JP2007149978A - Semiconductor laser package device, and method of manufacturing same - Google Patents

Semiconductor laser package device, and method of manufacturing same Download PDF

Info

Publication number
JP2007149978A
JP2007149978A JP2005342486A JP2005342486A JP2007149978A JP 2007149978 A JP2007149978 A JP 2007149978A JP 2005342486 A JP2005342486 A JP 2005342486A JP 2005342486 A JP2005342486 A JP 2005342486A JP 2007149978 A JP2007149978 A JP 2007149978A
Authority
JP
Japan
Prior art keywords
electrode
semiconductor laser
package device
manufacturing
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005342486A
Other languages
Japanese (ja)
Other versions
JP4800019B2 (en
Inventor
Kaori Usuda
かおり 臼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyachi Technos Corp
Original Assignee
Miyachi Technos Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyachi Technos Corp filed Critical Miyachi Technos Corp
Priority to JP2005342486A priority Critical patent/JP4800019B2/en
Publication of JP2007149978A publication Critical patent/JP2007149978A/en
Application granted granted Critical
Publication of JP4800019B2 publication Critical patent/JP4800019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Semiconductor Lasers (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor laser package device which has an excellent bonding strength in a package and a high reliability, does not affect an optical system adversely, and can suppress a facilities cost; and to provide a method of manufacturing the same. <P>SOLUTION: An electrode sheet 24 of a three-layer structure in which an insulating layer 18 is sandwiched between a cathode electrode 16 and a metal foil 20, and the metal foil 20 of a lower layer of the electrode sheet 24, is bonded to an anode electrode 12 of a heat sink by a laser welding from a welding hole 26 in an upper surface of the electrode sheet 24. Consequently, the cathode electrode 16 is attached onto the anode electrode 12. An anode terminal on a lower surface of an LDA chip 14 is connected to the upper surface of the anode electrode 12 by direct contact. A cathode terminal on an upper surface of the LDA chip 14 is electrically connected to the cathode electrode 16 through a plurality of bonding wires 22. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体レーザパッケージ装置およびその製造方法に係り、特に半導体レーザのベアチップを外部電極上に実装するパッケージングに関する。   The present invention relates to a semiconductor laser packaging apparatus and a method for manufacturing the same, and more particularly to packaging for mounting a bare chip of a semiconductor laser on an external electrode.

高出力アレイ型の半導体レーザ(LDA)は、電流注入型の半導体レーザまたはレーザダイオード(LD)を1つのチップ(半導体素子)に多数配列してなるもので、1チップで数十W以上のピーク出力を得ることが可能であり、たとえばレーザ加工の分野では固体レーザ発振器の活性媒体を励起するための励起光源として、あるいは自ら加工用レーザ光を発振出力するレーザ発振装置として広く利用されている。   A high power array type semiconductor laser (LDA) is formed by arranging a large number of current injection type semiconductor lasers or laser diodes (LD) on one chip (semiconductor element), and has a peak of several tens of watts or more per chip. For example, in the field of laser processing, it is widely used as an excitation light source for exciting an active medium of a solid-state laser oscillator, or as a laser oscillation device that oscillates and outputs a processing laser beam.

図13に、従来のLDAパッケージの構造を示す。このLDAパッケージ100は、ヒートシンクを兼ねるブロック状のアノード電極102の上面の一端部にLDAチップ104をベア状態で搭載するとともに、LDAチップ104から離してカソード電極106も絶縁層108を介してアノード電極102の上面に取り付ける。ここで、LDAチップ104の下面はアノード端子を構成し、アノード電極102の上面に直付け(たとえばハンダ付け)で接続される。LDAチップ104の上面はカソード端子を構成し、ボンディングワイヤ110を介してカソード電極106と電気的に接続される。カソード電極106と絶縁層108とは、予め一体に貼り合わされた2層構造の電極シートとして作成され、この電極シートの下面つまり絶縁層108の下面がアノード電極102の上面に接着剤もしくはヒートシールを用いて固着される。   FIG. 13 shows the structure of a conventional LDA package. In this LDA package 100, an LDA chip 104 is mounted in a bare state on one end portion of the upper surface of a block-shaped anode electrode 102 that also serves as a heat sink, and a cathode electrode 106 is also separated from the LDA chip 104 through an insulating layer 108. Attached to the upper surface of 102. Here, the lower surface of the LDA chip 104 constitutes an anode terminal, and is connected directly to the upper surface of the anode electrode 102 (for example, by soldering). The upper surface of the LDA chip 104 constitutes a cathode terminal and is electrically connected to the cathode electrode 106 through the bonding wire 110. The cathode electrode 106 and the insulating layer 108 are prepared as an electrode sheet having a two-layer structure bonded together in advance. The lower surface of the electrode sheet, that is, the lower surface of the insulating layer 108 is bonded to the upper surface of the anode electrode 102 with an adhesive or heat seal. Used to fix.

しかしながら、従来のLDAパッケージングにおいて、上記のように接着剤もしくはヒートシールを用いてアノード電極102に絶縁層108を介してカソード電極106を固着する取付方法は、取付(接合)強度が乏しいうえ、絶縁層108とアノード電極102との接合で後者(102)に少なからぬ応力を与え、ひいてはLDAチップ104をストレスで変位させることがあり、信頼性に欠けるとともに、以下のような問題もあった。   However, in the conventional LDA packaging, the mounting method in which the cathode electrode 106 is fixed to the anode electrode 102 via the insulating layer 108 using an adhesive or heat seal as described above has poor mounting (bonding) strength. The joining of the insulating layer 108 and the anode electrode 102 gives a considerable stress to the latter (102), and the LDA chip 104 may be displaced by the stress, which is not reliable and has the following problems.

すなわち、接着剤を使用する接合方法は、接着剤より発生する有機溶媒のガスが光学系に悪影響を及ぼす危険性があるとともに、環境汚染のおそれもある。   That is, in the bonding method using an adhesive, there is a risk that an organic solvent gas generated from the adhesive adversely affects the optical system, and there is also a risk of environmental pollution.

また、ヒートシールを使用する接合方法は、ヒートシンクを兼ねる大きな熱容量を有するアノード電極102側からの高温度(たとえば400℃以上)の加熱によって樹脂を熱溶着させるものであり、加工時間が長いうえ、大掛かりな加工設備を必要とする。   Moreover, the joining method using heat sealing is a method in which the resin is thermally welded by heating at a high temperature (for example, 400 ° C. or more) from the anode electrode 102 side having a large heat capacity that also serves as a heat sink, and the processing time is long. Requires extensive processing equipment.

本発明は、上述のような事情に鑑みなされたもので、パッケージ内の接合強度が高く、信頼性に富み、光学系への悪影響がなく、設備コストも低く、かつ環境にもクリーンな半導体レーザパッケージ装置およびその製造方法を提供することを目的とする。   The present invention has been made in view of the circumstances as described above. A semiconductor laser having high bonding strength in a package, high reliability, no adverse effects on an optical system, low equipment cost, and clean environment. It is an object of the present invention to provide a packaging device and a manufacturing method thereof.

上記目的を達成するために、本発明の半導体レーザパッケージ装置は、第1の電極と、前記第1の電極の上面に一方の端子が接続されるように搭載される半導体レーザチップと、前記第1の電極の上面に設けられた金属層と、前記金属層の上に固定された第1の貫通孔を有する絶縁層と、前記絶縁層の上に固定された前記第1の貫通孔と重なり合う第2の貫通孔を有する第2の電極と、前記半導体レーザチップの他方の端子と前記第2の電極とを電気的に接続するための導体とを有し、前記金属層が前記第1および第2の貫通孔を通って照射されたレーザ光によるレーザ溶接で前記第1の電極に接合されている。   In order to achieve the above object, a semiconductor laser package device according to the present invention includes a first electrode, a semiconductor laser chip mounted so that one terminal is connected to an upper surface of the first electrode, A metal layer provided on the upper surface of one electrode, an insulating layer having a first through hole fixed on the metal layer, and the first through hole fixed on the insulating layer overlap. A second electrode having a second through hole; a conductor for electrically connecting the other terminal of the semiconductor laser chip and the second electrode; and the metal layer includes the first and second electrodes. It is joined to the first electrode by laser welding using laser light irradiated through the second through hole.

上記の構成においては、金属層が第1の電極にレーザ溶接で接合されることで、第2の電極が絶縁層と金属層とを介して第1の電極の上に取付固定される。レーザ溶接による接合であるから、取付強度が高いうえ、半導体レーザチップに与えるストレスが小さく、しかも接着剤のような不純物がないので、信頼性と性能を向上させることができる。   In the above configuration, the metal layer is joined to the first electrode by laser welding, whereby the second electrode is attached and fixed onto the first electrode via the insulating layer and the metal layer. Since the joining is performed by laser welding, the mounting strength is high, the stress applied to the semiconductor laser chip is small, and there is no impurity such as an adhesive, so that the reliability and performance can be improved.

また、本発明のスタック型半導体レーザパッケージは、本発明の半導体レーザパッケージ装置における半導体レーザチップを一次元半導体レーザアレイで構成し、半導体レーザパッケージ装置を下段側の第2の電極に上段側の第1の電極が電気的に接続されるように導電性のスペーサ部材を介して複数個多段に重ねて、二次元半導体レーザアレイを構成する。本発明の半導体レーザパッケージ装置の加工精度が高いため、特にスタック型への応用に有利である。   In the stacked semiconductor laser package of the present invention, the semiconductor laser chip in the semiconductor laser package apparatus of the present invention is configured by a one-dimensional semiconductor laser array, and the semiconductor laser package apparatus is connected to the second electrode on the lower stage side and the second one on the upper stage side. A two-dimensional semiconductor laser array is formed by stacking a plurality of layers through conductive spacer members so that one electrode is electrically connected. Since the processing accuracy of the semiconductor laser package device of the present invention is high, it is particularly advantageous for stack type applications.

本発明の半導体レーザパッケージ装置の製造方法は、第1の電極の上面に半導体レーザチップの一方の端子が接続されるとともに第2の電極が絶縁層を介して固定され、前記半導体レーザチップの他方の端子と前記第2の電極とが導体を介して電気的に接続される半導体レーザパッケージ装置の製造方法であって、前記絶縁層の上面および下面に前記第2の電極および金属箔をそれぞれ貼り合わせて、3層構造の電極シートを作成する工程と、前記第2の電極および前記絶縁層に、前記金属箔が底面に露出する1つまたは複数個の有底の溶接用穴を形成する工程と、前記第1の電極の上面に前記金属箔を接触させた状態で前記電極シートを載置する工程と、各々の前記溶接用穴に向けてレーザ光を照射して、前記金属箔を前記第1の電極にレーザ溶接で接合する工程とを有する。   In the method of manufacturing a semiconductor laser package device according to the present invention, one terminal of the semiconductor laser chip is connected to the upper surface of the first electrode, and the second electrode is fixed via an insulating layer. A method of manufacturing a semiconductor laser package device in which a terminal of the first electrode and the second electrode are electrically connected via a conductor, wherein the second electrode and a metal foil are respectively attached to an upper surface and a lower surface of the insulating layer. In addition, a step of forming an electrode sheet having a three-layer structure, and a step of forming one or a plurality of bottomed welding holes in which the metal foil is exposed on the bottom surface in the second electrode and the insulating layer And placing the electrode sheet in a state in which the metal foil is in contact with the upper surface of the first electrode, and irradiating a laser beam toward each of the welding holes, The first electrode And a step of joining by laser welding.

上記の方法においては、第2の電極と金属箔とで絶縁層を挟んだ3層構造の電極シートを形成し、この電極シート下層の金属箔と第1の電極とを電極シート上面の溶接用穴からレーザ溶接で接合するので、第2の電極を第1の電極上に取付するための加工時間が極めて短いうえ、入熱が溶接(接合)部に限定され、周辺への熱影響が少なく、応力ないし歪が非常に小さい。このため、第1の電極に搭載される半導体レーザチップの取付精度に影響を与えることはない。また、接着剤のように有機溶媒のガスを発生することはなく、環境汚染のないクリーンな接合が得られる。   In the above method, an electrode sheet having a three-layer structure in which an insulating layer is sandwiched between the second electrode and the metal foil is formed, and the metal foil and the first electrode under the electrode sheet are used for welding the upper surface of the electrode sheet. Since it is joined by laser welding from the hole, the processing time for mounting the second electrode on the first electrode is extremely short, and the heat input is limited to the welded (joined) part, and there is little thermal influence on the periphery. The stress or strain is very small. For this reason, the mounting accuracy of the semiconductor laser chip mounted on the first electrode is not affected. Further, it does not generate an organic solvent gas unlike an adhesive, and a clean bond free from environmental pollution can be obtained.

本発明の好適な一態様によれば、溶接用穴の位置に対応する第2の電極および絶縁層の部位にそれぞれ貫通孔を形成し、絶縁層の両面に第2の電極および金属箔を貼り合わせる際に第2の電極の貫通孔と絶縁層の貫通孔とを重ね合わせて溶接用穴を形成する。この場合、特別な穿孔工程を要しなくて済む。   According to a preferred aspect of the present invention, through holes are formed in the second electrode and the insulating layer corresponding to the positions of the welding holes, and the second electrode and the metal foil are pasted on both surfaces of the insulating layer. At the time of matching, the through hole of the second electrode and the through hole of the insulating layer are overlapped to form a welding hole. In this case, a special drilling process is not required.

また、本発明の好適な一態様においては、第1の電極および金属箔のいずれも銅系の金属からなり、レーザ光がYAG高調波のレーザ光である。特に好適には、金属箔および第1の電極が圧延銅からなり、金属箔にはさらには金メッキが施される。銅系の金属は導電率が高いだけでなくYAG高調波のレーザエネルギーを高い吸収率で吸収するので、溶接用穴内の限られた箇所で金属箔と第1の電極との接触部分に物理的に電気的にも信頼性の高い接合を得ることができる。また、金系の金属もYAG高調波のレーザエネルギーを高い吸収率で吸収するので、金属箔の金メッキも溶接接合に寄与させることができる。   In a preferred aspect of the present invention, both the first electrode and the metal foil are made of a copper-based metal, and the laser beam is a YAG harmonic laser beam. Particularly preferably, the metal foil and the first electrode are made of rolled copper, and the metal foil is further subjected to gold plating. Copper-based metals not only have high conductivity but also absorb laser energy of YAG harmonics with high absorptance, so physical contact is made between the metal foil and the first electrode at a limited location within the welding hole. In addition, a highly reliable joint can be obtained electrically. Further, since the gold-based metal also absorbs the laser energy of the YAG harmonic with a high absorption rate, the gold plating of the metal foil can also contribute to the welding joint.

また、本発明の好適な一態様においては、絶縁層がポリイミド系のフィルムからなり、第2の電極が銅系の金属、好ましくは金メッキされた圧延銅からなる。絶縁層および第2の電極におけるこれらの材質は、絶縁特性や電気的特性の点でも有利であるだけでなく、フレキシブル配線板(銅張板)の製作に用いられているのと同様のラミネート技術を好適に用いることが可能であり、3層構造の電極シートを安価に制作することができる。   In a preferred embodiment of the present invention, the insulating layer is made of a polyimide-based film, and the second electrode is made of a copper-based metal, preferably gold-plated rolled copper. These materials in the insulating layer and the second electrode are not only advantageous in terms of insulating characteristics and electrical characteristics, but also laminating techniques similar to those used in the production of flexible wiring boards (copper-clad boards). Can be suitably used, and an electrode sheet having a three-layer structure can be produced at low cost.

本発明の好適な一態様においては、溶接用穴が、電極シートの半導体レーザチップと対向する一端部の付近に設けられる。このように、電極シート上層の第2の電極に設定されるボンディング位置付近に溶接用穴が設けられることで、必要最小限のレーザ接合で電極シートを安定に保持することができる。   In the suitable one aspect | mode of this invention, the hole for welding is provided in the vicinity of the one end part facing the semiconductor laser chip of an electrode sheet. Thus, by providing the welding hole in the vicinity of the bonding position set for the second electrode on the upper layer of the electrode sheet, the electrode sheet can be stably held with the minimum necessary laser bonding.

また、本発明の好適な一態様においては、第1の電極がヒートシンクを兼ねるようにブロック状に構成される。さらに好適には、第1の電極の中に冷媒を流すための通路が設けられる。また、パッケージ全体の取付強度を一層高めために、第1の電極、第2の電極、絶縁層および金属箔に共通のボルトを同軸上で通すためのボルト通し孔をそれぞれ形成し、ボルトと螺合するためのネジ孔が形成されたベース部材の上に第1の電極と電極シートとをボルトにより固定する構成が採られる。ここで、ボルト通し孔は電極シートの中心部またはその付近に設けられるのが好ましい。   Moreover, in the suitable one aspect | mode of this invention, it is comprised in the block shape so that a 1st electrode may serve as a heat sink. More preferably, a passage for flowing a coolant through the first electrode is provided. Further, in order to further increase the mounting strength of the entire package, bolt through holes for passing common bolts coaxially through the first electrode, the second electrode, the insulating layer, and the metal foil are respectively formed. The structure which fixes a 1st electrode and an electrode sheet with a volt | bolt on the base member in which the screw hole for combining is formed is taken. Here, the bolt through hole is preferably provided at or near the center of the electrode sheet.

本発明によれば、上記のような構成と作用により、パッケージ内の接合強度が高く、信頼性に富み、光学系への悪影響がなく、かつ環境にもクリーンな半導体レーザパッケージ装置を低コストで生産性の高い設備で得ることができる。   According to the present invention, a semiconductor laser package apparatus having a high bonding strength in a package, high reliability, no adverse effects on an optical system, and a clean environment can be obtained at a low cost by the configuration and operation as described above. It can be obtained with highly productive equipment.

以下、添付図を参照して本発明の好適な実施の形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1および図2に、本発明の一実施形態における高出力アレイ型半導体レーザ(LDA)パッケージの構成を示す。図1は縦断面図、図2は平面図である。   1 and 2 show the configuration of a high-power array type semiconductor laser (LDA) package according to an embodiment of the present invention. 1 is a longitudinal sectional view, and FIG. 2 is a plan view.

このLDAパッケージ10においては、ヒートシンクを兼ねるブロック状のアノード電極12の上面の一端部にバー形状の一次元LDAチップ14がベア状態で搭載されるとともに、このLDAチップ14から離れてカソード電極16が絶縁層18および金属箔20を介してアノード電極12の上面に取り付けられる。   In this LDA package 10, a bar-shaped one-dimensional LDA chip 14 is mounted in a bare state on one end of the upper surface of a block-shaped anode electrode 12 that also serves as a heat sink, and a cathode electrode 16 is separated from the LDA chip 14. It is attached to the upper surface of the anode electrode 12 via the insulating layer 18 and the metal foil 20.

LDAチップ14の下面はアノード端子を構成し、アノード電極12の上面に直付けで接続される。LDAチップ14の上面はカソード端子を構成し、たとえば金細線からなる複数本のボンディングワイヤ22を介してカソード電極16と電気的に接続される。カソード電極16と絶縁層18と金属箔20とは、予め一体に貼り合わされた3層構造の電極シート24として作成されたものであり、この電極シート24の下層の金属箔20がアノード電極102の上面に所定位置つまり溶接用穴26の位置にてレーザスポット溶接(W)で接合されている。   The lower surface of the LDA chip 14 constitutes an anode terminal and is directly connected to the upper surface of the anode electrode 12. The upper surface of the LDA chip 14 constitutes a cathode terminal, and is electrically connected to the cathode electrode 16 via a plurality of bonding wires 22 made of, for example, gold fine wires. The cathode electrode 16, the insulating layer 18, and the metal foil 20 are prepared as an electrode sheet 24 having a three-layer structure bonded together in advance, and the metal foil 20 under the electrode sheet 24 is formed of the anode electrode 102. The upper surface is joined by laser spot welding (W) at a predetermined position, that is, at the position of the welding hole 26.

アノード電極12およびカソード電極16はそれぞれ図示しない導体を介してレーザ電源の正極側電源端子(+)および負極側電源端子(−)に電気的に接続される。通電状態では、アノード電極12→LDAチップ14→ボンディングワイヤ22→カソード電極16の経路で順方向の電流が流れ、LDAチップ14の各LDが発振してLD配列方向に延びる扁平な放射分布を有するレーザ光LBを前方に出射するようになっている。   The anode electrode 12 and the cathode electrode 16 are electrically connected to the positive power supply terminal (+) and the negative power supply terminal (−) of the laser power supply through conductors (not shown), respectively. In the energized state, a forward current flows through the path of the anode electrode 12 → the LDA chip 14 → the bonding wire 22 → the cathode electrode 16, and each LD of the LDA chip 14 oscillates to have a flat radiation distribution extending in the LD array direction. The laser beam LB is emitted forward.

次に、図3〜図8につき、このLDAパッケージ10を製造する方法の主要な工程を説明する。   Next, the main steps of the method for manufacturing the LDA package 10 will be described with reference to FIGS.

図3に示すように、電極シート24を構成するカソード電極16、絶縁層18および金属箔20を用意する。カソード電極16はたとえば厚さ100〜300μmの圧延銅からなり、絶縁層18はたとえば厚さ50〜100μmのポリイミドフィルムからなり、金属箔20はたとえば厚さ50〜100μmの圧延銅からなる。ここで、カソード電極16と絶縁層18には、溶接用穴26(図1、図2)と対応する位置に同一径(たとえばφ2〜6mm)の貫通孔16a,18aがそれぞれ形成される。   As shown in FIG. 3, the cathode electrode 16, the insulating layer 18, and the metal foil 20 which comprise the electrode sheet 24 are prepared. The cathode electrode 16 is made of, for example, rolled copper having a thickness of 100 to 300 μm, the insulating layer 18 is made of, for example, a polyimide film having a thickness of 50 to 100 μm, and the metal foil 20 is made of, for example, rolled copper having a thickness of 50 to 100 μm. Here, in the cathode electrode 16 and the insulating layer 18, through holes 16a and 18a having the same diameter (for example, φ2 to 6 mm) are formed at positions corresponding to the welding holes 26 (FIGS. 1 and 2), respectively.

そして、たとえばフレキシブル配線板(銅張板)の製作に用いられているのと同様のラミネート技術を用いてポリイミドフィルム18の上面および下面にカソード電極16および銅箔20をそれぞれ貼り合わせて、図4に示すように一体的な3層構造の電極シート24を形成する。ここで、銅箔20の上で上層のカソード電極16の貫通孔16aと中間層のポリイミドフィルム18の貫通孔16aとが上下に重なり合って、底面に下層の銅箔20が露出する有底の穴26も同時に形成される。この電極シート24における溶接用の穴26は、図4および図5に示すように、アノード電極12上でLDAチップ14と対向することになる一端(一辺)24aに沿って端から端まで複数個(図示の例は4個)設けるのが好ましい。   Then, for example, the cathode electrode 16 and the copper foil 20 are bonded to the upper and lower surfaces of the polyimide film 18 by using the same laminating technique as that used for the production of a flexible wiring board (copper-clad board), respectively. As shown in FIG. 4, an electrode sheet 24 having an integral three-layer structure is formed. Here, on the copper foil 20, the through-hole 16a of the upper cathode electrode 16 and the through-hole 16a of the intermediate polyimide film 18 are vertically overlapped so that the bottom copper foil 20 is exposed on the bottom surface. 26 is also formed at the same time. As shown in FIGS. 4 and 5, a plurality of welding holes 26 in the electrode sheet 24 are provided from end to end along one end (one side) 24 a that faces the LDA chip 14 on the anode electrode 12. It is preferable to provide four (in the illustrated example).

なお、電極シート24において、上層のカソード電極16および下層の銅箔20の表面には酸化(銅錆)を防止するために金メッキが施されてよい。   In the electrode sheet 24, gold plating may be applied to the surfaces of the upper cathode electrode 16 and the lower copper foil 20 to prevent oxidation (copper rust).

図6に示すように、アノード電極12の上面には、先にLDAチップ14が下面のアノード端子をたとえばハンダ付けで接合させて所定位置(先端部)に取り付けられる。かかる状態のアノード電極12の上面に、さらに図7に示すようにLDAチップ14から離れた後方の所定位置に電極シート24を載置する。ここで、電極シート24の下層の銅箔20がアノード電極12に接触する。   As shown in FIG. 6, the LDA chip 14 is first attached to the upper surface of the anode electrode 12 at a predetermined position (tip portion) by joining the anode terminal on the lower surface, for example, by soldering. On the upper surface of the anode electrode 12 in such a state, an electrode sheet 24 is placed at a predetermined position behind the LDA chip 14 as shown in FIG. Here, the copper foil 20 under the electrode sheet 24 contacts the anode electrode 12.

次に、図8に示すように、電極シート24の各溶接用穴26に向けて上方より波長532μmのYAG第2高調波レーザ光SHGを集光照射して、穴26内で銅箔20をアノード電極12にレーザ溶接(W)する。好適な一実施例として、このYAG第2高調波レーザ光SHGは、たとえばピークパワー1kW、パルス幅1ms(レーザエネルギー1ジュール)のパルスレーザ光である。このようなYAG第2高調波のパルスレーザ光SHGを照射された溶接用穴26内の銅箔20はYAG第2高調波のレーザエネルギーを高い吸収率で吸収して速やかに溶融し、さらにはその直下の銅からなるアノード電極12もやはりYAG第2高調波のレーザエネルギーを高い吸収率で吸収して溶融する。また、銅箔20の金メッキもYAG第2高調波のレーザエネルギーを吸収して直ぐに溶ける。こうして、レーザ照射後に銅箔20およびアノード電極12のそれぞれの溶融部分が凝固して、溶接ナゲットWが得られる。なお、YAG第2高調波(532μm)の代わりにYAG第3高調波(355μm)あるいはYAG第4高調波(266μm)等のYAG高調波も好適に使用可能である。   Next, as shown in FIG. 8, YAG second harmonic laser beam SHG having a wavelength of 532 μm is condensed and irradiated from above to each welding hole 26 of the electrode sheet 24, and the copper foil 20 is formed in the hole 26. Laser welding (W) is performed on the anode electrode 12. As a preferred embodiment, the YAG second harmonic laser beam SHG is a pulse laser beam having a peak power of 1 kW and a pulse width of 1 ms (laser energy of 1 joule), for example. The copper foil 20 in the welding hole 26 irradiated with the YAG second harmonic pulse laser beam SHG absorbs the YAG second harmonic laser energy at a high absorption rate and melts quickly. The anode electrode 12 made of copper just below it also melts by absorbing the laser energy of the YAG second harmonic at a high absorption rate. Further, the gold plating of the copper foil 20 also melts immediately after absorbing the laser energy of the YAG second harmonic. Thus, the melted portions of the copper foil 20 and the anode electrode 12 are solidified after the laser irradiation, and the weld nugget W is obtained. A YAG harmonic such as a YAG third harmonic (355 μm) or a YAG fourth harmonic (266 μm) can be suitably used instead of the YAG second harmonic (532 μm).

このレーザスポット溶接は、加工時間が極めて短いうえ、入熱が溶接(接合)部に限定され、周辺への熱影響が少なく、応力ないし歪が非常に小さい。このため、アノード電極12に搭載されているLDAチップ14の取付精度に影響を与えることはない。また、接着剤のように有機溶媒のガスを発生することはなく、環境汚染のないクリーンな接合が得られる。   In this laser spot welding, the processing time is extremely short, the heat input is limited to the welded (joined) portion, the thermal influence on the periphery is small, and the stress or strain is very small. For this reason, the mounting accuracy of the LDA chip 14 mounted on the anode electrode 12 is not affected. Further, it does not generate an organic solvent gas unlike an adhesive, and a clean bond free from environmental pollution can be obtained.

なお、複数の溶接用穴26について上記のレーザスポット溶接を順次行うために、YAG第2高調波レーザ光SHGを集光照射するレーザ出射ユニット(図示せず)を固定したまま、ワーク(24,12)側をXYテーブル(図示せず)に載せて一次元または二次元方向にインデックス送りする方法、あるいはワーク(24,12)を定置の作業台に載置してレーザ出射ユニット側をスキャニング移動させる方法等を用いることができる。いずれの方法でも、1ワーク当たりの所要加工時間は10秒以内で済む。因みに、従来のヒートシールを用いる接合方法は、数分以上の時間を要していた。   In order to sequentially perform the above laser spot welding with respect to the plurality of welding holes 26, a work (24, 24) is fixed while a laser emitting unit (not shown) for condensing and irradiating the YAG second harmonic laser beam SHG is fixed. 12) Place the side on an XY table (not shown) and feed the index in one or two dimensions, or place the work (24, 12) on a stationary work table and scan the laser output unit side Or the like can be used. In either method, the required machining time per workpiece is less than 10 seconds. Incidentally, the conventional joining method using heat sealing required a time of several minutes or more.

上記のようにしてアノード電極12上に電極シート24を取り付けた後に、常用のワイヤボンディング法によりLDAチップ14の上面(カソード端子)とカソード電極16とを金細線22で結線する(図1)。こうして、この実施形態におけるLDAパッケージ10の基本アッセンブリが出来上がる。上記の例では、電極シート24の溶接用穴26をLDAチップ14と対向する一端部つまり金細線22が接続されるボンディング位置の近傍に設けているので、必要最小限のレーザ接合Wで電極シート24を安定に保持することができる。   After the electrode sheet 24 is attached onto the anode electrode 12 as described above, the upper surface (cathode terminal) of the LDA chip 14 and the cathode electrode 16 are connected with the gold wire 22 by a conventional wire bonding method (FIG. 1). Thus, the basic assembly of the LDA package 10 in this embodiment is completed. In the above example, since the welding hole 26 of the electrode sheet 24 is provided in the vicinity of the bonding position to which the one end portion facing the LDA chip 14, that is, the gold wire 22 is connected, the electrode sheet is formed with the minimum necessary laser bonding W. 24 can be held stably.

図9および図10に、この実施形態におけるLDAパッケージ10のより具体的または実用的な構造を示す。   9 and 10 show a more specific or practical structure of the LDA package 10 in this embodiment.

図9に示す構造は、LDAパッケージ10の基本アッセンブリをベース部材30上にボルト32で着脱可能に取り付けるものである。LDAパッケージ10の中心部には、つまりアノード電極12、カソード電極16、ポリイミドフィルム18および銅箔20の各中心部には、ボルト32を鉛直方向に同軸上で通すためのボルト通し孔50がそれぞれ形成される。また、ベース部材30の上面には、ボルト32と螺合するためのネジ孔34が形成される。通常、ベース部材30も導電率の高い金属たとえば銅からなり、図示しない導体を介してレーザ電源の正極側電源端子(+)に電気的に接続される。また、ボルト32の頭部と電極シート24のカソード電極16との間には、LDAパッケージ10の各部を上から均一な圧力で押さえ付けるための板状の押さえ部材36が挿入される。この押さえ部材36も導電率の高い金属たとえば銅からなり、図示しない導体を介してレーザ電源の負極側電源端子(−)に電気的に接続される。   In the structure shown in FIG. 9, the basic assembly of the LDA package 10 is detachably attached to the base member 30 with bolts 32. At the center of the LDA package 10, that is, at the centers of the anode electrode 12, the cathode electrode 16, the polyimide film 18, and the copper foil 20, bolt through holes 50 for passing bolts 32 coaxially in the vertical direction are respectively provided. It is formed. Further, a screw hole 34 for screwing with the bolt 32 is formed on the upper surface of the base member 30. Usually, the base member 30 is also made of a metal having high conductivity, such as copper, and is electrically connected to the positive power supply terminal (+) of the laser power supply via a conductor (not shown). Further, between the head of the bolt 32 and the cathode electrode 16 of the electrode sheet 24, a plate-like pressing member 36 for pressing each part of the LDA package 10 from above with a uniform pressure is inserted. The pressing member 36 is also made of a metal having high conductivity, such as copper, and is electrically connected to a negative power source terminal (−) of the laser power source via a conductor (not shown).

図10に示す構造は、図9のパッケージ構造に水冷機能を付加したものであり、ヒートシンクのアノード電極12内に冷却水を流すための通路38を所望のルートで設け、ベース部材30にはアノード電極12内の冷却水通路38に冷却水を循環供給するための冷却水導入路(IN)40および冷却水回収路(OUT)42を設けている。なお、図10の冷却水通路38は図解を容易にするために模式的に示しており、実際には細径(1mm以下)の流路でアノード電極12内の隅々まで行きわたっている。   The structure shown in FIG. 10 is obtained by adding a water cooling function to the package structure of FIG. 9. A passage 38 for flowing cooling water in the anode electrode 12 of the heat sink is provided in a desired route, and the base member 30 has an anode. A cooling water introduction path (IN) 40 and a cooling water recovery path (OUT) 42 for circulating and supplying the cooling water to the cooling water passage 38 in the electrode 12 are provided. Note that the cooling water passage 38 in FIG. 10 is schematically shown for ease of illustration, and actually extends to every corner in the anode electrode 12 with a small diameter (1 mm or less) flow path.

以上のように、この実施形態によれば、カソード電極16と金属箔20とで絶縁層18を挟んだ3層構造の電極シート24を形成し、電極シート24下層の金属箔20とヒートシンクのアノード電極12とを電極シート24上面の溶接用穴26からレーザ溶接で接合することにより、カソード電極16の取付(接合)強度が高く、接合時の熱影響やLDAチップ14へのストレスが小さい高信頼性のLDAパッケージ10が得られる。   As described above, according to this embodiment, the electrode sheet 24 having a three-layer structure in which the insulating layer 18 is sandwiched between the cathode electrode 16 and the metal foil 20 is formed, and the metal foil 20 under the electrode sheet 24 and the anode of the heat sink are formed. By joining the electrode 12 with the laser welding from the welding hole 26 on the upper surface of the electrode sheet 24, the attachment (joining) strength of the cathode electrode 16 is high, and the heat effect at the time of joining and the stress on the LDA chip 14 are small and highly reliable The LDA package 10 is obtained.

図11に、一実施形態によるスタック型LDAパッケージの構成を示す。このスタック型は、上記実施形態により作製されるLDAパッケージ10の基本アッセンブリをベース部材30の上にスペーサ44を介して多層または多段(図示の例は4段)に積層してボルト32で一体的に固定するものであり、モジュール全体として二次元LDAを構成している。スペーサ44は導電率の高い金属たとえば銅板からなり、上下に隣接する2つのLDAパッケージ10,10の間では下段側パッケージ10のカソード電極16にスペーサ44を介して上段側パッケージ10のアノード電極12が電気的に接続される構成となる。各LDAパッケージ10のLDAチップ14の前面にはコリメート用のマイクロシリンドリカルレンズ45が取り付けられる。   FIG. 11 shows a configuration of a stacked LDA package according to an embodiment. In this stack type, the basic assembly of the LDA package 10 manufactured according to the above-described embodiment is laminated on the base member 30 in multiple layers or multiple stages (four stages in the illustrated example) via the spacers 44 and integrated with bolts 32. The module as a whole constitutes a two-dimensional LDA. The spacer 44 is made of a metal having high conductivity, such as a copper plate, and the anode electrode 12 of the upper package 10 is connected to the cathode electrode 16 of the lower package 10 via the spacer 44 between the two upper and lower LDA packages 10, 10. It becomes the structure electrically connected. A collimating micro cylindrical lens 45 is attached to the front surface of the LDA chip 14 of each LDA package 10.

各々のLDAパッケージ10には、図12に示すように、中心部にボルト通し穴50が設けられるとともに、その両側に一対の貫通孔52,54が設けられる。さらに、各LDAパッケージ10においては、ヒートシンクのアノード電極12の中に一方の貫通孔52の内壁面から他方の貫通孔54の内壁面まで所望のルートで延在する冷却水通路56が設けられる。スペーサ44にも、各LDAパッケージ10の貫通孔52,54と対応する位置に貫通孔が形成されている。スタック・モジュール全体では、各段の片側の貫通孔52が最下段から最上段まで縦一列につながって垂直上方に延在する往路の主冷却水通路58が形成されるとともに、各段の反対側の貫通孔54が最上段から最下段まで縦一列につながって垂直下方に延在する復路の主冷却水通路60が形成される。また、各貫通孔52,54の上縁部と下縁部には環状の溝62,64が形成され、これらの溝62,64に設けられるシール部材たとえばOリング66,68によって主冷却水通路58,60はそれぞれ密封される。   As shown in FIG. 12, each LDA package 10 is provided with a bolt through hole 50 in the center and a pair of through holes 52 and 54 on both sides thereof. Further, in each LDA package 10, a cooling water passage 56 extending from the inner wall surface of one through hole 52 to the inner wall surface of the other through hole 54 is provided in the anode electrode 12 of the heat sink. The spacer 44 also has through holes formed at positions corresponding to the through holes 52 and 54 of each LDA package 10. In the entire stack module, a forward main cooling water passage 58 is formed in which the through holes 52 on one side of each stage are connected in a vertical line from the lowest level to the highest level and extend vertically upward, and on the opposite side of each level The main cooling water passage 60 of the return path is formed in which the through holes 54 are connected in a vertical line from the uppermost stage to the lowermost stage and extend vertically downward. In addition, annular grooves 62 and 64 are formed in the upper edge portion and the lower edge portion of the through holes 52 and 54, respectively, and a main cooling water passage is formed by seal members such as O-rings 66 and 68 provided in these grooves 62 and 64, respectively. 58 and 60 are each sealed.

ベース部材30の冷却水導入路(IN)40より垂直上方に往路の主冷却水通路58に送られる冷却水Aは、その一部が各段のLDAパッケージ10において貫通孔52より副冷却通路56に分配され、残りは上段のLDAパッケージ10へ送られる。そして、各段において副冷却通路56より貫通孔54に抜けた冷却水Aが復路の主冷却水通路60を垂直下方に流下してベース部材30の冷却水回収路(OUT)42に回収される。   A part of the cooling water A sent to the main cooling water passage 58 in the forward path vertically upward from the cooling water introduction passage (IN) 40 of the base member 30 is partially sub-cooling passage 56 from the through hole 52 in the LDA package 10 of each stage. The remainder is sent to the upper LDA package 10. Then, the cooling water A that has passed through the sub-cooling passage 56 into the through-hole 54 in each stage flows down the main cooling water passage 60 in the return path vertically downward and is recovered in the cooling water recovery passage (OUT) 42 of the base member 30. .

このスタック型LDAパッケージにおいては、各LDAパッケージ10の加工精度、特に電極シート24の取付精度が高いため、冷却水通路58,60の密封度が高い(冷却水の漏れが無い)うえ、各段のLDAパッケージ10のLDAチップ14が平行に多層配置されるため、再現性の高い安定したビーム径で高出力の二次元レーザビームを生成することができる。   In this stack type LDA package, since the processing accuracy of each LDA package 10, particularly the mounting accuracy of the electrode sheet 24 is high, the sealing degree of the cooling water passages 58 and 60 is high (no leakage of cooling water), and each stage Since the LDA chips 14 of the LDA package 10 are arranged in multiple layers in parallel, a high-output two-dimensional laser beam can be generated with a stable beam diameter with high reproducibility.

以上、本発明の好適な実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、その技術的思想の範囲内で種々の変形・変更が可能である。たとえば、上記した実施形態は高出力アレイ型半導体レーザ(LDA)のパッケージングに係るものであったが、本発明はあらゆる半導体レーザ(LD)のパッケージングに適用可能である。また、電極シート24に設ける溶接用穴26の位置や個数は任意に選定できる。また、電極シート24の絶縁層18をポリイミド以外の材質にしたり多層構造とすることや、多数本のボンディングワイヤ22を1枚の導電シートで代用すること等も可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made within the scope of the technical idea. For example, the above-described embodiment relates to packaging of a high-power array type semiconductor laser (LDA), but the present invention can be applied to packaging of any semiconductor laser (LD). Further, the position and number of the welding holes 26 provided in the electrode sheet 24 can be arbitrarily selected. Further, the insulating layer 18 of the electrode sheet 24 may be made of a material other than polyimide, or may have a multilayer structure, or a large number of bonding wires 22 may be substituted with a single conductive sheet.

本発明の一実施形態における高出力アレイ型半導体レーザ(LDA)パッケージの構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the high output array type semiconductor laser (LDA) package in one Embodiment of this invention. 実施形態におけるLDAパッケージの構成を示す平面図である。It is a top view which shows the structure of the LDA package in embodiment. 実施形態のLDAパッケージにおける電極シートの作成方法を示す分解断面図である。It is an exploded sectional view showing the creation method of the electrode sheet in the LDA package of an embodiment. 実施形態のLDAパッケージにおける電極シートの作成方法および構成を示す断面図である。It is sectional drawing which shows the preparation method and structure of the electrode sheet in the LDA package of embodiment. 実施形態のLDAパッケージにおける電極シートの作成方法および構成を示す平面図である。It is a top view which shows the preparation method and structure of the electrode sheet in the LDA package of embodiment. 実施形態におけるLDAパッケージの製造方法の一段階を示す縦断面図である。It is a longitudinal cross-sectional view which shows one stage of the manufacturing method of the LDA package in embodiment. 実施形態におけるLDAパッケージの製造方法の一段階を示す縦断面図である。It is a longitudinal cross-sectional view which shows one stage of the manufacturing method of the LDA package in embodiment. 実施形態におけるLDAパッケージの製造方法の一段階を示す縦断面図である。It is a longitudinal cross-sectional view which shows one stage of the manufacturing method of the LDA package in embodiment. 実施形態におけるLDAパッケージのより具体的な構成例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the more specific structural example of the LDA package in embodiment. 実施形態におけるLDAパッケージの別の具体的な構成例を示す縦断面図である。It is a longitudinal cross-sectional view which shows another specific structural example of the LDA package in embodiment. 実施形態におけるスタック型LDAパッケージの構成を示す縦断面図である。It is a longitudinal section showing the composition of the stack type LDA package in an embodiment. 図11のスタック・モジュールに用いられるLDAパッケージの構成を示す平面図である。It is a top view which shows the structure of the LDA package used for the stack module of FIG. 従来のLDAパッケージの構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the conventional LDA package.

符号の説明Explanation of symbols

10 LDAパッケージ
12 アノード電極
14 LDAチップ
16 カソード電極
18 絶縁層
20 金属箔
22 ボンディングワイヤ
24 電極シート
26 溶接用穴
30 ベース部材
32 ボルト
36 押さえ部材
38 冷却水通路
44 スペーサ
50 ボルト通し穴
52,54 貫通孔
56 冷却水通路
DESCRIPTION OF SYMBOLS 10 LDA package 12 Anode electrode 14 LDA chip 16 Cathode electrode 18 Insulating layer 20 Metal foil 22 Bonding wire 24 Electrode sheet 26 Welding hole 30 Base member 32 Bolt 36 Holding member 38 Cooling water passage 44 Spacer 50 Bolt through hole 52, 54 Through Hole 56 Cooling water passage

Claims (17)

第1の電極の上面に半導体レーザチップの一方の端子が接続されるとともに第2の電極が絶縁層を介して取付され、前記半導体レーザチップの他方の端子と前記第2の電極とが導体を介して電気的に接続される半導体レーザパッケージ装置の製造方法であって、
前記絶縁層の上面および下面に前記第2の電極および金属箔をそれぞれ貼り合わせて、3層構造の電極シートを作成する工程と、
前記第2の電極および前記絶縁層に、前記金属箔が底面に露出する1つまたは複数個の有底の溶接用穴を形成する工程と、
前記第1の電極の上面に前記金属箔を接触させた状態で前記電極シートを載置する工程と、
各々の前記溶接用穴に向けてレーザ光を照射して、前記金属箔を前記第1の電極にレーザ溶接で接合する工程と
を有する半導体レーザパッケージ装置の製造方法。
One terminal of the semiconductor laser chip is connected to the upper surface of the first electrode and a second electrode is attached via an insulating layer, and the other terminal of the semiconductor laser chip and the second electrode serve as a conductor. A method of manufacturing a semiconductor laser package device electrically connected via
Bonding the second electrode and the metal foil to the upper surface and the lower surface of the insulating layer, respectively, to create a three-layer electrode sheet;
Forming in the second electrode and the insulating layer one or more bottomed welding holes where the metal foil is exposed on the bottom surface;
Placing the electrode sheet in a state where the metal foil is in contact with the upper surface of the first electrode;
Irradiating each of the welding holes with laser light, and joining the metal foil to the first electrode by laser welding.
前記溶接用穴の位置に対応する前記第2の電極および前記絶縁層の部位にそれぞれ貫通孔を形成し、前記絶縁層の両面に前記第2の電極および金属箔を貼り合わせる際に前記第2の電極の貫通孔と前記絶縁層の貫通孔とを重ね合わせて前記溶接用穴を形成する請求項1に記載の半導体レーザパッケージ装置の製造方法。   A through hole is formed in each portion of the second electrode and the insulating layer corresponding to the position of the welding hole, and the second electrode and the metal foil are bonded together on both surfaces of the insulating layer. The method of manufacturing a semiconductor laser package device according to claim 1, wherein the welding hole is formed by overlapping a through hole of the electrode and a through hole of the insulating layer. 前記第1の電極および前記金属箔のいずれも銅系の金属からなり、前記レーザ光がYAG高調波のレーザ光である請求項1または請求項2に記載の半導体レーザパッケージ装置の製造方法。   3. The method of manufacturing a semiconductor laser package device according to claim 1, wherein both of the first electrode and the metal foil are made of a copper-based metal, and the laser beam is a YAG harmonic laser beam. 4. 前記金属箔が圧延銅からなる請求項3記載の半導体レーザパッケージ装置の製造方法。   4. The method of manufacturing a semiconductor laser package device according to claim 3, wherein the metal foil is made of rolled copper. 前記圧延銅に金メッキを施す請求項4記載の半導体レーザパッケージ装置の製造方法。   5. The method of manufacturing a semiconductor laser package device according to claim 4, wherein the rolled copper is plated with gold. 前記絶縁層がポリイミド系のフィルムからなる請求項1〜5のいずれか一項に記載の半導体レーザパッケージ装置の製造方法。   The method for manufacturing a semiconductor laser package device according to claim 1, wherein the insulating layer is made of a polyimide film. 前記第2の電極が銅系の金属からなる請求項1〜6のいずれか一項に記載の半導体レーザパッケージ装置の製造方法。   The method for manufacturing a semiconductor laser package device according to claim 1, wherein the second electrode is made of a copper-based metal. 前記第2の電極が圧延銅からなる請求項7に記載の半導体レーザパッケージ装置の製造方法。   The method of manufacturing a semiconductor laser package device according to claim 7, wherein the second electrode is made of rolled copper. 前記圧延銅に金メッキを施す請求項8記載の半導体レーザパッケージ装置の製造方法。   9. The method of manufacturing a semiconductor laser package device according to claim 8, wherein the rolled copper is plated with gold. 前記溶接用穴を、前記電極シートの前記半導体レーザチップと対向する一端部の付近に設ける請求項1〜9のいずれか一項に記載の半導体レーザパッケージ装置の製造方法。   The method for manufacturing a semiconductor laser package device according to claim 1, wherein the welding hole is provided in the vicinity of one end portion of the electrode sheet facing the semiconductor laser chip. 前記第1の電極がヒートシンクを兼ねるようにこれをブロック状に構成する請求項1〜10のいずれか一項に記載の半導体レーザパッケージ装置の製造方法。   The method of manufacturing a semiconductor laser package device according to claim 1, wherein the first electrode is configured in a block shape so as to also serve as a heat sink. 前記第1の電極の中に冷媒を流すための通路を設ける請求項11に記載の半導体レーザパッケージ装置の製造方法。   The method of manufacturing a semiconductor laser package device according to claim 11, wherein a passage for flowing a coolant is provided in the first electrode. 前記第1の電極、前記第2の電極、前記絶縁層および前記金属箔に共通のボルトを同軸上で通すためのボルト通し孔をそれぞれ形成し、前記ボルトと螺合するためのネジ孔が形成されたベース部材の上に前記第1の電極と前記電極シートとを前記ボルトにより固定する請求項1〜12のいずれか一項に記載の半導体レーザパッケージ装置の製造方法。   Bolt through holes for allowing common bolts to pass coaxially through the first electrode, the second electrode, the insulating layer, and the metal foil are formed, and screw holes for screwing with the bolts are formed. The manufacturing method of the semiconductor laser package apparatus as described in any one of Claims 1-12 which fixes the said 1st electrode and the said electrode sheet on the said base member with the said volt | bolt. 前記ボルト通し孔を前記電極シートの中心部またはその付近に設ける請求項13に記載の半導体レーザパッケージ装置の製造方法。   The method of manufacturing a semiconductor laser package device according to claim 13, wherein the bolt through hole is provided at or near the center of the electrode sheet. 第1の電極と、
前記第1の電極の上面に一方の端子が接続されるように搭載される半導体レーザチップと、
前記第1の電極の上面に設けられた金属層と、
前記金属層の上に固定された第1の貫通孔を有する絶縁層と、
前記絶縁層の上に固定された前記第1の貫通孔と重なり合う第2の貫通孔を有する第2の電極と、
前記半導体レーザチップの他方の端子と前記第2の電極とを電気的に接続するための導体と
を有し、前記金属層が前記第1および第2の貫通孔を通って照射されたレーザ光によるレーザ溶接で前記第1の電極に接合されている半導体レーザパッケージ装置。
A first electrode;
A semiconductor laser chip mounted so that one terminal is connected to the upper surface of the first electrode;
A metal layer provided on the upper surface of the first electrode;
An insulating layer having a first through hole fixed on the metal layer;
A second electrode having a second through hole overlapping the first through hole fixed on the insulating layer;
A laser beam having a conductor for electrically connecting the other terminal of the semiconductor laser chip and the second electrode, and the metal layer is irradiated through the first and second through holes A semiconductor laser package device bonded to the first electrode by laser welding according to claim 1.
請求項1〜10のいずれか一項に記載の半導体レーザパッケージ装置における前記半導体レーザチップを一次元半導体レーザアレイで構成し、前記半導体レーザパッケージ装置を下段側の第2の電極に上段側の第1の電極が電気的に接続されるように導電性のスペーサ部材を介して複数個多段に重ねて、二次元半導体レーザアレイを構成するスタック型半導体レーザパッケージ装置。   11. The semiconductor laser chip device according to claim 1, wherein the semiconductor laser chip is formed of a one-dimensional semiconductor laser array, and the semiconductor laser package device is connected to a second electrode on a lower stage side and a second one on an upper stage side. A stack type semiconductor laser package device which constitutes a two-dimensional semiconductor laser array by stacking a plurality of layers through conductive spacer members so that one electrode is electrically connected. 前記金属層および前記第1の電極のいずれも銅系の金属からなり、前記レーザ光がYAG第2高調波である請求項15または請求項16に記載の半導体レーザパッケージ装置。



17. The semiconductor laser package device according to claim 15, wherein both of the metal layer and the first electrode are made of a copper-based metal, and the laser beam is YAG second harmonic.



JP2005342486A 2005-11-28 2005-11-28 Semiconductor laser package device and manufacturing method thereof Active JP4800019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005342486A JP4800019B2 (en) 2005-11-28 2005-11-28 Semiconductor laser package device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005342486A JP4800019B2 (en) 2005-11-28 2005-11-28 Semiconductor laser package device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007149978A true JP2007149978A (en) 2007-06-14
JP4800019B2 JP4800019B2 (en) 2011-10-26

Family

ID=38211013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005342486A Active JP4800019B2 (en) 2005-11-28 2005-11-28 Semiconductor laser package device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4800019B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012219879A1 (en) * 2012-10-30 2014-04-30 Osram Gmbh Method for manufacturing a LED module with heat sink
WO2017223050A1 (en) * 2016-06-20 2017-12-28 TeraDiode, Inc. Packages for high-power laser devices
CN109987567A (en) * 2017-12-20 2019-07-09 罗伯特·博世有限公司 Laser bonding method and micromechanical devices with laser bonding interconnecting piece
KR20200082699A (en) * 2018-12-31 2020-07-08 주식회사 비아트론 A laser chip module and a laser chip module array including a VCSEL
US11095091B2 (en) 2016-06-20 2021-08-17 TeraDiode, Inc. Packages for high-power laser devices
WO2023032903A1 (en) * 2021-08-30 2023-03-09 三菱電機株式会社 Semiconductor laser module, laser oscillator, and laser machining device
RU2796525C1 (en) * 2019-10-17 2023-05-25 МОНОКРОМ С.Л., Испания Laser connection module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715600B (en) * 2013-12-25 2017-01-04 西安炬光科技股份有限公司 A kind of high-power semiconductor laser of low thermal stress structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168244A (en) * 1999-12-13 2001-06-22 Fujitsu Ltd Semiconductor device and manufacturing method thereof
JP2003023207A (en) * 2001-07-10 2003-01-24 Hamamatsu Photonics Kk Semiconductor laser assembly
JP2004335584A (en) * 2003-05-01 2004-11-25 Sumitomo Electric Ind Ltd Semiconductor package
JP2005109147A (en) * 2003-09-30 2005-04-21 Fujitsu Ltd Semiconductor device and manufacturing method thereof
JP2005317743A (en) * 2004-04-28 2005-11-10 Miyachi Technos Corp Laser apparatus and laser processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168244A (en) * 1999-12-13 2001-06-22 Fujitsu Ltd Semiconductor device and manufacturing method thereof
JP2003023207A (en) * 2001-07-10 2003-01-24 Hamamatsu Photonics Kk Semiconductor laser assembly
JP2004335584A (en) * 2003-05-01 2004-11-25 Sumitomo Electric Ind Ltd Semiconductor package
JP2005109147A (en) * 2003-09-30 2005-04-21 Fujitsu Ltd Semiconductor device and manufacturing method thereof
JP2005317743A (en) * 2004-04-28 2005-11-10 Miyachi Technos Corp Laser apparatus and laser processing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012219879A1 (en) * 2012-10-30 2014-04-30 Osram Gmbh Method for manufacturing a LED module with heat sink
CN104781940A (en) * 2012-10-30 2015-07-15 欧司朗有限公司 Method for producing an LED module comprising a heat sink
WO2017223050A1 (en) * 2016-06-20 2017-12-28 TeraDiode, Inc. Packages for high-power laser devices
JP2019526165A (en) * 2016-06-20 2019-09-12 テラダイオード, インコーポレーテッド Package for high power laser devices
US10490972B2 (en) 2016-06-20 2019-11-26 TeraDiode, Inc. Packages for high-power laser devices
US11095091B2 (en) 2016-06-20 2021-08-17 TeraDiode, Inc. Packages for high-power laser devices
US12068574B2 (en) 2016-06-20 2024-08-20 Panasonic Corporation Of North America Packages for high-power laser devices
CN109987567A (en) * 2017-12-20 2019-07-09 罗伯特·博世有限公司 Laser bonding method and micromechanical devices with laser bonding interconnecting piece
KR20200082699A (en) * 2018-12-31 2020-07-08 주식회사 비아트론 A laser chip module and a laser chip module array including a VCSEL
KR102189250B1 (en) * 2018-12-31 2020-12-09 주식회사 비아트론 A laser chip module and a laser chip module array and substrate heat treatment apparatus including a VCSEL
RU2796525C1 (en) * 2019-10-17 2023-05-25 МОНОКРОМ С.Л., Испания Laser connection module
WO2023032903A1 (en) * 2021-08-30 2023-03-09 三菱電機株式会社 Semiconductor laser module, laser oscillator, and laser machining device

Also Published As

Publication number Publication date
JP4800019B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP4800019B2 (en) Semiconductor laser package device and manufacturing method thereof
ES2390644T3 (en) Solar cell module and manufacturing procedure
US20040082112A1 (en) Laser diode packaging
JP2015119072A (en) Laser welding method, laser welding jig, and semiconductor device
JP4765853B2 (en) Manufacturing method of semiconductor device
JP4858238B2 (en) Laser welding member and semiconductor device using the same
JP2009524223A (en) Carrier for vertically positioning laser diodes using stoppers
KR20140048884A (en) Method for electrically connecting several solar cells and photovoltaic module
WO2020179369A1 (en) Semiconductor device and bonding method
JP4764983B2 (en) Manufacturing method of semiconductor device
JP2016054279A (en) Semiconductor laser
JPWO2018147283A1 (en) Vapor chamber
JP7319295B2 (en) semiconductor equipment
JP2012513683A (en) Electrical or electronic composite component and method for manufacturing electrical or electronic composite component
JP2022013800A (en) Semiconductor device and welding method
CN209913232U (en) Semiconductor laser pumping source packaging structure
JP2019133965A (en) Semiconductor device and manufacturing method thereof
KR20180031502A (en) Power module and manufacturing method therefor
US20100118909A1 (en) Miniature high-power laser diode device
JP2009064932A (en) Cooling device for laser array, laser module, and laser light source device
CN117337491A (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP5259152B2 (en) Battery cell, battery pack, and battery cell manufacturing method
JP2018113377A (en) Laser light source device
CN108336640B (en) High-power semiconductor laser and preparation method thereof
JP4543651B2 (en) Heat sink and light source device having heat sink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4800019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350