JPH05146171A - Ultrasonic oscillator - Google Patents

Ultrasonic oscillator

Info

Publication number
JPH05146171A
JPH05146171A JP3330155A JP33015591A JPH05146171A JP H05146171 A JPH05146171 A JP H05146171A JP 3330155 A JP3330155 A JP 3330155A JP 33015591 A JP33015591 A JP 33015591A JP H05146171 A JPH05146171 A JP H05146171A
Authority
JP
Japan
Prior art keywords
vibration
divided
internal electrodes
laminated
external electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3330155A
Other languages
Japanese (ja)
Inventor
Tomoki Funakubo
朋樹 舟窪
Katsuhiro Wakabayashi
勝裕 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3330155A priority Critical patent/JPH05146171A/en
Priority to US07/865,345 priority patent/US5345137A/en
Publication of JPH05146171A publication Critical patent/JPH05146171A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To provide an ultrasonic oscillator which is compact and outputs large oscillation. CONSTITUTION:A laminate for bending vibration is made by laminating first piles 111, in each of which the inner electrodes 108 of two sheets of piezoelectric elements 101 are divided and these divided faces are put opposite on top of each other, and second piles 112, in each of which the inner electrodes 108 of two sheets of piezoelectric elements 103 are divided and these divided faces are put opposite on top of each other in the direction orthogonal to the direction of the division of the first pile 111, alternately in large numbers, and a laminate for elastic vibration is accumulated on the laminate for bending vibration so as to make an ultrasonic oscillator. Large vibration is outputted by the composition of the vibration of the laminate for bending vibration and the laminate for elastic vibration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧電素子等の電気・機
械変換素子を振動源として用いた超音波振動子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic vibrator using an electromechanical conversion element such as a piezoelectric element as a vibration source.

【0002】[0002]

【従来の技術】最近、電磁型モータに代わる新しいモー
タとして超音波振動子を使用した超音波モータが開発さ
れている。この超音波モータは、従来の電磁型モータに
比べて次のような利点を有している。
2. Description of the Related Art Recently, an ultrasonic motor using an ultrasonic vibrator has been developed as a new motor replacing an electromagnetic motor. This ultrasonic motor has the following advantages over conventional electromagnetic motors.

【0003】 (1) 薄型、軽量、コンパクトである。 (2) ギヤなしで低速、高トルクが得られる。 (3) 部品構成が単純で信頼性が高い。 (4) 磁気的影響の授受がない。 (5) バックラッシュがなく位置決めが容易である。(1) Thin, lightweight and compact. (2) Low speed and high torque can be obtained without gears. (3) The parts configuration is simple and highly reliable. (4) There is no exchange of magnetic effects. (5) There is no backlash and positioning is easy.

【0004】超音波モータは回転型とリニア型とがあ
り、図15〜図18はリニア型超音波モータの従来例を
示している。図15の従来例においては、左側のランジ
ュバン型圧電振動子1を振動させて、ホーン2の先端を
弾性体からなる伝播棒3につきあてると、伝播棒3には
屈曲進行波が発生する。この屈曲進行波は矢印Dで示す
ように伝播棒3を右方向に伝播して行く。そしてこの進
行波は伝播棒3の右端につきあてられている同様なホー
ン4を介してランジュバン型圧電振動子5を励振せる。
この時、図のLとRとを適当に選択してインピーダンス
マッチングさせ、進行波のエネルギーをすべて吸収させ
る。こうすると上記進行波は定常的に左方から右方に進
む。
There are two types of ultrasonic motors, a rotary type and a linear type, and FIGS. 15 to 18 show conventional examples of the linear type ultrasonic motor. In the conventional example of FIG. 15, when the Langevin type piezoelectric vibrator 1 on the left side is vibrated and the tip of the horn 2 is applied to the propagation rod 3 made of an elastic body, a bending traveling wave is generated in the propagation rod 3. This bending traveling wave propagates rightward in the propagating rod 3 as indicated by an arrow D. Then, this traveling wave excites the Langevin type piezoelectric vibrator 5 through a similar horn 4 attached to the right end of the propagating rod 3.
At this time, L and R in the figure are appropriately selected and impedance matching is performed to absorb all the energy of the traveling wave. In this way, the traveling wave constantly travels from left to right.

【0005】さて、このような屈曲進行波の生じている
伝播棒3の表面にスライダー6をある一定の押圧力で圧
接保持させると、スライダー6は矢印Hで示すように図
中左方向へと移動していく。
When the slider 6 is held in pressure contact with the surface of the propagating rod 3 in which such a bending traveling wave is generated by a certain pressing force, the slider 6 moves leftward in the figure as indicated by an arrow H. Move on.

【0006】図16は上記伝播棒3の屈曲進行波とスラ
イダー6との関係を模式的に示す斜視図である。同図中
3Aは伝播棒3に相当する弾性体、6Aはスライダー6
に相当する移動体である。同図に示すように弾性体3A
の質点Pは楕円軌跡を描いている。したがって、この図
中左回りの楕円軌跡を描いている弾性体3Aの上に移動
体6Aを所定圧力で圧接させると、移動体6Aはその進
行波の進行方向Dとは逆方向すなわち図中左方向に駆動
される。なお進行波の伝播方向を逆にすれば、移動体6
Aは図中右方向へ駆動する。
FIG. 16 is a perspective view schematically showing the relationship between the bending traveling wave of the propagation rod 3 and the slider 6. In the figure, 3A is an elastic body corresponding to the propagation rod 3, and 6A is a slider 6.
Is a moving body equivalent to. As shown in the figure, the elastic body 3A
The mass point P of is drawing an elliptical locus. Therefore, when the moving body 6A is brought into pressure contact with the elastic body 3A that draws a counterclockwise elliptical locus in the figure at a predetermined pressure, the moving body 6A is in the direction opposite to the traveling direction D of the traveling wave, that is, in the left side of the figure. Driven in the direction. If the traveling direction of the traveling wave is reversed, the moving body 6
A drives to the right in the figure.

【0007】図17は他の従来例を示し、ランバジュ型
振動子7の先端には振動片8が取り付けられている。そ
して振動体8の先端がスライダ6Bに対し、このスライ
ダ6Bの面の法線に対して所定の角度θだけ傾斜した状
態で、一定の押圧力で接触している。このランジュバン
型振動子7に対し交流電源9からランジュバン型振動子
の固有振動数と同一の周波数の交流電圧を印加すると、
ランジュバン型振動子7は縦振動を行う。このとき、振
動片8の先端がスライダ6Bに所定角度θで当接してい
ることから、横振動をも行う。これらの振動の合成によ
り振動片8の先端は楕円軌跡を描く。かくしてスライダ
6Bは図中の矢印で示すように左の方向に移動する。
FIG. 17 shows another conventional example, in which a vibrating piece 8 is attached to the tip of the Lambaj type vibrator 7. The tip of the vibrating body 8 is in contact with the slider 6B with a constant pressing force in a state of being inclined by a predetermined angle θ with respect to the normal line of the surface of the slider 6B. When an AC voltage having the same frequency as the natural frequency of the Langevin type vibrator is applied from the AC power supply 9 to the Langevin type vibrator 7,
The Langevin type vibrator 7 performs longitudinal vibration. At this time, since the tip of the vibrating piece 8 is in contact with the slider 6B at a predetermined angle θ, lateral vibration is also performed. By combining these vibrations, the tip of the vibrating piece 8 draws an elliptical locus. Thus, the slider 6B moves to the left as shown by the arrow in the figure.

【0008】図18はさらに別の従来例を示し、矩形状
をなす導電性の振動子10の両面に圧電素子11,12
が接着されている。この圧電素子11,12からは電圧
印加用のリード端子A,Bが引出されており、振動子1
0からは、接地端子Eが引出されている。振動子10の
形状はこの振動子10の縦振動の共振周波数とたわみ振
動の共振周波数とが一致する形状となっている。かくし
て、リード端子A,Bに上記共振周波数を有する交流電
圧を一定の位相差をもって印加すると、振動子10の端
面Sの質点が楕円運動を行う。そこでスライダ6Cを上
記断面Sに対して一定の力で押圧すると、このスライダ
6Cは図中矢印HHの方向に移動する。この移動方向は
端子Aと端子Bとに印加する電圧の位相差により決定さ
れる。
FIG. 18 shows still another conventional example, in which piezoelectric elements 11 and 12 are provided on both sides of a rectangular conductive vibrator 10.
Are glued together. Lead terminals A and B for voltage application are drawn out from the piezoelectric elements 11 and 12, respectively.
From 0, the ground terminal E is drawn out. The shape of the vibrator 10 is such that the resonance frequency of longitudinal vibration of the vibrator 10 and the resonance frequency of flexural vibration match. Thus, when an AC voltage having the above resonance frequency is applied to the lead terminals A and B with a constant phase difference, the mass point of the end surface S of the vibrator 10 makes an elliptic motion. Then, when the slider 6C is pressed against the cross section S with a constant force, the slider 6C moves in the direction of an arrow HH in the drawing. This moving direction is determined by the phase difference between the voltages applied to the terminals A and B.

【0009】[0009]

【発明が解決しようとする課題】図15〜図18に示す
超音波モータは超音波振動子の質点における楕円軌跡運
動のエネルギーを移動体(スライダー)へ摩擦により伝
達することを基本原理としている。ところが、図15の
従来例では、伝播棒3の全体に進行波を発生させなけれ
ばならない為、効率が悪い上、装置全体が大型化してし
まう問題があった。また、図17に示した従来例ではス
ライダー6Bの進行方向が一方向に限定される上、前記
従来例と同様に装置全体が大型化するという問題があっ
た。さらに図18に示す従来例では振動子10の両面に
接着した圧電素子11と12とで振動出力を得るもので
あるため、スライダ6Cを移動するための大きな力を確
保することが困難である。そこで、より大きな振動出力
を得るべく上記振動子10の側面に接着する圧電素子1
1,12の枚数を増やすと、その分だけ装置が大型化す
るという欠点があった。また、この図18の従来例は振
動子10の縦振動とたわみ振動とを合成して楕円振動を
発生するものであるが、両振動がいずれも共振状態でな
いと大きな出力が得られない。よって縦振動の共振周波
数とたわみ振動の共振周波数を一致させる必要がある。
この為に、トライアンドエラーで振動子10の形状を決
めていかねばならず、大きな労力を要し、製作が容易で
ないという問題があった。
The basic principle of the ultrasonic motor shown in FIGS. 15 to 18 is to transfer the energy of the elliptical locus motion at the mass point of the ultrasonic oscillator to the moving body (slider) by friction. However, in the conventional example of FIG. 15, since traveling waves have to be generated in the entire propagation rod 3, there is a problem that efficiency is poor and the entire device becomes large. Further, in the conventional example shown in FIG. 17, the traveling direction of the slider 6B is limited to one direction, and there is a problem that the entire apparatus becomes large in size as in the conventional example. Further, in the conventional example shown in FIG. 18, since a vibration output is obtained by the piezoelectric elements 11 and 12 adhered to both sides of the vibrator 10, it is difficult to secure a large force for moving the slider 6C. Therefore, in order to obtain a larger vibration output, the piezoelectric element 1 bonded to the side surface of the vibrator 10 described above.
When the number of sheets 1 and 12 is increased, there is a drawback that the apparatus becomes larger by that amount. Further, in the conventional example of FIG. 18, the longitudinal vibration and the flexural vibration of the vibrator 10 are combined to generate an elliptical vibration, but a large output cannot be obtained unless both vibrations are in a resonance state. Therefore, it is necessary to match the resonance frequency of longitudinal vibration with the resonance frequency of flexural vibration.
For this reason, the shape of the vibrator 10 must be determined by trial and error, which requires a large amount of labor and is not easy to manufacture.

【0010】そこで、本発明の目的は、コンパクトでエ
ネルギー変換効率が良く、しかも大きな振動出力を取り
出すことができ、リニアモーターとして用いた場合に被
駆動体を可逆的に移動可能である上、設計上の制約が少
なく、製作容易な超音波振動子を提供することにある。
Therefore, an object of the present invention is to be compact, to have a high energy conversion efficiency, to be able to take out a large vibration output, and to be able to reversibly move the driven body when used as a linear motor, and to design it. An object of the present invention is to provide an ultrasonic transducer which has few restrictions and is easy to manufacture.

【0011】[0011]

【課題を解決するための手段】本発明の超音波振動子
は、両面に施された内部電極の内、片面の内部電極が2
分割された2枚の圧電素子を前記内部電極の分割面を対
向させて重ねた第1の重ね体と、両面に施された内部電
極の内、片面の内部電極が前記分割方向と直交する方向
に分割された2枚の圧電素子を前記内部電極の分割面を
対向させて重ねた第2の重ね体とを交互に複数回積層し
た第1の積層体と、両面に内部電極が施された圧電素子
を複数積層した第2の積層体とを備え、これらの第1の
積層体と第2の積層体とが積層方向に直列に接合され、
前記圧電素子の内部電極を電気接続する外部電極が外面
に設けられていることを特徴とする。
The ultrasonic vibrator of the present invention has two internal electrodes on one side of the internal electrodes provided on both sides.
A first stacked body in which two divided piezoelectric elements are stacked with the divided surfaces of the internal electrodes facing each other, and a direction in which one of the internal electrodes formed on both surfaces is orthogonal to the divided direction. A first laminated body in which a plurality of piezoelectric elements divided into two are alternately laminated a plurality of times with a second laminated body in which the divided surfaces of the internal electrodes face each other, and internal electrodes are provided on both surfaces. A second laminated body in which a plurality of piezoelectric elements are laminated, and the first laminated body and the second laminated body are joined in series in the laminating direction,
An outer electrode for electrically connecting the inner electrode of the piezoelectric element is provided on the outer surface.

【0012】[0012]

【作用】上記構成において、第1の積層体の圧電素子に
電圧を印加し、2分割された内部電極の分極処理を行う
ことにより、各圧電素子の分極の向きを逆とする。ま
た、第2の積層体の圧電素子に電圧を印加して、同様に
分極処理を行う。そして第1の積層体の第1の重ね体に
電圧を印加して所定の周波数fを有したベンディングの
第1の固有モードを発生させ、この周波数fにより第2
の積層体を振動させる。このとき、位相差を適宜、設定
することにより、被駆動体側に第1の超音波楕円振動を
発生させることができる。
In the above structure, the direction of polarization of each piezoelectric element is reversed by applying a voltage to the piezoelectric element of the first laminated body and subjecting the divided internal electrodes to polarization. In addition, a voltage is applied to the piezoelectric element of the second laminated body to similarly perform polarization processing. Then, a voltage is applied to the first stacked body of the first stacked body to generate a first eigenmode of bending having a predetermined frequency f, and the second natural frequency is generated by this frequency f.
The laminate is vibrated. At this time, by appropriately setting the phase difference, it is possible to generate the first ultrasonic elliptical vibration on the driven body side.

【0013】一方、第1の積層体の第2の重ね体に電圧
を印加し、前記ベンディングの第1の固有モードと直交
するベンディングの第2の固有モード(周波数f)を発
生させ、この周波数fにより第2の積層体を振動させ
る。このとき、位相差を適宜、設定することにより、被
駆動体側に超音波楕円振動を発生することができる。こ
れら第1の超音波楕円振動の振動面と第2の超音波楕円
振動の振動面は直交しているので、それぞれの超音波楕
円振動の大きさを変化させることにより、その合成とし
て、振動面を超音波振動子の軸の回りに任意に回転させ
ることができる。このため、被駆動体を超音波振動子の
端部に圧接させると、その被駆動体は、超音波楕円振動
による力によりその超音波楕円振動面の方向に移動する
ことができる。
On the other hand, a voltage is applied to the second stack of the first stack to generate a second eigenmode (frequency f) of bending that is orthogonal to the first eigenmode of bending, and this frequency is generated. The second laminate is vibrated by f. At this time, ultrasonic elliptical vibration can be generated on the driven body side by appropriately setting the phase difference. The vibrating surface of the first ultrasonic elliptical vibration and the vibrating surface of the second ultrasonic elliptical vibration are orthogonal to each other. Therefore, by changing the magnitude of each ultrasonic elliptical vibration, the combined vibrating surface is obtained. Can be arbitrarily rotated around the axis of the ultrasonic transducer. Therefore, when the driven body is brought into pressure contact with the end portion of the ultrasonic transducer, the driven body can be moved in the direction of the ultrasonic elliptical vibration surface by the force of the ultrasonic elliptical vibration.

【0014】[0014]

【実施例1】図1ないし図9は本発明の実施例1を示
す。超音波振動子100は図1に示すように、下側の第
1の積層体106aと上側の第2の積層体106bとを
直列に接合した積層体106を有している。第2の積層
体106bの上端部には被駆動体(図示省略)が当接さ
れるものであり、この第2の積層体106bの上端部に
は上面中央に突起104を有した突起台103が設けら
れている。一方、第1の積層体106aの下端部には絶
縁体素子からなる固定台102が設けられている。
Embodiment 1 FIGS. 1 to 9 show Embodiment 1 of the present invention. As shown in FIG. 1, the ultrasonic transducer 100 has a laminated body 106 in which a lower first laminated body 106a and an upper second laminated body 106b are joined in series. A driven body (not shown) is brought into contact with the upper end portion of the second laminated body 106b, and the protrusion base 103 having the protrusion 104 at the center of the upper surface is provided at the upper end portion of the second laminated body 106b. Is provided. On the other hand, the fixed base 102 made of an insulating element is provided at the lower end of the first stacked body 106a.

【0015】第1および第2の積層体106a,106
bはいずれも圧電素子101を複数積層することにより
構成される。図3は第1の積層体106aの上方からの
分解斜視図、図14は下方からの分解斜視図を示す。圧
電素子101は矩形状のPZT−PMN系材料が使用さ
れるものであり、この材料の仮焼結粉末とバインダーと
を混合して泥漿を作成し、この泥漿をドクターブレード
法によりフィルム上に100μmの厚さでキャスティン
グしてグリーンシートとする。そして、グリーンシート
を乾燥した後、フィルムから剥離して圧電材料膜107
とする。その後、圧電材料膜107の両面にAg−Pb
ペースト等により内部電極108を形成することにして
圧電素子101とする。
The first and second laminated bodies 106a, 106
Each of b is formed by stacking a plurality of piezoelectric elements 101. FIG. 3 is an exploded perspective view of the first stacked body 106a from above, and FIG. 14 is an exploded perspective view from below. The piezoelectric element 101 is made of a rectangular PZT-PMN-based material, and a preliminary sintered powder of this material is mixed with a binder to form a slurry, and the slurry is 100 μm on a film by a doctor blade method. It is cast with the thickness of to make a green sheet. Then, after the green sheet is dried, it is peeled off from the film and the piezoelectric material film 107 is removed.
And After that, Ag-Pb is formed on both surfaces of the piezoelectric material film 107.
The internal electrode 108 is formed by using a paste or the like to form the piezoelectric element 101.

【0016】図3および図4における最下段の圧電素子
101は、上面の内部電極108が左右方向に2分割さ
れており、この内部電極108の分割面に第2段目の圧
電素子101が積層される。第2段目の圧電素子101
は図4に示すように、下面の内部電極108が左右方向
に2分割されており、この内部電極108の分割面と最
下段の圧電素子101の分割面とが対向するように積層
される。これにより、第1の重ね体11が形成される。
第2段目の圧電素子101上に積層される第3段目の圧
電素子101は図3に示すように、上面の内部電極10
8が前後方向に2分割されており、同方向に下面の内部
電極108が分割された第4段目の圧電素子101が積
層され、これにより第2の重ね体112が形成される。
従って、第1の重ね体111と第2の重ね体112とは
内部電極の分割方向が直交しており、この第1の重ね体
111と第2の重ね体112とを交互に複数回(例え
ば、数十回)積層することにより第1の積層体106a
が構成される。
In the lowermost piezoelectric element 101 in FIGS. 3 and 4, the internal electrode 108 on the upper surface is divided into two parts in the left-right direction, and the piezoelectric element 101 of the second step is laminated on the divided surface of this internal electrode 108. To be done. Second-stage piezoelectric element 101
As shown in FIG. 4, the internal electrode 108 on the lower surface is divided into two parts in the left-right direction, and the divided surface of the internal electrode 108 and the divided surface of the piezoelectric element 101 at the lowermost stage are laminated so as to face each other. As a result, the first stacked body 11 is formed.
As shown in FIG. 3, the third-stage piezoelectric element 101 stacked on the second-stage piezoelectric element 101 has an internal electrode 10 on the upper surface.
8 is divided into two in the front-rear direction, and the fourth-stage piezoelectric element 101, in which the internal electrode 108 on the lower surface is divided in the same direction, is laminated, whereby a second stacked body 112 is formed.
Therefore, the first stacked body 111 and the second stacked body 112 are such that the dividing directions of the internal electrodes are orthogonal to each other, and the first stacked body 111 and the second stacked body 112 are alternated a plurality of times (for example, , Several tens of times) to form the first laminated body 106a.
Is configured.

【0017】図5および図6は第2の積層体106bの
上方および下方からの分解斜視図を示す。この第2の積
層体106bの圧電素子101は第1の積層体106a
の圧電素子101と同様な方法で作成されるが、両面の
内部電極108はいずれも分割されることなく、略全面
に形成されている。そして、この圧電素子101を複数
枚(数十枚)積層することにより第2積層体106bが
構成される。これらの積層体106a,106bは直列
に積層されて積層体106が形成され、この積層体10
6を熱プレスした後、約1200℃で焼結する。
5 and 6 are exploded perspective views of the second stack 106b from above and below. The piezoelectric element 101 of the second laminated body 106b is the same as the first laminated body 106a.
The piezoelectric element 101 is formed by the same method as the above-mentioned piezoelectric element 101, but the internal electrodes 108 on both surfaces are formed on almost the entire surface without being divided. Then, the second laminated body 106b is configured by laminating a plurality of (several dozen) piezoelectric elements 101. These laminated bodies 106 a and 106 b are laminated in series to form a laminated body 106.
6 is hot pressed and then sintered at about 1200 ° C.

【0018】焼結後においては、積層体106の上下端
面を研磨し、下端面にセラミックス、金属等からなる固
定台102を、上端面にセラミックス、金属等からなる
突起台103をそれぞれ接着によって固定する。この場
合、固定台102および突起台103は積層体106の
焼成と同時に、一体的に焼成しても良い。
After the sintering, the upper and lower end faces of the laminated body 106 are polished, and the fixing base 102 made of ceramics, metal or the like is fixed to the lower end face by adhesion, and the protrusion base 103 made of ceramics, metal or the like is fixed on the upper end face by adhesion. To do. In this case, the fixed base 102 and the protrusion base 103 may be integrally fired simultaneously with the firing of the laminated body 106.

【0019】以上にようにして積層体106を形成した
後、積層体106の外側面に外部電極105を形成す
る。この外部電極105は銀ペーストなどの導電性ペー
ストを塗布することにより形成することができる。図1
および図2において、105aはグランド用外部電極で
あり、積層体106の全長にわたって形成されている。
105bは屈曲振動用外部電極であり、第1の積層体1
06aの全長にわたって形成される。105cは伸縮振
動用外部電極であり、第2の積層体106bの全長にわ
たって形成されている。そして、これらの外部電極10
5a,105b,105cにリード線107が接続され
ている。なお、かかる超音波振動子100の外面には絶
縁保護膜(図示省略)を被覆することにより絶縁破壊防
止処理が施されるものである。
After the laminated body 106 is formed as described above, the external electrode 105 is formed on the outer surface of the laminated body 106. The external electrode 105 can be formed by applying a conductive paste such as silver paste. Figure 1
In addition, in FIG. 2, reference numeral 105a denotes a ground external electrode, which is formed over the entire length of the laminated body 106.
Reference numeral 105b denotes an external electrode for bending vibration, which is the first laminated body 1
It is formed over the entire length of 06a. 105 c is an external electrode for stretching vibration, which is formed over the entire length of the second stacked body 106 b. Then, these external electrodes 10
The lead wire 107 is connected to 5a, 105b, and 105c. The outer surface of the ultrasonic transducer 100 is covered with an insulating protective film (not shown) to perform a dielectric breakdown prevention process.

【0020】以上にように作製された超音波振動子10
0は油中、空気中などにおいて分極処理が施される。す
なわち積層体106の対向した反対面に位置した屈曲振
動用外部電極105bはグランド用外部電極105aに
対しそれぞれ極性が逆になるように電圧を印加する一
方、伸縮振動用外部電極105cはグランド用外部電極
105aに対し、正または負の極性の電圧を印加するこ
とにより分極処理を行う。
The ultrasonic transducer 10 manufactured as described above
0 is polarized in oil, air, or the like. That is, the flexural vibration external electrodes 105b located on opposite sides of the laminated body 106 apply voltage to the ground external electrodes 105a so that the polarities thereof are opposite to each other, while the stretching vibration external electrode 105c is applied to the ground external electrode 105a. Polarization processing is performed by applying a voltage of positive or negative polarity to the electrode 105a.

【0021】上記構成において、屈曲振動用外部電極1
05bとグランド用外部電極105a間に位相の交番電
圧を印加し、その周波数fを超音波振動子100の固有
振動数に一致させる。図7はこの屈曲1次振動を、図8
は屈曲2次振動を示し、これらの固有振動数に交番電圧
の周波数fを一致させる。これにより、突起台103の
突起104は図1におけるX方向に交番的に振動する。
一方、伸縮振動用外部電極105cとグランド用外部電
極105aとの間に周波数fの交番電圧を印加する。こ
れにより、図9に示すような伸縮振動が非共振状態で発
生する。これにより突起104は図1におけるZ方向に
交番的に振動する。
In the above structure, the bending vibration external electrode 1 is used.
The alternating voltage of the phase is applied between 05b and the ground external electrode 105a, and the frequency f is made to correspond to the natural frequency of the ultrasonic transducer 100. FIG. 7 shows this bending primary vibration as shown in FIG.
Indicates a bending secondary vibration, and the frequency f of the alternating voltage is made to coincide with these natural frequencies. As a result, the protrusions 104 of the protrusion base 103 vibrate alternately in the X direction in FIG.
On the other hand, an alternating voltage of frequency f is applied between the stretching vibration external electrode 105c and the ground external electrode 105a. As a result, stretching vibration as shown in FIG. 9 occurs in a non-resonant state. As a result, the protrusion 104 alternately vibrates in the Z direction in FIG.

【0022】さらに、屈曲振動用外部電極105bとグ
ランド用外部電極105aとに印加する電圧の位相を適
宜調整することにより、突起104にX−Z面内での右
回り、又は左回りの超音波楕円振動を発生させることが
でき、この状態で平板状の被駆動体を突起104に圧接
させると、被駆動体をX方向の正又は負の方向に移動さ
せることができる。
Furthermore, by appropriately adjusting the phases of the voltages applied to the flexural vibration external electrode 105b and the ground external electrode 105a, the ultrasonic waves can be rotated clockwise or counterclockwise in the XZ plane on the protrusion 104. Elliptical vibration can be generated, and when the plate-shaped driven body is pressed against the projection 104 in this state, the driven body can be moved in the positive or negative direction in the X direction.

【0023】伸縮振動用外部電極105cとグランド用
外部電極105a間に同位相の交番電圧を印加し、その
周波数fを図7に示す屈曲1次振動の固有振動数に一致
させることにより、突起104は図1のほぼY方向に交
番的に振動する。一方、伸縮振動用外部電極105cと
グランド用外部電極105aに周波数fの交番電圧を印
加すると、図9に示すような伸縮振動が非共振状態で発
生する。この振動により、突起104は図1のZ方向に
交番的に振動する。屈曲振動用外部電極105bとグラ
ンド用外部電極105aとに印加する電圧の位相を適当
に調整することで、突起104にY−Z面内での右回
り、又は左回りの超音波楕円振動を発生させることがで
き、この状態で図示しない平板状の被駆動体を突起10
4に圧接させると被駆動体をY方向の正又は負の向きに
移動させることができる。
By applying an alternating voltage of the same phase between the stretching vibration external electrode 105c and the ground external electrode 105a and matching the frequency f thereof with the natural frequency of the bending primary vibration shown in FIG. Oscillates alternately in almost the Y direction of FIG. On the other hand, when an alternating voltage of frequency f is applied to the stretching vibration external electrode 105c and the grounding external electrode 105a, stretching vibration as shown in FIG. 9 occurs in a non-resonant state. Due to this vibration, the protrusion 104 alternately vibrates in the Z direction of FIG. By appropriately adjusting the phase of the voltage applied to the flexural vibration external electrode 105b and the ground external electrode 105a, a clockwise or counterclockwise ultrasonic elliptical vibration is generated in the YZ plane on the protrusion 104. In this state, a flat plate-shaped driven body (not shown) is provided with the protrusion 10
By making pressure contact with 4, the driven body can be moved in the positive or negative direction in the Y direction.

【0024】さらに屈曲振動用外部電極105b、伸縮
振動用外部電極105cおよびグランド用外部電極10
5aに同一周波数fの電圧を印加し、上記2種類の振動
を励起させ、その各々の振動の大きさを変化させること
により、図1のZ軸を含むような超音波楕円振動を任意
の方向に発生させることができる。この時図示しない被
駆動体を突起104に圧接させると被駆動体はX−Y面
の任意の方向に移動することができる。
Further, the bending vibration external electrode 105b, the stretching vibration external electrode 105c, and the ground external electrode 10 are provided.
By applying a voltage of the same frequency f to 5a to excite the above-mentioned two kinds of vibrations and change the magnitude of each vibration, ultrasonic elliptical vibrations including the Z axis of FIG. Can be generated. At this time, if a driven body (not shown) is brought into pressure contact with the protrusion 104, the driven body can move in any direction on the XY plane.

【0025】図10、図11、図13は突起台103の
各例を示し、図11のように側面に突起104を設け
て、側面を駆動面としても良く、図12のように各面に
突起104を設けて、どの面を駆動面として使えるよう
にしても良い。また、本実施例では屈曲振動を共振状態
で用いたが、非共振状態で用いても良く、また、圧電素
子101は、角柱形状以外の円柱形状であっても良い。
さらには、圧電素子を接着により接合しても良い。
FIGS. 10, 11, and 13 show examples of the protrusion base 103. As shown in FIG. 11, the protrusions 104 may be provided on the side surfaces so that the side surfaces serve as driving surfaces. As shown in FIG. The protrusion 104 may be provided so that any surface can be used as a driving surface. Further, although the flexural vibration is used in the resonance state in the present embodiment, it may be used in the non-resonance state, and the piezoelectric element 101 may have a columnar shape other than the prismatic shape.
Furthermore, the piezoelectric element may be bonded by adhesion.

【0026】[0026]

【実施例2】図13および図14は本発明の実施例2を
示し、前記実施例と同一の要素は同一の符号で対応させ
てある。この実施例2では屈曲振動励起を行う下部の第
1の積層体106aに対し、逆位相に屈曲した屈曲振動
励起を行う積層体106cを積層し、この積層体106
cに伸縮振動励起を行う第2の積層体106bを積層し
ている。
Second Embodiment FIGS. 13 and 14 show a second embodiment of the present invention, in which the same elements as those in the above-mentioned embodiment are designated by the same reference numerals. In the second embodiment, a laminated body 106c for bending vibration excitation bent in an antiphase is laminated on the lower first laminated body 106a for performing bending vibration excitation.
A second laminated body 106b that performs stretching vibration excitation is laminated on c.

【0027】上記構成における分極処理は以下のように
行う。すなわち、第1の積層体106aの隣接する2つ
の外部電極105bおよびこの外部電極105bと反対
側に対向した積層体106cの2つの外部電極105d
はグランド用外部電極105aに対して極性が同一とな
るように電圧印加する。また、第1の積層体106aの
残りの外部電極105bおよび積層体106cの残りの
外部電極105dは上記極と逆の極性電圧を印加する。
なお、第2の積層体106bの外部電極105cはグラ
ンド用外部電極105aに対し、正または負の極性の電
圧を印加する。
The polarization process in the above configuration is performed as follows. That is, the two adjacent external electrodes 105b of the first laminated body 106a and the two external electrodes 105d of the laminated body 106c facing the opposite side of the external electrodes 105b.
Applies a voltage to the external electrode for ground 105a so that the polarity is the same. Further, the remaining external electrodes 105b of the first laminated body 106a and the remaining external electrodes 105d of the laminated body 106c apply a polarity voltage opposite to the above-mentioned pole.
The external electrode 105c of the second laminated body 106b applies a positive or negative polarity voltage to the ground external electrode 105a.

【0028】そして、対向する位置の外部電極105
b、105cとグランド用外部電極105aに同位相の
交番電圧を印加し、その周波数fを屈曲2次振動または
図示しない屈曲3次振動のような屈曲の固有振動に一致
させる。この振動により突起104は図6のほぼX方向
に交番的に振動する。また、第2の積層体106bの外
部電極105cとグランド用外部電極105aとの間に
周波数fの交番電圧を印加し、図9に示すような伸縮振
動を非共振で発生させる。この振動により突起104は
図6のZ方向に交番的に振動する。次に、対向した残り
の外部電極105bおよび105cとグランド用外部電
極105aに印加する電圧の位相を適当に調整すること
で、突起104にX−Y面内での右回り、又は左回りの
超音波楕円振動を発生させることができる。この状態で
図示しない平板状の駆動体を突起104に圧接させると
被駆動体はX方向の正又は負の向きに移動することがで
きる。
Then, the external electrodes 105 at the opposite positions
Alternating voltages of the same phase are applied to b and 105c and the external electrode for ground 105a, and the frequency f thereof is made to coincide with the natural vibration of bending such as bending secondary vibration or bending third order vibration (not shown). Due to this vibration, the protrusion 104 alternately vibrates in the substantially X direction in FIG. Further, an alternating voltage of frequency f is applied between the external electrode 105c of the second stacked body 106b and the external electrode for ground 105a to generate the stretching vibration as shown in FIG. 9 without resonance. Due to this vibration, the protrusion 104 alternately vibrates in the Z direction of FIG. Next, by appropriately adjusting the phases of the voltages applied to the remaining remaining external electrodes 105b and 105c and the external electrode for ground 105a, the protrusion 104 is rotated in the clockwise or counterclockwise direction in the XY plane. Sonic elliptical vibration can be generated. In this state, when a flat plate-shaped driving body (not shown) is brought into pressure contact with the protrusion 104, the driven body can move in the positive or negative direction in the X direction.

【0029】なお、Y−Z面内での超音波楕円振動の発
生方法については同様であるので説明を省略する。従っ
て、この実施例2では2種類の超音波振動の大きさを変
化させることにより実施例1と同様に被駆動体をX−Y
面の任意の方向に移動させることができる。
Since the method of generating the ultrasonic elliptical vibration in the YZ plane is the same, the explanation is omitted. Therefore, in the second embodiment, by changing the magnitudes of the two kinds of ultrasonic vibrations, the driven body is moved in the XY direction as in the first embodiment.
It can be moved in any direction of the plane.

【0030】[0030]

【発明の効果】以上説明したように本発明の超音波振動
子は、被駆動体をリニア又は二次元的に駆動させること
ができ、しかもこの駆動電圧を10V以下の低電圧で行
うことができる。また、本発明の超音波振動子は、ST
M(走査形トンネル顕微鏡)の探触針のスキャナーとし
て用いることができ、コンパクトで高効率に駆動するこ
とができる。
As described above, the ultrasonic transducer of the present invention can drive a driven body linearly or two-dimensionally, and can drive the driving voltage at a low voltage of 10V or less. .. Further, the ultrasonic transducer of the present invention is
It can be used as a scanner of an M (scanning tunneling microscope) probe and is compact and can be driven with high efficiency.

【0031】[0031]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の斜視図。FIG. 1 is a perspective view of a first embodiment of the present invention.

【図2】本発明の実施例1の平面図。FIG. 2 is a plan view of the first embodiment of the present invention.

【図3】第1の積層体の上方からの分解斜視図。FIG. 3 is an exploded perspective view of the first stack from above.

【図4】第1の積層体の下方からの分解斜視図。FIG. 4 is an exploded perspective view of the first stack from below.

【図5】第2の積層体の上方からの分解斜視図。FIG. 5 is an exploded perspective view of the second stack from above.

【図6】第2の積層体の下方からの分解斜視図。FIG. 6 is an exploded perspective view of the second stack from below.

【図7】超音波振動子の振動特性を示す側面図。FIG. 7 is a side view showing the vibration characteristics of the ultrasonic transducer.

【図8】超音波振動子の振動特性を示す側面図。FIG. 8 is a side view showing the vibration characteristics of the ultrasonic transducer.

【図9】超音波振動子の振動特性を示す側面図。FIG. 9 is a side view showing the vibration characteristics of the ultrasonic transducer.

【図10】突起台の斜視図。FIG. 10 is a perspective view of a protrusion base.

【図11】突起台の変形例の斜視図。FIG. 11 is a perspective view of a modified example of the protrusion base.

【図12】突起台の変形例の斜視図。FIG. 12 is a perspective view of a modified example of the protrusion base.

【図13】実施例2の斜視図。FIG. 13 is a perspective view of the second embodiment.

【図14】実施例2の平面図。FIG. 14 is a plan view of the second embodiment.

【図15】従来例の側面図。FIG. 15 is a side view of a conventional example.

【図16】従来例の作動を示す斜視図。FIG. 16 is a perspective view showing an operation of a conventional example.

【図17】別の従来例の側面図。FIG. 17 is a side view of another conventional example.

【図18】さらに別の従来例の斜視図。FIG. 18 is a perspective view of still another conventional example.

【符号の説明】[Explanation of symbols]

100 超音波振動子 101 圧電素子 105a グランド用外部電極 105b 外部電極 105c 外部電極 100 ultrasonic transducer 101 piezoelectric element 105a ground external electrode 105b external electrode 105c external electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 両面に施された内部電極の内、片面の内
部電極が2分割された2枚の圧電素子を前記内部電極の
分割面を対向させて重ねた第1の重ね体と、両面に施さ
れた内部電極の内、片面の内部電極が前記分割方向と直
交する方向に分割された2枚の圧電素子を前記内部電極
の分割面を対向させて重ねた第2の重ね体とを交互に複
数回積層した第1の積層体と、 両面に内部電極が施された圧電素子を複数積層した第2
の積層体とを備え、 これらの第1の積層体と第2の積層体とが積層方向に直
列に接合され、前記圧電素子の内部電極を電気接続する
外部電極が外面に設けられていることを特徴とする超音
波振動子。
1. A first layered body in which two piezoelectric elements, of which internal electrodes on one side are divided into two among the internal electrodes formed on both sides, are overlapped with the divided surfaces of the internal electrodes facing each other, and both sides. A second stacked body in which two piezoelectric elements in which one side of the internal electrodes is divided in a direction orthogonal to the dividing direction are overlapped with the divided surfaces of the internal electrodes facing each other. A first laminate in which a plurality of layers are alternately laminated, and a second laminate in which a plurality of piezoelectric elements having internal electrodes on both surfaces are laminated.
And a first laminated body and a second laminated body which are joined in series in the laminating direction, and external electrodes for electrically connecting the internal electrodes of the piezoelectric element are provided on the outer surface. Ultrasonic transducer characterized by.
【請求項2】 被駆動体側に突起を有した突起台が設け
られていることを特徴とする請求項1記載の超音波振動
子。
2. The ultrasonic transducer according to claim 1, further comprising a protrusion stand having a protrusion on the driven body side.
【請求項3】 被駆動体の反対側に固定台が設けられて
いることを特徴とする請求項1記載の超音波振動子。
3. The ultrasonic transducer according to claim 1, further comprising a fixed base provided on the opposite side of the driven body.
JP3330155A 1991-04-08 1991-11-19 Ultrasonic oscillator Withdrawn JPH05146171A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3330155A JPH05146171A (en) 1991-11-19 1991-11-19 Ultrasonic oscillator
US07/865,345 US5345137A (en) 1991-04-08 1992-04-08 Two-dimensionally driving ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3330155A JPH05146171A (en) 1991-11-19 1991-11-19 Ultrasonic oscillator

Publications (1)

Publication Number Publication Date
JPH05146171A true JPH05146171A (en) 1993-06-11

Family

ID=18229434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3330155A Withdrawn JPH05146171A (en) 1991-04-08 1991-11-19 Ultrasonic oscillator

Country Status (1)

Country Link
JP (1) JPH05146171A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11127585A (en) * 1997-10-23 1999-05-11 Seiko Instruments Inc Ultrasonic motor and electronic equipment with the same
JP2005295656A (en) * 2004-03-31 2005-10-20 Seiko Instruments Inc Ultrasonic motor and electronic equipment fitted with ultrasonic motor
US7061159B2 (en) 2003-03-13 2006-06-13 Olympus Corporation Ultrasonic transducer and ultrasonic motor
JP2008122381A (en) * 2007-11-08 2008-05-29 Seiko Instruments Inc Stage using piezoelectric actuator and electronic device using stage
JP2008236980A (en) * 2007-03-23 2008-10-02 Taiheiyo Cement Corp Ultrasonic motor element
JP2009183144A (en) * 1997-05-16 2009-08-13 Seiko Instruments Inc Ultrasonic motor, and electronic motor- equipped electronic appliance
JP2009219352A (en) * 1998-08-07 2009-09-24 Seiko Instruments Inc Laminated piezoelectric vibrator, ultrasonic motor, and electronic appliance having the same ultrasonic motor
JP2010034817A (en) * 2008-07-29 2010-02-12 Ngk Spark Plug Co Ltd Ultrasonic transducer and method of manufacturing the same
JP2011015605A (en) * 2010-08-26 2011-01-20 Seiko Instruments Inc Ultrasonic motor using multilayer piezoelectric vibrator, and electronic device using the same
EP2495867A2 (en) 2011-03-02 2012-09-05 NGK Insulators, Ltd. Piezoelectric actuator and piezoelectric actuator array

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183144A (en) * 1997-05-16 2009-08-13 Seiko Instruments Inc Ultrasonic motor, and electronic motor- equipped electronic appliance
JP4563490B2 (en) * 1997-05-16 2010-10-13 セイコーインスツル株式会社 Ultrasonic motor and electronic device with ultrasonic motor
JP2010172196A (en) * 1997-05-16 2010-08-05 Seiko Instruments Inc Vibrating body, ultrasonic motor, and electronic apparatus with ultrasonic motor
JPH11127585A (en) * 1997-10-23 1999-05-11 Seiko Instruments Inc Ultrasonic motor and electronic equipment with the same
JP2010187538A (en) * 1998-08-07 2010-08-26 Seiko Instruments Inc Ultrasonic motor and electronic apparatus having ultrasonic motor
JP2009219352A (en) * 1998-08-07 2009-09-24 Seiko Instruments Inc Laminated piezoelectric vibrator, ultrasonic motor, and electronic appliance having the same ultrasonic motor
US7061159B2 (en) 2003-03-13 2006-06-13 Olympus Corporation Ultrasonic transducer and ultrasonic motor
JP2005295656A (en) * 2004-03-31 2005-10-20 Seiko Instruments Inc Ultrasonic motor and electronic equipment fitted with ultrasonic motor
JP2008236980A (en) * 2007-03-23 2008-10-02 Taiheiyo Cement Corp Ultrasonic motor element
JP2008122381A (en) * 2007-11-08 2008-05-29 Seiko Instruments Inc Stage using piezoelectric actuator and electronic device using stage
JP4714722B2 (en) * 2007-11-08 2011-06-29 セイコーインスツル株式会社 Stage using piezoelectric actuator and electronic equipment using this stage
JP2010034817A (en) * 2008-07-29 2010-02-12 Ngk Spark Plug Co Ltd Ultrasonic transducer and method of manufacturing the same
JP2011015605A (en) * 2010-08-26 2011-01-20 Seiko Instruments Inc Ultrasonic motor using multilayer piezoelectric vibrator, and electronic device using the same
EP2495867A2 (en) 2011-03-02 2012-09-05 NGK Insulators, Ltd. Piezoelectric actuator and piezoelectric actuator array
US8575821B2 (en) 2011-03-02 2013-11-05 Ngk Insulators, Ltd. Piezoelectric actuator and piezoelectric actuator array

Similar Documents

Publication Publication Date Title
US5345137A (en) Two-dimensionally driving ultrasonic motor
JP3118251B2 (en) Ultrasonic driving device and method
JP3792864B2 (en) Ultrasonic motor and electronic equipment with ultrasonic motor
CN111464070B (en) Linear ultrasonic motor stator and electric excitation method thereof
JPH07163162A (en) Ultrasonic oscillator
JP4328113B2 (en) Ultrasonic motor
JPH05146171A (en) Ultrasonic oscillator
JP4918122B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JPH0732613B2 (en) Ultrasonic oscillator and drive device having this oscillator
JP2004304963A (en) Piezoelectric actuator
JP5275734B2 (en) Ultrasonic motor
JP2005065358A (en) Ultrasonic motor employing multilayer piezoelectric oscillator and electronic apparatus employing it
JPH05137359A (en) Ultrasonic vibrator and ultrasonic driving apparatus
JP2008067539A (en) Ultrasonic actuator and method of manufacturing its vibrator
JPH05316756A (en) Ultrasonic oscillator and driver employing thereof
JP5296469B2 (en) Ultrasonic motor
JPH05115846A (en) Ultrasonic vibrator and driver having the same
JP4672999B2 (en) Ultrasonic motor, laminated piezoelectric element and electronic device
JP3059038B2 (en) Laminated piezoelectric element, vibration wave driving device, and device equipped with vibration wave driving device
JP5129184B2 (en) Ultrasonic motor
JPH07256207A (en) Ultrasonic oscillator
JPS62277079A (en) Piezoelectric driving device
JP2011061220A (en) Laminated piezoelectric element, ultrasonic motor, electronic apparatus, stage, and method of manufacturing laminated piezoelectric element
JP4388273B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP2010004625A (en) Piezoelectric vibrator and method of driving the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204