JP2007145923A - Tire tube filling elastic resin composition - Google Patents

Tire tube filling elastic resin composition Download PDF

Info

Publication number
JP2007145923A
JP2007145923A JP2005339847A JP2005339847A JP2007145923A JP 2007145923 A JP2007145923 A JP 2007145923A JP 2005339847 A JP2005339847 A JP 2005339847A JP 2005339847 A JP2005339847 A JP 2005339847A JP 2007145923 A JP2007145923 A JP 2007145923A
Authority
JP
Japan
Prior art keywords
resin composition
tire
elastic resin
tire tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005339847A
Other languages
Japanese (ja)
Inventor
Kumeo Kondo
駆米雄 近藤
Shinji Kato
信治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Katazen KK
Original Assignee
Katazen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katazen KK filed Critical Katazen KK
Priority to JP2005339847A priority Critical patent/JP2007145923A/en
Publication of JP2007145923A publication Critical patent/JP2007145923A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tire tube filling elastic resin composition having fluidity high enough to be poured through a valve when molten and developing adhesion to a tire tube when cured by gelation and to thereby produce easily within a short time a tire not suffering from puncture and providing good drive quality for a long time. <P>SOLUTION: An elastic resin composition containing 10 to 20 wt.% thermoplastic styrene elastomer, 5 to 15 wt.% tackifier, and 65 to 85 wt.% process oil and having a melt viscosity of 10 cP to 300 P at a melt temperature of 160°C is used as a tire tube filling elastic resin composition which is poured into a tire tube through its air injection valve. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自転車、車椅子、自動二輪車、電動機付自転車、農作業車、フォークリフト等のタイヤのタイヤチューブ内に充填して使用される弾性樹脂組成物に関するものである。   The present invention relates to an elastic resin composition that is used by being filled in a tire tube of a tire such as a bicycle, a wheelchair, a motorcycle, an electric bicycle, an agricultural vehicle, or a forklift.

従来の空気入タイヤは、バルブ部からの空気の自然流出、或いは釘等の踏み抜きによりパンクする問題があった。この問題を解決する手段として、タイヤチューブ内に樹脂を注入してパンクの発生をなくす技術が種々提案されている。例えば、特許文献1には、空気注入用のバルブから発泡ポリウレタン樹脂を注入する技術が開示されている。この技術は、ポリオールとポリイソシアネートよりなる主剤と、発泡剤、触媒等よりなる副剤とを高圧発泡機を用いて混合し、バルブを介してタイヤチューブ内に圧入後、常温で発泡及び硬化させ、樹脂をチューブ内に充填して自転車用ソリッドタイヤを製造するものである。しかし、この技術には、高圧発泡機という二液混合機を併せた特殊な注入機が必要であり、自転車小売修理店等をも含む幅広い作業現場にて簡便に施工できない。また、この樹脂を用いたタイヤは、クッション性、乗り心地性が悪いだけでなく、耐久性にも劣り、一年ほどでタイヤに「へたり」を生じてしまう不都合がある。すなわち、自転車に乗るとタイヤが圧縮変形されるために、樹脂が徐々に劣化して原形状態に復元されにくくなり、時間の経過により弾性が低下する。このため、振動が大きくなったり、自転車をこぐのが重くなるという不都合が生じる。このように、長期間にわたって良好な乗り心地性を維持できないという問題があった。   Conventional pneumatic tires have a problem of puncture due to natural outflow of air from the valve portion or stepping out of a nail or the like. As means for solving this problem, various techniques for eliminating the occurrence of puncture by injecting resin into the tire tube have been proposed. For example, Patent Document 1 discloses a technique for injecting a polyurethane foam resin from an air injection valve. In this technology, a main agent composed of polyol and polyisocyanate and a secondary agent composed of a foaming agent, a catalyst, and the like are mixed using a high-pressure foaming machine, pressed into a tire tube through a valve, and then foamed and cured at room temperature. A solid tire for a bicycle is manufactured by filling a resin into a tube. However, this technique requires a special injection machine combined with a two-component mixing machine called a high-pressure foaming machine, and cannot be easily constructed in a wide range of work sites including bicycle retail repair shops. In addition, tires using this resin not only have poor cushioning and riding comfort, but are also inferior in durability, and have the problem of causing “sagging” in the tire in about one year. That is, when the bicycle is ridden, the tire is compressed and deformed, so that the resin gradually deteriorates and is not easily restored to the original state, and the elasticity decreases with the passage of time. For this reason, there arises an inconvenience that vibration is increased and it is heavy to ride a bicycle. As described above, there is a problem that good riding comfort cannot be maintained over a long period of time.

また、特許文献2においては、「タイヤチューブに注入可能なタイヤパンクレス化軟質樹脂材料」が開示されており、樹脂材料は、ポリスチレン系又はポリオレフィン系熱可塑性エラストマーにパラフィンオイルを5%以上混合したものである。しかし、この樹脂材料には粘着性がないために、タイヤチューブと樹脂材料の密着性が低い。このため、樹脂材料の充填硬化(ゲル化)後において、樹脂の注入充填量が不十分の場合、又は注入の際に空気を巻き込んだ場合には、後述のように、タイヤ走行に伴い、樹脂内の気泡が拡大して大きな空気溜まりとしてタイヤチューブと樹脂の界面に存在するようになる。つまり、タイヤチューブと樹脂が離れて樹脂の不均一な箇所がタイヤ内に生じる形となり、回転時にはタイヤが圧縮変形されて過度な衝撃や振動を生み、時間経過に伴って乗り心地性を低下させてしまうという問題があった。
特開平08-142603号公報 特開2005-126654号公報
Patent Document 2 discloses a “tire puncture-resistant soft resin material that can be injected into a tire tube”, and the resin material is a mixture of 5% or more of paraffin oil in a polystyrene-based or polyolefin-based thermoplastic elastomer. It is. However, since this resin material is not sticky, the adhesion between the tire tube and the resin material is low. For this reason, after filling and curing (gelation) of the resin material, if the amount of resin injected and filled is insufficient, or if air is entrained during the injection, as described later, as the tire travels, the resin The bubbles in the inside expand to exist at the interface between the tire tube and the resin as a large air pocket. In other words, the tire tube and the resin are separated and a non-uniform portion of the resin is formed in the tire, and the tire is compressed and deformed during rotation, generating excessive shock and vibration, and the ride comfort is lowered with time. There was a problem that.
Japanese Unexamined Patent Publication No. 08-142603 JP 2005-126654 A

本発明は、溶融時にはバルブから注入可能な流動性を、ゲル硬化後にはタイヤチューブとの密着性を有するタイヤチューブ充填用弾性樹脂組成物(以下、単に「弾性樹脂組成物」と略す)を提供し、パンク発生がなく、良好な乗り心地性を長期間維持できるタイヤを容易にかつ短時間で製造することを課題としている。   The present invention provides an elastic resin composition for filling a tire tube (hereinafter simply abbreviated as “elastic resin composition”) that has fluidity that can be injected from a valve at the time of melting and adhesion to the tire tube after gel curing. However, an object of the present invention is to easily and quickly manufacture a tire that does not generate puncture and can maintain good riding comfort for a long period of time.

上記の課題を解決するための請求項1の発明は、タイヤの空気注入用バルブを介してタイヤチューブ内に注入充填されるタイヤチューブ充填用弾性樹脂組成物であって、スチレン系熱可塑性エラストマーを10〜20重量%、粘着付与剤を5〜15重量%、プロセスオイルを65〜85重量%の割合で含み、溶融温度160℃において溶融粘度が10cP〜300Pであることを特徴としている。   The invention of claim 1 for solving the above-mentioned problems is an elastic resin composition for filling a tire tube, which is injected and filled into a tire tube via a tire air injection valve, and comprises a styrenic thermoplastic elastomer. It is characterized by containing 10 to 20% by weight, 5 to 15% by weight of a tackifier and 65 to 85% by weight of process oil, and having a melt viscosity of 10 cP to 300 P at a melting temperature of 160 ° C.

請求項1の発明の溶液状のタイヤチューブ充填用弾性樹脂組成物は、ポンプ等の圧力注入手段によりバルブからタイヤチューブ内に注入されて該タイヤチューブ内を充填する。このとき、弾性樹脂組成物の溶融粘度が10cP〜300Pであるような材料の混合割合であると、弾性樹脂組成物は口径の小さなバルブ内からでも容易に流入し、チューブ内に注入できるような流動性(粘性)を持つ。したがって、タイヤチューブ内への弾性樹脂組成物の注入及び充填が容易に支障なく行える。   The elastic resin composition for filling a tire tube of the invention of claim 1 is injected into the tire tube from a valve by a pressure injection means such as a pump to fill the tire tube. At this time, when the elastic resin composition has a mixing ratio of materials such that the melt viscosity of the resin composition is 10 cP to 300 P, the elastic resin composition can easily flow even from the inside of the valve having a small diameter and can be injected into the tube. Has fluidity (viscosity). Therefore, the elastic resin composition can be easily injected and filled into the tire tube without any trouble.

また、粘着付与剤の作用によって、充填後ゲル化した弾性樹脂組成物はタイヤチューブの内周面と所定の垂直剥し力に相当する粘着力を持ち、密着する。このため、ゲル化したドーナッツ状の弾性樹脂組成物とタイヤチューブとの一体感が増すことにより、乗り心地性が高められる。また、弾性樹脂組成物注入時の空気の混入、或いは注入樹脂の不足が原因で空所が生じた場合においても、ゲル化した弾性樹脂組成物がタイヤチューブから剥がれることはない。このため、タイヤ走行時でもタイヤチューブの内周面とゲル化した樹脂との界面に空気が溜まりにくく、あるいは溜まったとしても空気が集まって大きな空気溜まりになることはないので、長期間に亘って良好な乗り心地性が維持される。   Further, the elastic resin composition that has been gelated after filling has an adhesive force corresponding to a predetermined vertical peeling force and is in close contact with the tire tube by the action of the tackifier. For this reason, riding comfort is improved by increasing the sense of unity between the gelled donut-shaped elastic resin composition and the tire tube. Further, even when a void is generated due to air mixing at the time of injecting the elastic resin composition or insufficient injection resin, the gelled elastic resin composition is not peeled off from the tire tube. For this reason, air does not easily collect at the interface between the inner peripheral surface of the tire tube and the gelled resin even when the tire is running, or even if it accumulates, the air does not collect and form a large air reservoir. And good ride comfort is maintained.

また、請求項2の発明は、請求項1の発明において、ゲル化した弾性樹脂組成物の常温での垂直剥し力が、0.1〜0.5N/cm2であることを特徴としている。 The invention of claim 2 is characterized in that, in the invention of claim 1, the perpendicular peeling force at normal temperature of the gelled elastic resin composition is 0.1 to 0.5 N / cm 2 .

請求項2の発明によれば、請求項1の発明の作用効果に加えて、ゲル化した弾性樹脂組成物の常温での垂直剥し力が0.1〜0.5N/cm2であるような粘着付与剤の配合割合であると、ゲル化した弾性樹脂組成物の弾性(衝撃吸収性)力と、タイヤチューブに対する必要な粘着(密着)力との双方を保持し得るために、タイヤとして良好な乗り心地性を確保できる。 According to the invention of claim 2, in addition to the effects of the invention of claim 1, the perpendicular peeling force at normal temperature of the gelled elastic resin composition is 0.1 to 0.5 N / cm 2. It is good as a tire because it can hold both the elasticity (impact absorbability) force of the gelled elastic resin composition and the necessary adhesion (adhesion) force to the tire tube when the mixing ratio of the tackifier is Secure ride comfort.

本発明によれば、熱可塑性エラストマーとプロセスオイルに粘着付与剤を添加することによって、溶融時には、バルブを介したタイヤチューブへの注入充填が可能な流動性を有し、しかも冷却ゲル化(硬化)後には、弾性力に加えてチューブへの粘着力をも有する弾性樹脂組成物が得られる。したがって、本発明による弾性樹脂組成物をタイヤチューブ用充填剤として用いることによって、優れた衝撃吸収性に加え、タイヤチューブ内に多少の空気を巻き込んだ場合でもでも、乗り心地性を大きく低下させないタイヤを容易にかつ短時間に製造することができる。   According to the present invention, by adding a tackifier to the thermoplastic elastomer and the process oil, at the time of melting, it has fluidity that can be injected and filled into a tire tube via a valve, and it is cooled and gelled (cured). Thereafter, an elastic resin composition having not only an elastic force but also an adhesive force to the tube is obtained. Therefore, by using the elastic resin composition according to the present invention as a filler for a tire tube, in addition to excellent shock absorption, a tire that does not greatly reduce the riding comfort even when some air is caught in the tire tube Can be manufactured easily and in a short time.

本発明は、熱可塑性エラストマーとプロセスオイルに粘着付与剤を加えたタイヤチューブ充填用弾性樹脂組成物である。以下、実施例を挙げて本発明を更に詳細に説明する。   The present invention is an elastic resin composition for filling a tire tube in which a tackifier is added to a thermoplastic elastomer and process oil. Hereinafter, the present invention will be described in more detail with reference to examples.

最初に、本発明の原料について説明する。本発明の熱可塑性エラストマーは、スチレン系熱可塑性エラストマーであり、これはポリスチレンブロックとポリオレフィン構造のエラストマーブロックで構成されたブロック共重合体である。本発明の実施形態におけるスチレン系熱可塑性エラストマーの具体例としては、ポリスチレン―ポリ(エチレン/プロピレン)ブロック(SEP)及びポリスチレン―ポリ(エチレン/プロピレン)ブロック―ポリスチレン(SEEPS)が挙げられる。なお、上述したスチレン系熱可塑性エラストマー以外でも、SBS(スチレン―ブタジエン―スチレン共重合体)、SEBS(スチレン―エチレン―ブタジエン―スチレン共重合体)、SEBC(スチレン―エチレン―ブタジエン―高結晶エチレン共重合体)、SEPS(スチレン―エチレン―プロピレン―スチレン共重合体)等でも同様に用いることができる。   First, the raw material of the present invention will be described. The thermoplastic elastomer of the present invention is a styrenic thermoplastic elastomer, which is a block copolymer comprising a polystyrene block and an elastomer block having a polyolefin structure. Specific examples of the styrenic thermoplastic elastomer in the embodiment of the present invention include polystyrene-poly (ethylene / propylene) block (SEP) and polystyrene-poly (ethylene / propylene) block-polystyrene (SEEPS). In addition to the styrene thermoplastic elastomers described above, SBS (styrene-butadiene-styrene copolymer), SEBS (styrene-ethylene-butadiene-styrene copolymer), SEBC (styrene-ethylene-butadiene-high crystalline ethylene copolymer). Polymer), SEPS (styrene-ethylene-propylene-styrene copolymer) and the like can be used similarly.

本発明のプロセスオイルは、ナフテン系オイル、パラフィン系オイル等の鉱油類よりなる。これを熱可塑性エラストマーの可塑剤又は軟化剤として用いる。ナフテン系オイル、パラフィン系オイル、若しくはそれらの混合物のいずれのオイルを用いても、プロセスオイルとしての効果は同様であるが、本発明における実施例ではナフテン系オイルを用いる。   The process oil of the present invention comprises mineral oils such as naphthenic oil and paraffinic oil. This is used as a plasticizer or softener for the thermoplastic elastomer. Even if any of naphthenic oil, paraffinic oil, or a mixture thereof is used, the effect as a process oil is the same, but in the examples of the present invention, naphthenic oil is used.

本発明の粘着付与剤は、ゲル化した弾性樹脂組成物に粘着力を与えるために添加される樹脂である。例えば、テルペン樹脂、α―ピネン樹脂、β―ピネン樹脂、芳香族変性テルペン樹脂、水添テルペン樹脂、ロジンエステル樹脂、水素化ロジン系樹脂、脂肪族飽和炭化水素樹脂が挙げられる。上記いずれの樹脂でも効果は同等に期待できるが、本発明の実施例では、芳香族変性テルペン樹脂及び水添テルペン樹脂を用いる。   The tackifier of this invention is resin added in order to give adhesive force to the gelatinized elastic resin composition. Examples include terpene resins, α-pinene resins, β-pinene resins, aromatic modified terpene resins, hydrogenated terpene resins, rosin ester resins, hydrogenated rosin resins, and aliphatic saturated hydrocarbon resins. Although any of the above resins can be expected to have the same effect, an aromatic modified terpene resin and a hydrogenated terpene resin are used in the examples of the present invention.

各原料の混合比率は、溶融状態での弾性樹脂組成物の粘性(流動性)、ゲル化した弾性樹脂組成物の弾性(衝撃吸収性)、ゲル化直後の原形を長期間維持できる形状保持性が最適な条件になるよう調整される。ここで、本発明と同様な手法で、原料である熱可塑性エラストマーの混合比率を10重量%未満、或いは、プロセスオイルの混合比率を85重量%超にして弾性樹脂組成物を作成すると、熱可塑性エラストマーのプロセスオイルに対する濃度が小さくなり、ゲル化して出来上がった弾性樹脂組成物は非常に軟らかい。その乗り心地性はあたかも空気の抜けたタイヤに乗っているかのようであり、地面からの適度な反発(弾性)力が得られず、地面にタイヤが吸い付くような走りとなって軽快に乗りこなせない。一方、熱可塑性エラストマーの混合比率を20重量%超、或いはプロセスオイルの混合比率を65重量%未満にして弾性樹脂組成物を作成すると、熱可塑性エラストマーのプロセスオイルに対する濃度が大きくなり、ゲル化して出来上がった弾性樹脂組成物は非常に硬く、地面からの反発(弾性)力が大きすぎて地面の小さな凹凸でも大きな衝撃や振動となって身体に響くので、乗り心地性が悪い。また、160℃での溶融粘度が300Pを超えてしまい、口径の小さいバルブからの注入が困難になる(160℃での溶融粘度についての詳細は後述する)。以上の理由から、本発明である混合比率、すなわち熱可塑性エラストマーを10〜20重量%、プロセスオイルを65〜85重量%で混合するのが最適である。   The mixing ratio of each raw material is the viscosity (fluidity) of the elastic resin composition in the molten state, the elasticity (impact absorbability) of the gelled elastic resin composition, and the shape retention that can maintain the original shape immediately after gelation for a long period of time. Is adjusted to the optimum condition. Here, when an elastic resin composition is prepared by a method similar to the present invention with the mixing ratio of the thermoplastic elastomer as the raw material being less than 10% by weight or the mixing ratio of the process oil being more than 85% by weight, The concentration of the elastomer in the process oil is reduced, and the elastic resin composition obtained by gelation is very soft. The ride feels as if you are riding a tire that is out of air, you can not get a moderate rebound (elastic) force from the ground, and run as if the tire sticks to the ground and ride lightly Absent. On the other hand, when an elastic resin composition is prepared with a mixing ratio of the thermoplastic elastomer exceeding 20% by weight or a mixing ratio of the process oil being less than 65% by weight, the concentration of the thermoplastic elastomer with respect to the process oil increases and gelation occurs. The finished elastic resin composition is very hard, and the repulsion (elasticity) force from the ground is too large, and even small unevenness on the ground will cause a large impact and vibration and will sound on the body, so riding comfort is poor. In addition, the melt viscosity at 160 ° C. exceeds 300 P, and injection from a valve having a small diameter becomes difficult (details on the melt viscosity at 160 ° C. will be described later). For the above reasons, it is optimal to mix the mixing ratio according to the present invention, that is, 10 to 20% by weight of the thermoplastic elastomer and 65 to 85% by weight of the process oil.

次に、前記弾性樹脂組成物のタイヤチューブへの注入方法について図1を用いて説明する。図1は、ポンプ1を備えた樹脂注入装置を用いて、既存の自転車Bの後輪WRに溶液状の弾性樹脂組成物RS(以下、「溶液状樹脂RS」と略す)を注入している状態の全体概略図である。この樹脂注入装置を用いて、既存の自転車Bの前輪WF及び後輪WRを形成するタイヤに内接するタイヤチューブ(図示せず)の内部にバルブVを介して、ポンプ1の圧力により溶液状樹脂RSを注入充填した後に、これを自然冷却しながらゲル化してソリッド状のタイヤを製造する。まず、原料である熱可塑性エラストマー、プロセスオイル、粘着付与剤をヒーター7で加熱し、溶解させて得られる溶液状樹脂RSは、気密性を保持した状態で溶液状樹脂収容器2内に収容されている。溶液状樹脂収容器2の側壁底部に樹脂注入管3が挿入され、溶液状樹脂収容器2の出口付近の樹脂注入管3にポンプ1が組み込まれている。このポンプ1により溶液状樹脂収容器2内の溶液状樹脂RSを吸引し、タイヤチューブに向けて吐出させると、溶液状樹脂RSは樹脂注入管3、連結管4、バルブVを経て後輪WRのタイヤチューブに流入する。注入充填後、自然冷却してゲル化させる。なお、図1の5は樹脂注入管3に組み込まれたバルブを指し、注入充填直後の溶液状樹脂RSの逆流を防ぐ。また、タイヤチューブ内に元来あった空気を外部に逃がすために、溶液状樹脂RSの注入前には予め中空状の針6で後輪WR上部におけるタイヤとタイヤチューブを小さく貫通させておく。   Next, a method for injecting the elastic resin composition into the tire tube will be described with reference to FIG. In FIG. 1, a solution-like elastic resin composition RS (hereinafter abbreviated as “solution-like resin RS”) is injected into a rear wheel WR of an existing bicycle B using a resin injection device including a pump 1. It is the whole state schematic. Using this resin injecting device, a solution resin is produced by the pressure of the pump 1 through a valve V inside a tire tube (not shown) inscribed in the tire forming the front wheel WF and the rear wheel WR of the existing bicycle B. After injecting and filling RS, this is gelled while naturally cooling to produce a solid tire. First, the thermoplastic resin, process oil, and tackifier, which are raw materials, are heated by the heater 7 and dissolved, and the solution resin RS is stored in the solution resin container 2 while maintaining airtightness. ing. A resin injection tube 3 is inserted into the bottom of the side wall of the solution resin container 2, and the pump 1 is incorporated in the resin injection tube 3 near the outlet of the solution resin container 2. When the solution resin RS in the solution resin container 2 is sucked by the pump 1 and discharged toward the tire tube, the solution resin RS passes through the resin injection tube 3, the connecting tube 4, and the valve V, and the rear wheel WR. Flows into the tire tube. After injection and filling, it is naturally cooled and gelled. In addition, 5 of FIG. 1 points out the valve | bulb integrated in the resin injection pipe 3, and prevents the backflow of solution-like resin RS immediately after injection | pouring filling. In addition, in order to let the air originally in the tire tube escape to the outside, the tire and the tire tube at the upper part of the rear wheel WR are made to penetrate a small amount in advance with the hollow needle 6 before the solution-like resin RS is injected.

上記注入方法により、高温の溶液状樹脂RSが口径の小さいバルブVを介してタイヤチューブ内に注入されるため、注入時の溶液状樹脂RSに求められる条件として、次に示す二点を考慮しなければならない。一点目は、溶液状樹脂RSを注入する際の温度は、合成ゴム等の高分子化合物よりなるタイヤ、タイヤチューブ及びこの接合に使用されている接着剤を熱劣化させない程度である点、二点目は、その状態での溶液状樹脂RSの粘度(粘性率)は、小さな口径(約1〜3mm)のバルブを滞りなく通り、チューブ内に圧入される程度でなければならない点である。   Since the high temperature solution resin RS is injected into the tire tube through the valve V having a small diameter by the above injection method, the following two points are considered as conditions required for the solution resin RS at the time of injection. There must be. The first point is that the temperature at which the solution-like resin RS is injected is such that the tire, the tire tube, and the adhesive used for the bonding are not thermally deteriorated, such as a synthetic rubber. The point is that the viscosity (viscosity) of the solution-like resin RS in that state must pass through a valve having a small diameter (about 1 to 3 mm) without being stagnated and be press-fitted into the tube.

ここで、タイヤ、タイヤチューブ、接着剤の熱劣化による悪影響を防止するためには、溶液状樹脂RSを注入する際の温度は、200℃程度が上限とみなされている。   Here, in order to prevent an adverse effect due to thermal deterioration of the tire, the tire tube, and the adhesive, the upper limit of the temperature at which the solution-like resin RS is injected is considered to be about 200 ° C.

また、粘度については、その値が100P以下であれば、最小口径が約1mmのバルブでも容易に流動でき、溶液状樹脂RSのチューブ内への圧入作業の能率は上がる。また、溶液状樹脂RSにおいて、その粘度が10cP以下となるような溶液状態はほとんどないと推定され、一方、300Pを超えると、流動性が低下してバルブからの注入が困難になる。   As for the viscosity, if the value is 100 P or less, even a valve having a minimum diameter of about 1 mm can easily flow, and the efficiency of the press-fitting work of the solution-like resin RS into the tube is increased. In addition, it is presumed that there is almost no solution state in which the viscosity of the solution-like resin RS is 10 cP or less. On the other hand, when it exceeds 300 P, fluidity is lowered and injection from the valve becomes difficult.

本発明では、前記弾性樹脂組成物の160℃における溶融粘度が10cPから300Pを呈する。つまり、上記二条件を共に満たすため、上記樹脂注入装置を用いて、溶液状樹脂収容器2内で原料を加熱してできた溶液状樹脂RSを160℃で保温し、バルブVを介してタイヤチューブ内に圧入、充填すればよく、この作業は容易かつ短時間に実施できる。   In the present invention, the elastic resin composition has a melt viscosity at 160 ° C. of 10 cP to 300 P. That is, in order to satisfy both of the above two conditions, the resin resin RS produced by heating the raw material in the solution resin container 2 is kept at 160 ° C. using the resin injection device, and the tire is connected via the valve V. It is only necessary to press-fit and fill the tube, and this operation can be carried out easily and in a short time.

次に、冷却ゲル化後の弾性樹脂組成物RS'のタイヤチューブ内周面に対する粘着力と乗り心地性の関係について、図2及び3を用いて説明する。図2は、ゲル化後に粘着力を有さない、溶液状の弾性樹脂組成物RSの充填時にタイヤチューブ12内に混入された気泡13の変化を示すタイヤの周方向に沿った部分断面図である。まず、溶液状の弾性樹脂組成物RSのタイヤチューブ12への充填が不十分であったり、溶液状の弾性樹脂組成物RS注入時に空気が混入した場合には、冷却ゲル化後の弾性樹脂組成物RS'内に空間(気泡13)ができる[図2(イ)]。このタイヤで走行すると、地面からの圧力を受けて、次第にチューブ12内周面と気泡13の間に亀裂16が生じてくる[図2(ロ)]。亀裂16が生じると、弾性樹脂組成物RS'は、その凝集力によりタイヤチューブ12内周面を濡らすものの、粘着力に欠けるため、生じた亀裂16は徐々に拡大し、気泡13はチューブ12内周面と弾性樹脂組成物RS'の界面にできる[図2(ハ)]。チューブ12内周面と弾性樹脂組成物RS'の界面にできた気泡13は、タイヤの走行を続ける過程で周囲の気泡13を集めて大きくなり、大きな空気溜まり17としてチューブ12内周面と弾性樹脂組成物RS'の界面に存在するようになる[図2(ニ)]。大きな空気溜まり17が生じてくると、タイヤの走行(回転)時において、弾性樹脂組成物RS'内に分散していた小さな気泡13に比べ、大きな空気溜まり17は大きく圧縮変形される。このため、走行中タイヤの回転ごとに「ゴツンゴツン」とした衝撃と振動を受けるようになり、乗り心地性が悪化する。なお、空気溜まり17は、その表面積を小さくして弾性樹脂組成物RS'との界面エネルギーを減らす方向にあると考えられるので、大きな空気溜まり17から複数の小さな気泡13へと逆の変化を辿るとは考えにくい。また、タイヤチューブ12内周面と空気溜まり17の界面エネルギーは無視できると考えられ、空気溜まり17がタイヤチューブ12内周面と接することで、空気溜まり17と弾性樹脂組成物RS’との界面エネルギーを減らす方向に変化が進むことから、タイヤチューブ12内周面と弾性樹脂組成物RS'との界面にある大きな空気溜まり17が、弾性樹脂組成物RS'中に戻るという変化も起こりにくい。なお、図2の11、15は、それぞれ車輪のタイヤ外皮及びリムを示す。   Next, the relationship between the adhesive strength of the elastic resin composition RS ′ after cooling gelation on the inner peripheral surface of the tire tube and the riding comfort will be described with reference to FIGS. FIG. 2 is a partial cross-sectional view along the circumferential direction of the tire showing the change of the bubbles 13 mixed in the tire tube 12 at the time of filling with the solution-like elastic resin composition RS that does not have an adhesive force after gelation. is there. First, when the solution-like elastic resin composition RS is insufficiently filled into the tire tube 12 or when air is mixed during the injection of the solution-like elastic resin composition RS, the elastic resin composition after cooling gelation A space (bubble 13) is formed in the object RS ′ [FIG. 2 (A)]. When traveling with this tire, a crack 16 is gradually formed between the inner peripheral surface of the tube 12 and the bubble 13 under pressure from the ground [FIG. 2 (b)]. When the crack 16 occurs, the elastic resin composition RS ′ wets the inner peripheral surface of the tire tube 12 due to its cohesive force, but lacks adhesive force, so that the generated crack 16 gradually expands, and the bubbles 13 are expanded in the tube 12. It can be made at the interface between the peripheral surface and the elastic resin composition RS ′ [FIG. 2 (C)]. The bubbles 13 formed at the interface between the inner peripheral surface of the tube 12 and the elastic resin composition RS ′ are enlarged by collecting the peripheral bubbles 13 in the course of continuing the running of the tire, and become elastic with the inner peripheral surface of the tube 12 as a large air reservoir 17. It comes to exist in the interface of resin composition RS '[Drawing 2 (d)]. When the large air reservoir 17 is generated, the large air reservoir 17 is greatly compressed and deformed as compared with the small air bubbles 13 dispersed in the elastic resin composition RS ′ during running (rotation) of the tire. For this reason, every time the tire rotates while traveling, it receives shock and vibration that are “slammed”, and the ride comfort deteriorates. In addition, since it is thought that the air reservoir 17 is in the direction of reducing the surface energy by reducing the surface area, the reverse change from the large air reservoir 17 to the plurality of small bubbles 13 is followed. It is hard to think. Further, it is considered that the interface energy between the inner peripheral surface of the tire tube 12 and the air reservoir 17 is negligible, and the interface between the air reservoir 17 and the elastic resin composition RS ′ is obtained when the air reservoir 17 is in contact with the inner peripheral surface of the tire tube 12. Since the change proceeds in the direction of reducing energy, the large air reservoir 17 at the interface between the inner peripheral surface of the tire tube 12 and the elastic resin composition RS ′ is less likely to return to the elastic resin composition RS ′. In addition, 11 and 15 of FIG. 2 show the tire skin and rim of a wheel, respectively.

図3は、ゲル化後に粘着力を有する、溶液状の弾性樹脂組成物RSの充填時にタイヤチューブ12内に混入された気泡13の変化を示すタイヤの周方向に沿った部分断面図である。前記同様、溶液状の弾性樹脂組成物RSのタイヤチューブへの充填が不十分であったり、溶液状の弾性樹脂組成物RS注入時に空気が混入した場合、冷却ゲル化後の弾性樹脂組成物RS'内に空間(気泡13)ができる[図3(イ)]。このタイヤで走行すると、弾性樹脂組成物RS'に粘着力があるため、弾性樹脂組成物RS'がタイヤチューブ12内周面に密着し、地面からの圧力を受けても両者の間に亀裂16は生じにくい[図3(ロ)]。また、亀裂16が生じた場合でも、タイヤチューブ12と弾性樹脂組成物RS'の密着性が高いので、亀裂16が拡大することはなく、タイヤチューブ12と弾性樹脂組成物RS'の界面に気泡13が溜まることは少ない[図3(ロ')]。さらに、たとえ気泡13が界面に溜まってしまったとしても、エネルギー的な安定化のために溜まった気泡13同士がまとまろうとする力よりも、弾性樹脂組成物RS'のタイヤチューブ12内周面に対する粘着力が上回ることで、大きな空気溜まりにまで成長することはなく、小さな気泡13としてタイヤチューブ12内周面と弾性樹脂組成物RS'の界面に留まる。したがって、走行時間が経過しても、タイヤチューブ12内には、小さな気泡13は点在するものの、空気溜まりのように大きく圧縮変形を受けるような弾性樹脂組成物RS'の不均一な箇所を生じることはないので、タイヤ走行時の衝撃や振動の影響は小さく、長期間にわたって良好な乗り心地性が維持される。   FIG. 3 is a partial cross-sectional view along the circumferential direction of the tire showing the change of the bubbles 13 mixed in the tire tube 12 when the elastic elastic resin composition RS having adhesive strength after gelation is filled. Similarly to the above, when the tire-tube is not sufficiently filled with the solution-like elastic resin composition RS or when air is mixed during the injection of the solution-like elastic resin composition RS, the elastic resin composition RS after cooling gelation A space (bubble 13) is created inside [Fig. 3 (A)]. When running with this tire, the elastic resin composition RS ′ has adhesive strength, so that the elastic resin composition RS ′ is in close contact with the inner peripheral surface of the tire tube 12 and cracks 16 between them even when subjected to pressure from the ground. Is unlikely to occur [Fig. 3 (b)]. Further, even when the crack 16 occurs, the adhesion between the tire tube 12 and the elastic resin composition RS ′ is high, so that the crack 16 does not expand, and there is a bubble at the interface between the tire tube 12 and the elastic resin composition RS ′. 13 is rarely accumulated [Fig. 3 (b ')]. Furthermore, even if the bubbles 13 are accumulated at the interface, the elastic resin composition RS ′ is applied to the inner peripheral surface of the tire tube 12 rather than the force of the bubbles 13 accumulated for stabilization of energy. By exceeding the adhesive force, it does not grow to a large air pocket, and remains as an air bubble 13 at the interface between the inner peripheral surface of the tire tube 12 and the elastic resin composition RS ′. Therefore, even if the running time elapses, although the small bubbles 13 are scattered in the tire tube 12, uneven portions of the elastic resin composition RS ′ that undergoes large compression deformation such as air pockets are provided. Since it does not occur, the impact and vibration during running of the tire are small, and good riding comfort is maintained over a long period of time.

本発明において、タイヤチューブと弾性樹脂組成物の密着性を上げるために、ゲル化した弾性樹脂組成物に粘着力を与えることとし、弾性樹脂組成物の原料である熱可塑性エラストマーとプロセスオイルに加えて、粘着付与剤である樹脂を配合した。粘着付与剤は、一般に低濃度で高い粘着力や凝集力が得られるので、タイヤの良好な乗り心地性を保持するのに十分な粘着力を呈するように粘着付与剤の配合量を調整する。   In the present invention, in order to increase the adhesion between the tire tube and the elastic resin composition, the gelled elastic resin composition is given adhesive force, and in addition to the thermoplastic elastomer and the process oil which are the raw materials of the elastic resin composition. Then, a resin as a tackifier was blended. Since the tackifier generally provides high adhesive strength and cohesive strength at a low concentration, the blending amount of the tackifier is adjusted so as to exhibit sufficient adhesive strength to maintain good riding comfort of the tire.

本発明において、ゲル化した弾性樹脂組成物の粘着力の指標として、垂直剥し力を採用する。垂直剥し力の評価方法については後述するが、水平面に対して垂直に立つ樹脂接着壁にゲル化した弾性樹脂組成物を軽く押し付け、これを水平方向に引っ張り、樹脂接着壁から剥離させる。剥離したときの引張り力を測定し、これを単位面積当たりに換算することで、樹脂接着壁に対する弾性樹脂組成物の接着力が評価でき、弾性樹脂組成物のタイヤチューブに対する粘着力の指標となる。   In the present invention, the vertical peeling force is adopted as an index of the adhesive strength of the gelled elastic resin composition. Although the evaluation method of the vertical peeling force will be described later, the gelled elastic resin composition is lightly pressed against the resin bonding wall standing perpendicular to the horizontal plane, and is pulled in the horizontal direction to be peeled off from the resin bonding wall. By measuring the tensile force when peeled and converting this per unit area, the adhesive force of the elastic resin composition to the resin adhesive wall can be evaluated, which is an index of the adhesive force of the elastic resin composition to the tire tube .

ゲル化した弾性樹脂組成物の垂直剥し力が0.1N/cm2未満の場合には、弾性樹脂組成物の樹脂接着壁に対する接着力が小さい。つまり、タイヤチューブ内周面と弾性樹脂組成物の密着性は低く、良好な乗り心地性を維持するのに十分な効果が期待できない。また、垂直剥し力が0.5N/cm2を超えてしまう場合、粘着付与剤の配合量が熱可塑性エラストマーに対して多すぎるため、ゲル化した弾性樹脂組成物は硬く、弾力性が失われて乗り心地性が悪くなる。 When the perpendicular peeling force of the gelled elastic resin composition is less than 0.1 N / cm 2 , the adhesive force of the elastic resin composition to the resin bonding wall is small. That is, the adhesion between the tire tube inner peripheral surface and the elastic resin composition is low, and a sufficient effect for maintaining good riding comfort cannot be expected. Further, when the vertical peeling force exceeds 0.5 N / cm 2 , the amount of tackifier added is too much for the thermoplastic elastomer, so the gelled elastic resin composition is hard and loses elasticity. Riding comfort is worse.

本発明では、粘着付与剤を5〜15重量%配合することで、弾性樹脂組成物の冷却ゲル化後の垂直剥し力が0.1〜0.5N/cm2を呈し、タイヤチューブと弾性樹脂組成物の密着性を確保できる。したがって、ゲル化した弾性樹脂組成物は、それ自体の持つ弾性(衝撃吸収性)に加え、チューブとの密着性をも有することとなり、これを充填したタイヤは、タイヤとして良好な乗り心地性を得ることができる。 In the present invention, by adding 5 to 15% by weight of the tackifier, the vertical peeling force after cooling and gelation of the elastic resin composition exhibits 0.1 to 0.5 N / cm 2 , and the tire tube and the elastic resin The adhesion of the composition can be ensured. Therefore, the gelled elastic resin composition has not only its own elasticity (shock absorption) but also adhesion to the tube, and a tire filled with this has good riding comfort as a tire. Obtainable.

弾性樹脂組成物において、粘着付与剤を配合した場合と配合していない場合とで評価を行った。実施例及び比較例として、各評価結果を図4に示す。   In the elastic resin composition, the case where the tackifier was blended and the case where it was not blended were evaluated. As an example and a comparative example, each evaluation result is shown in FIG.

〔実施例1〕
熱可塑性エラストマーとして、株式会社クラレの商品名「セプトン1000シリーズ」無含油品のポリスチレン―ポリ(エチレン/プロピレン)ブロック(SEP)14重量%、プロセスオイルとして、日本サン石油株式会社の商品名「サンプリーム150」のナフテンオイル76重量%、粘着付与剤として、ヤスハラケミカル株式会社の商品名「クリアロンP125」の水添テルペン樹脂10重量%を原料に用いて、200℃で溶融混合して弾性樹脂組成物を作成した。この弾性樹脂組成物は160℃で約100Pの粘度を有し、冷却ゲル化後の垂直剥し力は約0.3N/cm2であった。また、この弾性樹脂組成物を上記樹脂注入装置を用いて160℃で注入したタイヤを備えた自転車は、半年後も異常無く快適に乗ることが出来た。
[Example 1]
As a thermoplastic elastomer, Kuraray's brand name “Septon 1000 Series” oil-free polystyrene-poly (ethylene / propylene) block (SEP) 14% by weight, as a process oil, Nippon Sun Oil Co., Ltd. 150% naphthenic oil of 150 ”, and 10% by weight of hydrogenated terpene resin of Yasuhara Chemical Co., Ltd. trade name“ Clearon P125 ”as a tackifier as a raw material, and melt-mixed at 200 ° C. to obtain an elastic resin composition Created. This elastic resin composition had a viscosity of about 100 P at 160 ° C., and the vertical peeling force after cooling gelation was about 0.3 N / cm 2 . Moreover, the bicycle provided with the tire which injected this elastic resin composition at 160 degreeC using the said resin injection | pouring apparatus was able to ride comfortably without abnormality after half a year.

〔実施例2〕
熱可塑性エラストマーとして、株式会社クラレの商品名「セプトン4000シリーズ」無含油品のポリスチレン―ポリ(エチレン―エチレン/プロピレン)ブロック―ポリスチレン(SEEPS)12重量%、プロセスオイルとして、日本サン石油株式会社の商品名「サンプリーム150」のナフテンオイル80重量%、粘着付与剤として、ヤスハラケミカル株式会社の商品名「YSレジンTO125」の芳香族変性テルペン樹脂8重量%を原料に用いて、200℃で溶融混合して弾性樹脂組成物を作成した。この弾性樹脂組成物は160℃で約100Pの粘度を有し、冷却ゲル化後の垂直剥し力は約0.2N/cm2であった。また、この弾性樹脂組成物を上記樹脂注入装置を用いて160℃で注入したタイヤを備えた自転車は、半年後も異常無く快適に乗ることが出来た。
[Example 2]
As a thermoplastic elastomer, Kuraray's brand name "Septon 4000 series" oil-free polystyrene-poly (ethylene-ethylene / propylene) block-polystyrene (SEEPS) 12% by weight, as process oil, Nippon Sun Oil Co., Ltd. 80% by weight of naphthenic oil with the trade name “Supreme 150” and 8% by weight of aromatic modified terpene resin with the trade name “YS Resin TO125” of Yasuhara Chemical Co., Ltd. as a tackifier are melt mixed at 200 ° C. Thus, an elastic resin composition was prepared. This elastic resin composition had a viscosity of about 100 P at 160 ° C., and the vertical peeling force after cooling gelation was about 0.2 N / cm 2 . Moreover, the bicycle provided with the tire which injected this elastic resin composition at 160 degreeC using the said resin injection | pouring apparatus was able to ride comfortably without abnormality after half a year.

〔比較例1〕
熱可塑性エラストマーとして、株式会社クラレの商品名「セプトン1000シリーズ」無含油品のポリスチレン―ポリ(エチレン/プロピレン)ブロック(SEP)14重量%、プロセスオイルとして、出光興産株式会社の商品名「ダイアナプロセスオイルPW−32」のパラフィンオイル86重量%を原料に用いて、200℃で溶融混合して樹脂を作成した。この樹脂は、180℃にて約300Pの粘度を有し、冷却ゲル化後の垂直剥し力はほぼ0であった。また、この樹脂を上記樹脂注入装置を用いて、180℃で注入したタイヤを備えた自転車は、半年後には後輪の一部に柔らかい箇所が出来てしまい、乗り心地性の低下が認められたものがあった。
[Comparative Example 1]
As a thermoplastic elastomer, Kuraray's product name “Septon 1000 Series” oil-free polystyrene-poly (ethylene / propylene) block (SEP) 14% by weight, as process oil, Idemitsu Kosan Co., Ltd. product name “Diana Process” Resin was prepared by melting and mixing at 200 ° C. using 86% by weight of paraffin oil of “Oil PW-32” as a raw material. This resin had a viscosity of about 300 P at 180 ° C., and the vertical peeling force after cooling gelation was almost zero. In addition, a bicycle equipped with a tire in which this resin was injected at 180 ° C. using the above resin injection device had a soft spot on a part of the rear wheel after six months, and a decrease in riding comfort was recognized. There was a thing.

〔比較例2〕
熱可塑性エラストマーとして、株式会社クラレの商品名「セプトン4000シリーズ」無含油品のポリスチレン―ポリ(エチレン―エチレン/プロピレン)ブロック―ポリスチレン(SEEPS)13重量%、プロセスオイルとして、出光興産株式会社の商品名「ダイアナプロセスオイルPW−32」のパラフィンオイル87重量%を原料に用いて、200℃で溶融混合して樹脂を作成した。この樹脂は、160℃にて約20Pの粘度を有し、冷却ゲル化後の垂直剥し力はほぼ0であった。また、この樹脂を上記樹脂注入装置を用いて、160℃で注入したタイヤを備えた自転車は、半年後には後輪の一部に柔らかい箇所が出来てしまい、乗り心地性の低下が認められたものがあった。
[Comparative Example 2]
As a thermoplastic elastomer, Kuraray's product name “Septon 4000 Series” oil-free polystyrene-poly (ethylene-ethylene / propylene) block-polystyrene (SEEPS) 13% by weight, as process oil, a product of Idemitsu Kosan Co., Ltd. A resin was prepared by melting and mixing at 200 ° C. using 87% by weight of paraffin oil having the name “Diana Process Oil PW-32” as a raw material. This resin had a viscosity of about 20 P at 160 ° C., and the vertical peeling force after cooling gelation was almost zero. In addition, a bicycle equipped with a tire in which this resin was injected at 160 ° C. using the above resin injection device had a soft spot on a part of the rear wheel after six months, and a decrease in ride comfort was recognized. There was a thing.

垂直剥し力の評価方法について図5を用いて説明する。まず、デジタルプッシュプルゲージ23はゲージ本体23aとスプリング部23bよりなる。デジタルプッシュプルゲージ23は、引張り試験用スライドレール25上でレールに沿って水平方向に滑らかに動く。ゲージ本体23aにはスプリング部23bの一端が取り付けられ、スプリング部23bの荷重による伸縮度合いを力として測定する。スプリング部23bの他端には垂直剥し力評価試験用治具24(以下、「治具24」と略す)を取付ける。適当な大きさのゲル化した弾性樹脂組成物22をテストピースとし、これを治具24の先端に固定する。次に、治具24に固定された弾性樹脂組成物から成る試験片22を、水平面に対して垂直な樹脂接着壁21に適度な力で押し付け、軽く接着させる。デジタルプッシュプルゲージ23を水平に力Fで引っ張り、前記試験片22を樹脂接着壁21から剥離させる。剥離した際の引張り力はゲージ本体23aで測定され、その値を単位面積(1cm2)当たりに換算する。この換算値を垂直剥し力とする。 A method for evaluating the vertical peeling force will be described with reference to FIG. First, the digital push-pull gauge 23 includes a gauge body 23a and a spring portion 23b. The digital push-pull gauge 23 smoothly moves in the horizontal direction along the rail on the tensile test slide rail 25. One end of a spring portion 23b is attached to the gauge body 23a, and the degree of expansion / contraction due to the load of the spring portion 23b is measured as a force. A vertical peeling force evaluation test jig 24 (hereinafter abbreviated as “jig 24”) is attached to the other end of the spring portion 23b. A gelled elastic resin composition 22 having an appropriate size is used as a test piece, which is fixed to the tip of a jig 24. Next, the test piece 22 made of an elastic resin composition fixed to the jig 24 is pressed against the resin bonding wall 21 perpendicular to the horizontal plane with an appropriate force to be lightly bonded. The digital push-pull gauge 23 is pulled horizontally with a force F, and the test piece 22 is peeled off from the resin bonding wall 21. The tensile force at the time of peeling is measured by the gauge body 23a, and the value is converted per unit area (1 cm 2 ). This converted value is defined as the vertical peeling force.

ポンプ1を備えた樹脂注入装置を用いて、既存の自転車Bの後輪WRに溶液状の弾性樹脂組成物RSを注入している状態の全体概略図である。It is the whole schematic figure of the state which has inject | poured the solution-like elastic resin composition RS into the rear wheel WR of the existing bicycle B using the resin injection apparatus provided with the pump 1. FIG. ゲル化後に粘着力を持たない溶液状の弾性樹脂組成物RSの充填時にタイヤチューブ12内に混入された気泡13の変化を示すタイヤの周方向に沿った部分断面図である。It is a fragmentary sectional view along the circumferential direction of a tire which shows change of air bubbles 13 mixed in tire tube 12 at the time of filling of solution-like elastic resin composition RS which does not have adhesive strength after gelation. ゲル化後に粘着力を持つ溶液状の弾性樹脂組成物RSの充填時にタイヤチューブ12内に混入された気泡13の変化を示すタイヤの周方向に沿った部分断面図である。It is a fragmentary sectional view along the circumferential direction of a tire which shows change of bubble 13 mixed in tire tube 12 at the time of filling of solution-like elastic resin composition RS which has adhesive strength after gelation. 実施例と比較例の評価結果を示した表である。It is the table | surface which showed the evaluation result of the Example and the comparative example. 垂直剥し力評価試験の概略図である。It is the schematic of a vertical peeling force evaluation test.

符号の説明Explanation of symbols

F:引張り力
RS:溶液状樹脂(溶液状の弾性樹脂組成物)
RS’:ゲル化後の弾性樹脂組成物
V:バルブ
1:ポンプ
2:溶液状樹脂収容器
3:樹脂注入管
12:タイヤチューブ
13:気泡
16:亀裂
17:空気溜まり
21:樹脂接着壁
22:弾性樹脂組成物かち成る試験片
23:デジタルプッシュプルゲージ
23a:ゲージ本体
23b:スプリング部


F: Tensile force
RS: Solution resin (solution elastic resin composition)
RS ′: elastic resin composition after gelation
V: Valve
1: Pump
2: Solution resin container
3: Resin injection tube
12: Tire tube
13: Bubble
16: Crack
17: Air pocket
21: Resin adhesive wall
22: Specimen consisting of elastic resin composition
23: Digital push-pull gauge
23a: Gauge body
23b: Spring part


Claims (2)

タイヤの空気注入用バルブを介してタイヤチューブ内に注入充填されるタイヤチューブ充填用弾性樹脂組成物であって、
スチレン系熱可塑性エラストマーを10〜20重量%、粘着付与剤を5〜15重量%、プロセスオイルを65〜85重量%の割合で含み、溶融温度160℃において溶融粘度が10cP〜300Pであることを特徴とするタイヤチューブ充填用弾性樹脂組成物。
An elastic resin composition for filling a tire tube that is injected and filled into a tire tube via a tire air injection valve,
It contains 10 to 20% by weight of a styrenic thermoplastic elastomer, 5 to 15% by weight of a tackifier, 65 to 85% by weight of process oil, and has a melt viscosity of 10 cP to 300 P at a melting temperature of 160 ° C. An elastic resin composition for filling tire tubes.
ゲル化した樹脂組成物の常温での垂直剥し力が、0.1〜0.5N/cm2であることを特徴とする請求項1に記載のタイヤチューブ充填用弾性樹脂組成物。

The elastic resin composition for filling a tire tube according to claim 1, wherein the gelled resin composition has a vertical peeling force at room temperature of 0.1 to 0.5 N / cm 2 .

JP2005339847A 2005-11-25 2005-11-25 Tire tube filling elastic resin composition Pending JP2007145923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005339847A JP2007145923A (en) 2005-11-25 2005-11-25 Tire tube filling elastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005339847A JP2007145923A (en) 2005-11-25 2005-11-25 Tire tube filling elastic resin composition

Publications (1)

Publication Number Publication Date
JP2007145923A true JP2007145923A (en) 2007-06-14

Family

ID=38207726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005339847A Pending JP2007145923A (en) 2005-11-25 2005-11-25 Tire tube filling elastic resin composition

Country Status (1)

Country Link
JP (1) JP2007145923A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138864A1 (en) * 2006-05-30 2007-12-06 Kabushikigaisha Katazen Method of injecting liquid solution resin into tire tube, and injection device, and tire tube filling elastic resin composition
JP2007320279A (en) * 2006-06-05 2007-12-13 Katazen:Kk Injection method of solution resin into tire tube and injection device therefor
JP2007320036A (en) * 2006-05-30 2007-12-13 Katazen:Kk Injection device of solution resin into tire tube and injection method
JP2011502856A (en) * 2007-11-09 2011-01-27 ソシエテ ド テクノロジー ミシュラン Pneumatic article with self-sealing composition
US8450394B2 (en) 2009-03-19 2013-05-28 Fujifilm Corporation Ink composition for ink-jet recording, and ink-jet recording method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335640A (en) * 2000-03-24 2001-12-04 Asahi Kagaku Gosei Kk Production method of styrene-based thermoplastic elastomer composition
JP2002517325A (en) * 1998-05-30 2002-06-18 キム、ホ・キュン Puncture-resistant tire composition and coating method
JP2005096471A (en) * 2003-12-24 2005-04-14 Katazen:Kk Manufacturing method of tire, its repairing method, injecting method of resin solution, and its apparatus
JP2005105128A (en) * 2003-09-30 2005-04-21 Inoac Corp Method for regulating adhesion of gel, gel having adhesion regulated by the method, and gel radiating little voc
JP2005126654A (en) * 2003-10-22 2005-05-19 Masstech:Kk Tire-puncture preventive soft resin material injectable into tire tube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002517325A (en) * 1998-05-30 2002-06-18 キム、ホ・キュン Puncture-resistant tire composition and coating method
JP2001335640A (en) * 2000-03-24 2001-12-04 Asahi Kagaku Gosei Kk Production method of styrene-based thermoplastic elastomer composition
JP2005105128A (en) * 2003-09-30 2005-04-21 Inoac Corp Method for regulating adhesion of gel, gel having adhesion regulated by the method, and gel radiating little voc
JP2005126654A (en) * 2003-10-22 2005-05-19 Masstech:Kk Tire-puncture preventive soft resin material injectable into tire tube
JP2005096471A (en) * 2003-12-24 2005-04-14 Katazen:Kk Manufacturing method of tire, its repairing method, injecting method of resin solution, and its apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138864A1 (en) * 2006-05-30 2007-12-06 Kabushikigaisha Katazen Method of injecting liquid solution resin into tire tube, and injection device, and tire tube filling elastic resin composition
JP2007320036A (en) * 2006-05-30 2007-12-13 Katazen:Kk Injection device of solution resin into tire tube and injection method
JP2007320279A (en) * 2006-06-05 2007-12-13 Katazen:Kk Injection method of solution resin into tire tube and injection device therefor
JP4672602B2 (en) * 2006-06-05 2011-04-20 株式会社 型善 Method and apparatus for injecting solution-like resin into tire tube
JP2011502856A (en) * 2007-11-09 2011-01-27 ソシエテ ド テクノロジー ミシュラン Pneumatic article with self-sealing composition
US8450394B2 (en) 2009-03-19 2013-05-28 Fujifilm Corporation Ink composition for ink-jet recording, and ink-jet recording method

Similar Documents

Publication Publication Date Title
CN111182813B (en) Sole member and shoe
CN111669985B (en) Sole member and shoe
JP4862973B1 (en) Liquid coagulant and tire puncture sealant set
JP2007145923A (en) Tire tube filling elastic resin composition
KR101694555B1 (en) Self-sealing composition for an inflatable article
JP4540609B2 (en) Puncture sealant
JP3602009B2 (en) Method for producing olefinic thermoplastic elastomer foam
CN101112851B (en) Anti-pricking anti-shrinking inflaming-retarding solid tyre and method for making the same
TW200400991A (en) Olefinic thermoplastic elastomer foam and olefinic thermoplastic elastomer composition for preparing the same
JP5768284B2 (en) Foam rubber material for weatherstrip
JP2005349834A (en) Manufacturing process of tire, its repair method, method for injection of solution-like resin, and its apparatus
JP2007168683A (en) Tire tube, tire, and method for manufacturing them
JP3779315B2 (en) Method of injecting solution-like resin into tire tube
WO2007138864A1 (en) Method of injecting liquid solution resin into tire tube, and injection device, and tire tube filling elastic resin composition
JP4102507B2 (en) Low elastic modulus rubber composition
JP3720349B2 (en) Device for injecting solution-like resin into tire tubes
CN111655063B (en) Sole member and shoe
JP4588289B2 (en) Organic polymer composition, cross-linked foam comprising the composition, and method for producing the same
CN111670111B (en) Resin molded body and method for producing member for shoe sole
JP4169727B2 (en) Solid tire manufacturing method
US7950427B2 (en) Shock absorber loaded in inner cavity of tire enclosed by tire for two-wheeler and rim
JP2005205885A (en) Manufacturing method for tire, its repairing method, and injecting device for solution-like resin
JP2008279656A (en) Composite member and its manufacturing method
JPH08132817A (en) Punctureless tube
CN1367741A (en) Tyres

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110104