JP2007134277A - Insulated wire - Google Patents

Insulated wire Download PDF

Info

Publication number
JP2007134277A
JP2007134277A JP2005328728A JP2005328728A JP2007134277A JP 2007134277 A JP2007134277 A JP 2007134277A JP 2005328728 A JP2005328728 A JP 2005328728A JP 2005328728 A JP2005328728 A JP 2005328728A JP 2007134277 A JP2007134277 A JP 2007134277A
Authority
JP
Japan
Prior art keywords
layer
thickness
ethylene
insulated wire
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005328728A
Other languages
Japanese (ja)
Inventor
Toru Nakatsuka
徹 中司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005328728A priority Critical patent/JP2007134277A/en
Publication of JP2007134277A publication Critical patent/JP2007134277A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulated wire containing a polylactic acid and having desired flexibility. <P>SOLUTION: The insulated wire 10 comprises a conductor 11, and a cover 12 covering the conductor 11. The cover 22 is formed by stacking a first layer 12b formed of a polylactic acid and having a thickness t1, and a second layer 12a located inside the first layer 12b, formed of an ethylene-based polymer, and having a thickness t2, and satisfies expression (I). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、絶縁電線に関する。   The present invention relates to an insulated wire.

近年、絶縁電線の被覆材に、ポリ乳酸を含む絶縁組成物からなる絶縁材料を用いることが検討されている(特許文献1参照)。ポリ乳酸は、トウモロコシ又はサトウダイコン等の植物から得られるデンプン或いは糖類を発酵して製造される乳酸を化学重合させてできる熱可塑性の樹脂で、環境に優しく、しかも絶縁特性に優れる。
特開2002−358829号公報
In recent years, it has been studied to use an insulating material made of an insulating composition containing polylactic acid as a covering material for insulated wires (see Patent Document 1). Polylactic acid is a thermoplastic resin obtained by chemically polymerizing lactic acid produced by fermenting starch or sugars obtained from plants such as corn or sugar beet, and is environmentally friendly and has excellent insulating properties.
JP 2002-358829 A

しかしながら、従来のポリ乳酸を使用した被覆材は、比較的脆く、可撓性に欠ける。このため、そうした被覆材に用いた絶縁電線は、例えば、低電圧配線で見られるように、比較的大きな曲率(つまり、小さな半径)で曲げたときにその被覆材にクラックが生じ、電線の絶縁耐圧を低下させる可能性がある。   However, conventional coating materials using polylactic acid are relatively brittle and lack flexibility. For this reason, an insulated wire used for such a covering material is cracked in the covering material when bent with a relatively large curvature (that is, a small radius) as seen in, for example, low-voltage wiring, and the insulation of the wire There is a possibility of lowering the withstand voltage.

本発明は、こうした従来の問題点に対処すべく成された。したがって、本発明は、ポリ乳酸を含みしかも所望の可撓性を有する絶縁電線を提供することを課題とする。   The present invention has been made to address such conventional problems. Therefore, an object of the present invention is to provide an insulated wire containing polylactic acid and having desired flexibility.

上記課題を解決すべく、本発明に係る絶縁電線は、導体部と、この導体部を被覆する被覆部とからなり、前記被覆部はポリ乳酸からなる厚さt1の第1の層と、前記第1の層の内側に位置し、エチレン系ポリマからなる厚さt2の第2の層とを積層してなり、次の式(I)を満たすことことを特徴とする。

Figure 2007134277
In order to solve the above problems, an insulated wire according to the present invention includes a conductor portion and a covering portion that covers the conductor portion, and the covering portion includes a first layer having a thickness t1 made of polylactic acid, It is located inside the first layer and is formed by laminating a second layer having a thickness t2 made of an ethylene-based polymer, and satisfies the following formula (I).
Figure 2007134277

本発明によれば、可撓性を有し、曲げ特性に優れた絶縁電線が提供される。   ADVANTAGE OF THE INVENTION According to this invention, it has flexibility and the insulated wire excellent in the bending characteristic is provided.

以下、添付図面を参照して本発明の好適な実施例を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

まず、図1〜図3を参照して本発明の実施の形態に係る絶縁電線10を説明する。図1はエチレン系ポリマ1とポリ乳酸(PLA)4とを被覆材12a、12bとして押出成形した絶縁電線10の断面図、図2はエチレン系ポリマ1とPLA4とを被覆材22a、22b及び22cとして押出成形したケーブル20の断面図である。図3は製造工程図である。   First, the insulated wire 10 which concerns on embodiment of this invention with reference to FIGS. 1-3 is demonstrated. FIG. 1 is a cross-sectional view of an insulated wire 10 obtained by extrusion-molding an ethylene polymer 1 and polylactic acid (PLA) 4 as coating materials 12a and 12b. FIG. 2 is a diagram of the ethylene polymer 1 and PLA 4 coated with coating materials 22a, 22b and 22c. It is sectional drawing of the cable 20 extruded as. FIG. 3 is a manufacturing process diagram.

絶縁電線10は、複数の銅製の素線11aを撚った撚線からなる導体部11と、この導体部11を絶縁被覆する被覆部12とで構成される。被覆部12は、PLA4からなる厚さt1の外層12bと、外層12bの内側に位置し、エチレン系ポリマ1からなる厚さt2の内層12aとを備えた積層体から構成される。被覆部12は、電線用の添加物を含む絶縁材料を導体部11上に押出し、仮想線で示す合わせ目13がなくなるようにシームレスに成形した状態14に製品化される。   The insulated wire 10 includes a conductor portion 11 made of a stranded wire obtained by twisting a plurality of copper strands 11a, and a covering portion 12 for insulatingly covering the conductor portion 11. The covering portion 12 is formed of a laminate including an outer layer 12b having a thickness t1 made of PLA4 and an inner layer 12a having a thickness t2 made of an ethylene polymer 1 and located inside the outer layer 12b. The covering portion 12 is commercialized into a state 14 in which an insulating material containing an additive for electric wires is extruded onto the conductor portion 11 and is seamlessly formed so that the seam 13 indicated by the phantom line is eliminated.

この絶縁電線10において、次の式(I)を満たす。

Figure 2007134277
The insulated wire 10 satisfies the following formula (I).
Figure 2007134277

絶縁電線20は、複数の銅製の素線11aを撚った撚線からなる導体部11と、この導体部11を絶縁被覆する被覆部22とで構成される。被覆部22は、PLA4からなる厚さt1の外層22bと、外層22bの内側に位置し、エチレン系ポリマ1からなる厚さt2の内層22aと、外層22bの更に外側に位置し、エチレン系ポリマ1からなる厚さt3の最外層22cとを備えた積層体から構成される。被覆部22は、電線用の添加物を含む絶縁材料を導体部11上に押出し、仮想線で示す合わせ目23がなくなるようにシームレスに成形した状態24に製品化される。   The insulated wire 20 includes a conductor portion 11 made of a stranded wire obtained by twisting a plurality of copper strands 11a and a covering portion 22 for insulatingly covering the conductor portion 11. The covering portion 22 is located on the inner side of the outer layer 22b made of PLA4 and having the thickness t1, and is located on the inner side of the inner layer 22a made of the ethylene-based polymer 1 and on the outer side of the outer layer 22b. 1 and an outermost layer 22c having a thickness t3. The covering portion 22 is commercialized into a state 24 in which an insulating material containing an additive for electric wires is extruded onto the conductor portion 11 and is seamlessly formed so that the seam 23 indicated by an imaginary line is eliminated.

この絶縁電線20において、次の式(II)を満たす。

Figure 2007134277
The insulated wire 20 satisfies the following formula (II).
Figure 2007134277

次に、絶縁電線10及び20の製造方法を述べる。   Next, a method for manufacturing the insulated wires 10 and 20 will be described.

絶縁電線10の製造方法は、電線用の第1及び第2の絶縁材料3、6を調製するための調製工程30と、調製された第1及び第2の絶縁材料3、6を被覆材として押出成形する成形工程40とからなる。   The manufacturing method of the insulated wire 10 includes a preparation step 30 for preparing the first and second insulating materials 3 and 6 for the wire, and the prepared first and second insulating materials 3 and 6 as a covering material. And a molding step 40 for extrusion molding.

調製工程30は、エチレン系ポリマ1に第1の添加物2(例えば、難燃剤)を添加して混練し、第1の絶縁材料3を得る工程と、PLA4に第2の添加物5(例えば、難燃剤)を添加して混練し、第2の絶縁材料6を得る工程とを含む。   The preparation step 30 includes adding a first additive 2 (for example, a flame retardant) to the ethylene polymer 1 and kneading to obtain the first insulating material 3, and adding a second additive 5 (for example, the PLA 4). A flame retardant) and kneading to obtain the second insulating material 6.

成形工程40では、まず、第1の絶縁材料3を導体部11上に内層12aとして押出し、仮想線で示す合わせ目13aがなくなるようにシームレスに成形した状態に成形する。次に、第2の絶縁材料6を内層12aで被覆された導体部11上に外層12bとして押出し、仮想線で示す合わせ目13bがなくなるようにシームレスに成形した状態に成形し(第2成形42)、絶縁電線10を製造する。   In the molding step 40, first, the first insulating material 3 is extruded as an inner layer 12a on the conductor portion 11, and is molded into a state in which the first insulating material 3 is seamlessly molded so as to eliminate the seam 13a indicated by a virtual line. Next, the second insulating material 6 is extruded as an outer layer 12b onto the conductor portion 11 covered with the inner layer 12a, and is molded into a state in which the second insulating material 6 is seamlessly molded so as to eliminate the seam 13b indicated by a virtual line (second molding 42). ), Manufacturing the insulated wire 10.

絶縁電線20を製造する場合には、成形工程40において、まず、第1の絶縁材料3を導体部11上に内層22aとして押出し、仮想線で示す合わせ目23aがなくなるようにシームレスに成形した状態に成形する。次に、第2の絶縁材料6を内層22aで被覆された導体部11上に外層22bとして押出し、仮想線で示す合わせ目23bがなくなるようにシームレスに成形した状態に成形する(第2成形42)。次に、第1の絶縁材料3を内層22a及び外層22bで被覆された導体部11上に最外層22cとして押出し、仮想線で示す合わせ目23cがなくなるようにシームレスに成形した状態に成形し(第3成形43)、絶縁電線20を製造する。   In the case of manufacturing the insulated wire 20, in the molding step 40, first, the first insulating material 3 is extruded as the inner layer 22a on the conductor portion 11, and is seamlessly molded so that the seam 23a indicated by the phantom line is eliminated. To form. Next, the second insulating material 6 is extruded as the outer layer 22b onto the conductor portion 11 covered with the inner layer 22a, and is molded into a state of being seamlessly molded so that the joint line 23b indicated by the phantom line is eliminated (second molding 42). ). Next, the first insulating material 3 is extruded as the outermost layer 22c on the conductor portion 11 covered with the inner layer 22a and the outer layer 22b, and is molded into a state in which the seam 23c indicated by the phantom line is seamlessly formed ( 3rd shaping | molding 43) and the insulated wire 20 are manufactured.

絶縁電線10及び20は、被覆部12、22が、PLA4とエチレン系ポリマ1との積層体から構成され、PLA4が絶縁性を有し、かつ、生分解性が良く、エチレン系ポリマ1が柔軟性を与えるため、環境に優しく、しかも可撓性のある絶縁電線として機能する。   Insulated wires 10 and 20 have covering parts 12 and 22 made of a laminate of PLA 4 and ethylene polymer 1, PLA 4 has insulating properties, good biodegradability, and ethylene polymer 1 is flexible. Therefore, it functions as a flexible insulated wire.

絶縁電線10及び20において、式(I)及び式(II)を満たさない場合には、エチレン系ポリマ1による効果が得られないため、曲げたときに被覆部12、22にクラックが生じる。   In the insulated wires 10 and 20, when the formulas (I) and (II) are not satisfied, the effect of the ethylene polymer 1 cannot be obtained, so that cracks occur in the covering portions 12 and 22 when bent.

エチレン系ポリマは、エチレン−酢酸ビニル共重合樹脂(EVA)、エチレン−アクリレート共重合樹脂及びアイオノマ樹脂から選択されるいずれかであることが好ましい。これらのエチレン系ポリマは柔軟性を有するため、第1の絶縁材料3として使用するのに好適である。ここで、エチレン−アクリレート共重合樹脂は、エチレン−メチルアクリレート共重合樹脂(EMA)、エチレン−エチルアクリレート共重合樹脂(EEA)、エチレン−ブチルアクリレート共重合樹脂(EBA)から選択されるいずれかをさす。   The ethylene polymer is preferably any one selected from ethylene-vinyl acetate copolymer resin (EVA), ethylene-acrylate copolymer resin, and ionomer resin. Since these ethylene polymers have flexibility, they are suitable for use as the first insulating material 3. Here, the ethylene-acrylate copolymer resin is selected from ethylene-methyl acrylate copolymer resin (EMA), ethylene-ethyl acrylate copolymer resin (EEA), and ethylene-butyl acrylate copolymer resin (EBA). Sure.

エチレン系ポリマは、曲げ弾性率が14MPa以上であることが好ましい。この場合には、絶縁電線10、20を曲げたときに被覆部12、22にクラックが発生しない。エチレン系ポリマの曲げ弾性率が14MPa未満の場合には、被覆部12、22にクラックが発生する。このため、エチレン系ポリマは、曲げ弾性率が14MPa以上であることが好ましい。   The ethylene polymer preferably has a flexural modulus of 14 MPa or more. In this case, cracks do not occur in the covering portions 12 and 22 when the insulated wires 10 and 20 are bent. When the bending elastic modulus of the ethylene polymer is less than 14 MPa, cracks occur in the covering portions 12 and 22. For this reason, it is preferable that the ethylene-based polymer has a flexural modulus of 14 MPa or more.

上記実施の形態の実施例として実施例1〜実施例9を行い、比較のために比較例1〜比較例3を行った。   Examples 1 to 9 were performed as examples of the above embodiment, and Comparative Examples 1 to 3 were performed for comparison.

1.試料の調製
各試料はエチレン系ポリマの層とPLAの層とを重ねる積層構造とすることで、電線に可撓性を付与することを試みた。PLAは三井化学レイシアH400、エチレン系ポリマはエチレン−エチルアクリレート共重合樹脂(EEA)は三井・デュポンポリケミカル社のA−703、−704、エチレン−酢酸ビニル共重合樹脂(EVA)は三井・ポリケミカル社製EV260及び220を用いた。
1. Sample Preparation Each sample was made to have a laminated structure in which an ethylene polymer layer and a PLA layer were layered to give flexibility to the electric wire. PLA is Mitsui Chemical Lacia H400, ethylene polymer is ethylene-ethyl acrylate copolymer resin (EEA) is Mitsui-DuPont Polychemical A-703, -704, ethylene-vinyl acetate copolymer resin (EVA) is Mitsui Poly Chemical companies EV260 and 220 were used.

実施例1
内層としてEEA A−703(曲げ弾性率14MPa)、中層としてPLA H400(曲げ弾性率3280MPa)を用いた。内層の厚さは0.1mm、中層の厚さは0.7mmである。内層及び中層の厚さを足した被覆部の層厚0.8mmに対する内層の厚さの割合は12.5%である。
Example 1
EEA A-703 (flexural modulus of 14 MPa) was used as the inner layer and PLA H400 (flexural modulus of 3280 MPa) was used as the middle layer. The inner layer has a thickness of 0.1 mm, and the middle layer has a thickness of 0.7 mm. The ratio of the thickness of the inner layer to the layer thickness of 0.8 mm of the covering portion obtained by adding the thickness of the inner layer and the middle layer is 12.5%.

実施例2
内層としてEEA A−703、中層としてPLA H400を用いた。内層の厚さは0.2mm、中層の厚さは0.6mmである。内層及び中層の厚さを足した被覆部の層厚0.8mmに対する内層の厚さの割合は25%である。
Example 2
EEA A-703 was used as the inner layer, and PLA H400 was used as the middle layer. The inner layer has a thickness of 0.2 mm, and the middle layer has a thickness of 0.6 mm. The ratio of the thickness of the inner layer to the layer thickness of 0.8 mm of the covering portion obtained by adding the thickness of the inner layer and the middle layer is 25%.

実施例3
内層としてEEA A−703、中層としてPLA H400を用いた。内層の厚さは0.3mm、中層の厚さは0.5mmである。内層及び中層の厚さを足した被覆部の層厚0.8mmに対する内層の厚さの割合は37.5%である。
Example 3
EEA A-703 was used as the inner layer, and PLA H400 was used as the middle layer. The inner layer has a thickness of 0.3 mm, and the middle layer has a thickness of 0.5 mm. The ratio of the thickness of the inner layer to the layer thickness of 0.8 mm of the covering portion obtained by adding the thickness of the inner layer and the middle layer is 37.5%.

実施例4
内層としてEEA A−703、中層としてPLA H400、外層としてEEA A−703を用いた。内層及び外層の厚さはそれぞれ0.1mm、中層の厚さは0.6mmである。内層、中層及び外層の厚さを足した被覆部の層厚0.8mmに対する内層の厚さの割合は12.5%、層厚に対する内層及び外層の厚さの割合は25%である。
Example 4
EEA A-703 was used as the inner layer, PLA H400 as the middle layer, and EEA A-703 as the outer layer. Each of the inner layer and the outer layer has a thickness of 0.1 mm, and the middle layer has a thickness of 0.6 mm. The ratio of the thickness of the inner layer to the layer thickness of 0.8 mm of the covering portion obtained by adding the thicknesses of the inner layer, the middle layer, and the outer layer is 12.5%, and the ratio of the thickness of the inner layer and the outer layer to the layer thickness is 25%.

実施例5
内層としてEEA A−703、中層としてPLA H400、外層としてEEA A−703を用いた。内層の厚さは0.2mm、中層の厚さは0.5mm、外層の厚さは0.1mmである。内層、中層及び外層の厚さを足した被覆部の層厚0.8mmに対する内層の厚さの割合は25%、層厚に対する内層及び外層の厚さの割合は37.5%である。
Example 5
EEA A-703 was used as the inner layer, PLA H400 as the middle layer, and EEA A-703 as the outer layer. The inner layer has a thickness of 0.2 mm, the middle layer has a thickness of 0.5 mm, and the outer layer has a thickness of 0.1 mm. The ratio of the thickness of the inner layer to the layer thickness of 0.8 mm of the covering portion obtained by adding the thicknesses of the inner layer, the middle layer, and the outer layer is 25%, and the ratio of the thickness of the inner layer and the outer layer to the layer thickness is 37.5%.

実施例6
内層としてEVA EV260(曲げ弾性率16MPa)、中層としてPLA H400、外層としてEVA EV260を用いた。内層の厚さは0.1mm、中層の厚さは0.6mm、外層の厚さは0.1mmである。内層、中層及び外層の厚さを足した被覆部の層厚0.8mmに対する内層の厚さの割合は12.5%、層厚に対する内層及び外層の厚さの割合は25%である。
Example 6
EVA EV260 (flexural modulus 16 MPa) was used as the inner layer, PLA H400 was used as the middle layer, and EVA EV260 was used as the outer layer. The inner layer has a thickness of 0.1 mm, the middle layer has a thickness of 0.6 mm, and the outer layer has a thickness of 0.1 mm. The ratio of the thickness of the inner layer to the layer thickness of 0.8 mm of the covering portion obtained by adding the thicknesses of the inner layer, the middle layer, and the outer layer is 12.5%, and the ratio of the thickness of the inner layer and the outer layer to the layer thickness is 25%.

実施例7
内層としてEEA A−703、中層としてPLA H400、外層としてEEA A−703を用いた。内層の厚さは0.1mm、中層の厚さは0.4mm、外層の厚さは0.1mmである。内層、中層及び外層の厚さを足した被覆部の層厚0.6mmに対する内層の厚さの割合は16.7%、層厚に対する内層及び外層の厚さの割合は33.3%である。
Example 7
EEA A-703 was used as the inner layer, PLA H400 as the middle layer, and EEA A-703 as the outer layer. The inner layer has a thickness of 0.1 mm, the middle layer has a thickness of 0.4 mm, and the outer layer has a thickness of 0.1 mm. The ratio of the thickness of the inner layer to the layer thickness of 0.6 mm of the covering portion plus the thickness of the inner layer, the middle layer, and the outer layer is 16.7%, and the ratio of the thickness of the inner layer and the outer layer to the layer thickness is 33.3%. .

実施例8
内層としてEEA A−704(曲げ弾性率8MPa)、中層としてPLA H400、外層としてEEA A−704を用いた。内層の厚さは0.1mm、中層の厚さは0.6mm、外層の厚さは0.1mmである。内層、中層及び外層の厚さを足した被覆部の層厚0.6mmに対する内層の厚さの割合は12.5%、層厚に対する内層及び外層の厚さの割合は25%である。
Example 8
EEA A-704 (flexural modulus of 8 MPa) was used as the inner layer, PLA H400 was used as the middle layer, and EEA A-704 was used as the outer layer. The inner layer has a thickness of 0.1 mm, the middle layer has a thickness of 0.6 mm, and the outer layer has a thickness of 0.1 mm. The ratio of the thickness of the inner layer to the layer thickness of 0.6 mm of the covering portion obtained by adding the thicknesses of the inner layer, the middle layer, and the outer layer is 12.5%, and the ratio of the thickness of the inner layer and the outer layer to the layer thickness is 25%.

実施例9
内層としてEVA EV220(曲げ弾性率10MPa)、中層としてPLA H400、外層としてEVA EV220を用いた。内層の厚さは0.1mm、中層の厚さは0.4mm、外層の厚さは0.1mmである。内層、中層及び外層の厚さを足した被覆部の層厚0.6mmに対する内層の厚さの割合は12.5%、層厚に対する内層及び外層の厚さの割合は25%である。
Example 9
EVA EV220 (flexural modulus of 10 MPa) was used as the inner layer, PLA H400 was used as the middle layer, and EVA EV220 was used as the outer layer. The inner layer has a thickness of 0.1 mm, the middle layer has a thickness of 0.4 mm, and the outer layer has a thickness of 0.1 mm. The ratio of the thickness of the inner layer to the layer thickness of 0.6 mm of the covering portion obtained by adding the thicknesses of the inner layer, the middle layer, and the outer layer is 12.5%, and the ratio of the thickness of the inner layer and the outer layer to the layer thickness is 25%.

比較例1
PLA層のみを被覆部としたものを比較例1とした。被覆部の厚さは0.8mmである。
Comparative Example 1
A comparative example 1 was obtained by using only the PLA layer as a covering portion. The thickness of the covering portion is 0.8 mm.

比較例2
PLA層の外側にEEA A−703の層を設けたものを比較例2とした。PLA層の厚さは0.7mm、EEA層の厚さは0.1mmである。
Comparative Example 2
Comparative Example 2 was prepared by providing an EEA A-703 layer outside the PLA layer. The thickness of the PLA layer is 0.7 mm, and the thickness of the EEA layer is 0.1 mm.

比較例3
PLA層の外側にEEA A−703の層を設けたものを比較例3とした。PLA層の厚さは0.6mm、EEA層の厚さは0.2mmである。
Comparative Example 3
Comparative Example 3 was prepared by providing an EEA A-703 layer outside the PLA layer. The thickness of the PLA layer is 0.6 mm, and the thickness of the EEA layer is 0.2 mm.

各実験例で得られた試料は、次に示すケーブル曲げ試験により評価した。   The samples obtained in each experimental example were evaluated by the cable bending test shown below.

2.ケーブル曲げ試験
ケーブル曲げ試験は、導体の直径の4倍径である直径12.8mmの金属棒に作製した絶縁電線を2周巻きつけ、絶縁電線の被覆部の様子を観察した。
2. Cable bending test In the cable bending test, an insulated wire made around a metal rod having a diameter of 12.8 mm, which is four times the diameter of the conductor, was wound twice, and the state of the covered portion of the insulated wire was observed.

3.試験結果
図4に、ケーブル曲げ試験の結果を示す。
3. Test Results FIG. 4 shows the results of the cable bending test.

PLA単独で被覆部を形成した比較例1ではPLA層にクラックが発生した。これに対し、実施例1〜実施例3ではPLA層にクラックが発生せず、PLA層の内側にエチレン系ポリマの内層を設け、被覆部全体の厚さに対する内層の厚さが12.5%の場合には、PLA層に発生するクラックを抑えることができることがわかった。また、比較例2及び比較例3より、PLA層の外側にエチレン系ポリマの外層のみを設けた場合には、被覆部全体の厚さに対する外層の厚さが12.5%以上であっても、クラック発生を抑制する効果は得られないことがわかった。   In Comparative Example 1 in which the covering portion was formed of PLA alone, cracks occurred in the PLA layer. On the other hand, in Examples 1 to 3, no cracks occurred in the PLA layer, an inner layer of an ethylene polymer was provided inside the PLA layer, and the thickness of the inner layer relative to the thickness of the entire coating portion was 12.5%. In this case, it was found that cracks generated in the PLA layer can be suppressed. Further, from Comparative Example 2 and Comparative Example 3, when only the outer layer of the ethylene-based polymer is provided outside the PLA layer, even if the thickness of the outer layer is 12.5% or more with respect to the total thickness of the covering portion It has been found that the effect of suppressing crack generation cannot be obtained.

実施例4〜実施例7より、PLA層の内側と外側にエチレン系ポリマ層を設け、内層、PLA層(中層)及び外層の厚さを足した被覆部の層厚に対する内層の厚さの割合が12.5%、層厚に対する内層及び外層の厚さの割合は25%以上である場合には、PLA層に発生するクラックを抑えることができることがわかった。   From Example 4 to Example 7, the ratio of the thickness of the inner layer to the layer thickness of the covering portion obtained by adding the thickness of the inner layer, the PLA layer (middle layer), and the outer layer by providing an ethylene polymer layer inside and outside the PLA layer When the ratio of the thickness of the inner layer and the outer layer to the layer thickness is 25% or more, it was found that cracks generated in the PLA layer can be suppressed.

実施例8では被覆部全体の厚さに対する内層の厚さが12.5%であり、層厚に対する内層及び外層の厚さの割合は25%であったが、内層及び外層の曲げ弾性率は8MPaであったため、PLA層にクラックが発生した。また、実施例9では、被覆部全体の厚さに対する内層の厚さが12.5%であり、層厚に対する内層及び外層の厚さの割合は25%であったが、内層及び外層の曲げ弾性率は10MPaであったため、PLA層にクラックが発生した。このように、実施例8及び実施例9より、PLA層の内側と外側にエチレン系ポリマ層を設けた場合であっても、エチレン系ポリマの曲げ弾性率14MPa以下の場合には、PLA層にクラックが発生した。   In Example 8, the thickness of the inner layer was 12.5% with respect to the thickness of the entire coating portion, and the ratio of the thickness of the inner layer and the outer layer to the layer thickness was 25%, but the bending elastic modulus of the inner layer and the outer layer was Since it was 8 MPa, cracks occurred in the PLA layer. In Example 9, the thickness of the inner layer was 12.5% with respect to the total thickness of the covering portion, and the ratio of the thickness of the inner layer and the outer layer to the layer thickness was 25%. Since the elastic modulus was 10 MPa, cracks occurred in the PLA layer. Thus, from Example 8 and Example 9, even when the ethylene polymer layer is provided on the inside and outside of the PLA layer, if the bending modulus of the ethylene polymer is 14 MPa or less, the PLA layer A crack occurred.

このように、ケーブル曲げ試験において、PLAの層の内側、又はPLAの層の内側及び外側にエチレン系ポリマの層を設けることにより、絶縁破壊を防ぐことができる。しかし、エチレン系ポリマの曲げ弾性率が14MPa以下の場合には、大きな曲率で曲げる場合には絶縁破壊が起こることがわかった。   As described above, in the cable bending test, the dielectric breakdown can be prevented by providing the ethylene polymer layer inside the PLA layer or inside and outside the PLA layer. However, it has been found that when the flexural modulus of ethylene polymer is 14 MPa or less, dielectric breakdown occurs when bending with a large curvature.

以上、本発明の実施の形態について説明したが、上記の実施の形態の開示の一部をなす論述および図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。   Although the embodiment of the present invention has been described above, it should not be understood that the description and the drawings, which constitute a part of the disclosure of the above embodiment, limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

本発明の実施の形態に係る絶縁電線の断面図である。It is sectional drawing of the insulated wire which concerns on embodiment of this invention. 本発明の実施の形態に係る絶縁電線の断面図である。It is sectional drawing of the insulated wire which concerns on embodiment of this invention. 製造工程図である。FIG. ケーブル曲げ試験の結果を示す表である。It is a table | surface which shows the result of a cable bending test.

符号の説明Explanation of symbols

10,20…絶縁電線
11…導体部
11a…素線
12,22…被覆部
12a,22a…内層
12b,22b…外層
22c…最外層
DESCRIPTION OF SYMBOLS 10,20 ... Insulated wire 11 ... Conductor part 11a ... Elementary wire 12, 22 ... Covering part 12a, 22a ... Inner layer 12b, 22b ... Outer layer 22c ... Outermost layer

Claims (7)

導体部と、この導体部を被覆する被覆部とからなり、前記被覆部はポリ乳酸からなる厚さt1の第1の層と、前記第1の層の内側に位置し、エチレン系ポリマからなる厚さt2の第2の層とを積層してなり、次の式(I)を満たすことを特徴とする絶縁電線。
Figure 2007134277
It consists of a conductor part and a covering part covering this conductor part, and the covering part is located inside the first layer made of polylactic acid and having a thickness t1, and made of an ethylene-based polymer. An insulated wire characterized by being laminated with a second layer having a thickness t2 and satisfying the following formula (I).
Figure 2007134277
前記第2の層は、前記被覆部の最内側の層であることを特徴とする請求項1に記載の絶縁電線。   The insulated wire according to claim 1, wherein the second layer is an innermost layer of the covering portion. 更に、前記第1の層の外側に位置し、エチレン系ポリマからなる厚さt3の第3の層を備え、次の式(II)を満たすことを特徴とする請求項1又は請求項2に記載の絶縁電線。
Figure 2007134277
Further, according to claim 1 or claim 2, further comprising a third layer having a thickness t3 made of an ethylene-based polymer, located outside the first layer, and satisfying the following formula (II): Insulated wire as described.
Figure 2007134277
前記第3の層は、前記被覆部の最外側の層であることを特徴とする請求項3に記載の絶縁電線。   The insulated wire according to claim 3, wherein the third layer is an outermost layer of the covering portion. 前記エチレン系ポリマは、エチレン−酢酸ビニル共重合樹脂、エチレン−アクリレート共重合樹脂及びアイオノマー樹脂から選択されるいずれかであることを特徴とする請求項1乃至請求項4のいずれか一項に記載の絶縁電線。   The said ethylene polymer is any one selected from ethylene-vinyl acetate copolymer resin, ethylene-acrylate copolymer resin, and ionomer resin, It is any one of Claim 1 thru | or 4 characterized by the above-mentioned. Insulated wires. 前記エチレン−アクリレート共重合樹脂は、エチレン−メチルアクリレート共重合樹脂、エチレン−エチルアクリレート共重合樹脂、エチレン−ブチルアクリレート共重合樹脂から選択されるいずれかであることを特徴とする請求項5に記載の絶縁電線。   The ethylene-acrylate copolymer resin is any one selected from an ethylene-methyl acrylate copolymer resin, an ethylene-ethyl acrylate copolymer resin, and an ethylene-butyl acrylate copolymer resin. Insulated wires. 前記エチレン系ポリマは、曲げ弾性率が14MPa以上であることを特徴とする請求項1乃至請求項6のいずれか一項に記載の絶縁電線。
The insulated wire according to any one of claims 1 to 6, wherein the ethylene polymer has a flexural modulus of 14 MPa or more.
JP2005328728A 2005-11-14 2005-11-14 Insulated wire Pending JP2007134277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005328728A JP2007134277A (en) 2005-11-14 2005-11-14 Insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005328728A JP2007134277A (en) 2005-11-14 2005-11-14 Insulated wire

Publications (1)

Publication Number Publication Date
JP2007134277A true JP2007134277A (en) 2007-05-31

Family

ID=38155757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005328728A Pending JP2007134277A (en) 2005-11-14 2005-11-14 Insulated wire

Country Status (1)

Country Link
JP (1) JP2007134277A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101774448B1 (en) * 2011-02-23 2017-09-04 엘에스전선 주식회사 Sheath Material Composition Of Signal Cable For Railway Vehicles With High Performance Flame Retardant And High Flexibility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101774448B1 (en) * 2011-02-23 2017-09-04 엘에스전선 주식회사 Sheath Material Composition Of Signal Cable For Railway Vehicles With High Performance Flame Retardant And High Flexibility

Similar Documents

Publication Publication Date Title
JP5438332B2 (en) High voltage electronics cable
US11282618B2 (en) High-speed flat cable having better bending/folding memory and manufacturing method thereof
US8431825B2 (en) Flat type cable for high frequency applications
KR20180042822A (en) Dc cable, and method for manufacturing composition and dc cable
JP4982591B2 (en) High voltage electronics cable
US20070224886A1 (en) Electric Wiring
JP2016015255A (en) Differential signal transmission cable, method of manufacturing the same, and multi-core differential signal transmission cable
WO2006005426A1 (en) Fire resistant wire and cable constructions
CN110993173A (en) High-temperature cable with insulating silicone rubber sheath and preparation method thereof
JP2017188225A (en) LAN cable
JP2003147134A (en) Semiconductor watertight composition
JP2007134277A (en) Insulated wire
JP2008293729A (en) Coaxial cable
CN202018848U (en) Low-voltage aluminum alloy power cable
CN209912588U (en) Rubber wind energy cable
JP2007134116A (en) Insulation composition, insulation material, insulated wire and cable
JP6133484B1 (en) Power cable and manufacturing method thereof
JPH03226911A (en) Insulated wire
JP4086243B2 (en) Twisted pair cable
CN201508715U (en) Non-halogen low-smoke flameproof water-blocking cable
JP2019192459A (en) cable
CN207313519U (en) High-insulativity adhesive tape
JPH03152804A (en) Insulated wire
CN201237933Y (en) Lightning-protection communication cable
CN206505774U (en) A kind of two-conductor copper cover aluminum communication cable