezoelectric element 11 excites stretching vibration in the longitudinal direction.

また、圧電素子12は、長さおよび幅の中央を結んでできた、およそ4つの領域それぞれが厚み方向に分極処理されている。なお、図中の+もしくは−で示されるように、1つの圧電素子において正逆二種類の分極方向が存在する。上述の圧電素子11と同様に、圧電素子12は圧電素子13と必ず一対となり、圧電素子13の上に圧電素子12が積層されるため、圧電素子12は、圧電素子12の表面に設けられた内部電極82a、82b、82c、82dと圧電素子13の表面に設けられた内部電極83との間に設けられることになる。そこで、内部電極82a、82b、82c、82dと内部電極83との間に駆動信号を印加すると、圧電素子12の厚み方向と直交する面内で屈曲振動を励振する。   In addition, the piezoelectric element 12 is formed by connecting the centers of the length and width, and approximately four regions are polarized in the thickness direction. In addition, as indicated by + or − in the figure, there are two types of polarization directions in one piezoelectric element. Similarly to the above-described piezoelectric element 11, the piezoelectric element 12 is always paired with the piezoelectric element 13, and the piezoelectric element 12 is laminated on the piezoelectric element 13, so that the piezoelectric element 12 is provided on the surface of the piezoelectric element 12. It is provided between the internal electrodes 82 a, 82 b, 82 c, 82 d and the internal electrode 83 provided on the surface of the piezoelectric element 13. Therefore, when a drive signal is applied between the internal electrodes 82a, 82b, 82c, 82d and the internal electrode 83, bending vibration is excited in a plane orthogonal to the thickness direction of the piezoelectric element 12.

また、圧電素子14には上面電極841、842a、842b、842c、842d、843が設けられている。これらは、振動体10側面に設けられた短絡電極881、882a、882b、882c、882d、883とそれぞれ導通している。そのため、上面電極841は短絡電極881を通じて電極81と、上面電極842aは短絡電極882aを通じて内部電極82aと、上面電極842bは短絡電極882bを通じて電極82bと、上面電極842cは短絡電極882cを通じて電極82cと、上面電極842dは短絡電極882dを通じて電極82dと、上面電極843は短絡電極883を通じて電極83と導通している。そのため、上面電極841、842a、842b、842c、842d、843に駆動信号を印加するだけで、内部電極81、82a、82b、82c、82d、84それぞれに駆動信号を供給することができる。なお、短絡電極の形成については、圧電素子を積層し、焼結して一体化した後に、金属被膜の蒸着やスパッタリング、もしくは導電性接着剤の塗布等で形成することが可能である。   The piezoelectric element 14 is provided with upper surface electrodes 841, 842 a, 842 b, 842 c, 842 d, and 843. These are electrically connected to short-circuit electrodes 881, 882 a, 882 b, 882 c, 882 d, and 883 provided on the side surface of the vibrating body 10. Therefore, the upper electrode 841 is the electrode 81 through the short-circuit electrode 881, the upper electrode 842a is the internal electrode 82a through the short-circuit electrode 882a, the upper electrode 842b is the electrode 82b through the short-circuit electrode 882b, and the upper electrode 842c is the electrode 82c through the short-circuit electrode 882c. The upper surface electrode 842d is electrically connected to the electrode 82d through the short circuit electrode 882d, and the upper surface electrode 843 is electrically connected to the electrode 83 through the short circuit electrode 883. Therefore, a drive signal can be supplied to each of the internal electrodes 81, 82a, 82b, 82c, 82d, 84 only by applying a drive signal to the upper surface electrodes 841, 842a, 842b, 842c, 842d, 843. In addition, about formation of a short circuit electrode, after laminating | stacking and integrating a piezoelectric element, it is possible to form by vapor deposition of metal film, sputtering, or application | coating of a conductive adhesive.

ここで、短絡する内部電極と短絡電極の組はそれぞれ決まっており、そのため、決められた組以外で短絡しないよう、それぞれの圧電素子には内部電極が設けられていない余白部が必要となる。しかし、この余白部は圧電素子の励振には寄与しないため、出力である振動エネルギをより大きく得るという観点から言えば、余白部は設置せず、内部電極は全面に設けた方が良い。しかし、超音波モータ1000を駆動するためには、内部電極81と内部電極82a、82b、82c、82dに異なる駆動信号を印加する必要があり、余白部は必ず設置しなければならない。   Here, a pair of the internal electrode and the short-circuit electrode to be short-circuited is determined, and therefore, a blank portion where no internal electrode is provided is necessary for each piezoelectric element so as not to short-circuit other than the determined pair. However, since this blank portion does not contribute to excitation of the piezoelectric element, it is better not to install the blank portion and to provide the internal electrode on the entire surface from the viewpoint of obtaining a larger vibration energy as an output. However, in order to drive the ultrasonic motor 1000, it is necessary to apply different drive signals to the internal electrode 81 and the internal electrodes 82a, 82b, 82c, and 82d, and the blank portion must be installed.

そこで、内部電極および余白部の配置と圧電素子の出力との関係を図4及び図5に示す。図4は伸縮振動を励振する為の内部電極および余白部の配置、図5は屈曲振動を励振する為の内部電極および余白部の配置による、電気−機械結合係数kの変化を、有限要素法による数値解析から求めたものである。なお、図4(a)および図5(a)は圧電素子に対する内部電極(斜線の領域)を示し、図4(b)および図5(b)は内部電極の長さX(図中記載)に対するkの変化を示している。ここで、圧電素子の出力を示す指標として、電気−機械結合係数kを用いた。これは、入力である印加した電気的エネルギと出力される振動エネルギ間の動的な変換効率である。   Therefore, the relationship between the arrangement of the internal electrode and the blank portion and the output of the piezoelectric element is shown in FIGS. FIG. 4 shows the arrangement of the internal electrode and the blank portion for exciting the stretching vibration, and FIG. 5 shows the change of the electromechanical coupling coefficient k due to the arrangement of the internal electrode and the blank portion for exciting the bending vibration. It is obtained from the numerical analysis by. 4A and 5A show internal electrodes (shaded areas) for the piezoelectric element, and FIGS. 4B and 5B show the length X of the internal electrodes (described in the figure). The change of k with respect to is shown. Here, an electro-mechanical coupling coefficient k is used as an index indicating the output of the piezoelectric element. This is the dynamic conversion efficiency between applied electrical energy as input and output vibration energy.

図4(b)の結果より、伸縮振動を励振する為の内部電極の長さを多少短くしても、kはほぼ横ばいもしくは若干上昇する。また、図5(b)の結果、屈曲振動を励振する為の内部電極は、内部電極の長さを短くすると、屈曲振動の最外側の節(X=7.3mm、図中Aで示す)を境に、ほぼ横ばいであったkが減少に転じる。そのため、本発明の超音波モータ1000の積層圧電素子では、内部電極の余白部は、2つの辺のうち長さの長い長手方向端部、特に屈曲振動を励振する内部電極の余白部は、屈曲振動の最外側の節より長手方向端部側に設ける配置にした。これにより、出力である振動エネルギを効率よく得られる。   From the result of FIG. 4B, even if the length of the internal electrode for exciting the stretching vibration is slightly shortened, k is almost flat or slightly increased. Further, as a result of FIG. 5B, the inner electrode for exciting the flexural vibration has the outermost node of the flexural vibration (X = 7.3 mm, indicated by A in the figure) when the length of the internal electrode is shortened. After that, the k, which was almost flat, started to decrease. Therefore, in the laminated piezoelectric element of the ultrasonic motor 1000 of the present invention, the marginal portion of the internal electrode is a long longitudinal end portion of two sides, particularly the marginal portion of the internal electrode that excites bending vibration is bent. It was arranged to be provided on the end side in the longitudinal direction from the outermost node of vibration. Thereby, the vibration energy which is an output can be obtained efficiently.

図4および図5の結果より、各々の余白部の配置が決定されると、短絡電極の配置が限定される。そして、余白部を設けた位置に、短絡電極が配置されることになる。しかし、決められた内部電極と短絡電極の組以外で短絡しないように、各々の配置を決定する必要がある。そこで所望の組以外で短絡しない内部電極および余白部の配置の一例を図3に示す。   From the results of FIGS. 4 and 5, when the arrangement of each blank portion is determined, the arrangement of the short-circuit electrodes is limited. And the short circuit electrode will be arrange | positioned in the position which provided the blank part. However, it is necessary to determine each arrangement so as not to cause a short circuit other than the set of the predetermined internal electrode and short circuit electrode. FIG. 3 shows an example of the arrangement of the internal electrodes and blank portions that are not short-circuited except for the desired set.

内部電極81、83の余白部100を屈曲振動の最外側の節(圧電素子中央から最も離れた節)より長手方向端面側に設け、内部電極81、83と導通する短絡電極881、883を長手方向端面側の側面に設ける。また、内部電極82a、82b、82c、82dは屈曲振動の最外側の節より長手方向端面側まで設け、余白部100を長手方向端面に設けることで、内部電極81、83と導通しない配置とした。そして、内部電極82a、82b、82c、82dとそれぞれ導通する短絡電極882a、882b、882c、882dは圧電素子の幅方向端面側の側面かつ屈曲振動の節より外側に設ける配置とした。これにより、決められた内部電極と短絡電極の組以外で短絡せず、かつ励振への影響を小さくすることが可能となる。   The marginal portion 100 of the internal electrodes 81 and 83 is provided on the end surface side in the longitudinal direction from the outermost node of the bending vibration (the node farthest from the center of the piezoelectric element), and the short-circuit electrodes 881 and 883 that are electrically connected to the internal electrodes 81 and 83 are long. It is provided on the side surface on the direction end surface side. Further, the internal electrodes 82a, 82b, 82c, and 82d are provided from the outermost node of the bending vibration to the end surface in the longitudinal direction, and the blank portion 100 is provided on the end surface in the longitudinal direction so that the internal electrodes 81 and 83 are not electrically connected. . The short-circuit electrodes 882a, 882b, 882c, and 882d that are electrically connected to the internal electrodes 82a, 82b, 82c, and 82d, respectively, are disposed on the side surface on the end face side in the width direction of the piezoelectric element and outside the node of the bending vibration. This makes it possible to reduce the influence on excitation without causing a short circuit other than the set of the predetermined internal electrode and short circuit electrode.

また上記と異なる、内部電極および短絡電極の配置の一例を図6に示す。上記と異なり、屈曲振動を励振する内部電極82a’、82b’、82c’、82d’と導通する短絡電極882a’、882b’、882c’、882d’を積層圧電素子の長手方向端部の側面に設ける配置とした。このような構成にしても、余白部100’を長手方向端面側に集中させることが出来るため、図3の配置と同様の効果を得ることができる。
上述のような余白部や短絡電極の配置にすることで、圧電素子の励振への影響を小さくし、高効率かつ高出力化の実現を可能としている。
FIG. 6 shows an example of the arrangement of internal electrodes and short-circuit electrodes different from the above. Unlike the above, short-circuit electrodes 882a ′, 882b ′, 882c ′, and 882d ′ that are electrically connected to the internal electrodes 82a ′, 82b ′, 82c ′, and 82d ′ that excite bending vibration are provided on the side surface of the end portion in the longitudinal direction of the multilayer piezoelectric element. The arrangement was provided. Even with such a configuration, since the blank portion 100 ′ can be concentrated on the end surface side in the longitudinal direction, the same effect as the arrangement of FIG. 3 can be obtained.
By arranging the blank portion and the short-circuit electrode as described above, the influence on the excitation of the piezoelectric element is reduced, and high efficiency and high output can be realized.

次に、超音波モータ1000の駆動方法について説明する。上面電極841と843の間に所定の周波数の信号を印加すると、振動体10を構成する圧電素子11には伸縮振動が、上面電極842a、842b、842c、842dと843の間に所定の周波数の信号を印加すると、圧電素子12には屈曲振動が発生する。そこで、上面電極841と843の間に印加する駆動信号と上面電極842a、842b、842c、842dと843の間に印加する駆動信号の位相を変えることにより、振動体10に設けられた突起30が、振動体10の厚み方向と直交する面内で楕円運動する。そして、この楕円運動により、突起30と加圧接触している移動体60が移動する。2つの信号の位相差を反転させることにより、楕円運動の方向も逆転することから、移動体は正逆2方向に移動方向の制御が可能となる。
以上により、振動体10の振動を弱めることなく利用できるため、高効率かつ高出力の超音波モータ1000が実現可能となる。
Next, a method for driving the ultrasonic motor 1000 will be described. When a signal having a predetermined frequency is applied between the upper surface electrodes 841 and 843, the piezoelectric element 11 constituting the vibrating body 10 is subjected to stretching vibration, and has a predetermined frequency between the upper surface electrodes 842a, 842b, 842c, 842d and 843. When a signal is applied, bending vibration is generated in the piezoelectric element 12. Therefore, by changing the phase of the drive signal applied between the upper surface electrodes 841 and 843 and the drive signal applied between the upper surface electrodes 842a, 842b, 842c, 842d and 843, the protrusion 30 provided on the vibrating body 10 is changed. The elliptical motion is performed in a plane orthogonal to the thickness direction of the vibrating body 10. Then, due to this elliptical motion, the moving body 60 in pressure contact with the protrusion 30 moves. By reversing the phase difference between the two signals, the direction of the elliptical motion is also reversed, so that the moving body can control the moving direction in two forward and reverse directions.
As described above, since the vibration of the vibrating body 10 can be used without weakening, the ultrasonic motor 1000 with high efficiency and high output can be realized.

(実施の形態2)
図7は本発明の超音波モータの振動体210を示したものである。図7(a)は振動体210の三面図、図7(b)は振動体210を構成する圧電素子211、212、213、214の具体的な構造、分極方向および電極の配置を説明する図である。なお、実施の形態1との相違点のみを以下に示す。
(Embodiment 2)
FIG. 7 shows a vibrator 210 of the ultrasonic motor of the present invention. 7A is a three-sided view of the vibrating body 210, and FIG. 7B is a diagram illustrating a specific structure, polarization direction, and electrode arrangement of the piezoelectric elements 211, 212, 213, and 214 constituting the vibrating body 210. It is. Only differences from the first embodiment will be described below.

図7に示した振動体210は、実施の形態1と同様に圧電素子211、212、213、214を厚み方向に複数枚積層する。実施の形態1との相違は、圧電素子211が圧電素子11に、圧電素子212が圧電素子12に、圧電素子213が圧電素子13に、圧電素子214が圧電素子14に相当することである。また、全ての内部電極の長手方向中央かつ幅方向端部に余白部120を設ける。そして、内部電極283と短絡する短絡電極2883と、内部電極281と短絡する短絡電極(図示せず、短絡電極2883と対向して配置)を、振動体210の幅方向と直交する側面の中央部に設けている。
このような内部電極および余白部、短絡電極の配置にすることで、振動体210の励振への影響が少ない長手方向端部に余白部を集中させ、高効率での電気エネルギ利用が可能となる。これは振動体210の長手方向中央部は屈曲振動の励振にほとんど寄与しないこと、また、余白部の面積をできるかぎり小さくすることで、励振に影響しないようにしているためである。
In the vibrating body 210 shown in FIG. 7, a plurality of piezoelectric elements 211, 212, 213, and 214 are stacked in the thickness direction as in the first embodiment. The difference from the first embodiment is that the piezoelectric element 211 corresponds to the piezoelectric element 11, the piezoelectric element 212 corresponds to the piezoelectric element 12, the piezoelectric element 213 corresponds to the piezoelectric element 13, and the piezoelectric element 214 corresponds to the piezoelectric element 14. Further, a blank portion 120 is provided at the center in the longitudinal direction and at the end in the width direction of all the internal electrodes. Then, a short-circuit electrode 2883 that is short-circuited with the internal electrode 283 and a short-circuit electrode that is short-circuited with the internal electrode 281 (not shown, disposed opposite to the short-circuit electrode 2883) are central portions on the side surfaces orthogonal to the width direction of the vibrator 210. Provided.
By arranging such an internal electrode, a blank portion, and a short-circuit electrode, it is possible to concentrate the blank portion on the end portion in the longitudinal direction that has little influence on the excitation of the vibrating body 210 and to use electric energy with high efficiency. . This is because the central portion in the longitudinal direction of the vibrating body 210 hardly contributes to the excitation of the bending vibration, and the area of the margin is made as small as possible so as not to affect the excitation.

(実施の形態3)
図8は本発明の超音波モータの振動体310を示したものである。図8(a)は振動体310の斜視図、図8(b)は振動体310の具体的な構造、分極方向および電極の配置を説明する図である。なお、実施の形態1との相違点のみを以下に示す。
(Embodiment 3)
FIG. 8 shows a vibrating body 310 of the ultrasonic motor of the present invention. FIG. 8A is a perspective view of the vibrating member 310, and FIG. 8B is a diagram illustrating a specific structure, polarization direction, and electrode arrangement of the vibrating member 310. FIG. Only differences from the first embodiment will be described below.

図8に示した振動体310は、実施の形態1と同様に圧電素子311、312、313を厚み方向に複数枚積層する。なお、圧電素子313を一番上にし、圧電素子311、312を交互に積層して振動体310を構成する。実施の形態1との相違は、圧電素子311の分極方向が一方向であること、圧電素子311、312のみで屈曲振動および伸縮振動を同時に励振できる点である。ここで、内部電極381a、381b、381c、381d各々に導通する上面電極3841a、3841b、3841c、3841dのうち、上面電極3841aと3841dに印加する駆動信号と上面電極3841bと3841cに印加する駆動信号をそれぞれ、COS波、SIN波とする。   In the vibrating body 310 illustrated in FIG. 8, a plurality of piezoelectric elements 311, 312, and 313 are stacked in the thickness direction as in the first embodiment. The vibrating element 310 is configured by stacking the piezoelectric elements 311 and 312 alternately with the piezoelectric element 313 at the top. The difference from the first embodiment is that the polarization direction of the piezoelectric element 311 is one direction, and that bending vibration and expansion / contraction vibration can be excited simultaneously only by the piezoelectric elements 311 and 312. Here, among the upper surface electrodes 3841a, 3841b, 3841c, and 3841d that are electrically connected to the internal electrodes 381a, 381b, 381c, and 381d, a drive signal that is applied to the upper surface electrodes 3841a and 3841d and a drive signal that is applied to the upper surface electrodes 3841b and 3841c are provided. Let them be a COS wave and a SIN wave, respectively.

これにより、振動体310は伸縮振動と屈曲振動を同時に励振し、振動の特定位置に楕円運動を生成することが可能となる。逆転した楕円運動を生成する場合には、それぞれの駆動信号の位相差を逆に設ければよい。また、実施の形態1で示したように、振動体310の励振への影響の少ない箇所に余白部を設けているため、高効率での電気エネルギの利用が可能となる。   As a result, the vibrating body 310 can excite stretching vibration and bending vibration at the same time, and can generate an elliptical motion at a specific position of the vibration. When generating an inverted elliptic motion, the phase difference of each drive signal may be provided in reverse. In addition, as shown in the first embodiment, since the blank portion is provided in a place where the influence on the excitation of the vibrating body 310 is small, it is possible to use electric energy with high efficiency.

ところで、本構成の振動体310の別の駆動法として、対角となる2つの内部電極のみに信号を印加して、屈曲振動と伸縮振動を同時に励振しても良い。すなわち、上面電極3841a、3841dのみに信号を印加するか上面電極3841b、3841cのみに信号を印加することで移動体の移動方向を変えることができる。
(実施の形態4)
本発明の超音波モータを用いて電子機器を構成した例を図9に示す。
By the way, as another driving method of the vibrating body 310 of this configuration, a signal may be applied to only two diagonal internal electrodes to simultaneously excite bending vibration and stretching vibration. That is, the moving direction of the moving body can be changed by applying a signal only to the upper surface electrodes 3841a and 3841d or applying a signal only to the upper surface electrodes 3841b and 3841c.
(Embodiment 4)
An example in which an electronic apparatus is configured using the ultrasonic motor of the present invention is shown in FIG.

図9は、本発明の駆動回路により駆動される超音波モータ1000を電子機器の駆動源に適用したブロック図を示したものである。振動体10に設けられた突起30により摩擦駆動される移動体60と一体に動作する可動機構90、振動体に駆動信号を印加する駆動制御装置103、可動機構90の移動量を測定する計測装置102からなる。ここでは可動機構90をステージとし、所定の位置に位置決めする自動ステージの例について説明する。   FIG. 9 is a block diagram in which the ultrasonic motor 1000 driven by the drive circuit of the present invention is applied to a drive source of an electronic device. A movable mechanism 90 that operates integrally with a moving body 60 that is frictionally driven by a protrusion 30 provided on the vibrating body 10, a drive control device 103 that applies a drive signal to the vibrating body, and a measuring device that measures the amount of movement of the movable mechanism 90. 102. Here, an example of an automatic stage that uses the movable mechanism 90 as a stage and positions it at a predetermined position will be described.

ここで測定装置102は、たとえば光学式エンコーダを用いる。駆動制御装置103は計測装置102から、可動機構90の現在位置を認識し、目標位置の方向へ可動機構90を動かす。計測装置102からの現在位置と目標位置と所定の範囲内で一致すれば、駆動信号の入力を停止する構成となっている。   Here, the measuring apparatus 102 uses, for example, an optical encoder. The drive control device 103 recognizes the current position of the movable mechanism 90 from the measuring device 102 and moves the movable mechanism 90 in the direction of the target position. If the current position and the target position from the measuring device 102 coincide with each other within a predetermined range, the drive signal input is stopped.

なお、本実施の形態における電子機器としては、自動ステージの他に、プリンタや工作機などに応用可能である。   Note that the electronic apparatus in this embodiment can be applied to a printer, a machine tool, or the like in addition to an automatic stage.

本発明の超音波モータの移動体に直接可動ステージを設けるか、もしくは、伝達機構を介して移動体の動作を伝達すれば、自動ステージ、カメラのズーム機構、オートフォーカス機構、紙送り装置、あるいは時計などの電子機器へ応用できる。   If the movable body of the ultrasonic motor of the present invention is directly provided with a movable stage or the operation of the movable body is transmitted via a transmission mechanism, an automatic stage, a zoom mechanism of a camera, an autofocus mechanism, a paper feeding device, or It can be applied to electronic devices such as watches.

本発明に係る超音波モータの構成を示す図である。It is a figure which shows the structure of the ultrasonic motor which concerns on this invention. 本発明に係る超音波モータの振動体の振動モードを示す説明図である。It is explanatory drawing which shows the vibration mode of the vibrating body of the ultrasonic motor which concerns on this invention. 本発明に係る超音波モータの振動体の構成を示す図である。It is a figure which shows the structure of the vibrating body of the ultrasonic motor which concerns on this invention. 内部電極(伸縮振動)の配置による励振力への影響を示す図である。It is a figure which shows the influence on the excitation force by arrangement | positioning of an internal electrode (stretching vibration). 内部電極(屈曲振動)の配置による励振力への影響を示す図である。It is a figure which shows the influence on the excitation force by arrangement | positioning of an internal electrode (bending vibration). 本発明に係る超音波モータの他の振動体の構成を示す図である。It is a figure which shows the structure of the other vibrating body of the ultrasonic motor which concerns on this invention. 本発明に係る超音波モータの他の振動体の構成を示す図であるIt is a figure which shows the structure of the other vibrating body of the ultrasonic motor which concerns on this invention. 本発明に係る超音波モータの他の振動体の構成を示す図である。It is a figure which shows the structure of the other vibrating body of the ultrasonic motor which concerns on this invention. 本発明に係る超音波モータを用いた電子機器を示す図である。It is a figure which shows the electronic device using the ultrasonic motor which concerns on this invention.

符号の説明Explanation of symbols

1000 超音波モータ
10、10’ 振動体
11、11’ 圧電素子(伸縮振動)
12、12’ 圧電素子(屈曲振動)
13、14、13’、14’ 圧電素子
30 突起
40 支持部材
50 案内部材
60 移動体
70 加圧部材
81、81’ 内部電極(伸縮振動)
82a、82b、82c、82d 内部電極(屈曲振動)
82a’、82b’、82c’、82d’ 内部電極(屈曲振動)
83、83’ 内部電極(接地)
90 可動機構
100、100’、101、120、130 余白部
102 計測装置
103 駆動制御装置
210 振動体
211、212、213、214 圧電素子
281、282a、282b、282c、282d、283 内部電極
310 振動体
311、312、313 圧電素子
381a、381b、381c、381d、382 内部電極
841、841’、842a、842b、842c、842d、842a’、842b’、842c’、842d’、843、843’ 上面電極
881 短絡電極
882a、882b、882c、882d、882c’、882d’ 短絡電極
883、883’ 短絡電極
2841、2842a、2842b、2842c、2842d、2843 上面電極
2882b、2882d、2883 短絡電極
3841a、3841b、3841c、3841d、3842 上面電極
3881b、3881d、3882 短絡電極
1000 Ultrasonic motor 10, 10 'Vibrating body 11, 11' Piezoelectric element (stretching vibration)
12, 12 'Piezoelectric element (flexural vibration)
13, 14, 13 ', 14' Piezoelectric element 30 Protrusion 40 Support member 50 Guide member 60 Moving body 70 Pressure member 81, 81 'Internal electrode (stretching vibration)
82a, 82b, 82c, 82d Internal electrode (flexural vibration)
82a ', 82b', 82c ', 82d' Internal electrode (flexural vibration)
83, 83 'Internal electrode (ground)
90 Movable mechanism 100, 100 ′, 101, 120, 130 Margin 102 Measurement device 103 Drive control device 210 Vibrating bodies 211, 212, 213, 214 Piezoelectric elements 281, 282a, 282b, 282c, 282d, 283 Internal electrode 310 Vibrating body 311, 312, 313 Piezoelectric element 381 a, 381 b, 381 c, 381 d, 382 Internal electrode 841, 841 ′, 842 a, 842 b, 842 c, 842 d, 842 a ′, 842 b ′, 842 c ′, 842 d ′, 843, 843 ′ Upper surface electrode 881 Short-circuit electrodes 882a, 882b, 882c, 882d, 882c ', 882d' Short-circuit electrodes 883, 883 'Short-circuit electrodes 2841, 2842a, 2842b, 2842c, 2842d, 2843 Top-surface electrodes 2882b, 2882d, 2883 Short-circuit electrodes 3841a, 384 b, 3841c, 3841d, 3842 upper electrode 3881b, 3881d, 3882 short-circuit electrode

Claims (7)

矩形形状の積層圧電素子からなり、長手方向に一次の伸縮振動をするとともに前記長手方向に直交しかつ圧電素子の積層方向と直交する方向に二次の屈曲振動を発生する振動体と、前記振動体に設けられた突起と接しかつ前記振動体の振動に伴って可動される可動体とを備えた超音波モータにおいて、
前記振動体は、少なくとも屈曲振動を励振する為の内部電極同士を導通する短絡電極を前記振動体の幅方向端面の側面かつ屈曲振動の最外側の節部より長手方向端面側に有することを特徴とする超音波モータ。
Ri Do a laminated piezoelectric element of rectangular shape, and the longitudinal direction orthogonal and vibrator for generating an orthogonal direction to the secondary bending vibration of the stacking direction of the piezoelectric element as well as the stretching vibration of the primary in the longitudinal direction, and the In an ultrasonic motor provided with a movable body that is in contact with a protrusion provided on a vibrating body and is moved in accordance with the vibration of the vibrating body,
The vibrating body has at least a short-circuit electrode that conducts internal electrodes for exciting bending vibration on the side surface of the vibrating body in the width direction and on the end surface side in the longitudinal direction from the outermost node of the bending vibration. And an ultrasonic motor.
矩形形状の積層圧電素子からなり、長手方向に一次の伸縮振動をするとともに前記長手方向に直交しかつ圧電素子の積層方向と直交する方向に二次の屈曲振動を発生する振動体と、前記振動体に設けられた突起と接しかつ前記振動体の振動に伴って可動される可動体とを備えた超音波モータにおいて、
前記屈曲振動は前記積層圧電素子の積層方向と直交する面内での振動であり、
前記振動体は、少なくとも屈曲振動を励振する為の圧電素子の内部電極同士を導通する短絡電極を前記振動体の長手方向端面の側面に有するとともにこの圧電素子の積層方向二つの面の余白部を前記振動体の長手方向端面側にのみ設けたことを特徴とする超音波モータ。
Ri Do a laminated piezoelectric element of rectangular shape, and the longitudinal direction orthogonal and vibrator for generating an orthogonal direction to the secondary bending vibration of the stacking direction of the piezoelectric element as well as the stretching vibration of the primary in the longitudinal direction, and the In an ultrasonic motor provided with a movable body that is in contact with a protrusion provided on a vibrating body and is moved in accordance with the vibration of the vibrating body,
The bending vibration is a vibration in a plane orthogonal to the stacking direction of the multilayer piezoelectric element,
The vibrating body has at least a short-circuit electrode on the side surface of the longitudinal end surface of the piezoelectric element for conducting internal electrodes of the piezoelectric element for exciting flexural vibration, and has a blank portion on two surfaces in the stacking direction of the piezoelectric element. An ultrasonic motor characterized by being provided only on a longitudinal end face side of the vibrating body.
少なくとも伸縮振動を励振する為の内部電極同士を導通した短絡電極が、前記振動体の幅方向端面の側面かつ屈曲振動の最外側の節部より長手方向端面側に設けられたことを特徴とする請求項1または2に記載の超音波モータ。   A short-circuit electrode that conducts at least internal electrodes for exciting stretching vibration is provided on the side surface of the vibrating body in the width direction and on the end surface in the longitudinal direction from the outermost node of the bending vibration. The ultrasonic motor according to claim 1. 少なくとも伸縮振動を励振する為の圧電素子の内部電極同士を導通した短絡電極が、前記振動体の長手方向端面の側面に設けられるとともにこの圧電素子の積層方向二つの面の余白部を前記振動体の長手方向端面側にのみ設けたことを特徴とする請求項1または2に記載の超音波モータ。   A short-circuit electrode that at least connects the internal electrodes of the piezoelectric element for exciting the stretching vibration is provided on the side surface of the longitudinal end surface of the vibrating body, and the blank portions on the two surfaces in the stacking direction of the piezoelectric element are provided on the vibrating body. The ultrasonic motor according to claim 1, wherein the ultrasonic motor is provided only on an end surface side in the longitudinal direction. 少なくとも伸縮振動を励振する為の内部電極同士を導通した短絡電極が、前記振動体の長手方向中央部に設けられたことを特徴とする請求項1または2に記載の超音波モータ。   3. The ultrasonic motor according to claim 1, wherein a short-circuit electrode that conducts at least internal electrodes for exciting expansion and contraction vibration is provided at a central portion in a longitudinal direction of the vibrating body. 前記内部電極が、少なくとも前記振動体の屈曲振動の最外側の節部と前記振動体の幅方向端部で囲まれた領域に設けられたことを特徴とする請求項1から5のいずれかに記載の超音波モータ。   6. The internal electrode according to claim 1, wherein the internal electrode is provided in a region surrounded by at least an outermost node portion of bending vibration of the vibrating body and an end portion in a width direction of the vibrating body. The described ultrasonic motor. 請求項1から請求項6のいずれかに記載の超音波モータを駆動源として可動機構を駆動することを特徴とする超音波モータ付き電子機器。   An electronic apparatus with an ultrasonic motor, wherein the movable mechanism is driven using the ultrasonic motor according to claim 1 as a drive source.
JP2004105359A 2004-03-31 2004-03-31 Ultrasonic motor and electronic device with ultrasonic motor Expired - Fee Related JP4485238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004105359A JP4485238B2 (en) 2004-03-31 2004-03-31 Ultrasonic motor and electronic device with ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004105359A JP4485238B2 (en) 2004-03-31 2004-03-31 Ultrasonic motor and electronic device with ultrasonic motor

Publications (2)

Publication Number Publication Date
JP2005295656A JP2005295656A (en) 2005-10-20
JP4485238B2 true JP4485238B2 (en) 2010-06-16

Family

ID=35327990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004105359A Expired - Fee Related JP4485238B2 (en) 2004-03-31 2004-03-31 Ultrasonic motor and electronic device with ultrasonic motor

Country Status (1)

Country Link
JP (1) JP4485238B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4818858B2 (en) * 2006-09-13 2011-11-16 太平洋セメント株式会社 Ultrasonic motor element
JP2008136318A (en) 2006-11-29 2008-06-12 Olympus Corp Ultrasonic motor and microscope stage
JP5372354B2 (en) * 2006-12-22 2013-12-18 セイコーインスツル株式会社 Piezoelectric actuator and electronic device using the piezoelectric actuator
WO2009072302A1 (en) 2007-12-06 2009-06-11 Panasonic Corporation Ultrasonic actuator
DE102008029185A1 (en) * 2008-06-19 2009-12-24 Epcos Ag Piezoelectric component and method for producing an electrical contact
US7786648B2 (en) * 2008-08-18 2010-08-31 New Scale Technologies Semi-resonant driving systems and methods thereof
JP6261279B2 (en) 2013-10-16 2018-01-17 キヤノン株式会社 Vibrating drive vibrator, vibration drive, interchangeable lens, imaging device, automatic stage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000308372A (en) * 1999-04-15 2000-11-02 Seiko Instruments Inc Laminated piezoelectric element, piezoelectric actuator using the same, piezoelectric sensor and ultrasonic motor
JP2001136763A (en) * 1999-11-01 2001-05-18 Seiko Instruments Inc Drive mechanism with ultrasonic motor and electronic device with the ultrasonic motor
JP2002238269A (en) * 2001-02-09 2002-08-23 Seiko Instruments Inc Piezoelectric actuator and method of controlling piezoelectric actuator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146171A (en) * 1991-11-19 1993-06-11 Olympus Optical Co Ltd Ultrasonic oscillator
JPH0866061A (en) * 1994-08-19 1996-03-08 Mitsui Petrochem Ind Ltd Ultrasonic motor
JPH1132491A (en) * 1997-05-16 1999-02-02 Seiko Instr Inc Ultrasonic motor and electronic equipment with it
JP3792864B2 (en) * 1997-10-23 2006-07-05 セイコーインスツル株式会社 Ultrasonic motor and electronic equipment with ultrasonic motor
JP4327268B2 (en) * 1998-06-01 2009-09-09 セイコーインスツル株式会社 Ultrasonic motor and electronic device with ultrasonic motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000308372A (en) * 1999-04-15 2000-11-02 Seiko Instruments Inc Laminated piezoelectric element, piezoelectric actuator using the same, piezoelectric sensor and ultrasonic motor
JP2001136763A (en) * 1999-11-01 2001-05-18 Seiko Instruments Inc Drive mechanism with ultrasonic motor and electronic device with the ultrasonic motor
JP2002238269A (en) * 2001-02-09 2002-08-23 Seiko Instruments Inc Piezoelectric actuator and method of controlling piezoelectric actuator

Also Published As

Publication number Publication date
JP2005295656A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
JP4261964B2 (en) Vibration type driving device and control system
JP4794897B2 (en) Ultrasonic motor
US7187104B2 (en) Vibration-type driving device, control apparatus for controlling the driving of the vibration-type driving device, and electronic equipment having the vibration-type driving device and the control apparatus
KR20080104785A (en) A piezoelectric actuator and device for lens transfer having the same
JP2004104984A (en) Ultrasonic linear motor
US6707232B2 (en) Piezoelectric driving body, ultrasonic motor and electronic apparatus having an ultrasonic motor
JP2004260990A (en) Driver and operation unit
JP4485238B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP2006094591A (en) Ultrasonic motor and its operation method
JP4459317B2 (en) Ultrasonic motor and electronic equipment with ultrasonic motor
JP4681679B2 (en) Vibrating body, ultrasonic motor, and electronic device with ultrasonic motor
KR100910011B1 (en) Piezoelectric vibrator and piezoelectric actuator comprising the same
JP4641709B2 (en) Ultrasonic motor using laminated piezoelectric vibrator and electronic device using the same
JPH0732613B2 (en) Ultrasonic oscillator and drive device having this oscillator
JP6497964B2 (en) Vibrating actuator, lens barrel, camera, and control method
JP2008067539A (en) Ultrasonic actuator and method of manufacturing its vibrator
JP5216822B2 (en) Ultrasonic motor using laminated piezoelectric vibrator and electronic device using the same
JP4634174B2 (en) Ultrasonic motor and electronic device using the same
JP4672999B2 (en) Ultrasonic motor, laminated piezoelectric element and electronic device
JP2012125114A (en) Oscillation type drive device
JP2005218243A (en) Ultrasonic motor and electronic apparatus with ultrasonic motor
JPH05316756A (en) Ultrasonic oscillator and driver employing thereof
JP4350786B2 (en) Ultrasonic motor and electronic equipment with ultrasonic motor
JPH05115846A (en) Ultrasonic vibrator and driver having the same
JP2010004625A (en) Piezoelectric vibrator and method of driving the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100324

R150 Certificate of patent or registration of utility model

Ref document number: 4485238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees