JP2010004625A - Piezoelectric vibrator and method of driving the same - Google Patents

Piezoelectric vibrator and method of driving the same Download PDF

Info

Publication number
JP2010004625A
JP2010004625A JP2008159830A JP2008159830A JP2010004625A JP 2010004625 A JP2010004625 A JP 2010004625A JP 2008159830 A JP2008159830 A JP 2008159830A JP 2008159830 A JP2008159830 A JP 2008159830A JP 2010004625 A JP2010004625 A JP 2010004625A
Authority
JP
Japan
Prior art keywords
piezoelectric vibrator
vibration
longitudinal
rectangular plate
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008159830A
Other languages
Japanese (ja)
Inventor
Yasuki Takashima
康樹 鷹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2008159830A priority Critical patent/JP2010004625A/en
Publication of JP2010004625A publication Critical patent/JP2010004625A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple piezoelectric vibrator that eliminates the need for complicated electrode arrangement and geometric accuracy in the formation of electrodes, and to provide a method of driving the piezoelectric vibrator. <P>SOLUTION: A rectangular plate includes the following areas substantially on a diagonal line of the rectangular plate: an area parallel with the direction of the thickness of the rectangular plate and polarized by a pair of an upper surface electrode 12 and a lower surface electrode 13; and two areas 14 not polarized in the direction of the thickness. Longitudinal vibration and bending vibration are thereby excited. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、圧電セラミックを用いて構成する、特に超音波モータ用に好適な、圧電振動子およびその駆動方法に関するものである。   The present invention relates to a piezoelectric vibrator configured using a piezoelectric ceramic, particularly suitable for an ultrasonic motor, and a driving method thereof.

主な本発明の利用分野である超音波モータの説明を含めて、従来の圧電振動子およびその駆動方法について、図面等を用いて説明する。   A conventional piezoelectric vibrator and a driving method thereof will be described with reference to drawings and the like, including an explanation of an ultrasonic motor which is a main field of application of the present invention.

図7に、一般的な超音波モータの原理を表す模式図を示す。図7(a)は動作説明図、図7(b)は振動子の軌跡を示す。超音波モータは振動子31と移動体(スライダ)32を含み、振動子31はその伸縮と屈曲の組み合わせにより、少なくともその一部が楕円運動をする。例えば、図7(a)中のp点(振動子の左端面の中心点)は、軌跡A〜Dの4つの状態を通って図7(b)に示す軌道を描く(xは振動子の長手方向、yは振動子の上下面に垂直な軸)。振動子31の楕円運動をしている部分には、通常、固定摺動部材(ステータ)33となる耐摩耗性材料が接着されている。振動子の楕円運動はステータ33を介してスライダ32に伝達され、スライダ32を動かす駆動力になる。図7(a)では、楕円運動の繰り返しによりスライダ32は図7(a)のガイド34に沿って下方へと送られる。この例では直線的に移動体を駆動しているが、移動体を円環状にすれば回転運動を生じることも可能である。   FIG. 7 is a schematic diagram showing the principle of a general ultrasonic motor. FIG. 7A is a diagram for explaining the operation, and FIG. 7B shows the locus of the vibrator. The ultrasonic motor includes a vibrator 31 and a moving body (slider) 32, and at least a part of the vibrator 31 has an elliptical motion due to a combination of expansion and contraction. For example, the point p (center point of the left end face of the vibrator) in FIG. 7A draws the trajectory shown in FIG. (Longitudinal direction, y is an axis perpendicular to the upper and lower surfaces of the vibrator). A wear resistant material to be a fixed sliding member (stator) 33 is usually bonded to the portion of the vibrator 31 that is in an elliptical motion. The elliptical motion of the vibrator is transmitted to the slider 32 via the stator 33 and becomes a driving force for moving the slider 32. In FIG. 7A, the slider 32 is sent downward along the guide 34 in FIG. In this example, the moving body is driven linearly. However, if the moving body is formed into an annular shape, it is possible to cause a rotational motion.

図8に、従来の長さ縦1次振動、屈曲2次振動を用いる従来例の圧電振動子の斜視図を示す。図10に従来例および本発明において駆動させた長さ縦1次振動の応力図(応力等高線)を示す。図11に、従来例および本発明において駆動させた屈曲2次振動の応力図(応力等高線)を示す。従来例の圧電振動子41の形状は、長さ20mm×幅5mm×厚さ5mmのハード系(高Qm系)セラミックの矩形板状で、4箇所の厚み方向に分極された励振用電極A42、励振用電極B43、励振用電極C44、励振用電極D45を備えている。この圧電振動子41を動作させる方法は、下記の通りである。長さ縦1次振動の場合、励振用電極A〜Dの上下電極部に同位相の交流駆動信号を印加すると、4箇所の電極が一体となって矩形板状の略1対の電極として作用し、83kHz近傍において図10のような長さ縦1次振動が励振される。一方、屈曲2次振動に対しては、4箇所の電極部に対し、それぞれ対角状の2箇所励振用電極A42、励振用電極D45及び励振用電極B43、励振用電極C44の上下電極部に同振幅で位相の異なる交流駆動信号を印加する事で図11に示す屈曲2次振動が同じく81kHz近傍にて励振される。   FIG. 8 is a perspective view of a conventional piezoelectric vibrator using conventional longitudinal longitudinal vibration and bending secondary vibration. FIG. 10 is a stress diagram (stress contour) of the longitudinal longitudinal vibration driven in the conventional example and the present invention. FIG. 11 is a stress diagram (stress contour) of the bending secondary vibration driven in the conventional example and the present invention. The shape of the piezoelectric vibrator 41 of the conventional example is a rectangular plate shape of a hard (high Qm) ceramic having a length of 20 mm, a width of 5 mm, and a thickness of 5 mm, and four excitation electrodes A42 polarized in the thickness direction. An excitation electrode B43, an excitation electrode C44, and an excitation electrode D45 are provided. A method of operating the piezoelectric vibrator 41 is as follows. In the case of longitudinal primary vibration, when AC drive signals having the same phase are applied to the upper and lower electrode portions of the excitation electrodes A to D, the four electrodes are integrated to act as a pair of substantially rectangular plates. In the vicinity of 83 kHz, a longitudinal longitudinal vibration having a length as shown in FIG. 10 is excited. On the other hand, with respect to the secondary bending vibration, the upper and lower electrode portions of the diagonal two-point excitation electrode A42, the excitation electrode D45, the excitation electrode B43, and the excitation electrode C44 are respectively provided for the four electrode portions. By applying alternating drive signals having the same amplitude and different phases, the bending secondary vibration shown in FIG. 11 is similarly excited in the vicinity of 81 kHz.

図8において、励振用電極A42、励振用電極D45と励振用電極B43、励振用電極C44間に同位相の電圧を印加する事で長さ縦1次振動が励振される。その時の応力図は、図10に示されるように、矩形板圧電振動子の長手方向に対称に、応力が最大となる領域が現れる。また、図8において励振用電極A42、励振用電極D45と励振用電極B43、励振用電極C44間に逆位相の電圧を印加する事で屈曲2次振動が励振される。その時の応力図は、図11に示されるように、矩形板圧電振動子の長手方向対角線上対称に、応力が最大となる領域が現れる。また励振用電極A42、励振用電極D45と励振用電極B43、励振用電極C44間に正逆を交えて振幅、位相の異なる電圧を切換えて印加する事で、長さ縦1次振動と屈曲2次振動が重畳された振動を励振する事が可能である。図7(a)、図7(b)で説明したように、電極が形成された圧電振動子41を固定し、圧電振動子41に任意に移動可能なスライダ32を接触させる事によって進行波型超音波モータとして動作させる事が出来る。従来例の圧電振動子41の場合4箇所の電極に交流電界を印加する為には各々正逆2箇所の8箇所の信号入力用電極が必要となり、実際の製品設計において煩雑な電極配置、電極形成上の形状寸法精度を確保する必要がある。   In FIG. 8, longitudinal longitudinal vibration is excited by applying the same phase voltage between the excitation electrode A42, the excitation electrode D45, the excitation electrode B43, and the excitation electrode C44. In the stress diagram at that time, as shown in FIG. 10, a region where the stress becomes maximum appears symmetrically in the longitudinal direction of the rectangular plate piezoelectric vibrator. Further, in FIG. 8, bending secondary vibration is excited by applying an antiphase voltage between the excitation electrode A 42, the excitation electrode D 45 and the excitation electrode B 43, and the excitation electrode C 44. In the stress diagram at that time, as shown in FIG. 11, a region where the stress becomes maximum appears symmetrically on the diagonal in the longitudinal direction of the rectangular plate piezoelectric vibrator. In addition, by switching voltages applied with different amplitudes and phases between the excitation electrode A42, the excitation electrode D45 and the excitation electrode B43, and the excitation electrode C44 with different directions, the longitudinal longitudinal vibration and the bending 2 It is possible to excite vibration with superposed next vibration. As described with reference to FIGS. 7A and 7B, the traveling wave type is obtained by fixing the piezoelectric vibrator 41 on which the electrode is formed and bringing the slider 32 that is arbitrarily movable into contact with the piezoelectric vibrator 41. It can be operated as an ultrasonic motor. In the case of the piezoelectric vibrator 41 of the conventional example, in order to apply an alternating electric field to four electrodes, eight signal input electrodes, two in each of forward and reverse directions, are required, and complicated electrode arrangement and electrodes are required in actual product design. It is necessary to ensure the shape accuracy of the formation.

図9に、従来例の圧電振動子のインピーダンス特性を示す。図9(a)は長さ縦1次振動の場合、 図9(b)は屈曲2次振動の場合を示す。長さ縦1次振動の場合、83kHz近傍で共振振動が励振され、屈曲2次振動の場合は、81kHz近傍で共振振動が励振されている。従来例では、電極間の入力電圧を切換えることで、長さ縦1次振動、屈曲2次振動をするので、同時に長さ縦1次振動、屈曲2次振動の両振動モードのインピーダンス特性は、表れることはない。   FIG. 9 shows impedance characteristics of a conventional piezoelectric vibrator. FIG. 9A shows the case of longitudinal longitudinal vibration, and FIG. 9B shows the case of bending secondary vibration. In the case of longitudinal longitudinal vibration, resonance vibration is excited in the vicinity of 83 kHz, and in the case of bending secondary vibration, resonance vibration is excited in the vicinity of 81 kHz. In the conventional example, by switching the input voltage between the electrodes, the longitudinal longitudinal vibration and the bending secondary vibration are generated, so the impedance characteristics of both the longitudinal longitudinal vibration and the bending secondary vibration at the same time are as follows: Never appear.

損失の少ないハード系圧電セラミックを用いた圧電セラミック矩形板上に、図8に示すように4箇所の分極された領域を構成し、これら分極領域に適宜駆動信号を印加する事で、長さ縦1次振動と屈曲2次振動を個別もしくは重畳された振動を励振させる事が可能である。図10および図11に、矩形板の長さ縦1次振動、屈曲2次振動の形態を応力等高線で表しているが、屈曲2次振動の場合、矩形板長さ方向端部から略1/4の領域に計4箇所で、歪と応力が最大となる領域が発生する。   As shown in FIG. 8, four polarized regions are formed on a piezoelectric ceramic rectangular plate using a hard piezoelectric ceramic with little loss, and a drive signal is appropriately applied to these polarized regions, so that the longitudinal length can be increased. It is possible to excite vibrations in which the primary vibration and the bending secondary vibration are individually or superimposed. In FIGS. 10 and 11, the forms of the longitudinal longitudinal vibration and the bending secondary vibration of the rectangular plate are represented by stress contour lines. In the case of the bending secondary vibration, approximately 1 / In a total of four locations in region 4, there are regions where the strain and stress are maximized.

前記の問題を解決する方法として、例えば特許文献1は、伸縮振動と屈曲2次振動用に各々電極を設けて、圧電振動子の入出力特性の非線形性を緩和し、微動領域での制御性(位置決め精度)の高い、超音波モータ用振動子の提供、及び振動効率の高い超音波モータ用振動子の提供が開示されている。しかしながら、圧電振動子の構造が複雑で、制御回路も複雑になり、高価になるという課題があった。   As a method for solving the above problem, for example, Patent Document 1 provides electrodes for stretching vibration and bending secondary vibration, respectively, to alleviate nonlinearity of input / output characteristics of the piezoelectric vibrator, and controllability in a fine movement region. The provision of an ultrasonic motor vibrator with high (positioning accuracy) and the provision of an ultrasonic motor vibrator with high vibration efficiency are disclosed. However, there is a problem that the structure of the piezoelectric vibrator is complicated, the control circuit is complicated, and the cost is high.

特開2008−54407号公報JP 2008-54407 A

本発明の技術的課題は、煩雑な電極配置、電極形成上の形状寸法精度の確保等を必要としない簡易な圧電振動子およびその駆動方法を提供することにある。   A technical problem of the present invention is to provide a simple piezoelectric vibrator that does not require complicated arrangement of electrodes, ensuring of dimensional accuracy in forming electrodes, and a driving method thereof.

上記問題点を解決するため本発明においては、矩形板に厚さ方向に平行な、一対2枚の電極によって分極された領域と、厚さ方向に分極されない2つの領域を、矩形板の略対角線上に備える事によって、長さ縦振動及び屈曲振動を励振させる事を特徴とした圧電振動子としている。この対角線上に設けた2箇所の未分極領域では、本来同一材質でありながら、分極領域との材料剛性、ヤング率が異なるため、動作させる周波数を選択する事で長さ縦振動だけでなく、屈曲振動が発生する。結果として、一対の電極端子のみでありながら、駆動周波数の選択によって、双方の振動形態を個別または重畳された振動を励振する事が可能となり、信号入力用電極の数を削減でき、小型化に際しての製品設計上の自由度が増大する。また、単一の矩形板に限らず、分極領域が厚み方向に重なるように、この矩形板を複数層積層することにより、低インピーダンス化が図られ、低電圧駆動が可能となる。   In order to solve the above problems, in the present invention, a region polarized by a pair of two electrodes parallel to the rectangular plate in the thickness direction and two regions that are not polarized in the thickness direction are substantially diagonal lines of the rectangular plate. The piezoelectric vibrator is characterized by exciting longitudinal vibration and bending vibration by being provided above. In the two unpolarized regions provided on this diagonal line, the material rigidity and Young's modulus of the polarized region are different while being originally the same material, so not only the longitudinal vibration by selecting the operating frequency, Bending vibration occurs. As a result, although only a pair of electrode terminals, it is possible to excite vibrations that are individually or superposed on both vibration forms by selecting the drive frequency, and the number of signal input electrodes can be reduced. The degree of freedom in product design increases. Moreover, not only a single rectangular plate but also a plurality of rectangular plates are laminated so that the polarization region overlaps in the thickness direction, thereby reducing the impedance and enabling low voltage driving.

本発明によれば、圧電セラミック矩形板を用い、前記圧電セラミック矩形板の厚み方向に平行な一対2枚の電極によって分極された圧電振動子であって、前期圧電セラミック矩形板の屈曲振動形態の歪最大となる領域において、前記圧電セラミックの厚み方向に分極されない2つの領域を、矩形板の対角線上に備えた圧電振動子が得られる。   According to the present invention, a piezoelectric vibrator using a piezoelectric ceramic rectangular plate and polarized by a pair of two electrodes parallel to the thickness direction of the piezoelectric ceramic rectangular plate, In the region where the strain is maximum, a piezoelectric vibrator having two regions that are not polarized in the thickness direction of the piezoelectric ceramic on the diagonal line of the rectangular plate can be obtained.

また本発明によれば、前記圧電振動子が、電極厚み方向に複数積層された積層型圧電振動子である圧電振動子が得られる。   Further, according to the present invention, a piezoelectric vibrator that is a stacked piezoelectric vibrator in which a plurality of the piezoelectric vibrators are laminated in the electrode thickness direction can be obtained.

また本発明によれば、前記圧電振動子において長さ縦振動と屈曲振動の共振周波数の間において駆動する事で長さ縦振動、屈曲振動、また双方が重畳した状態を任意に励振させる圧電振動子の駆動方法が得られる。   Further, according to the present invention, the piezoelectric vibrator that arbitrarily drives the longitudinal vibration, the bending vibration, or the state in which both are superimposed by driving between the resonance frequencies of the longitudinal vibration and the bending vibration in the piezoelectric vibrator. A child driving method is obtained.

本発明により矩形板の共振を用い、長さ縦振動、屈曲振動を励振させる圧電振動子において、端子数の少ない、構造の単純な共振型圧電振動子を構成する事が可能となり、動作周波数を選択する事で、各振動およびそれぞれが重畳した任意の形態を励振させる事ができる圧電振動子およびその駆動方法がの提供が可能となる。   According to the present invention, it is possible to construct a simple resonance type piezoelectric vibrator having a small number of terminals and a piezoelectric vibrator that excites longitudinal vibration and bending vibration using resonance of a rectangular plate. By selecting, it is possible to provide a piezoelectric vibrator and a driving method thereof that can excite each vibration and any form in which each vibration is superimposed.

本発明の圧電振動子およびその駆動方法は、矩形板の共振を用い、長さ縦振動モード、屈曲振動モードを容易に励振させ、かつ構造の単純な共振型圧電振動子を構成する事が可能となる。   The piezoelectric vibrator of the present invention and the driving method thereof can use a resonance of a rectangular plate to easily excite a longitudinal vibration mode and a bending vibration mode and to form a simple resonance type piezoelectric vibrator. It becomes.

(実施の形態1)
図1は、本発明の圧電振動子の斜視図を示す。図1(a)は分極されない領域が半円柱形状の場合、図1(b)は分極されない領域が長方体形状の場合を示す。図8と同様に、圧電振動子11の外形は、例えば長さ20mm×幅5mm×厚さ5mmでハード系(高Qm系)セラミックの矩形板状と従来例とほぼ同一であるが、内部には矩形板の輪郭よりやや内側に上面電極12、と下面電極13が設けられており、この領域は厚み方向に分極されている。また、同じ矩形板内には対角線に沿った形で2箇所の厚み方向に分極されない領域14を設けてある。
(Embodiment 1)
FIG. 1 shows a perspective view of a piezoelectric vibrator of the present invention. FIG. 1A shows a case where the non-polarized region has a semi-cylindrical shape, and FIG. 1B shows a case where the non-polarized region has a rectangular parallelepiped shape. As in FIG. 8, the outer shape of the piezoelectric vibrator 11 is, for example, 20 mm long × 5 mm wide × 5 mm thick, and is substantially the same as the rectangular plate shape of a hard (high Qm) ceramic, but is similar to the conventional example. The upper surface electrode 12 and the lower surface electrode 13 are provided slightly inside the outline of the rectangular plate, and this region is polarized in the thickness direction. Further, two regions 14 that are not polarized in the thickness direction are provided along the diagonal line in the same rectangular plate.

図2は、本発明の圧電振動子のインピーダンス特性を示す。この圧電振動子を70kHzから100kHzにおいて上面電極12と下面電極13間でインピーダンスの周波数特性(インピーダンス波形)を見た結果、83kHz近傍に大きな共振(インピーダンス最小)点を持つが、この近傍が長さ縦1次振動形態で駆動される領域となる。他方、81kHz近傍には、小さな共振が示されているが、この周波数近傍では屈曲2次振動で動作する。   FIG. 2 shows the impedance characteristics of the piezoelectric vibrator of the present invention. As a result of observing the frequency characteristics (impedance waveform) of the impedance between the upper surface electrode 12 and the lower surface electrode 13 at 70 kHz to 100 kHz, this piezoelectric vibrator has a large resonance (impedance minimum) point in the vicinity of 83 kHz. The region is driven in the longitudinal primary vibration mode. On the other hand, a small resonance is shown in the vicinity of 81 kHz, but it operates with a bending secondary vibration in the vicinity of this frequency.

図3は、本発明の圧電振動子の駆動周波数における動作形態を示す。駆動周波数を変化させるに伴い、81kHzの屈曲2次振動から徐々に83kHzの長さ縦1次振動へ形態が変化する事が示されている。82kHz近傍では、屈曲2次振動に長さ縦1次振動が重畳した振動形態を取っている。本発明の圧電振動子11では、このように振動子内の一対の電極に対し、印加電圧の位相、正逆変更等を行うことなく、動作周波数を可変する事で単独の振動形態、2つの振動形態が重畳した状態を自在に励振させる事が可能である。   FIG. 3 shows an operation mode at the driving frequency of the piezoelectric vibrator of the present invention. It is shown that as the drive frequency is changed, the form gradually changes from a bending secondary vibration of 81 kHz to a longitudinal longitudinal vibration of 83 kHz in length. In the vicinity of 82 kHz, a vibration form in which a longitudinal primary vibration is superimposed on a bending secondary vibration is taken. In the piezoelectric vibrator 11 according to the present invention, a single vibration mode, two types can be obtained by changing the operating frequency of the pair of electrodes in the vibrator without changing the applied voltage phase, forward / reverse, or the like. It is possible to freely excite the state in which the vibration forms are superimposed.

図10および図11に、従来例および本発明において駆動させた矩形板の長さ縦1次振動、屈曲2次振動の形態を応力等高線で表している。本発明の電極構成により、従来例の場合と同様に、長さ縦1次振動の場合、矩形板長さ方向端部から略1/4の領域に2箇所で、また、屈曲2次振動の場合、矩形板長さ方向端部から略1/4の領域に計4箇所で、歪と応力が最大となる領域を発生させることができる。よって、本発明構造によって、従来と同形態の振動を励起するのに必要な電極数は従来の圧電振動子の略1/4で済む事になる。   10 and FIG. 11 show the length longitudinal primary vibration and the bending secondary vibration of the rectangular plate driven in the conventional example and the present invention by the stress contour lines. With the electrode configuration of the present invention, as in the case of the conventional example, in the case of longitudinal longitudinal vibration, two points in the region approximately 1/4 from the end in the longitudinal direction of the rectangular plate, and bending secondary vibration In this case, a region where the strain and stress are maximized can be generated at a total of four points in a region substantially ¼ from the end in the longitudinal direction of the rectangular plate. Therefore, according to the structure of the present invention, the number of electrodes required to excite the vibration of the same form as the conventional one can be reduced to about 1/4 of the conventional piezoelectric vibrator.

(実施の形態2)
次に、図4に、本発明の積層型圧電振動子の斜視図を示す(図は10層に積層された例を示す)。図5は、本発明の積層型圧電振動子の内部電極構造図を示す。図5(a)は斜視図、図5(b)は断面図を示す。図5(a)では、圧電セラミックは省略されている。積層型圧電振動子21の形状、使用材料等は実施の形態1と同じであるが、厚み方向に分極された領域は内部電極A22と内部電極B23で構成され、各層は図5(b)断面図に示すとおり厚み方向に対し、互いに逆向きに分極され側面の外部電極A24および外部電極B25において外部からの駆動信号を受けるよう接続されている。また、同じ矩形板内には対角線に沿った形で2箇所の厚み方向に分極されていない領域26(図4に図示)を設けてある。図中矢印は分極方向を示している。
(Embodiment 2)
Next, FIG. 4 shows a perspective view of the laminated piezoelectric vibrator of the present invention (the figure shows an example in which 10 layers are laminated). FIG. 5 shows an internal electrode structure diagram of the multilayer piezoelectric vibrator of the present invention. 5A is a perspective view, and FIG. 5B is a cross-sectional view. In FIG. 5A, the piezoelectric ceramic is omitted. The shape, material used, and the like of the laminated piezoelectric vibrator 21 are the same as those in the first embodiment, but the region polarized in the thickness direction is composed of the internal electrode A22 and the internal electrode B23, and each layer is a cross section in FIG. As shown in the figure, the electrodes are polarized in opposite directions with respect to the thickness direction, and are connected to receive external driving signals at the external electrodes A24 and B25 on the side surfaces. Further, two regions 26 (shown in FIG. 4) that are not polarized in the thickness direction are provided along the diagonal line in the same rectangular plate. The arrow in the figure indicates the polarization direction.

図6は、本発明の積層型圧電振動子のインピーダンス特性を示す。この圧電振動子を70kHzから100kHzにおいて外部電極A24と外部電極B25でインピーダンスの周波数特性(インピーダンス波形)を見た結果、83kHz近傍に大きな共振(インピーダンス最小)点を持つが、この近傍が長さ縦1次振動形態で駆動される領域となる。他方、81kHz近傍には小さな共振が示されているが、この周波数近傍では屈曲2次振動で動作する。実施の形態1に比べて、低インピーダンス化が図られている。   FIG. 6 shows the impedance characteristics of the laminated piezoelectric vibrator of the present invention. As a result of observing the frequency characteristics (impedance waveform) of the impedance of this piezoelectric vibrator from 70 kHz to 100 kHz with the external electrode A24 and the external electrode B25, there is a large resonance (minimum impedance) point in the vicinity of 83 kHz. The region is driven in the primary vibration mode. On the other hand, a small resonance is shown in the vicinity of 81 kHz, but it operates with a bending secondary vibration in the vicinity of this frequency. Compared to the first embodiment, the impedance is reduced.

実施の形態1、2から明らかなように、一つの電極部には一対、2枚の電極が必要であり、図7の従来例では、4箇所の分極領域が存在する為、計8個の外部電極が必要となる。低電圧駆動の為に複数対の積層を行って低インピーダンス化を図った際も同じであり、本発明構造によって、同形態の振動を励起するのに必要な電極数は略1/4で済む事になる。   As is clear from the first and second embodiments, a pair of electrodes is required for one electrode part. In the conventional example of FIG. An external electrode is required. The same is true when lowering the impedance by stacking multiple pairs for low-voltage driving. With the structure of the present invention, the number of electrodes required to excite the vibration of the same form is about ¼. It will be a thing.

以上、この発明の実施の形態を説明したが、この発明は、これらの実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   As mentioned above, although embodiment of this invention was described, this invention is not restricted to these embodiment, Even if there is a design change of the range which does not deviate from the summary of this invention, it is included in this invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

本発明の圧電振動子およびその駆動方法を用いることにより、長さ縦振動モード、屈曲振動モードおよびそれぞれが重畳した任意の形態を励振させることが可能な、超音波モータを簡単に構成することができる。   By using the piezoelectric vibrator and the driving method thereof of the present invention, an ultrasonic motor capable of exciting a longitudinal vibration mode, a bending vibration mode, and any form in which each is superposed can be easily configured. it can.

本発明の圧電振動子の斜視図を示す。図1(a)は分極されない領域が半円柱形状の場合を示す図、図1(b)は分極されない領域が長方体形状の場合を示す図。The perspective view of the piezoelectric vibrator of this invention is shown. FIG. 1A shows a case where a non-polarized region has a semi-cylindrical shape, and FIG. 1B shows a case where a non-polarized region has a rectangular parallelepiped shape. 本発明の圧電振動子のインピーダンス特性を示す図。The figure which shows the impedance characteristic of the piezoelectric vibrator of this invention. 本発明の圧電振動子の駆動周波数における動作形態を示す図。The figure which shows the operation | movement form in the drive frequency of the piezoelectric vibrator of this invention. 本発明の積層型圧電振動子の斜視図。The perspective view of the lamination type piezoelectric vibrator of the present invention. 本発明の積層型圧電振動子の内部電極構造図。図5(a)は斜視図、図5(b)は断面図。The internal electrode structure figure of the lamination type piezoelectric vibrator of the present invention. FIG. 5A is a perspective view, and FIG. 5B is a cross-sectional view. 本発明の積層型圧電振動子のインピーダンス特性を示す図。The figure which shows the impedance characteristic of the laminated piezoelectric vibrator of this invention. 一般的な超音波モータの原理を表す模式図。図7(a)は動作説明図、図7 (b)は振動子の軌跡を示す図。The schematic diagram showing the principle of a general ultrasonic motor. FIG. 7A is a diagram for explaining the operation, and FIG. 7B is a diagram showing the locus of the vibrator. 従来例の圧電振動子の斜視図。The perspective view of the piezoelectric vibrator of a prior art example. 従来例の圧電振動子のインピーダンス特性を示す図。図9(a)は長さ縦1次振動の場合を示す図、図9(b)は屈曲2次振動の場合を示す図。The figure which shows the impedance characteristic of the piezoelectric vibrator of a prior art example. FIG. 9A is a diagram showing a case of longitudinal longitudinal vibration, and FIG. 9B is a diagram showing a case of bending secondary vibration. 従来例および本発明において駆動させた長さ縦1次振動の応力図(応力等高線)。FIG. 6 is a stress diagram (stress contour line) of a lengthwise primary vibration driven in the conventional example and the present invention. 従来例および本発明において駆動させた屈曲2次振動の応力図(応力等高線)。The stress figure (stress contour) of the bending secondary vibration driven in the conventional example and this invention.

符号の説明Explanation of symbols

11 圧電振動子
12 上面電極
13 下面電極
14 分極されていない領域
21 積層型圧電振動子
22 内部電極A
23 内部電極B
24 外部電極A
25 外部電極B
26 分極されていない領域
31 振動子
32 移動体(スライダ)
33 固定摺動部材(ステータ)
34 ガイド
p 振動子の左端面の中心
A〜D 軌跡
41 圧電振動子
42 励振用電極A
43 励振用電極B
44 励振用電極C
45 励振用電極D
11 Piezoelectric vibrator 12 Upper surface electrode 13 Lower surface electrode 14 Unpolarized region 21 Multilayer piezoelectric vibrator 22 Internal electrode A
23 Internal electrode B
24 External electrode A
25 External electrode B
26 Unpolarized region 31 Vibrator 32 Moving object (slider)
33 Fixed sliding member (stator)
34 Guide p Center A to D of left end face of vibrator Trajectory 41 Piezoelectric vibrator 42 Excitation electrode A
43 Excitation electrode B
44 Excitation electrode C
45 Excitation electrode D

Claims (3)

圧電セラミック矩形板を用い、前記圧電セラミック矩形板の厚み方向に平行な一対2枚の電極によって分極された圧電振動子であって、前記圧電セラミック矩形板の屈曲振動形態の歪最大となる領域において、前記圧電セラミックの厚み方向に分極されない2つの領域を、矩形板の対角線上に備えることを特徴とする圧電振動子。   A piezoelectric vibrator using a piezoelectric ceramic rectangular plate and polarized by a pair of two electrodes parallel to the thickness direction of the piezoelectric ceramic rectangular plate, and in a region where the strain of the bending vibration form of the piezoelectric ceramic rectangular plate is maximum. A piezoelectric vibrator comprising two regions that are not polarized in the thickness direction of the piezoelectric ceramic on a diagonal line of a rectangular plate. 前記圧電振動子が、電極厚み方向に複数積層された積層型圧電振動子であることを特徴とする請求項1記載の圧電振動子。   The piezoelectric vibrator according to claim 1, wherein the piezoelectric vibrator is a laminated piezoelectric vibrator in which a plurality of the piezoelectric vibrators are laminated in an electrode thickness direction. 請求項1又は2記載の圧電振動子において長さ縦振動と屈曲振動の共振周波数の間において駆動させる事で長さ縦振動、屈曲振動、また双方が重畳した状態を任意に励振させることを特徴とする圧電振動子の駆動方法。   3. The piezoelectric vibrator according to claim 1, wherein the piezoelectric vibrator is driven between a longitudinal longitudinal vibration and a resonance frequency of a bending vibration to arbitrarily excite a longitudinal longitudinal vibration, a bending vibration, or a state in which both are superimposed. A driving method of the piezoelectric vibrator.
JP2008159830A 2008-06-19 2008-06-19 Piezoelectric vibrator and method of driving the same Withdrawn JP2010004625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008159830A JP2010004625A (en) 2008-06-19 2008-06-19 Piezoelectric vibrator and method of driving the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008159830A JP2010004625A (en) 2008-06-19 2008-06-19 Piezoelectric vibrator and method of driving the same

Publications (1)

Publication Number Publication Date
JP2010004625A true JP2010004625A (en) 2010-01-07

Family

ID=41585860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008159830A Withdrawn JP2010004625A (en) 2008-06-19 2008-06-19 Piezoelectric vibrator and method of driving the same

Country Status (1)

Country Link
JP (1) JP2010004625A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093306A1 (en) * 2010-01-27 2011-08-04 石川県 Transducer for ultrasonic motor
CN107968595A (en) * 2018-01-12 2018-04-27 吉林大学 A kind of novel soft piezoelectric actuator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093306A1 (en) * 2010-01-27 2011-08-04 石川県 Transducer for ultrasonic motor
JP2011155760A (en) * 2010-01-27 2011-08-11 Ishikawa Prefecture Vibrator for ultrasonic motor
CN102725951A (en) * 2010-01-27 2012-10-10 石川县 Transducer for ultrasonic motor
EP2530825A4 (en) * 2010-01-27 2015-04-08 Ishikawa Prefecture Transducer for ultrasonic motor
US9099640B2 (en) 2010-01-27 2015-08-04 Ishikawa Prefecture Transducer for ultrasonic motor
CN107968595A (en) * 2018-01-12 2018-04-27 吉林大学 A kind of novel soft piezoelectric actuator
CN107968595B (en) * 2018-01-12 2024-01-05 吉林大学 Novel soft piezoelectric driver

Similar Documents

Publication Publication Date Title
JP4813708B2 (en) Multilayer piezoelectric motor
EP3134925B1 (en) Piezoelektric actuator
JP4954784B2 (en) Drive device
US8299682B2 (en) Ultrasonic motor
CN109314176A (en) With can diagonal excitation actuator plate supersonic motor
JP4918122B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP2010004625A (en) Piezoelectric vibrator and method of driving the same
KR102469287B1 (en) Electromechanical actuator, excitation method of electromechanical actuator and ultrasonic motor
JP4954783B2 (en) Piezoelectric element and vibration type actuator
JPH05146171A (en) Ultrasonic oscillator
JPH0732613B2 (en) Ultrasonic oscillator and drive device having this oscillator
JP2008067539A (en) Ultrasonic actuator and method of manufacturing its vibrator
JP4262056B2 (en) Vibration wave drive
JPH05122949A (en) Linear actuator
JP5296469B2 (en) Ultrasonic motor
JP5129184B2 (en) Ultrasonic motor
KR20120138374A (en) Piezoelectric vibrator of ultrasonic motor
JP5612940B2 (en) Ultrasonic motor
JP5571521B2 (en) Ultrasonic motor and driving method thereof
JP5486256B2 (en) Ultrasonic motor
JP2004187334A (en) Ultrasonic motor and electronic apparatus fitted therewith
JP2009044793A (en) Piezoelectric actuator, and driving method thereof
JP4388273B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP2011211795A (en) Ultrasonic motor and method of driving the same
JP5491719B2 (en) Ultrasonic motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110609

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120821