JP2007134116A - Insulation composition, insulation material, insulated wire and cable - Google Patents

Insulation composition, insulation material, insulated wire and cable Download PDF

Info

Publication number
JP2007134116A
JP2007134116A JP2005324526A JP2005324526A JP2007134116A JP 2007134116 A JP2007134116 A JP 2007134116A JP 2005324526 A JP2005324526 A JP 2005324526A JP 2005324526 A JP2005324526 A JP 2005324526A JP 2007134116 A JP2007134116 A JP 2007134116A
Authority
JP
Japan
Prior art keywords
eea
mass
parts
insulated wire
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005324526A
Other languages
Japanese (ja)
Inventor
Toru Nakatsuka
徹 中司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005324526A priority Critical patent/JP2007134116A/en
Publication of JP2007134116A publication Critical patent/JP2007134116A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulation composition containing polylactate and having desired flexibility, to provide an insulation material, and to provide an insulated wire and cable. <P>SOLUTION: The insulated wire 10 comprises a conductor 11, and a cover material 12 covering the conductor 11. The covering material 12 is formed of this insulation composition containing polylactate and an ethylene-ethyl acrylate copolymer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、絶縁組成物、絶縁材料、絶縁電線及びケーブルに関する。   The present invention relates to an insulating composition, an insulating material, an insulated wire, and a cable.

近年、絶縁電線の被覆材に、ポリ乳酸を含む絶縁組成物からなる絶縁材料を用いることが検討されている(特許文献1参照)。ポリ乳酸は、トウモロコシ又はサトウダイコン等の植物から得られるデンプン或いは糖類を発酵して製造される乳酸を化学重合させてできる熱可塑性の樹脂で、環境に優しく、しかも絶縁特性に優れる。
特開2002−358829号公報
In recent years, it has been studied to use an insulating material made of an insulating composition containing polylactic acid as a covering material for insulated wires (see Patent Document 1). Polylactic acid is a thermoplastic resin obtained by chemically polymerizing lactic acid produced by fermenting starch or sugars obtained from plants such as corn or sugar beet, and is environmentally friendly and has excellent insulating properties.
JP 2002-358829 A

しかしながら、従来のポリ乳酸を含む絶縁組成物は、比較的脆く、可撓性に欠ける。このため、そうした絶縁組成物からなる絶縁材料を被覆材に用いた絶縁電線は、例えば、低電圧配線で見られるように、比較的大きな曲率(つまり、小さな半径)で曲げたときにその被覆材にクラックが生じ、電線の絶縁耐圧を低下させる可能性がある。   However, conventional insulating compositions containing polylactic acid are relatively brittle and lack flexibility. For this reason, an insulated wire using an insulating material made of such an insulating composition as a covering material, for example, when it is bent with a relatively large curvature (that is, a small radius) as seen in low-voltage wiring. There is a possibility that a crack will be generated in the wire and the insulation withstand voltage of the wire will be lowered.

本発明は、こうした従来の問題点に対処すべく成された。したがって、本発明は、ポリ乳酸を含みしかも所望の可撓性を有する絶縁組成物、絶縁材料、絶縁電線及びケーブルを提供することを課題とする。   The present invention has been made to address such conventional problems. Therefore, an object of the present invention is to provide an insulating composition, an insulating material, an insulated wire, and a cable that contain polylactic acid and have desired flexibility.

上記課題を解決すべく、本発明に係る絶縁組成物は、ポリ乳酸と、エチレン−エチルアクリレート共重合樹脂とを含むことを特徴とする。   In order to solve the above-mentioned problems, an insulating composition according to the present invention includes polylactic acid and an ethylene-ethyl acrylate copolymer resin.

本発明に係る絶縁材料は、前記絶縁組成物を含むことを特徴とする。   The insulating material according to the present invention includes the insulating composition.

本発明に係る絶縁電線は、導体と、この導体を被覆する被覆材とからなり、この被覆材は前記絶縁材料からなることを特徴とする。   The insulated wire according to the present invention comprises a conductor and a covering material that covers the conductor, and the covering material comprises the insulating material.

本発明に係るケーブルは、導体と、この導体を被覆する被覆材とからなり、この被覆材は前記絶縁材料からなることを特徴とする。   The cable according to the present invention includes a conductor and a covering material that covers the conductor, and the covering material includes the insulating material.

本発明によれば、可撓性を有する絶縁組成物及び絶縁材料が提供され、また曲げ特性に優れた絶縁電線及びケーブルが提供される。   ADVANTAGE OF THE INVENTION According to this invention, the insulating composition and insulating material which have flexibility are provided, and the insulated wire and cable excellent in the bending characteristic are provided.

以下、添付図面を参照して本発明の好適な実施例を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

まず、図1〜図3を参照して本発明の実施の形態に係る絶縁組成物3(図3)、絶縁材料5(図3)、絶縁電線10(図1〜図3)及びケーブル20(図2、3)を説明する。図1は絶縁組成物3を被覆材12として押出成形した絶縁電線10の断面図、図2は絶縁組成物3を被覆材として押出成形したケーブル20の断面図である。図3は製造工程図である。   First, referring to FIG. 1 to FIG. 3, the insulating composition 3 (FIG. 3), the insulating material 5 (FIG. 3), the insulated wire 10 (FIG. 1 to FIG. 3), and the cable 20 ( 2 and 3) will be described. FIG. 1 is a cross-sectional view of an insulated wire 10 extruded by using the insulating composition 3 as a covering material 12, and FIG. 2 is a cross-sectional view of a cable 20 extruded by using the insulating composition 3 as a covering material. FIG. 3 is a manufacturing process diagram.

絶縁電線10は、銅製の良好な電気導体11と、この導体11を被覆絶縁する絶縁組成物からなる被覆材12とで構成される。被覆材12は、ポリ乳酸(PLA)1と、エチレン−エチルアクリレート共重合樹脂(EEA)2と、電線用添加物4とを含む絶縁材料5を導体11上に押出し、仮想線で示す合わせ目12aがなくなるようにシームレスに成形した状態13に製品化される。   The insulated wire 10 is composed of a good electrical conductor 11 made of copper and a covering material 12 made of an insulating composition that covers and insulates the conductor 11. The covering material 12 is formed by extruding an insulating material 5 containing polylactic acid (PLA) 1, ethylene-ethyl acrylate copolymer resin (EEA) 2, and an additive 4 for electric wires onto a conductor 11, and showing a joint line indicated by a virtual line It is commercialized in a state 13 that is seamlessly molded so that 12a is eliminated.

ケーブル20は、平行に配列された絶縁電線10、10、10と、これらの絶縁電線10、10、10を共通に被覆絶縁する略フラットな被覆材22とで構成される。被覆材22も、PLA(ポリ乳酸)1と、EEA(エチレン−エチルアクリレート共重合樹脂)2と、電線用添加物4とを含む絶縁材料5を絶縁電線10、10、10の上下に押出し、仮想線で示す合わせ目22aがなくなるようにシームレスに成形した状態23に製品化される。   The cable 20 includes insulated wires 10, 10, 10 arranged in parallel and a substantially flat covering material 22 that covers and insulates these insulated wires 10, 10, 10 in common. The covering material 22 also extrudes insulating material 5 including PLA (polylactic acid) 1, EEA (ethylene-ethyl acrylate copolymer resin) 2, and wire additive 4 above and below the insulated wires 10, 10, 10, The product is made into a state 23 that is seamlessly molded so that the joint line 22a indicated by the phantom line is eliminated.

次に、絶縁電線10及びケーブル20の製造方法を述べる。   Next, the manufacturing method of the insulated wire 10 and the cable 20 will be described.

この製造方法は、電線用絶縁材料5を調製するための調製工程30と、調製された絶縁材料5を被覆材として押出成形する加工工程40とからなる。   This manufacturing method includes a preparation step 30 for preparing the insulating material 5 for electric wires and a processing step 40 for extruding the prepared insulating material 5 as a covering material.

調製工程30は、PLA1とEEA2とを混練31して絶縁組成物3を得る工程を含む。絶縁材料5を得る場合には、電線用添加物4(例えば、難燃材)を添加して混練31を行う。   The preparation step 30 includes a step of kneading 31 PLA 1 and EEA 2 to obtain the insulating composition 3. When obtaining the insulating material 5, the wire additive 4 (for example, a flame retardant) is added and kneading 31 is performed.

加工工程40では、絶縁材料5を導体11上に被覆材12として押出成形41して絶縁電線10を製造する。また、絶縁材料5を絶縁電線10上に押出成形42してケーブル20を製造する。   In the processing step 40, the insulated wire 10 is manufactured by extruding 41 the insulating material 5 on the conductor 11 as the covering material 12. Further, the cable 20 is manufactured by extruding the insulating material 5 onto the insulated wire 10.

絶縁組成物3は、PLA1とEEA2とを含み、PLA1が絶縁性を有し、かつ、生分解性が良く、EEA2が柔軟性を与えるため、環境に優しく、しかも可撓性のある絶縁組成物として機能する。   Insulating composition 3 includes PLA1 and EEA2, and PLA1 has insulating properties, has good biodegradability, and EEA2 provides flexibility. Therefore, the insulating composition 3 is environmentally friendly and flexible. Function as.

絶縁材料5は、絶縁組成物3と電線用添加物4とで構成されるため、環境に優しく、しかも可撓性のある絶縁材料として機能する。   Since the insulating material 5 is composed of the insulating composition 3 and the wire additive 4, it functions as an environment-friendly and flexible insulating material.

絶縁電線10及びケーブル20は、被覆材12、22が絶縁材料5で形成されるため、環境に優しく、しかも可撓性のある絶縁電線及びケーブルとして機能する。   Since the covering materials 12 and 22 are formed of the insulating material 5, the insulated wire 10 and the cable 20 function as environment-friendly and flexible insulated wires and cables.

EEA2は、エチルアクリレート(EA)量を28wt%以上含み、190℃、2.16kgでのMFRが25g/10min以上であって、PLA100質量部に対して20質量部以上配合されていることが好ましい。ここで、MFRはメルトマスフローレイトを示す。EEAを100質量部より多くするとEEAの特性の方が強くなり、PLAを適用した意味が薄れるため、EEAはPLA100質量部に対して100部を上限とすることが好ましい。   EEA2 contains an ethyl acrylate (EA) amount of 28 wt% or more, MFR at 190 ° C. and 2.16 kg is 25 g / 10 min or more, and preferably 20 parts by mass or more with respect to 100 parts by mass of PLA. . Here, MFR indicates melt mass flow rate. If the EEA is increased from 100 parts by mass, the characteristics of the EEA become stronger and the meaning of applying the PLA is weakened. Therefore, the EEA is preferably made 100 parts by mass with respect to 100 parts by mass of the PLA.

上記実施の形態の好適な実施例として実験例1〜実験例4を行い、配合条件を知るための実験として実験例5〜実験例7を行い、更に比較のために実験例8を行った。   Experimental Examples 1 to 4 were performed as preferred examples of the above embodiment, Experimental Examples 5 to 7 were performed as experiments for knowing the blending conditions, and Experimental Example 8 was further performed for comparison.

1.試料の調製
各試料はPLAと柔軟なEEAとを混練することで、PLAに柔軟性を付加することを試みた。使用したPLAは三井化学レイシアH400、EEAは三井・デュポンポリケミカル社のA−703、−704、−707、−709である。
1. Sample Preparation Each sample was tried to add flexibility to PLA by kneading PLA and flexible EEA. The PLA used was Mitsui Chemicals Lacia H400, and EEA was A-703, -704, -707, -709 manufactured by Mitsui DuPont Polychemical Co., Ltd.

実験例1
100質量部のPLAと、100質量部のA−709とを混練した。A−709はEAを34wt%含み、MFRは25g/10minである。実験例1全体において全EEAは100質量部、EEA中の平均EA含量は34wt%、EEAの平均MFRは25g/10minである。
Experimental example 1
100 parts by mass of PLA and 100 parts by mass of A-709 were kneaded. A-709 contains 34 wt% EA, and MFR is 25 g / 10 min. In Example 1 as a whole, the total EEA was 100 parts by mass, the average EA content in EEA was 34 wt%, and the average MFR of EEA was 25 g / 10 min.

実験例2
100質量部のPLAと、20質量部のA−709とを混練した。実験例2全体において全EEAは20質量部、EEA中の平均EA含量は34wt%、EEAの平均MFRは25g/10minである。
Experimental example 2
100 parts by mass of PLA and 20 parts by mass of A-709 were kneaded. In the entire experimental example 2, the total EEA is 20 parts by mass, the average EA content in the EEA is 34 wt%, and the average MFR of EEA is 25 g / 10 min.

実験例3
100質量部のPLAと、13質量部のA−709と、7質量部のA−707とを混練した。A−707はEAを17wt%含み、MFRは25g/10minである。実験例3全体において全EEAは20質量部、EEA中の平均EA含量は28wt%、EEAの平均MFRは25g/10minである。
Experimental example 3
100 parts by mass of PLA, 13 parts by mass of A-709, and 7 parts by mass of A-707 were kneaded. A-707 contains 17 wt% EA and MFR is 25 g / 10 min. In Example 3 as a whole, the total EEA was 20 parts by mass, the average EA content in EEA was 28 wt%, and the average MFR of EEA was 25 g / 10 min.

実験例4
100質量部のPLAと、8質量部のA−704と、12質量部のA−703とを混練した。A−703はEAを25wt%含み、MFRは5g/10minである。実験例4全体において全EEAは20質量部、EEA中の平均EA含量は25wt%、EEAの平均MFRは25g/10minである。
Experimental Example 4
100 parts by mass of PLA, 8 parts by mass of A-704, and 12 parts by mass of A-703 were kneaded. A-703 contains 25 wt% EA, and MFR is 5 g / 10 min. In the whole Experimental Example 4, the total EEA is 20 parts by mass, the average EA content in the EEA is 25 wt%, and the average MFR of EEA is 25 g / 10 min.

実験例5
100質量部のPLAと、20質量部のA−707とを混練した。実験例5全体において全EEAは20質量部、EEA中の平均EA含量は17wt%、EEAの平均MFRは25g/10minである。
Experimental Example 5
100 parts by mass of PLA and 20 parts by mass of A-707 were kneaded. In Example 5 as a whole, the total EEA was 20 parts by mass, the average EA content in EEA was 17 wt%, and the average MFR of EEA was 25 g / 10 min.

実験例6
100質量部のPLAと、15質量部のA−709とを混練した。実験例6全体において全EEAは15質量部、EEA中の平均EA含量は34wt%、EEAの平均MFRは25g/10minである。
Experimental Example 6
100 parts by mass of PLA and 15 parts by mass of A-709 were kneaded. In Example 6 as a whole, the total EEA was 15 parts by mass, the average EA content in EEA was 34 wt%, and the average MFR of EEA was 25 g / 10 min.

実験例7
100質量部のPLAと、20質量部のA−703とを混練した。実験例7全体において全EEAは20質量部、EEA中の平均EA含量は25wt%、EEAの平均MFRは5g/10minである。
Experimental Example 7
100 parts by mass of PLA and 20 parts by mass of A-703 were kneaded. In the entire experimental example 7, the total EEA is 20 parts by mass, the average EA content in the EEA is 25 wt%, and the average MFR of EEA is 5 g / 10 min.

実験例8
100質量部のPLAにEEAを加えていないものを実験例8とした。
Experimental Example 8
Experimental Example 8 was obtained by adding 100 parts by mass of PLA to which EEA was not added.

ここで、MFRは、JIS K 7210に記載のプラスチック−熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の試験方法に基づき、190℃、2.16kgで測定した。   Here, MFR was measured at 190 ° C. and 2.16 kg based on the plastic-thermoplastic melt mass flow rate (MFR) and melt volume flow rate (MVR) test methods described in JIS K 7210.

各実験例で得られた試料は、シートU字型曲げ試験及び折り曲げ耐電圧試験により評価した。   Samples obtained in each experimental example were evaluated by a sheet U-shaped bending test and a bending withstand voltage test.

2.シートU字型曲げ試験
図4にシートU字型曲げ試験の説明図を示す。図に示すように、各実験例で得られた絶縁材料5を試料とし、この試料をプレスしてシートを作製し、それを長さ100mm、幅10mm、厚さ1mmの短冊状のシート50に切断した。この短冊上シート50を、20mmφの金属円柱51に巻き付け、その屈曲部50aの表面を観察した。
2. Sheet U-shaped Bending Test FIG. 4 is an explanatory diagram of the sheet U-shaped bending test. As shown in the figure, the insulating material 5 obtained in each experimental example is used as a sample, and this sample is pressed to produce a sheet, which is formed into a strip-shaped sheet 50 having a length of 100 mm, a width of 10 mm, and a thickness of 1 mm. Disconnected. This strip-like sheet 50 was wound around a 20 mmφ metal cylinder 51, and the surface of the bent portion 50a was observed.

3.折り曲げ耐電圧試験
まず、導体の直径1.6mm、被覆材の厚さ、つまり絶縁厚さ0.8mmの絶縁電線を試料とし、この試料をその直径のn倍(n=3、10、20)の外径を有する金属筒に3周巻きつけてサンプル電線63とし、その表面を観察した。
3. Bending withstand voltage test First, an insulated wire having a conductor diameter of 1.6 mm and a covering material thickness, that is, an insulation thickness of 0.8 mm was used as a sample, and this sample was n times the diameter (n = 3, 10, 20). The sample wire 63 was wound around a metal tube having an outer diameter of 3 turns, and the surface thereof was observed.

次に、巻き付けたサンプル電線63を金属筒からはずし、JIS C3005ゴム・プラスチック絶縁電線試験方法の4.6(耐電圧の水中課電)に準拠し、図5に示す耐電圧試験を行った。耐電圧試験は、容器60に水62を入れ、この水62をアース回路61でグラウンド61aの電位に保ち、サンプル電線63の曲げ部63aを水62に浸し、サンプル電線63の導体の両端に課電圧回路65を接続して交流電圧64から所定の試験電圧をかけて、導体と水との間に介在する被覆材の絶縁耐圧を測定した。   Next, the wound sample wire 63 was removed from the metal tube, and the withstand voltage test shown in FIG. 5 was performed in accordance with 4.6 of the JIS C3005 rubber / plastic insulated wire test method (underwater voltage withstand voltage). In the withstand voltage test, water 62 is placed in a container 60, the water 62 is kept at the potential of the ground 61 a by the ground circuit 61, the bent portion 63 a of the sample electric wire 63 is immersed in the water 62, and is applied to both ends of the conductor of the sample electric wire 63. A voltage circuit 65 was connected, a predetermined test voltage was applied from the AC voltage 64, and the withstand voltage of the covering material interposed between the conductor and water was measured.

4.試験結果
図6に、シートU字型曲げ試験及び折り曲げ耐電圧試験の結果を示す。
4). Test Results FIG. 6 shows the results of the sheet U-shaped bending test and the bending withstand voltage test.

シートU字型曲げ試験の結果、実験例1〜実験例4では短冊状のシート50の屈曲部50aには、白化やクラックが発生せず、変化がみられなかった。これに対し、PLA単独で被覆材を形成した実験例8では屈曲部50aに微少なクラックが発生した。実験例5では、EEAの平均MFRは25g/10minであり、PLA100質量部に対しEEAが20質量部配合されているものの、EEA中の平均EA含量は17wt%と低いため、屈曲部50aは白化した。実験例6では、EEAの平均MFRは25g/10minであり、EEA中の平均EA含量は34wt%であるが、PLA100質量部に対してEEAが15質量部の割合で配合されているため、屈曲部50aは白化した。実験例7では、PLA100質量部に対しEEAが20質量部配合され、EEA中の平均EA含量は25wt%であるものの、EEAの平均MFRは5g/10minと低いため、屈曲部50aに微少なクラックが発生した。このように、PLAとEEAを混練することで屈曲部50aに発生するクラックを防ぐことができるが、EEA量、EA量及びMFRが低い場合には、屈曲部50aに白化やクラックが発生することがわかった。   As a result of the sheet U-shaped bending test, in Experimental Examples 1 to 4, the bent portion 50a of the strip-shaped sheet 50 was not whitened or cracked, and no change was observed. In contrast, in Experimental Example 8 in which the coating material was formed of PLA alone, a minute crack occurred in the bent portion 50a. In Experimental Example 5, the average MFR of EEA is 25 g / 10 min, and although 20 parts by mass of EEA is blended with 100 parts by mass of PLA, the average EA content in EEA is as low as 17 wt%, so that the bent part 50a is whitened. did. In Experimental Example 6, the average MFR of EEA is 25 g / 10 min, and the average EA content in EEA is 34 wt%. However, since EEA is blended at a ratio of 15 parts by mass with respect to 100 parts by mass of PLA, bending The part 50a was whitened. In Experimental Example 7, 20 parts by mass of EEA is blended with 100 parts by mass of PLA, and the average EA content in EEA is 25 wt%, but the average MFR of EEA is as low as 5 g / 10 min, so there are very small cracks in the bent part 50a. There has occurred. Thus, by mixing PLA and EEA, cracks occurring in the bent portion 50a can be prevented, but when the amount of EEA, the amount of EA, and the MFR are low, whitening or cracks are generated in the bent portion 50a. I understood.

折り曲げ耐電圧試験の結果、20倍径曲げではDC50kV10min及び、AC10kV10minの試験条件では、いずれの試料においても指定時間内で絶縁破壊は起きなかった。また、10倍径曲げではAC10kV10minの試験条件では、いずれの試料においても指定時間内で絶縁破壊は起きなかった。これに対し、大きな曲率で曲げる3倍径曲げではAC10kV10minの試験条件では、実験例1〜実験例4では指定時間内で絶縁破壊は起きなかったが、実験例5〜実験例8では指定時間内に絶縁破壊が起きるか、又は、指定電圧に昇圧する前に絶縁破壊が起きた。このように、折り曲げ耐電圧試験においても、PLAとEEAを混練することで絶縁破壊を防ぐことができるが、EEA量、EA量及びMFRが低い場合には、大きな曲率で曲げる場合には絶縁破壊が起こることがわかった。   As a result of the bending withstand voltage test, dielectric breakdown did not occur within the specified time in any of the samples under the test conditions of DC 50 kV 10 min and AC 10 kV 10 min in 20-fold diameter bending. In addition, in 10 times diameter bending, no dielectric breakdown occurred within the specified time in any sample under the test conditions of AC 10 kV 10 min. On the other hand, in the triple diameter bending which bends with a large curvature, under the test conditions of AC 10 kV 10 min, dielectric breakdown did not occur within the specified time in Experimental Examples 1 to 4, but within the specified time in Experimental Examples 5 to 8. Dielectric breakdown occurred, or dielectric breakdown occurred before boosting to the specified voltage. In this way, even in the bending withstand voltage test, dielectric breakdown can be prevented by kneading PLA and EEA. However, if the EEA amount, EA amount, and MFR are low, the dielectric breakdown occurs when bending with a large curvature. It turns out that happens.

以上、本発明の実施の形態について説明したが、上記の実施の形態の開示の一部をなす論述および図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。   Although the embodiment of the present invention has been described above, it should not be understood that the description and the drawings, which constitute a part of the disclosure of the above embodiment, limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

絶縁組成物を被覆材として押出成形した絶縁電線の断面図である。It is sectional drawing of the insulated wire which extrusion-molded using the insulating composition as a coating | covering material. 絶縁組成物を被覆材として押出成形したケーブルの断面図である。It is sectional drawing of the cable which extrusion-molded the insulating composition as the coating | covering material. 製造工程図である。FIG. シートU字型曲げ試験を示す説明図である。It is explanatory drawing which shows a sheet | seat U-shaped bending test. 折り曲げ耐電圧試験を示す説明図である。It is explanatory drawing which shows a bending withstand voltage test. シートU字型曲げ試験及び折り曲げ耐電圧試験の結果を示す表である。It is a table | surface which shows the result of a sheet | seat U-shaped bending test and a bending withstand voltage test.

符号の説明Explanation of symbols

1…PLA
2…EEA
3…絶縁組成物
4…電線用添加物
5…絶縁材料
10…絶縁電線
11…導体
12…被覆材
20…ケーブル
22…被覆材
1 ... PLA
2 ... EEA
DESCRIPTION OF SYMBOLS 3 ... Insulating composition 4 ... Additive for electric wire 5 ... Insulating material 10 ... Insulated electric wire 11 ... Conductor 12 ... Covering material 20 ... Cable 22 ... Covering material

Claims (5)

ポリ乳酸と、エチレン−エチルアクリレート共重合樹脂とを含むことを特徴とする絶縁組成物。   An insulating composition comprising polylactic acid and an ethylene-ethyl acrylate copolymer resin. 前記エチレン−エチルアクリレート共重合樹脂は、エチルアクリレート量を28wt%以上含み、190℃、2.16kgでのMFRが25g/10min以上であって、前記ポリ乳酸100質量部に対して20質量部以上配合されていることを特徴とする請求項1に記載の絶縁組成物。   The ethylene-ethyl acrylate copolymer resin contains an ethyl acrylate amount of 28 wt% or more, MFR at 190 ° C. and 2.16 kg is 25 g / 10 min or more, and is 20 parts by mass or more with respect to 100 parts by mass of the polylactic acid. The insulating composition according to claim 1, which is blended. 請求項1又は請求項2に係る絶縁組成物を含むことを特徴とする絶縁材料。   An insulating material comprising the insulating composition according to claim 1. 導体と、この導体を被覆する被覆材とからなり、前記被覆材は請求項1又は請求項2に係る絶縁組成物からなることを特徴とする絶縁電線。   An insulated wire comprising a conductor and a covering material covering the conductor, wherein the covering material is made of an insulating composition according to claim 1 or 2. 導体と、この導体を被覆する被覆材とからなり、前記被覆材は請求項1又は請求項2に係る絶縁組成物からなることを特徴とするケーブル。
A cable comprising a conductor and a covering material covering the conductor, wherein the covering material is formed of the insulating composition according to claim 1 or 2.
JP2005324526A 2005-11-09 2005-11-09 Insulation composition, insulation material, insulated wire and cable Pending JP2007134116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005324526A JP2007134116A (en) 2005-11-09 2005-11-09 Insulation composition, insulation material, insulated wire and cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005324526A JP2007134116A (en) 2005-11-09 2005-11-09 Insulation composition, insulation material, insulated wire and cable

Publications (1)

Publication Number Publication Date
JP2007134116A true JP2007134116A (en) 2007-05-31

Family

ID=38155611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005324526A Pending JP2007134116A (en) 2005-11-09 2005-11-09 Insulation composition, insulation material, insulated wire and cable

Country Status (1)

Country Link
JP (1) JP2007134116A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305717A (en) * 2007-06-08 2008-12-18 Hitachi Ltd Environmentally-adaptable electrical apparatus
JP2009185130A (en) * 2008-02-04 2009-08-20 Furukawa Electric Co Ltd:The Resin composition for electric material, and insulated electric wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305717A (en) * 2007-06-08 2008-12-18 Hitachi Ltd Environmentally-adaptable electrical apparatus
JP2009185130A (en) * 2008-02-04 2009-08-20 Furukawa Electric Co Ltd:The Resin composition for electric material, and insulated electric wire

Similar Documents

Publication Publication Date Title
JP6379776B2 (en) Non-halogen flame retardant thermoplastic elastomer composition, method for producing the same, electric wire and cable
WO2012165480A1 (en) Wire coating material, insulated wire, and wire harness
JP4982591B2 (en) High voltage electronics cable
EP2230670B1 (en) Medium voltage cable
JP2014186958A (en) Water-tight insulation electric wire
JP6113823B2 (en) Insulating resin composition for insulated wires, insulated wires and cables for transmitting signals of frequencies in the GHz band
JP2007134116A (en) Insulation composition, insulation material, insulated wire and cable
JP5687024B2 (en) Insulating resin composition for insulated wires, insulated wires and cables
CN107924739B (en) Power transmission cable
JP2016184480A (en) Watertight insulation wire and manufacturing method of watertight insulation wire
CN101359520A (en) Non-halgen flame retardant wire
JP4812333B2 (en) Watertight material and outdoor cross-linked polyethylene insulated wire using the same
JP7037280B2 (en) Insulated wire
JP2007134277A (en) Insulated wire
JP5202853B2 (en) Conductor or optical fiber coating, insulated wire or cable, and optical fiber cord or optical cable
JP5675668B2 (en) Resin composition for watertight material and insulated wire having watertight material using the composition
JP5379383B2 (en) Insulated wires, cables, optical fiber cords and optical cables coated with a resin composition for electrical materials
JP2010116465A (en) Resin material for electric wire/cable or connector
JP2001052535A (en) Tracking resistant insulating wire and tracking resistant insulating cable
JP4866622B2 (en) Insulated wire manufacturing method
JP6130229B2 (en) Silane cross-linked resin composition and electric wire using the same
JP4708393B2 (en) Semiconductive watertight composition
JP3698404B2 (en) Watertight material composition for electric wires
JP2005223966A (en) Rubber molding part and insulated wire
JP2012069523A (en) Insulated wire