JP2007147591A - Analytical method for recess or protrusion in micropore after filled with copper - Google Patents

Analytical method for recess or protrusion in micropore after filled with copper Download PDF

Info

Publication number
JP2007147591A
JP2007147591A JP2006267114A JP2006267114A JP2007147591A JP 2007147591 A JP2007147591 A JP 2007147591A JP 2006267114 A JP2006267114 A JP 2006267114A JP 2006267114 A JP2006267114 A JP 2006267114A JP 2007147591 A JP2007147591 A JP 2007147591A
Authority
JP
Japan
Prior art keywords
copper
height
micropore
dent
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006267114A
Other languages
Japanese (ja)
Other versions
JP4514742B2 (en
Inventor
Guang-Shiah Wang
グアン シア ワン
Guo Wen Lu
グオ ウェン ルー
Ying-Kai Hung
イン カイ フン
Wu-Yu Hsiao
ウー ユー シーアオ
Kun Jii Rii
クン ジー リー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Machvision Inc
Original Assignee
Machvision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Machvision Inc filed Critical Machvision Inc
Publication of JP2007147591A publication Critical patent/JP2007147591A/en
Application granted granted Critical
Publication of JP4514742B2 publication Critical patent/JP4514742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To disclose an analytical method for a recess or a protrusion in a micropore (micro via or laser via) after filled with copper. <P>SOLUTION: A height distribution of a copper plated layer generated on a layered material surface after executing a step for filling the copper in a printed circuit board is measured using a height scanner, and a plurality of height values is selected thereafter in a copper coated area in a local part of a located portion of the each micropore. The plurality of numbers of height values in the periphery of the micropore in the copper coated area in the local part is averaged or calculated to obtain a relative standard height, and the relative standard height is compared with the each height value of a copper coated surface within a micropore range to find a difference therebetween. Calculation is executed whether an accumulated quantity of the respective differences exceeding an allowable recess amount or an allowable protrusion amount exceeds a set value or not. The presence of a recess or protrusion defect on the the copper coated surface within the micropore range is determined when exceeding the set value. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、微孔に銅を充填した後の凹みまたは凸起の分析方法に関する。これはプリント基板上の微孔に銅を充填後、表面に凹みまたは凸起の欠陥があるか否かを分析する方法である。   The present invention relates to a method for analyzing dents or protrusions after filling micropores with copper. This is a method of analyzing whether or not there is a dent or protrusion defect on the surface after filling the microholes on the printed circuit board with copper.

電子製品のニーズに後押しされて、プリント基板は、形態面では次第に軽く、薄く、短く、小さくなる方向に進み、機能面では性能の安定、多機能、高速化が求められている。相対的に、その製造工程の技術開発がますます難しくなっている上、軽量化、薄型化、細線化、小孔化などの高密度設計に対するニーズも満たさなければならない。現在非常に重視されているボールグリッドアレイ(Ball Grid Array;BGA)やフリップチップ(flip chip)基板および使用量が日増しに増えている携帯式製品の回線基板、例えば携帯電話、コンピュータの中央処理装置、電子辞書、PCMCIAカードなどは、やがて高密度(High Density Integration;HDI)基板を大量に使用するようになる。従来の基板は製造面で穿孔機、エッチング装置などの製造設備の改良を絶えず重ねているものの、その密度不足のために4ミル(mil)の線距離と直径6ミルのスルーホールまでしか製造できず、上記ニーズと将来の狭いピン距離の電子構造設計の制限に対応できない。そこで、細線と小孔を有する高密度基板が時運に乗じて登場し、従来の多層圧着基板やプリント基板の製造工程に取って代るものとして期待されている。   Driven by the needs of electronic products, printed circuit boards are becoming lighter, thinner, shorter, and smaller in form and are required to have stable performance, multiple functions, and high speed in terms of function. In comparison, the technological development of the manufacturing process has become increasingly difficult, and needs for high-density designs such as lighter, thinner, thinner, and smaller holes must be satisfied. Ball grid array (BGA) and flip chip substrates, which are very important now, and circuit boards of portable products whose usage is increasing day by day, for example, central processing of mobile phones and computers Devices, electronic dictionaries, PCMCIA cards, etc. will eventually use a large amount of High Density Integration (HDI) boards. Although conventional substrates are continually improved in production facilities such as drilling machines and etching devices, due to the lack of density, only up to 4 mil line distance and 6 mil diameter through holes can be produced. Therefore, it cannot cope with the above-mentioned needs and restrictions on electronic structure design with a narrow pin distance in the future. Therefore, a high-density substrate having fine wires and small holes has emerged with time, and is expected to replace the conventional manufacturing process of multilayer crimped substrates and printed circuit boards.

それに対して、多層化(build−up)法は基板製造工程にレーザ穿孔技術を組み合わせることによってスルーホールの使用面積を効果的に減少させることができ、容易に細線、小孔の高密度要件を満たすことができる。これによって従来の基板構造内に一層または数層の細線層を加えれば、経済的で効果的な基板製造方法となる。このような基板の中間層は従来のFR−4やABF基板でよく、その後に層を重ねるごとに誘電層と銅箔を加え、重ねられたこれらの回線と孔径はすべて従来の基板より細かく、また層間の厚さも相対的に縮小される。密度がこのように高まり、厚さが薄くなるため、基板の面積も小さくなる。   On the other hand, the build-up method can effectively reduce the use area of the through hole by combining laser drilling technology with the substrate manufacturing process, and easily meet the high density requirements of fine wires and small holes. Can be satisfied. Thus, if one or several thin wire layers are added to the conventional substrate structure, an economical and effective substrate manufacturing method is obtained. The intermediate layer of such a substrate may be a conventional FR-4 or ABF substrate, and after each layer is added, a dielectric layer and copper foil are added, and these superimposed lines and hole diameters are all finer than the conventional substrate, Also, the thickness between layers is relatively reduced. Since the density is thus increased and the thickness is reduced, the area of the substrate is also reduced.

しかし、多層化法では、基板に銅を充填するステップの後に最もよく発生する欠陥は、図1に示すように、微孔15の上方の銅めっき層14に凹み141(または凸起、図示せず)が生じ易いことである。上層絶縁層11に微孔15があり、さらに内部銅回線層の銅パッド(pad)12が当該微孔15の底部に設けられている。銅パッド12とその後に上層絶縁層11表面に形成される銅回線層を連結できるようにするために、微孔15の中および上層絶縁層11表面に銅めっき層14を堆積させる。しかし、微孔15の上方の銅被覆面積に凹み141(または凸起)欠陥があると、銅めっき層14上に積層を続けようとするときに、当該凹み141が大きければ基板の内部回線の失効をもたらし、電気信号を正常に伝達できなくなる。   However, in the multi-layer method, the defect most frequently generated after the step of filling the substrate with copper is a recess 141 (or protrusion, not shown) in the copper plating layer 14 above the microhole 15 as shown in FIG. Is likely to occur. A microhole 15 is provided in the upper insulating layer 11, and a copper pad (pad) 12 of an internal copper circuit layer is provided at the bottom of the microhole 15. In order to connect the copper pad 12 and the copper line layer formed on the surface of the upper insulating layer 11 thereafter, a copper plating layer 14 is deposited in the micro holes 15 and on the surface of the upper insulating layer 11. However, if there is a dent 141 (or protrusion) defect in the copper covered area above the micropore 15, when the pit 141 is large when attempting to continue the lamination on the copper plating layer 14, the internal line of the substrate It becomes invalid and the electric signal cannot be transmitted normally.

以上を総合すると、市場では、プリント基板の中の各積層板材の品質を確認できるように、プリント基板上の微孔の銅めっき後の表面に凹み欠陥があるか否かを分析する方法が取り急ぎ必要となっている。   To sum up the above, in the market, there is an urgent need to analyze whether there is a dent defect on the surface after copper plating of micro holes on the printed circuit board so that the quality of each laminated board in the printed circuit board can be confirmed. It is necessary.

本発明の目的は、微孔に銅を充填後の凹みまたは凸起の分析方法を提供することである。この方法は、プリント基板の積層板材の変形量の影響を除去して、各盲孔上方の銅めっき層の実際の凹みの深さと有効面積を分析できる。   An object of the present invention is to provide a method for analyzing dents or protrusions after filling micropores with copper. This method can remove the influence of the deformation amount of the laminated board material of the printed circuit board, and analyze the actual depth and effective area of the copper plating layer above each blind hole.

本発明のもう1つの目的は、銅めっき層上の凹みまたは凸起欠陥の分布を表す方法を提供することである。この方法では、凹みまたは凸起欠陥の存在箇所を画面表示することにより、さらにこうした凹み欠陥がもたらすプリント基板セルの失効結果を表す。   Another object of the present invention is to provide a method for representing the distribution of dents or raised defects on a copper plating layer. In this method, the revocation result of the printed circuit board cell caused by such a dent defect is further displayed by displaying the location of the dent or convex defect on the screen.

上記目的を達成するために、本発明は微孔に銅を充填後の凹みまたは凸起の分析方法を開示する。これは高さスキャン装置を利用して、プリント基板に銅を充填するステップを実施後に積層材料表面にできる銅めっき層の高さ分布を測定してから、各微孔の所在箇所の局部(または微孔周囲)の銅被覆面積の複数個の高さ値を選択する。当該局部の銅被覆面積の該微孔周囲の複数個の高さ値を、相対的な標準高さとするために平均し、さらに該相対的標準高さと該微孔範囲内の銅被覆表面の各高さ値を比較して、各差の値を出す。各差の値の許容凹み量または許容凸起量を上回る累積量が設定値を超えるか否かを計算する。超えていれば当該微孔範囲内の銅被覆表面に凹みまたは凸起欠陥があると判定できる。   In order to achieve the above object, the present invention discloses a method of analyzing a dent or protrusion after filling micropores with copper. This is done by measuring the height distribution of the copper plating layer formed on the surface of the laminated material after performing the step of filling the printed circuit board with copper using a height scanning device, and then localizing the location of each micropore (or Select multiple height values for copper coverage area around micropores. A plurality of height values around the micropores of the local copper coating area are averaged to obtain a relative standard height, and each of the relative standard height and the copper coating surface within the micropore range Compare the height values and give each difference value. It is calculated whether or not the cumulative amount exceeding the allowable dent amount or allowable bulge amount of each difference value exceeds the set value. If it exceeds, it can be determined that there is a dent or raised defect on the surface of the copper coating within the micropore range.

画面や図表を利用してプリント基板上の凹み欠陥の存在箇所を表示でき、さらに画面や図表を利用して当該凹み欠陥が失効をもたらしたプリント基板セル位置を表すことができる。   The presence location of the dent defect on the printed circuit board can be displayed using the screen or chart, and the printed circuit board cell position where the dent defect has caused the invalidation can be expressed using the screen or chart.

図2は、本発明で分析したプリント基板中の積層板材の外観説明図である。積層板材20が9個のセル26に区分され、それぞれのセル26の中に複数個の微孔25があり、さらに微孔25の中も積層板材20表面全体も銅めっき層24で被覆されている。高さスキャン装置を利用して、当該銅めっき層24表面の高さ分布を測定してから、特に各微孔25の所在箇所について、それぞれ微孔25の断面積より大きい銅被覆面積271または272を選定する。あるいは当該選定面積を選択範囲(range of interest)と呼ぶこともできる。銅被覆面積271または272に指定微孔25が含まれるようにするために、当該銅被覆面積271または272を実際の微孔寸法より許容幅を加えた大きさで形成するとよい。   FIG. 2 is an external explanatory view of a laminated board material in a printed circuit board analyzed by the present invention. The laminated board 20 is divided into nine cells 26, each of which has a plurality of micro holes 25, and the micro holes 25 and the entire surface of the laminated board 20 are covered with the copper plating layer 24. Yes. After measuring the height distribution on the surface of the copper plating layer 24 using a height scanning device, the copper coating area 271 or 272 larger than the cross-sectional area of each micropore 25, particularly for the location of each micropore 25. Is selected. Alternatively, the selected area can also be referred to as a range of interest. In order to include the designated micropore 25 in the copper-covered area 271 or 272, the copper-covered area 271 or 272 may be formed with a size obtained by adding an allowable width to the actual micropore size.

図3をみると、当該選定された銅被覆面積271内の表面の高さ分布値がすでに全部得られており、当該局部の高さ分布値についてそれぞれ分析を行って、許容規格を超える凹み32(または凸起)が生じているか否かを判断することができる。図中の破線の円柱体31は当該凹み32の下側微孔25に対する位置関係を示しており、当該微孔25の断面の半径はrである。明らかに、円柱体31の上側中央の凹み32の曲面の高さが円柱体31周囲の表面高さより低い(中央が凸起している場合は、円柱体31周囲の表面高さより高くなる)。   Referring to FIG. 3, all the height distribution values of the surface within the selected copper covering area 271 have already been obtained, and each of the local height distribution values is analyzed, and the dent 32 exceeding the allowable standard is obtained. It is possible to determine whether or not (or protrusion) has occurred. A broken-line cylindrical body 31 in the drawing indicates a positional relationship with respect to the lower microhole 25 of the recess 32, and the radius of the cross section of the microhole 25 is r. Obviously, the height of the curved surface of the upper center recess 32 of the cylinder 31 is lower than the surface height around the cylinder 31 (if the center is protruding, it becomes higher than the surface height around the cylinder 31).

図4(a)は、図3の中の円柱体31の直径を通るX−Y平面に沿った高さ分布図である。積層板材20が材料内の残留応力によって跳ね上がり現象を起こす場合があるため、Z軸上に示されている高さ値は必ずしも積層板材20の表面の実際の凹みまたは凸起の高さではない。したがって標準高さまたは参考高さをまず出してから初めて有意な凹みまたは凸起の量を定義できる。本発明では、銅被覆面積271の微孔25周囲(図4(a)中の2rの外)の高さ分布値を平均または計算して相対的標準高さRを得、さらに各微孔25についてそれぞれ相対的標準高さを計算する。   FIG. 4A is a height distribution diagram along the XY plane passing through the diameter of the cylindrical body 31 in FIG. Since the laminated plate member 20 may cause a jumping phenomenon due to residual stress in the material, the height value shown on the Z axis is not necessarily the height of the actual dent or protrusion on the surface of the laminated plate member 20. Therefore, a significant amount of dents or protrusions can be defined only after the standard height or reference height is first obtained. In the present invention, the relative standard height R is obtained by averaging or calculating the height distribution value around the micropores 25 (outside 2r in FIG. 4A) of the copper-covered area 271, and each micropore 25 is further calculated. Calculate the relative standard height for each.

凹み状況を例(逆の凸起状況も然りである)にとると、当該相対的標準高さRより許容凹み量hだけ下にずれて高さ閾値Tを定義でき、高さ値がTの表面より低ければ有効凹みの領域であるとみなされる。図4(a)の中のdが有効凹み領域と判定されている。   Taking the dent situation as an example (the reverse projection situation is also true), the height threshold T can be defined by shifting below the relative standard height R by the allowable dent amount h, and the height value is T If it is lower than the surface of the surface, it is regarded as an effective dent region. In FIG. 4A, d is determined as an effective dent region.

図4(b)に示すように、有効凹み領域が存在する銅被覆面積271と判定されても、必ずしも凹み欠陥とみなされるわけではない。一般的には、さらに当該有効凹み領域の占める面積を計算する必要があり、そうして初めて真に凹み欠陥であるか否かを確認できる。例を挙げると、銅被覆面積271の中に微細な針孔41があり、この針孔41の最小高さは明らかに高さ閾値Tよりはるかに小さい。しかし、さらに針孔41底部の総面積に占める割合を分析せずに、この高さ閾値Tとの比較のみによる場合、凹み欠陥の認定が多すぎる上に不適当という結果を招く可能性が大きく、不良品と判定されるセル26が多すぎれば重大なコスト負担につながる。実際、もし銅被覆面積271内に微細な針孔41しかなく、他の面積の高さがすべて高さ閾値Tより高ければ、この針孔41によって垂直導通機能の正常な働きがだめになることはまずない。また、針孔41の許容面積は使用者が設定できる。   As shown in FIG. 4B, even if it is determined that the copper-covered area 271 has an effective dent region, it is not necessarily regarded as a dent defect. In general, it is necessary to further calculate the area occupied by the effective dent region, and only then can it be confirmed whether or not the dent defect is truly a defect. For example, there is a fine needle hole 41 in the copper covered area 271, and the minimum height of this needle hole 41 is clearly much smaller than the height threshold T. However, if the ratio to the total area of the bottom of the needle hole 41 is not analyzed and only the comparison with the height threshold T is made, there is a great possibility that the dent defect is recognized too much and the result is inappropriate. If there are too many cells 26 that are determined to be defective, a significant cost burden is caused. In fact, if there is only a fine needle hole 41 in the copper-covered area 271 and the heights of all other areas are higher than the height threshold T, the normal function of the vertical conduction function is impaired by this needle hole 41. Is unlikely. In addition, the allowable area of the needle hole 41 can be set by the user.

図5に示すように、微孔25の断面積に含まれる範囲内(直径2rの円の面積)は、高さ値測定点の位置によって複数個の面積基本セル51に分けることができ、各面積基本セル51はすべて最低1つの高さ値をもっている。前記相対的標準高さRを各面積基本セル51の高さ値と比較することにより、それぞれの差の値が得られる。例えば、図5中に示された数字は差の値を表している(あるいは色や記号で差の値の大きさを表すと使用者にとって判読し易くなる)。差の値が許容凹み量h(本実施例ではh=4と仮定)より大きく、面積も設定値より大きければ、凹み欠陥があるとみなされる。つまり、差の値が4を超える累積数量(図5中では合計7個の数字が4を超えている)が設定値(5と仮定)を上回れば、銅被覆面積271は有効凹み(凹み欠陥)であると認定される。   As shown in FIG. 5, the area included in the cross-sectional area of the micropore 25 (the area of a circle having a diameter of 2r) can be divided into a plurality of area basic cells 51 according to the position of the height value measurement point. All area basic cells 51 have at least one height value. By comparing the relative standard height R with the height value of each area basic cell 51, the value of each difference is obtained. For example, the numbers shown in FIG. 5 represent the difference values (or the size of the difference values are expressed by colors or symbols so that the user can easily read them). If the difference value is larger than the allowable dent amount h (assuming that h = 4 in this embodiment) and the area is larger than the set value, it is considered that there is a dent defect. In other words, if the cumulative quantity with the difference value exceeding 4 (the total of 7 numbers in FIG. 5 exceeds 4) exceeds the set value (assumed to be 5), the copper covered area 271 has an effective dent (dent defect). ).

積層板材20上の各微孔25の箇所で選定された銅被覆面積をそれぞれ上記の高さ分析をした後、画面または図表を利用して凹み欠陥のある銅充填微孔25の位置を表示できる。例えば図6は×の記号またはマークで凹み欠陥発生箇所を表している。もちろん×の代わりに色で表示してもよい。例えば凹み欠陥のある微孔25を赤色で表示する(あるいは凸起欠陥のある微孔25を青色で埋める)場合、他の正常な微孔25を緑色で表す。もちろん異なる色、記号やマークで凹み量の大きさを表してもよい。例えば、濃い赤で凹み量が相対的に最も深い箇所を表し、濃い赤から次第に薄い赤に変わり、凹み量が相対的に小さいものを黄色で表す。   After performing the above-described height analysis on the copper coating area selected at each microhole 25 location on the laminated board 20, the position of the copper-filled microhole 25 having a dent defect can be displayed using a screen or a chart. . For example, FIG. 6 shows a dent defect location with a symbol x or a mark. Of course, you may display with a color instead of x. For example, when the micropore 25 having a dent defect is displayed in red (or the micropore 25 having a protruding defect is filled in blue), the other normal micropores 25 are represented in green. Of course, the size of the indentation may be represented by different colors, symbols, or marks. For example, dark red represents a portion where the dent amount is relatively deepest, dark red gradually changes to light red, and a dent amount relatively small represents yellow.

各積層板材20が順次圧着接合(sequential lamination)されて最終基板となった後、その中のある層の積層板材20に凹み欠陥があった場合、当該凹み欠陥のあるプリント基板セルは廃棄するものとみなされる。したがって、図7に示すように、各プリント基板セル76内に凹み欠陥または凸起欠陥が存在するか否か統計を出し、凹み欠陥または凸起欠陥があれば×の記号またはマークをつけて使用不能または廃棄されるプリント基板セル76を表すことができる。   After each laminated board 20 is sequentially laminated and becomes a final substrate, if there is a dent defect in the laminated board 20 of a certain layer in it, the printed circuit board cell having the dent defect is discarded. Is considered. Therefore, as shown in FIG. 7, statistics are obtained as to whether or not there is a dent or protrusion defect in each printed circuit board cell 76, and if there is a dent or protrusion defect, it is used with a symbol or mark x. A printed circuit board cell 76 that can be disabled or discarded can be represented.

本発明はエッチング前の銅めっき層24の品質を分析できる他に、図8に示すように、エッチング後の銅めっき層84も同様に凹み欠陥があるか否かを分析できる。積層板材80上の微孔85のある箇所に設定した選択範囲87の中にエッチング後の銅めっき層84があるため、図9に示すように、銅めっき層84の外側の表面高さは凹み発生可能箇所の高さよりはるかに低い。しかし上記実施例と異なるステップは、相対的標準高さRの計算方式のみである。本実施例では、選択範囲87の中の銅被覆面積を2rと2Rcの間の環状領域内の高さ分布値を平均して相対的標準高さR’を得る。つまり、両側の高さが最低閾値Lよりはるかに低い区間は、相対的標準高さの平均データの中に入れない。同様に、高さ閾値T’によって銅めっき層84の有効凹み領域が選択範囲内に存在するか否かを確認でき、有効凹み領域が設定値を超えていれば、当該微孔85に凹み欠陥があると判定できる。   In addition to being able to analyze the quality of the copper plating layer 24 before etching, the present invention can also analyze whether or not the copper plating layer 84 after etching has a dent defect as shown in FIG. Since there is a copper plating layer 84 after etching in the selection range 87 set at a position with the micro holes 85 on the laminated plate member 80, the surface height of the outer side of the copper plating layer 84 is recessed as shown in FIG. Much lower than possible height. However, the step different from the above embodiment is only the calculation method of the relative standard height R. In the present embodiment, the copper coated area in the selection range 87 is averaged with the height distribution value in the annular region between 2r and 2Rc to obtain the relative standard height R '. That is, a section in which the height on both sides is much lower than the minimum threshold value L is not included in the average data of the relative standard height. Similarly, whether or not the effective dent area of the copper plating layer 84 exists within the selected range can be confirmed by the height threshold T ′. If the effective dent area exceeds the set value, the dent defect is not formed in the microhole 85. It can be determined that there is.

本発明の技術的内容および技術的特徴は上記に開示したとおりであるが、当技術分野の熟練者は本発明の教示と開示に基づきさまざまな本発明の精神から逸脱しない置換えおよび改変を行うことができる。したがって、本発明の保護範囲は、実施例に開示したものに限定すべきではなく、本発明から逸脱しない各種の置換えおよび改変を含み、特許請求の範囲に包含されるものとする。   Although the technical contents and technical features of the present invention are as disclosed above, those skilled in the art will make various substitutions and modifications based on the teaching and disclosure of the present invention without departing from the spirit of the present invention. Can do. Accordingly, the protection scope of the present invention should not be limited to that disclosed in the examples, but includes various substitutions and modifications that do not depart from the present invention and are intended to be encompassed by the claims.

周知の多層化法基板の中の積層板材の凹み発生を示す図The figure which shows the dent generation | occurrence | production of the laminated board material in a well-known multilayering method board 本発明で分析するプリント基板の中の積層板材の外観を示す図The figure which shows the external appearance of the laminated board material in the printed circuit board analyzed by this invention 図2中の銅被覆面積を選択する立体の高さ分布図Fig. 2 Three-dimensional height distribution map for selecting the copper coating area 図3の中の微孔直径を通るX−Y平面で切断した高さ分布図Height distribution diagram cut along the XY plane passing through the micropore diameter in FIG. 針孔のある銅充填後の微孔の直径に沿ったX−Y平面で切断した高さ分布図Height distribution diagram cut along the XY plane along the diameter of micro-holes after filling copper with needle holes 本発明の銅めっき層の微孔断面積を含む範囲内の有効凹み面積の分析を示す図The figure which shows the analysis of the effective dent area in the range containing the micropore cross-sectional area of the copper plating layer of this invention 本発明の凹み欠陥のある微孔位置を示す図The figure which shows the micropore position with the dent defect of this invention 本発明の凹み欠陥により使用不能になったプリント基板セルを示す図The figure which shows the printed circuit board cell which became unusable by the dent defect of this invention 銅めっき層上の選択範囲を設定するもう1つの実施例を示す図The figure which shows another Example which sets the selection range on a copper plating layer 図8の中の微孔直径を通るX−Y平面で切断した高さ分布図Height distribution diagram cut along XY plane passing through micropore diameter in FIG.

符号の説明Explanation of symbols

11 上層絶縁層
12 銅パッド
13 下層絶縁層
14 銅めっき層
15 盲孔
20 積層板材
24 銅めっき層
25 微孔
26 セル
31 円柱体
32 凹み
41 針孔
51 面積基本セル
76 プリント基板セル
80 積層板材
84 銅めっき層
85 微孔
87 選択範囲
141 凹み
271、272 銅被覆面積
T、T’ 高さ閾値
r 盲孔の半径
d 有効凹み領域
R、R’ 相対的標準高さ
h 許容凹み量
DESCRIPTION OF SYMBOLS 11 Upper insulating layer 12 Copper pad 13 Lower insulating layer 14 Copper plating layer 15 Blind hole 20 Laminated plate material 24 Copper plated layer 25 Micro hole 26 Cell 31 Cylindrical body 32 Recess 41 Needle hole 51 Area basic cell 76 Printed circuit board cell 80 Laminated plate material 84 Copper plating layer 85 Micropore 87 Selection range 141 Depression 271 272 Copper coating area T, T 'Height threshold r Blind hole radius d Effective dent area R, R' Relative standard height h Allowable dent amount

Claims (8)

銅充填微孔の凹み分析方法であって、
銅充填ステップ実施後の積層板材表面上の高さ分布をスキャンするステップと、
前記積層板材の中の少なくとも1つの微孔のある箇所の局部銅被覆面積の複数個の高さ値を選択するステップと、
前記局部銅被覆面積が前記微孔範囲以外にある複数個の高さ値を計算して相対的標準高さを得るステップと、
前記相対的標準高さと前記微孔範囲内の前記銅被覆面積の各複数個の高さ値の間に存在する各差の値を比較するステップと、
前記各差の値が許容凹み量を超える累積数量を計算するステップであって、前記累積数量が設定値を超えていれば前記微孔上の前記銅被覆面積に凹み欠陥があると判定するステップと
を含むことを特徴とする銅充填微孔の凹み分析方法。
A method of analyzing a dent in a copper-filled micropore,
Scanning the height distribution on the surface of the laminated board after the copper filling step is performed;
Selecting a plurality of height values of the local copper coating area of at least one microporous location in the laminate sheet;
Calculating a plurality of height values where the local copper coating area is outside the micropore range to obtain a relative standard height; and
Comparing each difference value present between the relative standard height and each of the plurality of height values of the copper coverage within the micropore range;
A step of calculating a cumulative quantity in which the value of each difference exceeds an allowable dent amount, and a step of determining that there is a dent defect in the copper covered area on the microhole if the cumulative quantity exceeds a set value. A method for analyzing a dent in a copper-filled micropore, comprising:
前記積層板材の画像上に前記凹み欠陥発生箇所を記号、マークまたは色で表すステップをさらに含むことを特徴とする請求項1に記載の銅充填微孔の凹み分析方法。   The method for analyzing a dent in a copper-filled microhole according to claim 1, further comprising a step of representing the dent defect occurrence location with a symbol, a mark, or a color on the image of the laminated board. 前記積層板材を有するプリント基板の画像上に前記凹み欠陥が存在する故の廃棄セルを記号、マークまたは色で表すステップをさらに含むことを特徴とする請求項1に記載の銅充填微孔の凹み分析方法。   The recess of a copper-filled microhole according to claim 1, further comprising a step of representing, as a symbol, a mark, or a color, a waste cell due to the presence of the recess defect on an image of a printed circuit board having the laminated board. Analysis method. 前記各差の値が、数字、色または記号でその大きさを表すことができ、さらに前記微孔断面積に含まれる範囲内の各差の値の所在位置を表示することを特徴とする請求項1に記載の銅充填微孔の凹み分析方法。   The value of each difference can be represented by a number, a color, or a symbol, and the position of each difference value within a range included in the micropore cross-sectional area is displayed. Item 2. A method for analyzing a recess of a copper-filled micropore according to Item 1. 前記相対的標準高さから前記許容凹み量を引くと高さ閾値になり、前記累積数量が前記設定値を超えると、前記微孔断面積に含まれる範囲内の高さ閾値より低い面積で前記凹み欠陥が定義された許容凹み面積を超えたことを示すことを特徴とする請求項1に記載の銅充填微孔の凹み分析方法。   When the allowable dent amount is subtracted from the relative standard height, it becomes a height threshold, and when the cumulative quantity exceeds the set value, the area is lower than the height threshold within the range included in the micropore cross-sectional area. 2. The method for analyzing a dent in a copper-filled micropore according to claim 1, wherein the dent defect exceeds a defined allowable dent area. 前記積層板材上の銅被覆面積がエッチングステップを経ていることを特徴とする請求項1に記載の銅充填微孔の凹み分析方法。   The method for analyzing a dent in a copper-filled microhole according to claim 1, wherein the copper coating area on the laminated plate material has undergone an etching step. 最低閾値によって非銅被覆面積の箇所の高さ値を除去して、前記相対的標準高さを求める計算の中に入れないステップをさらに含むことを特徴とする請求項6に記載の銅充填微孔の凹み分析方法。   7. The method of claim 6, further comprising the step of removing the height value of the portion of the non-copper-covered area by a minimum threshold value and not including in the calculation for obtaining the relative standard height. Hole indentation analysis method. 前記相対的標準高さが、前記局部銅被覆面積の前記微孔範囲外にある複数個の高さ値を平均して得られることを特徴とする請求項1に記載の銅充填微孔の凹み分析方法。   The recess of a copper-filled microhole according to claim 1, wherein the relative standard height is obtained by averaging a plurality of height values outside the micropore range of the local copper coating area. Analysis method.
JP2006267114A 2005-11-29 2006-09-29 Analysis method of dents or protrusions in micropores after copper filling Active JP4514742B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW094141861A TWI270656B (en) 2005-11-29 2005-11-29 Analysis method for sag or protrusion of copper-filled micro via

Publications (2)

Publication Number Publication Date
JP2007147591A true JP2007147591A (en) 2007-06-14
JP4514742B2 JP4514742B2 (en) 2010-07-28

Family

ID=38209141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006267114A Active JP4514742B2 (en) 2005-11-29 2006-09-29 Analysis method of dents or protrusions in micropores after copper filling

Country Status (3)

Country Link
JP (1) JP4514742B2 (en)
KR (1) KR100833382B1 (en)
TW (1) TWI270656B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114674207A (en) * 2022-04-28 2022-06-28 马鞍山钢铁股份有限公司 Bottom surface flatness measuring device and method for flat-bottom blind hole

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484138A (en) * 1987-09-28 1989-03-29 Toshiba Corp Surface inspection device
JPH03188307A (en) * 1989-12-19 1991-08-16 Fujitsu Ltd Apparatus for inspecting viahole
JPH11289138A (en) * 1998-04-02 1999-10-19 Ibiden Co Ltd Both sided substrate and method for forming through hole to be refilled
JP2000049204A (en) * 1998-06-26 2000-02-18 Siemens Ag Method and device for optical measurement for thickness of dielectrics layer in semiconductor device
JP2001144444A (en) * 1999-11-17 2001-05-25 Ibiden Co Ltd Multilayer printed wiring board and double sided printed wiring board and method of production

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252412B1 (en) * 1999-01-08 2001-06-26 Schlumberger Technologies, Inc. Method of detecting defects in patterned substrates
FR2812515B1 (en) * 2000-07-27 2003-08-01 Kermel METHOD FOR PRODUCING A CIRCUITRY COMPRISING CONDUCTIVE TRACKS, PELLETS AND MICROTRAVERSES AND USE OF THIS METHOD FOR PRODUCING HIGH INTEGRATED DENSITY MULTI-LAYER CIRCUITS
JP4563170B2 (en) * 2002-05-02 2010-10-13 オーボテック リミテッド Electric circuit pattern manufacturing method and system
JP4160811B2 (en) * 2002-10-07 2008-10-08 住友電工プリントサーキット株式会社 Flexible copper-clad circuit board
JP2004356493A (en) * 2003-05-30 2004-12-16 Sumitomo Metal Mining Co Ltd Method for manufacturing multilayer printed circuit board
US6919635B2 (en) * 2003-11-04 2005-07-19 International Business Machines Corporation High density microvia substrate with high wireability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484138A (en) * 1987-09-28 1989-03-29 Toshiba Corp Surface inspection device
JPH03188307A (en) * 1989-12-19 1991-08-16 Fujitsu Ltd Apparatus for inspecting viahole
JPH11289138A (en) * 1998-04-02 1999-10-19 Ibiden Co Ltd Both sided substrate and method for forming through hole to be refilled
JP2000049204A (en) * 1998-06-26 2000-02-18 Siemens Ag Method and device for optical measurement for thickness of dielectrics layer in semiconductor device
JP2001144444A (en) * 1999-11-17 2001-05-25 Ibiden Co Ltd Multilayer printed wiring board and double sided printed wiring board and method of production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114674207A (en) * 2022-04-28 2022-06-28 马鞍山钢铁股份有限公司 Bottom surface flatness measuring device and method for flat-bottom blind hole
CN114674207B (en) * 2022-04-28 2024-04-12 马鞍山钢铁股份有限公司 Bottom surface flatness measuring device and method for flat-bottom blind hole

Also Published As

Publication number Publication date
KR20070056927A (en) 2007-06-04
JP4514742B2 (en) 2010-07-28
KR100833382B1 (en) 2008-05-28
TW200720623A (en) 2007-06-01
TWI270656B (en) 2007-01-11

Similar Documents

Publication Publication Date Title
CN101025398B (en) Hollow-bulge analyzing method for micro-pore after filled by copper
CN102032885B (en) Printed circuit board, method and device for detecting layer-to-layer registration of circuit graphs at two surfaces thereof
CN104582331A (en) Inner-layer deviation detecting method for multi-layer circuit board
JP2009158905A (en) Method of manufacturing embedded printed-circuit board
CN105764270A (en) Manufacturing method of PCB possessing entire board electrolytic gold and golden finger surface processing
CN107787122B (en) Circuit board line compensation method and device
JP4514742B2 (en) Analysis method of dents or protrusions in micropores after copper filling
CN110708873A (en) Manufacturing method for realizing positioning of embedded copper block
TWI359938B (en) Measurement method for laser vias on flip chip sub
KR101055507B1 (en) Repair structure and repair method of pattern part
JP2007048868A (en) Lamination indicator, multilayer-board manufacturing system and manufacturing method for multilayer board
CN109769347A (en) A kind of measurement judgment method for PCB drilling depth
JP4930073B2 (en) Manufacturing method of build-up board
JP2009021401A (en) Printed wiring board and inspecting method for printed wiring board
JP4823605B2 (en) Exposure apparatus, exposure method, and pattern manufacturing system
JP4978584B2 (en) Printed wiring board, method for manufacturing the same, and method for inspecting appearance of filling via in printed wiring board
CN114189987A (en) PCB and manufacturing method thereof
CN110505750B (en) PCB detection method and PCB
JP5341796B2 (en) Wiring board manufacturing method
CN103298251B (en) A kind of printed circuit board (PCB) and preparation method thereof
CN114173492B (en) Through blind hole design method for detecting hole filling capability of circuit board
JP5971516B2 (en) Wiring board inspection method
JP2009295691A (en) Manufacturing method of wiring circuit board
CN101262741B (en) Measuring butt point method for measuring base plate size in base plate technology
TWI603654B (en) Circuit board and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090819

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

R150 Certificate of patent or registration of utility model

Ref document number: 4514742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250