JP2005218243A - Ultrasonic motor and electronic apparatus with ultrasonic motor - Google Patents

Ultrasonic motor and electronic apparatus with ultrasonic motor Download PDF

Info

Publication number
JP2005218243A
JP2005218243A JP2004023098A JP2004023098A JP2005218243A JP 2005218243 A JP2005218243 A JP 2005218243A JP 2004023098 A JP2004023098 A JP 2004023098A JP 2004023098 A JP2004023098 A JP 2004023098A JP 2005218243 A JP2005218243 A JP 2005218243A
Authority
JP
Japan
Prior art keywords
vibration
ultrasonic motor
piezoelectric element
electrode
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004023098A
Other languages
Japanese (ja)
Inventor
Yoko Shinohara
陽子 篠原
Akihiro Iino
朗弘 飯野
Seiji Watanabe
聖士 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2004023098A priority Critical patent/JP2005218243A/en
Publication of JP2005218243A publication Critical patent/JP2005218243A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic motor in which a vibration member is supported without suppressing vibration and a high output is attained by applying the vibration member to a moving body by a high pressing force. <P>SOLUTION: In the ultrasonic motor, a multilayer piezoelectric element constituted of sintering piezoelectric elements 11a, 11b, 12a, 12b, and 13 integrally serves as an oscillation member 10, a hole 20 is formed in the oscillation member 10, and the oscillation member 10 is supported by a supporting member 40 connected with the hole 20. By such an arrangement, the oscillation member 10 and the supporting member 40 can be integrated at high strength, the oscillation member 10 can be applied to a moving body stably by a high pressing force, the piezoelectric element can be supported without weakening vibration, stabilized high output driving can be attained, and not only vibration energy but also electric energy can be utilized with high efficiency. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、矩形状の周期振動部材を可動体に対して支持、加圧する構成の超音波モータおよびそれを備えた電子機器に関する。   The present invention relates to an ultrasonic motor configured to support and pressurize a rectangular periodic vibration member with respect to a movable body, and an electronic apparatus including the same.

近年、矩形状の圧電振動板の伸縮振動と屈曲振動(2重モード振動子)を用いた超音波駆動装置が、各種用途への応用が期待されている。このような超音波駆動装置は、2つの異なる振動モードを組み合わせて、圧電振動板を変位させることにより、移動体を直線もしくは回転運動することができるものである。その一例として、矩形状振動子を用いた超音波モータ7000を図8に示す(特許文献1参照)。本装置は、多層の圧電体から構成される圧電素子711と、圧電素子711に接合された振動体710と、前記振動体710の振動節部に係止される円柱状の支持部材740と、振動体710の下側に固定された突起730と、突起730に当接する移動体(図示せず)から構成されている。   In recent years, an ultrasonic driving device using a stretching vibration and a bending vibration (double mode vibrator) of a rectangular piezoelectric diaphragm is expected to be applied to various applications. Such an ultrasonic drive device can move the moving body linearly or rotationally by combining two different vibration modes and displacing the piezoelectric diaphragm. As an example, an ultrasonic motor 7000 using a rectangular vibrator is shown in FIG. 8 (see Patent Document 1). This apparatus includes a piezoelectric element 711 composed of a multilayer piezoelectric body, a vibrating body 710 bonded to the piezoelectric element 711, a columnar support member 740 that is locked to a vibration node of the vibrating body 710, The projection 730 is fixed to the lower side of the vibrating body 710, and the movable body (not shown) is in contact with the projection 730.

この従来の超音波駆動装置によれば、電気信号を印加した圧電素子711の伸縮運動により、振動体710に伸縮振動と屈曲振動が生じる。この双方の運動の組み合わせから、突起730は楕円運動し、突起730に当接した移動体を一定の方向に直線運動する。   According to this conventional ultrasonic drive device, expansion and contraction vibration and bending vibration are generated in the vibrating body 710 by the expansion and contraction of the piezoelectric element 711 to which an electric signal is applied. From the combination of both of these movements, the protrusion 730 moves elliptically, and the moving body in contact with the protrusion 730 linearly moves in a certain direction.

しかしながら、上記超音波モータ7000によれば、振動体710に圧電素子711を係止するという構成のため、圧電素子711の変形が振動体710に伝達し、振動体710に変形を生じさせるということになる。したがって圧電素子711の変形は、そのまま振動体710の変形とはならず、この伝達過程でロスが生じる。また、振動体710における圧電素子711の占める割合も小さいため、超音波モータ7000の出力が小さくなる。   However, according to the ultrasonic motor 7000, since the piezoelectric element 711 is locked to the vibrating body 710, the deformation of the piezoelectric element 711 is transmitted to the vibrating body 710, causing the vibrating body 710 to be deformed. become. Accordingly, the deformation of the piezoelectric element 711 does not directly deform the vibrating body 710, and a loss occurs in this transmission process. In addition, since the proportion of the piezoelectric element 711 in the vibrating body 710 is small, the output of the ultrasonic motor 7000 is small.

そのため、一体に焼結された積層圧電素子自体を振動体とすることで、振動体全体を駆動源として用いられると共に、伝達過程でのロスを低減し、高効率かつ高出力を実現する超音波モータが開発されている(特許文献2参照)。
特開平06−327275号公報 特開2000−116162号公報
Therefore, by making the laminated piezoelectric element itself sintered together as a vibrating body, the entire vibrating body can be used as a driving source, and the loss in the transmission process can be reduced to achieve high efficiency and high output. A motor has been developed (see Patent Document 2).
Japanese Patent Laid-Open No. 06-327275 JP 2000-116162 A

しかしながら、一体に焼結された積層圧電素子自体を振動体とする上記従来の超音波モータは高い駆動力を得るためには、その構造上、積層圧電素子を確実に支持する必要がある。   However, in order to obtain a high driving force, the conventional ultrasonic motor using the integrally sintered laminated piezoelectric element itself as a vibrating body needs to reliably support the laminated piezoelectric element.

そこで、本発明は、積層圧電素子からなる振動体を、振動を抑えることなく確実に支持しつつ、移動体に対し前記振動子を高い加圧力で当接させることで高出力化を得ることを可能とした超音波モータならびに超音波モータ付き電子機器を提供することを目的とする。   Therefore, the present invention is to obtain a high output by bringing the vibrator into contact with the moving body with a high pressing force while reliably supporting the vibrating body made of the laminated piezoelectric element without suppressing the vibration. It is an object of the present invention to provide an ultrasonic motor and an electronic device with an ultrasonic motor that are made possible.

上述の課題を解決するために、本発明の超音波モータは一体に焼結された積層圧電素子を振動体とし、積層圧電素子に穴を設け、この穴と接続する支持部材によって構成する。これによれば、積層圧電素子と支持部材を高強度で一体化できるため、移動体に対して振動体を安定かつ高い圧力を設けて当接させることができる。このため、前記超音波モータは安定かつ高い出力の駆動が可能となる。   In order to solve the above-described problems, the ultrasonic motor according to the present invention includes a laminated piezoelectric element that is integrally sintered as a vibrating body, and includes a hole formed in the laminated piezoelectric element and a support member that is connected to the hole. According to this, since the laminated piezoelectric element and the support member can be integrated with high strength, the vibrating body can be brought into contact with the moving body with a stable and high pressure. For this reason, the ultrasonic motor can be driven stably and with high output.

また、穴を圧電素子の振動に影響しない部分(振動の節)に設けることで、圧電素子の振動を阻害せずに支持することができる。そのため、振動エネルギーひいては電気エネルギーを高効率で利用することが可能となる。特に、積層された圧電素子のうち、励振する振動モードの歪が小さい部分に穴を設けると、振動の励振力を弱めることもない。具体的には伸縮振動と屈曲振動を用いた超音波モータにおいては、屈曲振動を励振する圧電素子の長手方向並びに幅方向の中央部で振動モードの歪が小さくなるため、ここに穴を設けると、電気エネルギーおよび圧電素子の励振力を高効率で利用することが可能となる。   Further, by providing the hole in a portion that does not affect the vibration of the piezoelectric element (vibration node), the hole can be supported without hindering the vibration of the piezoelectric element. Therefore, it is possible to use vibration energy and thus electric energy with high efficiency. In particular, if a hole is provided in a portion of the laminated piezoelectric element where the strain of the vibration mode to be excited is small, the vibration excitation force is not weakened. Specifically, in an ultrasonic motor using stretching vibration and bending vibration, the distortion of the vibration mode is reduced in the longitudinal direction and the center in the width direction of the piezoelectric element that excites bending vibration. In addition, the electric energy and the excitation force of the piezoelectric element can be used with high efficiency.

また、特定の電極群と支持部材が導通し、支持部材を介して駆動信号を電極群に与える構造であるため、電極群への通電手段(ワイヤ等)によって、圧電素子の振動が阻害されることなく、高効率の駆動が可能となる。   In addition, since the specific electrode group and the support member are electrically connected and a drive signal is supplied to the electrode group via the support member, vibration of the piezoelectric element is inhibited by the energizing means (wires or the like) to the electrode group. Therefore, high-efficiency driving is possible.

また、これらの振動体を備えた超音波モータを電子機器の駆動源に用いることにより電子機器の小型化、薄型化、低消費電力化が可能となる。   In addition, by using an ultrasonic motor provided with these vibrators as a drive source of an electronic device, the electronic device can be reduced in size, thickness, and power consumption.

本発明の超音波モータは、一体に焼結された積層圧電素子を振動体とし、積層圧電素子の振動の励振に寄与しない部分に穴を設け、この穴と接続した支持部材とによって構成することで、積層圧電素子と支持部材を高強度で一体化でき、移動体に対して振動体を安定かつ高い圧力を設けて当接させることができる。このため、安定かつ高い出力の駆動が可能となる。また、積層圧電素子の振動の励振に寄与しない部分に支持部材を設け、この支持部材で振動体を支持することで、振動体の振動を弱めることなく利用できるため、超音波モータの高出力化が可能となる。   The ultrasonic motor of the present invention includes a laminated piezoelectric element that is integrally sintered as a vibrating body, a hole is provided in a portion that does not contribute to vibration excitation of the laminated piezoelectric element, and a support member that is connected to the hole is configured. Thus, the laminated piezoelectric element and the support member can be integrated with high strength, and the vibrating body can be brought into contact with the moving body with a stable and high pressure. Therefore, stable and high output driving is possible. In addition, a support member is provided in a part that does not contribute to vibration excitation of the laminated piezoelectric element, and the vibration member is supported by this support member, so that it can be used without weakening the vibration of the vibration member, so that the output of the ultrasonic motor is increased. Is possible.

また、支持部材と積層圧電素子の内部の電極とが導通した構成とすることで、装置構成の簡略化、小型化並びにリード線の削減が容易に実現できる。そして、電気エネルギーを高効率で利用することが可能となる。   Further, by adopting a configuration in which the support member and the electrode inside the laminated piezoelectric element are electrically connected, the device configuration can be simplified, downsized, and lead wires can be easily reduced. And it becomes possible to utilize electrical energy with high efficiency.

また、これらの超音波モータを電子機器の駆動源に用いることにより電子機器の小型化、薄型化、低消費電力化が可能となる。   In addition, by using these ultrasonic motors as a drive source of an electronic device, the electronic device can be reduced in size, thickness, and power consumption.

以下、本発明について図面を参照しつつ詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the following embodiment.

(実施の形態1)
図1は、本発明の超音波モータ1000を説明する図である。なお、図1(a)は、超音波モータ1000の斜視図を、図1(b)は図1(a)で示した断面Aでの断面図である。また、図2は振動部材10の振動振幅を説明する図である。図3は、振動部材10の具体的な構造、分極方向および電極の配置を説明する図であり、図3(a)は振動部材10の斜視図、図3(b)は振動部材10の具体的な構造、分極方向および電極の配置を説明する図である。
(Embodiment 1)
FIG. 1 is a diagram illustrating an ultrasonic motor 1000 according to the present invention. 1A is a perspective view of the ultrasonic motor 1000, and FIG. 1B is a cross-sectional view taken along a cross-section A shown in FIG. FIG. 2 is a diagram for explaining the vibration amplitude of the vibration member 10. 3A and 3B are diagrams illustrating a specific structure, polarization direction, and electrode arrangement of the vibration member 10, FIG. 3A is a perspective view of the vibration member 10, and FIG. 3B is a specific view of the vibration member 10. It is a figure explaining typical structure, a polarization direction, and arrangement | positioning of an electrode.

超音波モータ1000は、矩形状で複数枚の圧電素子11a、11b、12a、12b、13を積層して一体形成した振動部材10と、振動部材10に設けられた穴20および突起30と、穴20に接着や打ち込み、嵌め合い、接合等の手段により接続された支持部材40から構成されている。さらに、突起30の下には案内部材50により移動方向が規定された移動体60が設けられ、支持部材40に係合された加圧部材70により、突起30は移動体60と加圧接触する構成となっている。図1においては、この支持方法、加圧方法を簡略して示したが、支持部材40と係合する部材等において、振動部材10を移動体60の移動方向への動きを規制すると共に、振動部材10と移動体60の間に接触圧が生じるように支持部材40に加圧力を与える構成とすれば、その方法に限定を与えるものではない。また、図1(b)では穴20の底部に隙間をあけ、支持部材40を接続しているよう図示したが、隙間なく接続しても機能可能である。   The ultrasonic motor 1000 includes a rectangular vibration member 10 formed by laminating a plurality of piezoelectric elements 11a, 11b, 12a, 12b, and 13, a hole 20 and a protrusion 30 provided in the vibration member 10, a hole, It is comprised from the support member 40 connected to 20 by means, such as adhesion | attachment, driving, fitting, and joining. Further, a moving body 60 whose moving direction is defined by the guide member 50 is provided under the protrusion 30, and the protrusion 30 is in pressure contact with the moving body 60 by the pressure member 70 engaged with the support member 40. It has a configuration. In FIG. 1, the support method and the pressurization method are illustrated in a simplified manner. However, in the member engaged with the support member 40, the vibration member 10 is restricted from moving in the moving direction of the moving body 60 and is vibrated. If the pressure is applied to the support member 40 so that the contact pressure is generated between the member 10 and the moving body 60, the method is not limited. In addition, in FIG. 1B, a gap is formed at the bottom of the hole 20 and the support member 40 is connected. However, even if connected without a gap, the function is possible.

次に、振動部材10の振動について説明する振動部材10は伸縮振動と屈曲振動を励振する。図2は圧電素子の積層方向に振動部材10を見た図であり、図2(a)は屈曲振動の形状を、図2(b)は伸縮振動の形状を示している。伸縮振動、屈曲振動ともに振動部材10の中央部が振動の節となり、この位置に穴20および支持部材40を設ける。また屈曲振動の腹の位置に突起30が設けられている。この伸縮振動と屈曲振動を同時に励振することにより、突起30は振動部材10の長手方向の変位と、これと直交する幅方向の変位からなる楕円運動を行い、移動体60を駆動する。なお、2つの振動モードは、その次数に制限をあたえられるものではなく、他のモードを用いても構わない。   Next, the vibration member 10 which explains the vibration of the vibration member 10 excites stretching vibration and bending vibration. 2A and 2B are views of the vibrating member 10 viewed in the stacking direction of the piezoelectric elements. FIG. 2A shows the shape of bending vibration, and FIG. 2B shows the shape of stretching vibration. The central portion of the vibration member 10 is a vibration node for both stretching vibration and bending vibration, and the hole 20 and the support member 40 are provided at this position. Further, a protrusion 30 is provided at the position of the antinode of bending vibration. By simultaneously exciting the expansion and contraction vibration and the bending vibration, the protrusion 30 performs an elliptical motion consisting of a displacement in the longitudinal direction of the vibration member 10 and a displacement in the width direction orthogonal thereto, and drives the moving body 60. Note that the two vibration modes are not limited in their orders, and other modes may be used.

次に、振動部材10の具体的な構造、分極方向および電極の配置について説明する。振動部材10は5種類の圧電素子11a、11b、12a、12b、13を厚み方向に積層して構成する。圧電素子11aは全体にわたって厚み方向に分極処理されている。積層して振動部材10を形成すると、圧電素子11aは表裏に電極81と電極83が設けられることになる。そこで電極81と電極83の間に駆動信号を印加することで、厚みと直交する方向に伸縮振動を励振する。また、圧電素子12aは、長さおよび幅の中央を結んでできた、およそ4つの領域それぞれが厚み方向に分極処理されている。なお、図中の+もしくは−で示されるように、1つの圧電素子において正逆二種類の分極方向が存在する。積層して振動部材10を形成すると、圧電素子12aの表裏には電極82a、82b、82c、82dと電極84が設けられることになる。そこで、電極82a、82b、82c、82dと電極84との間に駆動信号を印加すると、圧電素子12aの厚み方向と直交する方向に屈曲振動を励振する。なお、圧電素子12a、12bの中央には穴20が設けられており、電極82a、82b、82c、82d、84は穴20を回避して設けられている。また、圧電素子12a、12b、13の中央には穴20が設けられ、穴20に支持部材40が接続される。また、圧電素子13は外部電極881、882a、882b、882c、882d、883、884が設けられ、これらは振動部材10の側面まで伸びている。そのため、外部電極881は電極81と、外部電極882aは電極82と、外部電極882bは電極82bと、外部電極882cは電極82cと、外部電極882dは電極82dと、外部電極883は電極83と、外部電極884は電極84とそれぞれ導通している。   Next, the specific structure, polarization direction, and electrode arrangement of the vibration member 10 will be described. The vibration member 10 is formed by stacking five types of piezoelectric elements 11a, 11b, 12a, 12b, and 13 in the thickness direction. The piezoelectric element 11a is polarized in the thickness direction throughout. When the vibrating member 10 is formed by laminating, the piezoelectric element 11a is provided with the electrode 81 and the electrode 83 on the front and back. Therefore, by applying a drive signal between the electrode 81 and the electrode 83, stretching vibration is excited in a direction orthogonal to the thickness. In addition, the piezoelectric element 12a is polarized in the thickness direction in approximately four regions formed by connecting the centers of the length and width. In addition, as indicated by + or − in the figure, there are two types of polarization directions in one piezoelectric element. When the vibration member 10 is formed by stacking, the electrodes 82a, 82b, 82c, 82d and the electrode 84 are provided on the front and back of the piezoelectric element 12a. Therefore, when a drive signal is applied between the electrodes 82a, 82b, 82c, 82d and the electrode 84, bending vibration is excited in a direction orthogonal to the thickness direction of the piezoelectric element 12a. In addition, the hole 20 is provided in the center of the piezoelectric elements 12a and 12b, and the electrodes 82a, 82b, 82c, 82d, and 84 are provided so as to avoid the hole 20. In addition, a hole 20 is provided in the center of the piezoelectric elements 12 a, 12 b, and 13, and a support member 40 is connected to the hole 20. The piezoelectric element 13 is provided with external electrodes 881, 882 a, 882 b, 882 c, 882 d, 883, and 884, which extend to the side surface of the vibration member 10. Therefore, the external electrode 881 is the electrode 81, the external electrode 882a is the electrode 82, the external electrode 882b is the electrode 82b, the external electrode 882c is the electrode 82c, the external electrode 882d is the electrode 82d, the external electrode 883 is the electrode 83, The external electrodes 884 are electrically connected to the electrodes 84, respectively.

次に、超音波モータ1000の駆動方法について説明する。外部電極881と883の間に所定の周波数の信号を印加すると、振動部材10を構成する圧電素子11aには伸縮振動が、外部電極882a、882b、882c、882dと884の間に所定の周波数の信号を印加すると、圧電素子12aには屈曲振動が発生する。そこで、外部電極881と883の間に印加する駆動信号と外部電極882a、882b、882c、882dと884の間に印加する駆動信号の位相を変えることにより、振動部材10に設けられた突起30が、振動部材10の厚み方向と直交する方向に楕円運動する。そして、この楕円運動により、突起30と加圧接触している移動体60が移動する。2つの信号の位相差を反転させることにより、楕円運動の方向も逆転することから、移動体は正逆2方向に移動方向の制御が可能となる。また、振動部材10を支持する支持部材40との接続には、支持部材40を穴20に接着や打ち込み、嵌め合い、接合等の方法で接続できるため、振動部材10と支持部材40とを高強度で一体化できる。また、支持部材40に剛性の高い金属を用いることが可能となり、穴20の径を小さく出来るため、支持部材10を支持する領域を小さくでき、振動部材10の振動を弱めることなく利用できる。さらに、穴20を振動部材10の振動の節に設けることで、振動部材10の振動を弱めることなく利用できるため、高効率かつ高出力の超音波モータ1000が実現可能となる。   Next, a method for driving the ultrasonic motor 1000 will be described. When a signal having a predetermined frequency is applied between the external electrodes 881 and 883, the piezoelectric element 11a constituting the vibration member 10 undergoes stretching vibration, and the external electrode 882a, 882b, 882c, 882d and 884 have a predetermined frequency. When a signal is applied, bending vibration is generated in the piezoelectric element 12a. Therefore, by changing the phase of the drive signal applied between the external electrodes 881 and 883 and the drive signal applied between the external electrodes 882a, 882b, 882c, 882d and 884, the protrusion 30 provided on the vibration member 10 is changed. The ellipse moves in a direction orthogonal to the thickness direction of the vibration member 10. Then, due to this elliptical motion, the moving body 60 in pressure contact with the protrusion 30 moves. By reversing the phase difference between the two signals, the direction of the elliptical motion is also reversed, so that the moving body can control the moving direction in two forward and reverse directions. In addition, since the support member 40 can be connected to the hole 20 by bonding, driving, fitting, joining, or the like for connection to the support member 40 that supports the vibration member 10, the vibration member 10 and the support member 40 can be connected to each other. Can be integrated with strength. In addition, a metal having high rigidity can be used for the support member 40, and the diameter of the hole 20 can be reduced. Therefore, a region for supporting the support member 10 can be reduced, and the vibration of the vibration member 10 can be used without weakening. Furthermore, since the hole 20 is provided in the vibration node of the vibration member 10, the vibration member 10 can be used without weakening the vibration, and thus the ultrasonic motor 1000 with high efficiency and high output can be realized.

(実施の形態2)
図4は本発明の超音波モータの振動部材210を示したものである。図4(a)は振動部材210の斜視図、図4(b)は振動部材210の具体的な構造、分極方向および電極の配置を説明する図である。なお、実施の形態1との相違点のみを以下に示す。
(Embodiment 2)
FIG. 4 shows the vibration member 210 of the ultrasonic motor of the present invention. FIG. 4A is a perspective view of the vibration member 210, and FIG. 4B is a view for explaining a specific structure, polarization direction, and electrode arrangement of the vibration member 210. FIG. Only differences from the first embodiment will be described below.

図4に示した振動部材210は、実施の形態1と同様に圧電素子11a、11b、212a、212b、213を厚み方向に複数枚積層する。実施の形態1との相違は、圧電素子212a、212bが圧電素子12a、12bに、圧電素子213が圧電素子13に相当し、電極84に相当する電極284が穴20を回避せず設けられた点にある。これにより、穴20に導電性接着剤等で支持部材40を接続させることで、電極284と支持部材40とが導通する。そこで、外部電極を設けることなく、支持部材40を用いて電極284に駆動信号を印加することが可能となる。なお、導電性接着剤による接着は支持部材40の接続方法の一例であり、支持部材40と電極284との導通が可能であれば、打ち込み、嵌め合い、接合等の手段をとっても同様に実施可能である。これにより、外部電極に接続されたリード線等の信号印加手段(図示せず)の数が減らせるため、振動部材210の振動が阻害されることなく、電極284に駆動信号を印加することができ、高効率での電気エネルギー利用が可能となる。   As in the first embodiment, the vibration member 210 shown in FIG. 4 has a plurality of piezoelectric elements 11a, 11b, 212a, 212b, and 213 stacked in the thickness direction. The difference from the first embodiment is that the piezoelectric elements 212a and 212b correspond to the piezoelectric elements 12a and 12b, the piezoelectric element 213 corresponds to the piezoelectric element 13, and the electrode 284 corresponding to the electrode 84 is provided without avoiding the hole 20. In the point. Thereby, the electrode 284 and the support member 40 are electrically connected by connecting the support member 40 to the hole 20 with a conductive adhesive or the like. Therefore, it is possible to apply a drive signal to the electrode 284 using the support member 40 without providing an external electrode. Note that adhesion using a conductive adhesive is an example of a connection method of the support member 40, and if the support member 40 can be electrically connected to the electrode 284, it can be implemented in the same manner by using means such as driving, fitting, and joining. It is. As a result, the number of signal applying means (not shown) such as lead wires connected to the external electrode can be reduced, so that the drive signal can be applied to the electrode 284 without hindering the vibration of the vibrating member 210. It is possible to use electric energy with high efficiency.

また、図5は本発明の超音波モータの振動部材310を示したものである。同様に、実施の形態1との相違点のみを以下に示す。   FIG. 5 shows a vibration member 310 of the ultrasonic motor of the present invention. Similarly, only differences from the first embodiment will be described below.

図5に示した振動部材310は、実施の形態1と同様に圧電素子11a、11b、312a、312b、313を厚み方向に複数枚積層する。実施の形態1との相違は、圧電素子312a、312bが圧電素子12a、12bに、圧電素子313が圧電素子13に相当すると共に、電極382a、382b、382c、382dがそれぞれ電極82a、82b、82c、82dに相当し、電極382a、382cが穴20を回避せず設けられた点にある。これにより、前述の振動部材210と同様に、穴20に支持部材40を接続させることで、電極382a、382cと支持部材40とが導通する。そこで、外部電極を設けることなく、支持部材40を用いて電極382a、382cに駆動信号を印加することが可能となる。これにより、外部電極に接続されたリード線等の信号印加手段(図示せず)により振動部材310の振動が阻害されることなく、電極に駆動信号を印加することができ、高効率での電気エネルギー利用が可能となる。   In the vibrating member 310 shown in FIG. 5, a plurality of piezoelectric elements 11a, 11b, 312a, 312b, and 313 are stacked in the thickness direction as in the first embodiment. The difference from the first embodiment is that the piezoelectric elements 312a and 312b correspond to the piezoelectric elements 12a and 12b, the piezoelectric element 313 corresponds to the piezoelectric element 13, and the electrodes 382a, 382b, 382c, and 382d correspond to the electrodes 82a, 82b, and 82c, respectively. 82d, and the electrodes 382a and 382c are provided without avoiding the hole 20. As a result, the electrodes 382a and 382c are electrically connected to the support member 40 by connecting the support member 40 to the hole 20 in the same manner as the vibration member 210 described above. Therefore, it is possible to apply a drive signal to the electrodes 382a and 382c using the support member 40 without providing an external electrode. As a result, a drive signal can be applied to the electrode without impeding the vibration of the vibration member 310 by a signal applying means (not shown) such as a lead wire connected to the external electrode, and high-efficiency electric Energy can be used.

(実施の形態3)
図7は本発明の超音波モータの振動部材410を示したものである。図7(a)は振動部材410の斜視図、図7(b)は振動部材410の具体的な構造、分極方向および電極の配置を説明する図である。実施の形態1もしくは2との相違点を主に以下に示す。
(Embodiment 3)
FIG. 7 shows the vibration member 410 of the ultrasonic motor of the present invention. FIG. 7A is a perspective view of the vibration member 410, and FIG. 7B is a diagram illustrating a specific structure, polarization direction, and electrode arrangement of the vibration member 410. Differences from Embodiment 1 or 2 are mainly described below.

図7に示した振動部材410は、実施の形態1および2と同様に圧電素子411a、411b、412a、413を厚み方向に複数枚積層する。実施の形態1および2との相違点を次に示す。まず、穴20が貫通穴であり、支持部材40がひとつで構成する。また、圧電素子411aが圧電素子11aに、圧電素子412aが圧電素子12aに、圧電素子413が圧電素子13に、圧電素子411bが圧電素子11b、12bに相当する。これにより、電極483が電極83及び電極84に相当するため、全ての圧電素子のGND電極となる。そして電極483が穴20を回避せずに設けられた点にある。これにより、実施の形態2と同様に、穴20に支持部材40を接続することで、電極483と支持部材40とが導通する。そこで、外部電極を設けることなく、支持部材40を用いて電極483に駆動信号を印加することが可能となる。さらに、振動部材410を構成すると、圧電素子411aの表面には電極81が、裏面には電極483が、また圧電素子412aの表面には電極82a、82b、82c、82dが、裏面には電極483が設けられる。このような構成によると、圧電素子411a、412aは共通の電極483を有し、この電極483を接地することで、電極群を1種類削減することができ、製造がより容易になる。   As in the first and second embodiments, the vibration member 410 illustrated in FIG. 7 includes a plurality of piezoelectric elements 411a, 411b, 412a, and 413 stacked in the thickness direction. Differences from the first and second embodiments will be described below. First, the hole 20 is a through hole, and the support member 40 is one. The piezoelectric element 411a corresponds to the piezoelectric element 11a, the piezoelectric element 412a corresponds to the piezoelectric element 12a, the piezoelectric element 413 corresponds to the piezoelectric element 13, and the piezoelectric element 411b corresponds to the piezoelectric elements 11b and 12b. Thereby, since the electrode 483 corresponds to the electrode 83 and the electrode 84, it becomes the GND electrode of all the piezoelectric elements. The electrode 483 is provided without avoiding the hole 20. Thereby, as in the second embodiment, the electrode 483 and the support member 40 are electrically connected by connecting the support member 40 to the hole 20. Therefore, it is possible to apply a drive signal to the electrode 483 using the support member 40 without providing an external electrode. Further, when the vibration member 410 is configured, the electrode 81 is formed on the surface of the piezoelectric element 411a, the electrode 483 is formed on the back surface, the electrodes 82a, 82b, 82c, and 82d are formed on the surface of the piezoelectric element 412a, and the electrode 483 is formed on the back surface. Is provided. According to such a configuration, the piezoelectric elements 411a and 412a have the common electrode 483, and by grounding the electrode 483, one type of electrode group can be reduced, and manufacturing becomes easier.

また、穴20を貫通穴とすることで、圧電素子411a、411b、412a、413は電極を除けば同形状となるため、製造が容易になる。さらに貫通穴とすることで、ひとつの支持部材40で支える構造となる。このような構成とすることで、構成部品を少なくでき、構造を簡略化できるため、構成の小型化が容易に可能となる。   In addition, by using the hole 20 as a through hole, the piezoelectric elements 411a, 411b, 412a, and 413 have the same shape except for the electrodes, so that the manufacture becomes easy. Furthermore, it becomes a structure supported by one support member 40 by setting it as a through-hole. With such a configuration, the number of components can be reduced and the structure can be simplified, so that the configuration can be easily downsized.

なお、図7では圧電素子411a、411bの対を挟む形で圧電素子412a、411bの対が積層されている。そして、振動部材410の厚さ方向の中心から見て表裏方向に対称に2対の圧電素子411a、411bの対と圧電素子412a、411bの対が配置されている。しかし、この2対の圧電素子を交互に配置しても、超音波モータは機能可能である。   In FIG. 7, the pair of piezoelectric elements 412a and 411b are stacked so as to sandwich the pair of piezoelectric elements 411a and 411b. Then, two pairs of piezoelectric elements 411a and 411b and a pair of piezoelectric elements 412a and 411b are arranged symmetrically in the front and back direction when viewed from the center in the thickness direction of the vibration member 410. However, the ultrasonic motor can function even if these two pairs of piezoelectric elements are arranged alternately.

(実施の形態4)
本発明の超音波モータを用いて電子機器を構成した例を図6に示す。
(Embodiment 4)
An example in which an electronic apparatus is configured using the ultrasonic motor of the present invention is shown in FIG.

図6は、本発明の駆動回路により駆動される超音波モータ1000を電子機器の駆動源に適用したブロック図を示したものである。振動部材10に設けられた突起30により摩擦駆動される移動体60と一体に動作する可動機構90、振動部材に駆動信号を印加する駆動制御装置103、可動機構90の移動量を測定する計測装置102からなる。ここでは可動機構90をステージとし、所定の位置に位置決めする自動ステージの例について説明する。   FIG. 6 shows a block diagram in which an ultrasonic motor 1000 driven by the drive circuit of the present invention is applied to a drive source of an electronic device. A movable mechanism 90 that operates integrally with a moving body 60 that is frictionally driven by a protrusion 30 provided on the vibration member 10, a drive control device 103 that applies a drive signal to the vibration member, and a measurement device that measures the amount of movement of the movable mechanism 90. 102. Here, an example of an automatic stage that uses the movable mechanism 90 as a stage and positions it at a predetermined position will be described.

ここで測定装置102は、たとえば光学式エンコーダを用いる。駆動制御装置103は計測装置102から、可動機構90の現在位置を認識し、目標位置の方向へ可動機構90を動かす。計測装置102からの現在位置と目標位置と所定の範囲内で一致すれば、駆動信号の入力を停止する構成となっている。   Here, the measuring apparatus 102 uses, for example, an optical encoder. The drive control device 103 recognizes the current position of the movable mechanism 90 from the measuring device 102 and moves the movable mechanism 90 in the direction of the target position. If the current position and the target position from the measuring device 102 coincide with each other within a predetermined range, the drive signal input is stopped.

なお、本実施の形態における電子機器としては、自動ステージの他に、プリンタや工作機などに応用可能である。   Note that the electronic apparatus in this embodiment can be applied to a printer, a machine tool, or the like in addition to an automatic stage.

本発明の超音波モータの移動体に直接可動ステージを設けるか、もしくは、伝達機構を介して移動体の動作を伝達すれば、自動ステージ、カメラのズーム機構、オートフォーカス機構、紙送り装置、あるいは時計などの電子機器へ応用できる。   If the movable body of the ultrasonic motor of the present invention is directly provided with a movable stage or the operation of the movable body is transmitted via a transmission mechanism, an automatic stage, a zoom mechanism of a camera, an autofocus mechanism, a paper feeding device, or It can be applied to electronic devices such as watches.

本発明の超音波モータ1000の構成を示す図である。It is a figure which shows the structure of the ultrasonic motor 1000 of this invention. 本発明の超音波モータの振動部材10の振動モードを示す説明図である。It is explanatory drawing which shows the vibration mode of the vibration member 10 of the ultrasonic motor of this invention. 本発明の超音波モータの振動部材10の構成を示す図である。It is a figure which shows the structure of the vibration member 10 of the ultrasonic motor of this invention. 本発明の超音波モータの振動部材210の構成を示す図である。It is a figure which shows the structure of the vibration member 210 of the ultrasonic motor of this invention. 本発明の超音波モータの振動部材310の構成を示す図である。It is a figure which shows the structure of the vibration member 310 of the ultrasonic motor of this invention. 本発明の超音波モータを用いた電子機器を示す図である。It is a figure which shows the electronic device using the ultrasonic motor of this invention. 本発明の超音波モータの振動部材410の構成を示す図である。It is a figure which shows the structure of the vibration member 410 of the ultrasonic motor of this invention. 従来の超音波モータの構成を示す図である。It is a figure which shows the structure of the conventional ultrasonic motor.

符号の説明Explanation of symbols

1000・・・超音波モータ
10、210、310、410・・・振動部材
11a、411a・・・圧電素子(伸縮振動)
12a、212a、312a、412a・・・圧電素子(屈曲振動)
11b、12b、13、212b、213、312b、313・・・圧電素子
411b、413、710・・・圧電素子
20・・・穴
30、730・・・突起
40、740・・・支持部材
50・・・案内部材
60・・・移動体
70・・・加圧部材
81・・・電極(伸縮振動)
82a、82b、82c、82d、382a、382b、382c、382d・・・電極(屈曲振動)
83、84、284、483・・・電極
90・・・可動機構
102・・・計測装置
103・・・駆動制御装置
881・・・外部電極(伸縮振動)
882a、882b、882c、882d・・・外部電極(屈曲振動)
883、884・・・外部電極
711・・・振動体
1000 ... ultrasonic motors 10, 210, 310, 410 ... vibration members 11a, 411a ... piezoelectric elements (stretching vibration)
12a, 212a, 312a, 412a ... Piezoelectric element (flexural vibration)
11b, 12b, 13, 212b, 213, 312b, 313 ... piezoelectric elements 411b, 413, 710 ... piezoelectric elements 20 ... holes 30, 730 ... protrusions 40,740 ... support members 50. ..Guide member 60 ... moving body 70 ... pressure member 81 ... electrode (stretching vibration)
82a, 82b, 82c, 82d, 382a, 382b, 382c, 382d ... Electrode (flexural vibration)
83, 84, 284, 483 ... electrode 90 ... movable mechanism 102 ... measuring device 103 ... drive control device 881 ... external electrode (stretching vibration)
882a, 882b, 882c, 882d ... External electrode (flexural vibration)
883, 884 ... External electrode 711 ... Vibrating body

Claims (5)

第一の圧電素子群と第二の圧電素子群を積層して構成した振動部材と、前記振動部材と接しかつ前記振動部材の振動に伴って可動される可動体とを備えた超音波モータにおいて、
前記第一の圧電素子群に設けられた穴と、
前記穴に接続する支持部材とを備えたことを特徴とする超音波モータ。
An ultrasonic motor comprising: a vibration member configured by stacking a first piezoelectric element group and a second piezoelectric element group; and a movable body that is in contact with the vibration member and is movable in accordance with vibration of the vibration member. ,
A hole provided in the first piezoelectric element group;
An ultrasonic motor comprising: a support member connected to the hole.
前記第一の圧電素子群が屈曲振動を励振することを特徴とする請求項1に記載の超音波モータ。   The ultrasonic motor according to claim 1, wherein the first piezoelectric element group excites bending vibration. 前記第一の圧電素子群に設けられた電極群の少なくとも一部が、前記穴を回避して配置されたことを特徴とする請求項1または2に記載の超音波モータ。   The ultrasonic motor according to claim 1, wherein at least a part of an electrode group provided in the first piezoelectric element group is disposed so as to avoid the hole. 複数の圧電素子を積層して構成した振動部材と、前記振動部材と接しかつ前記振動部材の振動に伴って可動される可動体とを備えた超音波モータにおいて、
前記圧電素子に設けられた穴と、
前記穴と接続かつ前記圧電素子に設けられた電極群の一部と導通する支持部材と、を備えたことを特徴とする超音波モータ。
In an ultrasonic motor including a vibration member configured by laminating a plurality of piezoelectric elements, and a movable body that is in contact with the vibration member and is movable in accordance with vibration of the vibration member,
A hole provided in the piezoelectric element;
An ultrasonic motor comprising: a support member connected to the hole and electrically connected to a part of an electrode group provided in the piezoelectric element.
請求項1から請求項4のいずれかに記載の超音波モータを備えたことを特徴とする超音波モータ付き電子機器。   An electronic apparatus with an ultrasonic motor, comprising the ultrasonic motor according to any one of claims 1 to 4.
JP2004023098A 2004-01-30 2004-01-30 Ultrasonic motor and electronic apparatus with ultrasonic motor Pending JP2005218243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004023098A JP2005218243A (en) 2004-01-30 2004-01-30 Ultrasonic motor and electronic apparatus with ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004023098A JP2005218243A (en) 2004-01-30 2004-01-30 Ultrasonic motor and electronic apparatus with ultrasonic motor

Publications (1)

Publication Number Publication Date
JP2005218243A true JP2005218243A (en) 2005-08-11

Family

ID=34906234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004023098A Pending JP2005218243A (en) 2004-01-30 2004-01-30 Ultrasonic motor and electronic apparatus with ultrasonic motor

Country Status (1)

Country Link
JP (1) JP2005218243A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101561540B1 (en) 2013-06-18 2015-10-19 전자부품연구원 Piezoelectric linear actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101561540B1 (en) 2013-06-18 2015-10-19 전자부품연구원 Piezoelectric linear actuator

Similar Documents

Publication Publication Date Title
JP4261964B2 (en) Vibration type driving device and control system
US7109639B2 (en) Vibration-type driving device, control apparatus for controlling the driving of the vibration-type driving device, and electronic equipment having the vibration-type driving device and the control apparatus
JP4576185B2 (en) Ultrasonic transducer
JP2004297951A (en) Ultrasonic vibrator and ultrasonic motor
JP2004104984A (en) Ultrasonic linear motor
US6707232B2 (en) Piezoelectric driving body, ultrasonic motor and electronic apparatus having an ultrasonic motor
JP2006254627A (en) Ultrasonic motor
JP6214232B2 (en) Vibration actuator, replacement lens, imaging device, and automatic stage
JP2005354787A (en) Oscillatory drive device
JP4459317B2 (en) Ultrasonic motor and electronic equipment with ultrasonic motor
US20100327696A1 (en) Ultrasonic motor and manufacturing method of the same
JP4485238B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP4681679B2 (en) Vibrating body, ultrasonic motor, and electronic device with ultrasonic motor
JP2005218243A (en) Ultrasonic motor and electronic apparatus with ultrasonic motor
JP4673420B2 (en) Multilayer piezoelectric vibrator, ultrasonic motor, and electronic device with ultrasonic motor
JP4634174B2 (en) Ultrasonic motor and electronic device using the same
JP2008067539A (en) Ultrasonic actuator and method of manufacturing its vibrator
JP4262056B2 (en) Vibration wave drive
JP4350786B2 (en) Ultrasonic motor and electronic equipment with ultrasonic motor
JP4672999B2 (en) Ultrasonic motor, laminated piezoelectric element and electronic device
JP5411196B2 (en) Piezoelectric device and electronic apparatus using the same
JP5216822B2 (en) Ultrasonic motor using laminated piezoelectric vibrator and electronic device using the same
JP2017201341A (en) Image shake correction device
JP4745615B2 (en) Piezoelectric device and electronic apparatus using the same
JP2005295657A (en) Ultrasonic motor and electronic equipment fitted with ultrasonic motor